180
Eike Budinger (Editor) Proceedings of the 5 th Interna*onal Conference on Auditory Cortex Towards a Synthesis of Human and Animal Research September 13 17, 2014 Magdeburg, Germany

Complete program including all scientific contributions (21 MB, PDF)

  • Upload
    lyngoc

  • View
    264

  • Download
    32

Embed Size (px)

Citation preview

Page 1: Complete program including all scientific contributions (21 MB, PDF)

Eike  Budinger  (Editor)  

Proceedings  of  the  5th  Interna*onal  Conference  on  Auditory  Cortex  Towards  a  Synthesis  of  Human  and  Animal  Research  

September  13  -­‐  17,  2014  Magdeburg,  Germany  

Page 2: Complete program including all scientific contributions (21 MB, PDF)

 

 

 

Proceedings  of  the  

5th  International  Conference  on  Auditory  Cortex  

Towards  a  Synthesis  of  Human  and  Animal  Research  

 

September  13  -­‐  17,  2014  

Magdeburg,  Germany  

 

edited  by  

Eike  Budinger  

 

 

Page 3: Complete program including all scientific contributions (21 MB, PDF)

Eike  Budinger,  Dr.  

Leibniz  Institute  for  Neurobiology  

Brenneckestraße  6  

39118  Magdeburg  /  Germany  

 

 

Editorial  deadline:  September  4,  2014  

 

 

Proceedings  of  the  "5th  International  Conference  on  Auditory  Cortex  –  Towards  a  Synthesis  of  Human  and  Animal  Research"  

 

 

 

 

 

Scientific  Organizing  Committee:  

Dr.  André  Brechmann,  PD  Dr.  Michael  Brosch,  Dr.  Eike  Budinger,  PD  Dr.  Peter  Heil,  PD  Dr.  Reinhard  König,  Prof.  Frank  W.  Ohl,  Prof.  Henning  Scheich  

Leibniz  Institute  for  Neurobiology  

Brenneckestraße  6  

39118  Magdeburg  /  Germany  

 

Conference  Office:  

Carola  Kolouschek  

Public  Relations  |  Media  |  Events  

Page 4: Complete program including all scientific contributions (21 MB, PDF)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proceedings  of  the    

5th  International  Conference  on  Auditory  Cortex  

Towards  a  Synthesis  of  Human  and  Animal  Research    

September  13  -­‐  17,  2014  

Magdeburg,  Germany  

 

edited  by  

Eike  Budinger  

 

 

Page 5: Complete program including all scientific contributions (21 MB, PDF)

 

Page 6: Complete program including all scientific contributions (21 MB, PDF)

i    

Preface  

 

We  would  like  to  welcome  you  to  the  5th  International  Conference  on  Auditory  Cortex  in  Magdeburg.  This  conference  continues  the  series  of  previous  meetings  which  were  held  in  Magdeburg  (Germany)  in  2003  and  2009,  in  Nottingham  (UK)  in  2006,  and  in  Lausanne  (Switzerland)  in  2012.  

We  are  very  pleased  that  more  than  270  researchers  from  all  over  the  world  will  attend  this  year's  conference.  More  than  200  scientific  contributions  were  submitted.  

The  scientific  program  covers  a  wide  range  of  topics  and  will  provide  unique  opportunities  to  discuss  current  ideas  of  auditory  cortex  functions  and  concepts  in  humans  and  animals.  Overall,  40  speakers  -­‐-­‐  from  young  researchers  to  long-­‐established  leading  scientists  -­‐-­‐  will  present  talks  in  six  sessions  entitled:  

-­‐  Auditory  cortex  in  different  species  

-­‐  The  hearing  action  cycle  

-­‐  Auditory  cortex:  It's  about  time  

-­‐  Auditory  cortex:  Clinical  aspects  

-­‐  Multisensory  interplay  in  auditory  cortex  

-­‐  Learning  in  auditory  cortex  

In  addition,  there  will  be  two  sessions  with  165  posters  with  ample  of  space  and  time  for  discussions.  Ten  posters  have  been  selected  for  short  oral  presentations.  

 

The  setting  of  the  meeting  in  the  marvelous  Herrenkrug  Parkhotel  right  next  to  the  Elbe  river  has,  in  the  past,  provided  a  relaxed  yet  stimulating  atmosphere  for  scientific  discussions.  We  are  confident  this  spirit  will  linger  also  in  2014.  We,  the  organizers  of  the  conference,  will  do  our  very  best  to  care  for  this  ambience  by  providing  an  excellent  scientific  program  complemented  by  attractive  social  events  like  a  welcome  reception,  BBQ,  evening  dinner,  dragonboat  race,  and  Bavarian-­‐style  Oktoberfest.  Still,  if  you  need  a  break  from  it  all,  there  are  ideal  possibilities  for  a  range  of  other  activities  (wellness,  golf,  tennis,  cycling,  and  much  more).  

 

So,  welcome  again  to  the  5th  International  Conference  on  Auditory  Cortex  in  Magdeburg!  

 

The  scientific  organizing  committee  

André  Brechmann,  Michael  Brosch,  Eike  Budinger,  Peter  Heil,  Reinhard  König,  Frank  Ohl,  and  Henning  Scheich  

Page 7: Complete program including all scientific contributions (21 MB, PDF)

ii    

For  detailed  information  about  the  conference  venue,  registration,  social  events,  travel,  accommodation  ...  and  much  more,  please  visit  our  website:  

 

www.auditory-­‐cortex.de    

 

Page 8: Complete program including all scientific contributions (21 MB, PDF)

iii    

 

Content  

 

 

Program                 1  

  Program  at  a  glance             6  

 

 

Scientific  contributions             7  

  S1:  Auditory  cortex  in  different  species       7  

  S2:  The  hearing-­‐action  cycle           11  

  S3:  Auditory  cortex:  It's  about  time         15  

  S4:  Auditory  cortex:  Clinical  aspects         19  

  S5:  Multisensory  interplay  in  auditory  cortex     23  

  S6:  Learning  in  auditory  cortex         29  

 

  Posters  and  short  oral  presentations       35  

 

 

Author  index                 133  

 

List  of  participants               139  

 

List  of  sponsors               157  

 

Acknowledgements               158  

Page 9: Complete program including all scientific contributions (21 MB, PDF)
Page 10: Complete program including all scientific contributions (21 MB, PDF)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Program    

 

Page 11: Complete program including all scientific contributions (21 MB, PDF)
Page 12: Complete program including all scientific contributions (21 MB, PDF)

  1  

Program  

 

5th  International  Conference  on  Auditory  Cortex  

Towards  a  Synthesis  of  Human  and  Animal  Research  

Saturday,  13/Sep/2014    

4:00pm  -­‐  7:00pm  

Herrenkrug  Lenné  Room  

Registration  

Please  register  at  our  registration  desk.  You  may  also  decide  to  book  additional  socials  for  you  and  accompanying  persons.  Please  note  that  we  cannot  accept  credit  cards  on-­‐site.  

7:00pm  -­‐  10:00pm  

Herrenkrug  Lobby/Bar  

Welcome  Reception  

For  a  first  welcome  drinks  and  snacks  will  be  served.  There  will  be  also  a  representative  of  the  Magdeburg  Tourist  Office  providing  information  about  Magdeburg.  

 

Page 13: Complete program including all scientific contributions (21 MB, PDF)

  2  

Sunday,  14/Sep/2014    

8:45am  -­‐  9:00am  

Herrenkrug  Ball  Room  

Opening  remarks  Peter  Heil,  Leibniz  Institute  for  Neurobiology  Magdeburg,  Germany  

9:00am  -­‐  10:30am  

Herrenkrug  Ball  Room  

S1/1:  Auditory  cortex  in  different  species  Chairs:     Peter  Heil,  Leibniz  Institute  for  Neurobiology  Magdeburg,  Germany     Dexter  R.  Irvine,  Monash  University  and  Bionics  Institute,  Australia  Speakers:    Manfred  Kössl,  Goethe  University  of  Frankfurt  (Main),  Germany     Lutz  Wiegrebe,  Ludwig  Maximilians  University  of  Munich,  Germany     Georg  M.  Klump,  Carl  von  Ossietzky  University  Oldenburg,  Germany  

10:30am  -­‐  11:00am  

Herrenkrug  Terrace  

Coffee  break  

11:00am  -­‐  12:30pm  

Herrenkrug  Ball  Room  

S1/2:  Auditory  cortex  in  different  species  Chairs:     Peter  Heil,  Leibniz  Institute  for  Neurobiology  Magdeburg,  Germany     Dexter  R.  Irvine,  Monash  University  and  Bionics  Institute,  Australia  Speakers:    Julie  Elie,  University  of  California  at  Berkeley,  United  States  of  America     Christopher  I.  Petkov,  Newcastle  University,  United  Kingdom     Josef  Rauschecker,  Georgetown  University,  United  States  of  America  

12:30pm  -­‐  2:00pm  

Herrenkrug  Restaurant  

Lunch  break  

2:00pm  -­‐  3:00pm  

Herrenkrug  Ball  Room  

S2/1:  The  hearing-­‐action  cycle  Chairs:     Michael  Brosch,  Leibniz  Institute  for  Neurobiology  Magdeburg,  Germany     Jonathan  Fritz,  University  of  Maryland,  United  States  of  America  Speakers:    Erich  Schröger,  University  of  Leipzig,  Germany     Sonja  A.  Kotz,  University  of  Manchester,  United  Kingdom  

3:00pm  -­‐  3:30pm  

Herrenkrug  Ball  Room  

Short  oral  presentations  I  Session  Chair:  Max  Happel,  Leibniz  Institute  for  Neurobiology  

Authors  of  posters  125,  167,  169,  179,  and  239  will  shortly  present  their  studies.  

3:30pm  -­‐  4:00pm  

Herrenkrug  Terrace  

Coffee  break  

4:00pm  -­‐  6:00pm  

Herrenkrug  Wintergarden  /  Marquee  

Poster  session  (odd)  

Presentation  of  posters  with  odd  numbers  and  of  poster  220.  

7:00pm  -­‐  10:00pm  

Herrenkrug  Terrace  

Barbeque  

 

 

Page 14: Complete program including all scientific contributions (21 MB, PDF)

  3  

Monday,  15/Sep/2014    

8:30am  -­‐  10:00am  

Herrenkrug  Ball  Room  

S2/2:  The  hearing-­‐action  cycle  Chairs:     Michael  Brosch,  Leibniz  Institute  for  Neurobiology  Magdeburg,  Germany     Jonathan  Fritz,  University  of  Maryland,  United  States  of  America  Speakers:    Anthony  Zador,  Cold  Spring  Harbor  Laboratory,  United  States  of  America     David  M.  Schneider,  Duke  University,  United  States  of  America     Hugo  Merchant,  National  University  of  Mexico,  Mexico  

10:00am  -­‐  10:30am  

Herrenkrug  Terrace  

Coffee  break  

10:30am  -­‐  11:30am  

Herrenkrug  Ball  Room  

S2/3:  The  hearing-­‐action  cycle  Chairs:     Michael  Brosch,  Leibniz  Institute  for  Neurobiology  Magdeburg,  Germany     Jonathan  Fritz,  University  of  Maryland,  United  States  of  America  Speakers:    Xiaoqin  Wang,  Johns  Hopkins  University,  United  States  of  America     Edward  Chang,  University  of  California  at  San  Francisco,  United  States  of  America  

11:30am  -­‐  12:30pm  

Herrenkrug  Ball  Room  

S3/1:  Auditory  cortex:  It's  about  time  Chairs:     Maria  Chait,  University  College  London,  United  Kingdom     Reinhard  König,  Leibniz  Institute  for  Neurobiology  Magdeburg,  Germany  Speakers:    Mitchell  Steinschneider,  Albert  Einstein  College  of  Medicine,  New  York,  United  States  of  America     Christoph  Schreiner,  University  of  California  at  San  Francisco,  United  States  of  America  

12:30pm  -­‐  2:00pm  

Herrenkrug  Restaurant  

Lunch  break  

2:00pm  -­‐  3:00pm  

Herrenkrug  Ball  Room  

S3/2:  Auditory  cortex:  It's  about  time  Chairs:     Maria  Chait,  University  College  London,  United  Kingdom     Reinhard  König,  Leibniz  Institute  for  Neurobiology  Magdeburg,  Germany  Speakers:    István  Winkler,  Hungarian  Academy  of  Sciences,  Budapest,  Hungary     David  Poeppel,  New  York  University,  United  States  of  America  

3:00pm  -­‐  3:30pm  

Herrenkrug  Ball  Room  

Short  oral  presentations  II  Session  Chair:  Susann  Deike,  Leibniz  Institute  for  Neurobiology  Magdeburg,  Germany  

Authors  of  posters  106,  126,  180,  186,  and  232  will  shortly  present  their  studies.  

3:30pm  -­‐  4:00pm  

Herrenkrug  Terrace  

Coffee  break  

4:00pm  -­‐  6:00pm  

Herrenkrug  Wintergarden  /  Marquee  

Poster  session  (even)  

Presentation  of  posters  with  even  numbers  and  of  posters  123  and  173.  

8:00pm  -­‐  11:00pm  

Herrenkrug  Ball  Room  

Conference  dinner  

 

 

Page 15: Complete program including all scientific contributions (21 MB, PDF)

  4  

Tuesday,  16/Sep/2014    

8:30am  -­‐  10:00am  

Herrenkrug  Ball  Room  

S3/3:  Auditory  cortex:  It's  about  time  Chairs:   Maria  Chait,  University  College  London,  United  Kingdom     Reinhard  König,  Leibniz  Institute  for  Neurobiology  Magdeburg,  Germany  Speakers:    Patrick  J.C.  May,  Aalto  University,  Finland     Israel  Nelken,  Hebrew  University,  Jerusalem,  Israel     Alexandra  Bendixen,  Carl  von  Ossietzky  University  Oldenburg,  Germany  

10:00am  -­‐  10:30am  

Herrenkrug  Terrace  

Coffee  break  

10:30am  -­‐  12:30pm  

Herrenkrug  Ball  Room  

S4:  Auditory  cortex:  Clinical  aspects  Chairs:     André  Brechmann,  Leibniz  Institute  for  Neurobiology  Magdeburg,  Germany     Ingrid  S.  Johnsrude,  University  of  Western  Ontario,  Canada    Speakers:    Timothy  D.  Griffiths,  Newcastle  University,  United  Kingdom     Jos  J.  Eggermont,  University  of  Calgary,  Canada     Anu  Sharma,  University  of  Colorado  at  Boulder,  United  States  of  America     Nina  Kraus,  Northwestern  University,  Evanston,  United  States  of  America  

12:30pm  -­‐  2:00pm  

Herrenkrug  Restaurant  

Lunch  break  

2:00pm  -­‐  3:30pm  

Herrenkrug  Ball  Room  

S5/1:  Multisensory  interplay  in  auditory  cortex  Chairs:     Eike  Budinger,  Leibniz  Institute  for  Neurobiology  Magdeburg,  Germany     Stephen  Lomber,  University  of  Western  Ontario,  London,  Canada  Speakers:    Eike  Budinger,  Leibniz  Institute  for  Neurobiology  Magdeburg,  Germany     M.  Alex  Meredith,  Virginia  Commonwealth  University,  Richmond,  United  States  of  America     Pascal  Barone,  CNRS  Brain  &  Cognition,  Toulouse,  France  

3:30pm  -­‐  8:30pm  

Lake  "Salbker  See"  

Dragonboat  race  

We  arranged  a  couple  of  dragonboats  (including  guides)  for  you  and  will  perform  a  race  on  one  of  Magdeburg's  waters  with  you.  Please  note:  It  could  happen  that  you  get  a  little  wet;  thus,  please  take  appropriate  clothes  with  you.  There  will  be  a  bus  transfer  to  the  Lake  "Salbker  See"  and  a  shuttle  back  to  the  Herrenkrug  Parkhotel.  

 

Page 16: Complete program including all scientific contributions (21 MB, PDF)

  5  

Wednesday,  17/Sep/2014    

8:30am  -­‐  10:00am  

Herrenkrug  Ball  Room  

S5/2:  Multisensory  interplay  in  auditory  cortex  Chairs:     Eike  Budinger,  Leibniz  Institute  for  Neurobiology,  Germany     Stephen  Lomber,  University  of  Western  Ontario,  London,  Canada  Speakers:    Jufang  He,  City  University  of  Hong  Kong,  China     Toemme  Noesselt,  Otto-­‐von-­‐Guericke  University  Magdeburg,  Germany     Micah  M.  Murray,  University  Hospital  Center  and  University  of  Lausanne,  Switzerland  

10:00am  -­‐  10:30am  

Herrenkrug  Terrace  

Coffee  break  

10:30am  -­‐  12:00pm  

Herrenkrug  Ball  Room  

S6/1:  Learning  in  auditory  cortex  Chairs:     Frank  W.  Ohl,  Leibniz  Institute  for  Neurobiology  Magdeburg,  Germany     Jan  W.H.  Schnupp,  University  of  Oxford,  United  Kingdom  Speakers:    Kasia  M.  Bieszczad,  University  of  California  at  Irvine,  United  States  of  America     Timothy  Gentner,  University  of  California  at  San  Diego,  United  States  of  America     Frank  W.  Ohl,  Leibniz  Institute  for  Neurobiology  Magdeburg,  Germany  

12:00pm  -­‐  12:30pm  

Herrenkrug  Ball  Room  

Announcements  for  AC2017  

Group  photo  

12:30pm  -­‐  2:00pm  

Herrenkrug  Restaurant  

Lunch  break  

2:00pm  -­‐  4:00pm  

Herrenkrug  Ball  Room  

S6/2:  Learning  in  auditory  cortex  Chairs:     Frank  W.  Ohl,  Leibniz  Institute  for  Neurobiology  Magdeburg,  Germany     Jan  W.H.  Schnupp,  University  of  Oxford,  United  Kingdom  Speakers:    Andrew  J.  King,  University  of  Oxford,  United  Kingdom     Shaowen  Bao,  University  of  California  at  Berkeley,  United  States  of  America     Stephen  V.  David,  Oregon  Health  and  Science  University,  Portland,  United  States  of  America     Robert  Froemke,  New  York  University  School  of  Medicine,  United  States  of  America  

4:00pm  -­‐  4:30pm  

Herrenkrug  Terrace  

Coffee  break  

4:30pm  -­‐  6:00pm  

Herrenkrug  Ball  Room  

S6/3:  Learning  in  auditory  cortex  Chairs:     Frank  W.  Ohl,  Leibniz  Institute  for  Neurobiology  Magdeburg,  Germany     Jan  W.H.  Schnupp,  University  of  Oxford,  United  Kingdom  Speakers:    Robert  Zatorre,  McGill  University,  Montreal,  Canada     Elia  Formisano,  Maastricht  University,  The  Netherlands     Christo  Pantev,  Institute  for  Biomagnetism  and  Biosignalanalysis,  Muenster,  Germany  

6:00pm  -­‐  6:30pm  

Herrenkrug  Ball  Room  

Closing  remarks  /  Awards  Peter  Heil,  Leibniz  Institute  for  Neurobiology  Magdeburg,  Germany  

6:30pm  -­‐  11:00pm  

Restaurant  "Mückenwirt"    

Farewell  party  

This  party  will  be  organized  in  the  style  of  the  Bavarian  Oktoberfest.  We  strongly  encourage  wearing  traditional  Bavarian  clothes.  There  will  be  a  bus  transfer  to  the  restaurant  "Mückenwirt"  and  a  shuttle  back  to  the  Herrenkrug  Parkhotel.  

 

Page 17: Complete program including all scientific contributions (21 MB, PDF)

  6  

Program  at  a  glance  

Page 18: Complete program including all scientific contributions (21 MB, PDF)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scientific  contributions    

 

Page 19: Complete program including all scientific contributions (21 MB, PDF)
Page 20: Complete program including all scientific contributions (21 MB, PDF)

  7  

Scientific  contributions  

 Session  1:  Auditory  cortex  in  different  species    Studies  of  the  anatomical  and  functional  organization  of  auditory  cortex  in  different  species  and  its  role  in  communication  and  behavior  help  to  identify  common  underlying  principles  of  auditory  cortex  functioning  and  to  distinguish  them  from  species-­‐specific  specializations  owing  to  particular  needs  and  evolutionary  traits.  In  this  session,  speakers  will  provide  state-­‐of-­‐the-­‐art  knowledge  and  views  on  the  common  functional  organization,  also  by  means  of  comparison  to  other  sensory  cortices,  and  on  specific  adaptations  of  auditory  cortex  in  different  species.  Emphasis  will  be  on  humans  and  non-­‐human  primates,  echo-­‐locating  bats,  and  birds  where  homologies  with  mammalian  brains  have  recently  been  revised.  All  constitute  popular  model  systems  for  studies  of  auditory  cortex  and  its  role  in  hearing,  communication,  behavior,  and  learning.    S1/1:  Sunday,  14/Sep/2014,  9:00am  -­‐  10:30am   ID:  132  

Auditory  cortex  adaptations  in  echolocating  bats  Manfred  Kössl1,  Julio  Hechavarria1,  Cornelia  Voss1,  Markus  Schäfer1,  Marianne  Vater2  1Institute  for  Cell  Biology  and  Neuroscience,  Goethe-­‐University  Frankfurt  am  Main,  Germany;  2Institute  for  Biochemistry  and  Biology,  University  of  Potsdam,  Germany  [email protected]­‐frankfurt.de  Bats  rely  on  audition  as  their  main  means  for  echolocation-­‐based  orientation.  In  addition,  they  also  are  known  to  use  complex  communication  call  sequences  comparable  to  those  of  some  song  birds.  Their  auditory  cortices  are  largely  hypertrophied,  both  in  insect  hunting  and  in  frugivorous  bat  species.  We  will  review  auditory  cortex  functions  of  bat  species  that  are  adapted  to  different  orientation  tasks  and  compare  them  with  those  of  non-­‐echolocating  mammals.  Two  groups  of  bats  are  considered,  the  FM  bats  Carollia  perspicillata,  Eptesicus  fuscus,  Myotis  lucifugus  and  Pteronotus  quadridens,  and  the  

CF-­‐FM  bats  Pteronous  parnellii  and  Rhinolophus  rouxi.  Special  emphasis  will  be  laid  on  cortical  time  computation  in  the  form  of  echo-­‐delay  tuning  and  duration  tuning  and  its  topography.  Most  bat  species  studied  have  chronotopically  organized  dorsal  cortex  regions  with  a  rostrocaudal  gradient  of  increasing  echo  delay  time  that  codes  target  distance.  However,  two  insect  hunting  bat  species  do  not  require  a  mapped  representation  of  external  space  and  may  use  population  coding  mechanisms  for  space  representation.  There  is  also  a  large  species-­‐specific  difference  in  the  degree  of  cortical  frequency  convergence  related  to  the  use  of  different  harmonic  components  of  the  sonar  signal  during  echolocation.  We  aim  to  assess  if  bat  auditory  cortex  can  serve  as  a  model  system  for  general  auditory  computation  tasks  in  other  mammals  and  if  bat  cortex  also  represents  special  design  solutions  for  active  hearing  algorithms.      ID:  291  

Neuroethology  of  biosonar:  Listening  to  silent  objects  by  bats  and  humans  Lutz  Wiegrebe,  Uwe  Firzlaff,  Virginia  Flanagin  Division  of  Neurobiology,  Ludwig-­‐Maximilians-­‐University  Munich,  Germany  [email protected]  When  vision  becomes  useless  or  unavailable,  mammals  develop  remarkable  skills  exploring  their  habitat  through  the  auditory  analysis  of  the  echoes  of  self-­‐generated  sounds.  I  will  report  on  combinations  of  formal  psychophysics,  imaging  and  electrophysiology  investigating  how  3D  objects  of  different  size  are  perceived  and  cortically  represented  in  bats  and  humans  that  are  trained  in  echolocation.  We  show  first  that  bat  biosonar  shows  size  constancy  and  this  perceptual  skill  is  reflected  in  responses  of  units  in  the  high-­‐frequency  parts  of  the  bat  primary  auditory  cortex  and  the  adjacent  anterior  auditory  field.  Second,  we  show  that  binaural  analysis  of  the  object's  sonar  aperture,  rather  than  simple  target  strength,  underlies  the  perception  and  neural  encoding  of  extended  objects.  Finally  

Page 21: Complete program including all scientific contributions (21 MB, PDF)

  8  

we  show  how  well  humans  can  use  biosonar  to  explore  the  size  of  enclosed  spaces.  Techniques  allowing  to  do  human  biosonar  in  fMRI  reveal  extraordinary  coupling  between  sensory  and  motor  cortices  with  information  spill-­‐over.      ID:  284  

Auditory  scene  analysis  in  the  cortex  of  birds  and  mammals  Georg  M.  Klump,  Naoya  Itatani,  Lena-­‐Vanessa  Dolležal,  Sandra  Tolnai,  Rainer  Beutelmann  Cluster  of  Excellence  "Hearing4all",  School  of  Medicine  and  Health  Sciences,  Carl  von  Ossietzky  University  of  Oldenburg,  Germany  georg.klump@uni-­‐oldenburg.de  Identifying  the  acoustic  signals  from  different  sources  in  the  natural  environment  is  a  crucial  for  receivers.  The  perceptual  mechanisms  underlying  the  segregation  of  the  signals  from  these  sources  in  complex  auditory  scenes  can  be  studied  applying  paradigms  in  which  the  performance  of  the  auditory  system  depends  on  its  ability  to  segregate  the  signal  streams  from  different  sources.  Such  tasks  are  termed  “objective  stream  segregation  tasks”  and  these  tasks  lend  themselves  to  evaluating  both  the  perceptual  performance  as  well  as  the  neuronal  response.  Here  we  present  results  from  two  studies  using  an  approach  based  on  signal-­‐detection  theory  (SDT).  In  the  first  study  we  demonstrate  that  the  ability  of  European  starlings  to  analyze  the  relative  timing  of  two  sequential  signals  depends  on  whether  these  are  processed  as  belonging  to  one  or  two  streams.  In  one-­‐stream  processing  deviations  from  a  regular  time  pattern  can  be  detected  better  than  in  two-­‐stream  processing.  The  representation  of  the  physical  signal  characteristics  by  the  birds’  primary  auditory  forebrain  neurons  can  explain  the  sensitivity  observed  in  perception.  These  neurons,  however,  do  not  reflect  the  birds’  perceptual  decision  which  is  consistent  with  evidence  obtained  in  earlier  non-­‐invasive  studies  on  human  auditory  streaming.  In  the  second  study  we  demonstrate  that  informational  masking  in  the  perception  of  intensity  increments  by  Mongolian  gerbils  depends  on  whether  the  stream  of  signals  containing  the  standards  and  the  targets  with  an  increment  are  processed  in  the  same  or  in  a  different  stream  as  distractors  with  a  roving  level.  An  SDT  analysis  of  

responses  in  the  gerbil  inferior  colliculus  and  auditory  cortex  reveal  a  neuronal  correlate  of  perceptual  informational  masking  already  at  the  level  of  the  midbrain.  Inferior  colliculus  neurons  show  a  sensitivity  that  corresponds  to  the  perception.  The  performance  of  gerbils  in  this  informational  masking  task  is  similar  to  that  of  human  subjects.  In  summary,  both  studies  demonstrate  that  animal  models  are  suitable  to  unravel  the  neuronal  mechanisms  underlying  the  perception  of  signals  in  complex  auditory  scenes.      S1/2:  Sunday,  14/Sep/2014,  11:00am  -­‐  12:30pm   ID:  216  

Neural  representations  of  voice  and  meaning  in  the  avian  auditory  cortex  Julie  Elie,  Frederic  Theunissen  Dept.  of  Psychology,  University  of  California  Berkeley,  United  States  of  America  [email protected]  Understanding  how  the  brain  extracts  meaning  from  vocalizations  is  a  central  question  in  auditory  research.  Communication  sounds  distinguish  themselves  not  only  by  their  acoustical  properties  but  also  by  their  information  content.  Here,  we  are  developing  the  birdsong  model  to  investigate  how  the  auditory  system  extracts  invariant  features  carrying  symbolic  information  of  the  acoustic  signals  and  categorize  communication  sounds  according  to  their  social  meanings.  Songbirds  have  been  used  extensively  to  study  vocal  learning  but  the  communicative  function  of  vocalizations  and  their  neural  representation  has  yet  to  be  examined.  In  our  research,  we  first  generated  a  library  containing  the  entire  zebra  finch  vocal  repertoire  and  organized  communication  calls  along  9  different  categories.  We  then  investigated  the  neural  representations  of  these  semantic  categories  in  the  primary  and  secondary  auditory  areas  of  6  zebra  finches.  To  decrypt  the  neural  computations  underlying  the  classification  of  these  calls  into  semantic  categories,  we  used  a  combination  of  optimal  decoding  methods  and  encoding  models  of  the  neural  response  that  took  into  account  both  the  acoustical  properties  of  the  sounds  and  their  semantic  grouping.  Both  decoding  and  encoding  

Page 22: Complete program including all scientific contributions (21 MB, PDF)

  9  

analyses  show  that  neural  responses  in  higher  auditory  areas  can  be  more  effectively  explained  by  models  that  describe  sounds  in  terms  of  their  semantic  content  rather  than  just  their  acoustical  features.  The  optimal  decoding  method  revealed  that  for  2/3  of  the  units,  neural  discriminability  of  semantic  groups  is  higher  that  what  could  be  expected  from  the  spectro-­‐temporal  features  of  the  stimuli  only.  The  encoding  model  revealed  that  many  neural  responses  are  best  explained  by  non-­‐linear  transformations  of  spectro-­‐temporal  sound  patterns  and  that  these  non-­‐linearities  emphasize  the  semantic  grouping  of  calls.  Combining  these  results  with  the  anatomical  properties  of  cells  (positions  and  spike  shapes)  gives  new  insight  into  the  neural  representation  of  meaningful  stimuli  in  the  avian  auditory  neural  network.      ID:  308  

Artificial  Grammar  learning  and  the  primate  brain  Christopher  I.  Petkov  Laboratory  of  Comparative  Neuropsychology,  Newcastle  University,  United  Kingdom  [email protected]  Many  animals,  nonhuman  primates  included,  are  not  thought  to  be  able  to  combine  their  vocalizations  into  structured  sequences.  Nonetheless,  it  remains  possible  that  these  animals  could  learn  to  recognize  certain  types  of  rule-­‐based  sequences,  such  as  those  generated  by  Artificial  Grammars  (AGs),  and  that  sequence  learning  abilities  could  have  been  evolutionary  precursors  to  human  language.  Thus,  an  interesting  empirical  question  is  which  animal  species  can  learn  various  levels  of  AG  structural  complexity.  Understanding  this  could  clarify  the  evolutionary  roots  of  human  language  and  facilitate  the  development  of  animal  models  to  study  language  precursors  at  the  neuronal  level.  In  this  talk  I  will  first  describe  the  results  from  behavioral  AG  learning  work  that  we  have  conducted  with  macaque  and  marmoset  monkeys,  two  species  of  nonhuman  primates  representing  different  primate  evolutionary  lineages.  Here,  I  will  propose  a  quantitative  approach  to  relate  our  findings  to  those  that  have  been  obtained  in  other  animal  species  (including  songbirds)  and  with  different  AGs.  

Then  I  will  describe  fMRI  results  on  macaque  brain  regions  that  are  involved  in  AG  learning  and  how  these  results  compare  to  fMRI  findings  in  humans  and  chimpanzees  (the  latter  conducted  with  collaborators  at  Yerkes  Primate  Research  Center).  I  conclude  by  overviewing  macaque  neurophysiology  work  which  provides  insights  on  neuronal  responses  and  cortical  oscillations  associated  with  AG  learning.   ID:  299  

Auditory  cortex  of  primates:  What  can  we  learn  from  visual  cortex  (and  from  control  theory)?  Josef  Rauschecker1,2  1  Dept.  of  Physiology  and  Biophysics,  Georgetown  University,  United  States  of  America;  2Institute  for  Advanced  Studies,  Technical  University  Munich,  Germany  [email protected]  A  comparative  view  of  the  brain,  comparing  the  same  or  similar  functions  across  species  and  sensory  systems,  offers  a  number  of  advantages.  In  particular,  it  allows  separating  the  formal  purpose  of  a  model  structure  from  its  implementation  in  specific  brains.  The  dual-­‐stream  model  of  auditory  cortical  processing  was  originally  conceived  by  analogy  to  the  visual  cortex  and  incorporates  neural  mechanisms  that  are  found  in  both  the  visual  and  auditory  systems.  Examples  are  direction  selectivity,  size  selectivity,  as  well  as  simple  and  complex  cells  based  on  the  segregation  of  on-­‐  and  off-­‐sub-­‐regions  of  the  receptive  field.  On  a  larger  scale,  dual  processing  pathways  have  been  envisioned  as  representing  the  two  main  facets  of  sensory  perception:  1)  identification  of  objects  and  2)  processing  of  stimuli  in  space.  However,  the  analogies  are  even  more  far-­‐reaching  than  that  and,  by  further  expanding  this  view  in  terms  of  control  theory,  may  offer  an  overarching  model  of  cortical  function.  The  expanded  view  of  dorsal-­‐stream  function  in  primates  was  first  presented  at  AC2011  (Rauschecker  2011).  The  model  defines  a  more  general  role  of  the  dorsal  pathway  in  sensorimotor  integration  and  control.  For  instance,  the  production,  storage  and  anticipation  of  stimuli  resulting  from  action  sequences  may  be  mediated  by  the  dorsal  stream  through  its  close  relationship  to  

Page 23: Complete program including all scientific contributions (21 MB, PDF)

  10  

sensorimotor  structures  in  parietal  and  premotor  cortex  and  in  the  basal  ganglia.  Expressed  in  the  language  of  control  theory,  dorsal-­‐stream  function  may  subserve  the  encoding  of  actions  as  “forward  models”  informing  sensory  structures  of  actions  that  are  about  to  occur,  i.e.  as  internal  models  that  produce  a  predicted  sensation.  Conversely,  dorsal-­‐stream  function  also  relates  to  the  programming  of  motor  structures  by  sensory  information  as  “inverse  models”.  In  this  case,  the  motor  system  (“controller”)  receives  the  desired  sensation  as  input  and  must  find  

actions  that  cause  actual  sensations  to  be  as  close  as  possible  to  desired  sensations  (Jordan  and  Rumelhart  1992).  Similar  models  of  audio-­‐motor  function  have  been  proposed  for  the  vocal  system  of  songbirds  and  have  obvious  relevance  for  the  understanding  of  communication  and  its  evolution  in  general  (Rauschecker  2012).  Language  and  music  in  humans  are  two  cognitive  functions  that  are  highly  evolved  but  are  likely  based  on  the  same  mechanisms  (Bornkessel-­‐Schlesewsky  et  al.,  2014).  

 

Page 24: Complete program including all scientific contributions (21 MB, PDF)

  11  

Session  2:  The  hearing-­‐action  cycle    When  we  hear  sounds  we  may  decide  to  orient  and  act  towards  the  location  where  they  come  from.  When  we  move  we  frequently  generate  sounds,  and  we  use  sounds  to  guide  and  control  our  movements  and  actions.  The  interrelationships  between  sounds  and  actions  have  recently  come  into  the  interest  of  researchers  of  auditory  cortex.  They  complement  recent  research  on  the  representation  of  non-­‐auditory  aspects  of  auditory  tasks  in  auditory  cortex.  They  also  complement  the  notion  that  auditory  cortex  functions  as  a  "semantic  processor"  deducing  the  task-­‐specific  meaning  of  sounds.  In  this  session,  speakers  will  present  different  views  on  the  involvement  of  auditory  cortex  in  the  hearing-­‐action  cycle.  Specifically,  this  will  include  audio-­‐vocal  interactions,  the  neural  basis  and  speech  perception  and  production,  auditory-­‐motor  interactions  in  rhythm  production  and  perception,  decision  making,  and  involvement  of  brain  structures  different  from  auditory  cortex,  such  as  motor  cortex,  basal  ganglia,  and  cerebellum.    S2/1:  Sunday,  14/Sep/2014,  2:00pm  -­‐  3:00pm   ID:  297  

Attention  and  prediction  in  audition  Erich  Schröger  Institute  of  Psychology,  University  of  Leipzig,  Germany  schroger@uni-­‐leipzig.de  Attention  is  a  hypothetical  mechanism  in  the  service  of  perception  that  facilitates  the  processing  of  relevant  and  inhibits  the  processing  of  irrelevant  information.  Prediction  is  a  hypothetical  mechanism  in  the  service  of  perception  that  considers  prior  information  when  interpreting  the  sensorial  input.  I  will  present  classical  theories  of  voluntary  and  involuntary  attention  from  cognitive  psychophysiology  and  contrast/relate  those  to  recent  findings  from  research  on  the  increasingly  popular  field  of  (auditory)  prediction.  As  attention  is  obviously  related  to  prediction,  the  relation  between  these  fields  /  concepts  is  of  interest.  First,  I  will  show  that  the  auditory  system  exploits  regularities  in  the  

transitions  between  successive  events  in  order  to  prepare  for  forthcoming  sounds  (transitions  between  auditory  events  as  indicated  by  the  MMN)  that  can  readily  explain  a  subset  of  phenomena  belonging  to  involuntary  attention.  It  will  turn  out  that  the  auditory  system  can  easily  encode  deterministic  transitions  but  fails  with  stochastic  transitions.  Second,  I  will  show  that  also  transitions  between  motor  and  auditory  events  can  generate  auditory  predictions  (as  indicated  by  N1/P2  suppression  for  self-­‐generated  sounds).  It  will  turn  out  that  the  effects  of  attention  and  prediction  sometimes  go  into  opposite  directions,  but  that  they  happen  to  occur  in  an  overlapping  time  range.  This  poses  the  question  of  whether  the  repeatedly  reported  prediction  effects  are  in  fact  effects  of  attention.  In  the  third  part,  will  argue  against  this  attentional  account  of  (some  of  the)  prediction  effects.  However,  there  remains  the  question  of  how  attention  and  prediction  are  related.  The  answer  to  this  question  depends  on  the  definition  of  attention  and  prediction  or  on  the  specific  type  of  attention  and  prediction  being  under  consideration.  If,  for  example,  one  confines  attention  to  the  processing  of  the  selection  of  task-­‐relevant  information  and  prediction  to  the  exploitation  of  predictability  of  the  sensory  input,  the  question  is  similar  to  the  traditional  question  on  the  relation  between  voluntary  and  involuntary  attention  (Cattell,  1886;  James,  1890).  Another  approach  could  be  to  stay  within  one  framework  (e.g.  attention)  and  consider  (possible)  contributions  from  the  other  framework  (e.g.  prediction)  to  that.  I  will  try  to  pin-­‐point  few  possibilities  where  /  how  attention  can  kick  in  from  the  view  of  the  predictive  coding  framework.      ID:  277  

Common  neural  ground  for  action-­‐perception  coupling  and  perception?  Sonja  A  Kotz  School  of  Psychological  Sciences,  University  of  Manchester,  United  Kingdom  [email protected]  While  the  role  of  forward  models  in  predicting  sensory  consequences  of  action  is  well  

Page 25: Complete program including all scientific contributions (21 MB, PDF)

  12  

anchored  in  a  cortico-­‐cerebellar  interface,  it  is  an  open  question  whether  this  interface  is  action  specific  or  extends  to  perceptual  consequences  of  sensory  input  (e.g.  Knolle  et  al.,  2012;  2013  a&b).  Considering  the  functional  relevance  of  a  temporo-­‐cerebellar-­‐thalamo-­‐cortical  circuitry  that  aligns  with  well  known  cerebellar-­‐thalamo-­‐cortical  connectivity  patterns,  one  may  consider  that  cerebellar  computations  apply  similarly  to  incoming  information  coding  action,  sensation,  or  even  higher  level  cognition  (e.g.  Ramnani,  2006):  (i)  they  simulate  cortical  information  processing  and  (ii)  cerebellar-­‐thalamic  output  may  provide  a  possible  source  for  internally  generated  cortical  activity  that  predicts  the  outcome  of  information  processing  in  cortical  target  areas  (Knolle  et  al.,  2012;  Schwartze  &  Kotz,  2013).  I  will  discuss  new  empirical  and  patient  evidence  in  support  of  these  considerations  and  present  an  extended  cortico-­‐subcortical  framework  encompassing  action-­‐perception  coupling  and  perception.      S2/2:  Monday,  15/Sep/2014,  8:30am  -­‐  10:00am   ID:  207  

Circuits  underlying  cortical  decisions  Anthony  Zador  Cold  Spring  Harbor  Laboratory,  United  States  of  America  [email protected]  To  study  how  animals  use  sensory  information  to  make  decisions,  we  have  developed  a  rodent  model  of  auditory  discrimination.  We  previously  found  that  a  subset  of  neurons  in  auditory  cortex,  those  that  project  to  the  auditory  striatum,  play  a  central  role  in  propagating  information  beyond  the  cortex.  In  my  talk  I  will  discuss  these  results,  as  well  as  recent  experiments  indicating  that  plasticity  at  corticostriatal  synapses  plays  an  essential  role  in  the  acquisition  of  the  association  between  the  sound  and  the  action  in  this  task.    

ID:  287  

A  synaptic  and  circuit  basis  for  sensori-­‐motor  integration  in  the  mouse  cortex  David  M.  Schneider,  Anders  Nelson,  Richard  Mooney  Duke  University,  Durham,  United  States  of  America  [email protected]  Sensory  regions  of  the  brain  integrate  environmental  cues  with  neural  signals  that  are  generated  internally,  including  copies  of  motor-­‐related  signals  important  to  imminent  and  ongoing  movements.  In  mammals,  signals  propagating  from  the  motor  cortex  to  the  auditory  cortex  are  thought  to  play  a  critical  role  in  normal  hearing  and  behavior,  yet  the  synaptic  and  circuit  mechanisms  by  which  these  motor-­‐related  signals  influence  auditory  cortical  activity  remain  poorly  understood.  Here  we  made  intracellular  recordings  in  freely  behaving  mice  to  identify  motor-­‐related  synaptic  signals  in  auditory  cortical  excitatory  neurons.  Prior  to  and  during  a  wide  variety  of  movements  including  locomotion,  grooming,  and  vocalization,  auditory  cortical  excitatory  neurons  exhibited  decreased  membrane  potential  variability,  intrinsic  excitability,  and  auditory  responsiveness,  indicative  of  postsynaptic  inhibition.  Consistent  with  this  idea,  multielectrode  array  recordings  in  the  auditory  cortex  revealed  that  activity  in  fast-­‐spiking,  parvalbumin+  (PV+)  interneurons  increased  prior  to  movement  and  before  motor-­‐related  suppression  of  excitatory  neuron  activity.  One  potential  source  of  this  motor-­‐related  suppression  is  the  secondary  motor  cortex  (M2),  which  contains  a  subset  of  cells  that  make  long  range  synapses  on  auditory  cortical  PV+  interneurons,  through  which  M2  may  drive  movement-­‐related  suppression  of  auditory  cortical  activity.  Indeed,  multielectrode  recordings  and  2-­‐photon  calcium  imaging  showed  increased  activity  in  auditory-­‐cortical  projecting  M2  neurons  that  preceded  motor-­‐related  changes  in  auditory  cortical  activity.  Moreover,  optogenetically  activating  M2  axons  in  the  auditory  cortex  of  resting  mice  was  sufficient  to  elicit  movement-­‐like  auditory  cortical  membrane  potential  dynamics  and  to  suppress  tone-­‐evoked  responses,  whereas  silencing  M2  excitatory  cells  during  locomotion  rapidly  restored  rest-­‐like  membrane  potential  

Page 26: Complete program including all scientific contributions (21 MB, PDF)

  13  

dynamics  and  tone-­‐evoked  responses  in  the  auditory  cortex.  Finally,  intersectional  viral  tracing  experiments  revealed  multiple  disynaptic  pathways  connecting  M2  to  the  auditory  cortex,  suggesting  that  direct  projections  may  act  in  concert  with  indirect  circuits  to  modulate  auditory  cortical  dynamics  during  movement.  These  findings  provide  a  synaptic  and  circuit  basis  for  the  motor-­‐related  corollary  discharge  hypothesized  to  facilitate  hearing  and  auditory-­‐guided  behaviors.      ID:  298  

Audiomotor  and  visuomotor  neural  dynamics  during  isochronous  tapping  in  the  medial  premotor  cortex  of  the  macaque  Hugo  Merchant  Instituto  de  Neurobiologia,  National  University  of  Mexico,  Mexico  [email protected]  We  studied  the  response  properties  of  neurons  in  the  primate  medial  premotor  cortex  during  isochronous  tapping  to  an  auditory  or  visual  metronome.  Monkeys  performed  a  three  sequential  elements  task  with  five  different  target-­‐intervals.  Neurons  were  classified  as  sensory  or  motor  based  on  a  time-­‐warping  transformation,  which  determined  whether  the  cell  activity  was  statistically  better  aligned  to  sensory  or  motor  events.  Interestingly,  we  found  a  large  proportion  of  cells  classified  as  sensory  or  motor.  Two  distinctive  clusters  of  sensory  cells  were  observed,  namely,  one  cell  population  with  short  response-­‐onset  latencies  to  the  previous  stimulus  both,  and  another  that  were  probably  predicting  the  occurrence  of  the  next  stimuli.  These  cells  were  called  classic-­‐  and  predictive-­‐sensory  neurons,  respectively.  Classic-­‐sensory  neurons  showed  a  clear  bias  towards  the  visual  modality,  were  mostly  unimodal,  and  were  more  responsive  to  the  first  stimulus,  with  a  decrease  in  activity  for  following  elements  of  the  metronome  sequence.  In  contrast,  predictive-­‐sensory  neurons  responded  to  both  modalities  and  showed  similar  response  profiles  across  serial-­‐order  elements.  Motor  cells  were  mostly  bimodal  and  showed  a  consecutive  activity-­‐onset  across  discrete  neural  ensembles,  generating  a  rapid  succession  of  neural  events  between  the  two  taps  defining  a  produced  

interval.  The  cyclical  configuration  in  activation  profiles  engaged  more  motor  cells  as  the  serial-­‐order  elements  progressed  across  the  task,  and  the  rate  of  cell  recruitment  over  time  decreased  as  a  function  of  the  target-­‐intervals.  Our  findings  support  the  idea  that  motor  cells  were  responsible  for  the  rhythmic  progression  of  taps  in  the  task,  gaining  more  importance  as  the  trial  advanced,  while,  simultaneously,  the  classic-­‐sensory  cells  lost  their  functional  impact.      S2/3:  Monday,  15/Sep/2014,  10:30am  -­‐  11:30am   ID:  293  

Auditory-­‐vocal  interactions  in  primate  cortex  Xiaoqin  Wang  Laboratory  of  Auditory  Neurophysiology,  Dept.  of  Biomedical  Engineering,  Johns  Hopkins  University  Baltimore,  United  States  of  America  [email protected]  The  primate  auditory  cortex  has  long  been  considered  a  structure  primarily  responsible  for  sensory  processing  like  other  sensory  cortices.  However,  an  important  difference  between  hearing  and  other  sensory  functions  such  as  vision  is  that  the  auditory  system  must  process  self-­‐produced  sounds  including  speech  and  vocalizations  during  vocal  communication  in  order  to  produce  appropriate  auditory  feedback  to  guide  vocal  production  and  enable  vocal  learning.  While  much  has  been  learnt  on  auditory-­‐vocal  interactions  in  the  avian  brain,  relatively  little  is  known  on  the  primate  brain.  A  number  of  studies  in  both  animals  and  humans  have  now  demonstrated  that  the  vocal  production  system  in  the  primate  brain  modulates  neural  activity  in  the  auditory  cortex  during  natural  vocal  behaviors.  Our  work  has  shown  that  a  pre-­‐vocal  neural  signal  is  sent  to  the  auditory  cortex  whenever  a  marmoset  self-­‐vocalizes,  allowing  the  brain  to  distinguish  between  internally  and  externally  generated  vocalizations  and  compute  vocal  production  errors.  Our  most  recent  experiments  use  wireless  neural  recording  techniques  in  freely  moving  marmosets  have  begun  to  explore  the  interlocking  aspects  of  the  auditory  perception  and  vocal  production  systems  in  the  primate  brain.

Page 27: Complete program including all scientific contributions (21 MB, PDF)

  14  

ID:  296  

Feature  representation  in  human  speech  cortex  during  perception  and  production  Edward  Chang  Dept.  of  Neurological  Surgery,  University  of  California  San  Francisco,  United  States  of  America  [email protected]  Communication  systems  generally  rely  on  upon  defined  organizational  schemes  for  signal  generation  and  sensing.  In  humans,  the  production  and  perception  of  speech  is  processed  by  highly  specialized  

neuroanatomical  areas  and  processes.  We  have  recently  identified  important  phonetic-­‐level  features  for  vocal  tract  control  during  articulation  in  the  speech  motor  cortex,  and  for  speech  sounds  in  the  higher  order  non  primary  auditory  cortex.  I  will  discuss  important  similarities  and  differences  in  these  representational  systems  with  respect  to  feature  organization  and  dynamics.  I  will  also  present  related  work  on  auditory-­‐vocal  (sensorimotor)  integration  and  transformation  in  speech.  

 

Page 28: Complete program including all scientific contributions (21 MB, PDF)

  15  

Session  3:  Auditory  cortex:  It's  about  time    Time  is  most  essential  for  processing  of  auditory-­‐related  information.  Neurons  in  the  auditory  cortex  are  sensitive  to  aspects  of  sounds  on  multiple  time  scales,  from  a  few  milliseconds  up  to  several  seconds,  and  in  this  way  possibly  encode  the  complexity  of  past  auditory  stimulation.  Furthermore,  this  attribute  may  also  play  a  crucial  role  in  the  prediction  of  upcoming  auditory  events.  The  speakers  of  this  session  will  address,  in  presumably  controversial  fashion,  issues  derived  from  studies  on  humans  and  animals  and  related  to  the  representation  of  time  and  the  relevance  of  time,  like  stimulus  specific  adaptation,  novelty  and/or  change  detection,  auditory  cognition  and  memory,  prediction,  streaming,  and  other  temporal  mechanisms  of  information  encoding.    S3/1:  Monday,  15/Sep/2014,  11:30am  -­‐  12:30pm   ID:  300  

Temporal  dynamics  and  spatial  distribution  of  electrocorticographic  high  gamma  activity  during  target  detection  tasks  Mitchell  Steinschneider  Albert  Einstein  College  of  Medicine,  New  York,  United  States  of  America  [email protected]  Just  as  sounds  evolve  over  time,  so  do  the  neural  events  involved  in  their  processing  and  perception.  Here,  we  describe  the  temporal  dynamics  and  spatial  distribution  of  electrocorticographic  (ECoG)  high  gamma  (70-­‐150  Hz)  activity  occurring  in  auditory  and  auditory-­‐related  cortex  while  subjects  performed  sound  detection  tasks.  Subjects  were  patients  undergoing  invasive  monitoring  for  medically  refractory  epilepsy.  Each  had  subdural  grid  electrodes  implanted  over  posterior  lateral  superior  temporal  gyrus  (PLST).  Additionally,  responses  were  measured  from  depth  electrodes  implanted  within  Heschl's  gyrus  (HG),  and  from  electrodes  located  over  frontal  cortical  regions.  In  one  paradigm,  responses  elicited  by  target  and  non-­‐target  sounds,  and  to  sounds  presented  during  passive  listening,  were  compared.  

Responses  to  target  sounds  recorded  from  PLST  were  increased  when  compared  to  responses  elicited  by  the  same  sounds  when  they  were  non-­‐targets,  and  when  they  were  presented  during  passive  listening.  An  increase  in  high  gamma  activity  to  targets  occurred  during  later  portions  of  the  response.  These  increases  were  related  to  the  task  and  not  to  acoustic  stimulus  characteristics  per  se.  In  contrast,  earlier  activity  that  did  not  vary  across  conditions  did  represent  acoustic  characteristics.  Task-­‐related  effects  observed  on  PLST  were  not  noted  in  HG.  In  a  second  paradigm,  subjects  performed  semantic  target  detection  tasks.  Once  again,  activity  in  posteromedial  HG  and  early  activity  on  PLST  were  robust  to  the  word  stimuli  regardless  of  their  context,  and  minimally  modulated  by  task.  Later  activity  on  PLST  could  be  strongly  modulated  by  semantic  context,  but  not  by  behavioral  performance,  whereas  activity  within  prefrontal  cortex  did  co-­‐vary  with  behavior.  We  propose  that  activity  in  posteromedial  HG  and  early  activity  on  PLST  primarily  reflect  the  representation  of  spectrotemporal  sound  attributes,  whereas  later  activity  on  PLST  reflects  processes  involved  in  sound  categorization.  Activity  in  prefrontal  cortex  appears  more  directly  involved  in  sound  object  selection.  Finally,  we  conclude  with  a  brief  description  of  preliminary  data  acquired  while  subjects  performed  the  Mini-­‐Mental  Status  Examination,  and  how  this  continuous,  dialogue-­‐based  paradigm  may  enhance  our  understanding  of  the  temporal  dynamics  and  spatial  distribution  of  neural  events  involved  in  auditory-­‐related  cognition.      ID:  295  

Acute  and  chronic  effects  of  altered  inhibition  on  auditory  cortical  receptive  fields  Christoph  Schreiner,  Bryan  Seybold,  Elizabeth  Phillips,  Andrea  Hasenstaub  Coleman  Memorial  Laboratory,  UCSF  Center  for  Integrative  Neuroscience,  University  of  California  San  Francisco,  United  States  of  America  [email protected]  Inhibitory  processes  play  crucial  and  diverse  roles  in  shaping  of  receptive  fields  of  cortical  

Page 29: Complete program including all scientific contributions (21 MB, PDF)

  16  

neurons  and  in  defining  local  processing  networks  within  and  across  cortical  layers.  We  shall  discuss  the  relationship  between  different  inhibitory  networks  and  functional  processing  of  spectral  and  temporal  response  features  of  mouse  auditory  cortex.  Genetic  and  optogenetic  manipulations  of  inhibitory  strength  reveal  changes  to  tonal  and  complex  sound  receptive  fields.  Chronic  reduction  of  the  number  of  somatostatin-­‐positive  neurons  affected  response  sensitivity  and  timing.  Acutely  activating  somatostatin-­‐positive  or  parvalbumin-­‐positive  interneurons  led  to  various  changes  in  single-­‐unit  receptive  fields  across  different  degrees  of  firing  rate  suppression.  Acute  interneuron  activation  affected  response  duration  and  frequency  tuning  bandwidth  in  a  similar  way  as  seen  for  chronic  reduction  of  inhibitory  neurons.  Compensatory  network  re-­‐tuning  after  chronic  changes  in  the  inhibitory/excitatory  balance  seems  to  mimic  acute  dynamics  of  the  network.    Supported  by  Grants  from  NIDCD  to  CES,  BS,  and  AH.   S3/2:  Monday,  15/Sep/2014,  2:00pm  -­‐  3:00pm   ID:  294  

Young  infants  process  the  temporal  structure  of  sound  sequences  István  Winkler1,2,  Gábor  P.  Háden1,  Miklós  Török3,  Henkjan  Honing4,5  1Institute  of  Cognitive  Neuroscience  and  Psychology,  Research  Centre  for  Natural  Sciences,  Hungarian  Academy  of  Sciences,  Budapest,  Hungary;  2Institute  of  Psychology,  University  of  Szeged,  Szeged,  Hungary;  3Dept.  of  Obstetrics-­‐Gynaecology  and  Perinatal  Intensive  Care  Unit,  Military  Hospital,  Budapest,  Hungary;  4Institute  for  Logic,  Language  and  Computation,  University  of  Amsterdam,  The  Netherlands;  5Cognitive  Science  Center  Amsterdam,  The  Netherlands  [email protected]  Communication  by  sounds  requires  coordination  between  parties  and,  therefore,  it  inevitably  involves  the  detection  of  temporal  regularities.  Temporal  regularities  can  also  convey  prosodic  information  for  both  speech  and  music.  Whereas  young  infants  possess  sophisticated  discrimination  abilities  for  temporal  cues  by  the  age  of  6  month,  much  less  is  known  about  the  functionality  of  these  

abilities  at  birth.  The  aim  of  the  current  study  was  to  assess  whether  the  newborn  brain  is  sensitive  to  onsets  and  offsets  of  sound  trains  as  well  as  to  changes  in  the  sound  presentation  rate.  To  this  end,  event-­‐related  brain  potentials  (ERP)  were  recorded  from  30  healthy  full-­‐term  newborn  infants  to  short  trains  of  tones  separated  by  a  silent  interval.  Tone  trains  started  at  a  slower  pace,  changed  to  a  faster  pace  at  a  random  position  midway,  and  finally  ended  abruptly  after  a  random  number  of  tones.  ERPs  elicited  by  train  onset  and  offset  and  at  presentation  rate  change  points  demonstrate  that  the  newborn  brain  is  sensitive  to  these  acoustic  events.  These  results  suggest  that  newborn  infants  process  some  of  the  dynamic  cues  necessary  for  speech  and  music  perception,  allowing  them  to  enter  dialogues  well  before  they  learn  to  speak.      ID:  301  

The  cortical  dynamics  of  speech  perception  and  language  comprehension  David  Poeppel1,2  1Dept.  of  Psychology,  New  York  University,  United  States  of  America;  2Dept.  of  Neuroscience  Max-­‐Planck-­‐Institute  for  Empirical  Aesthetics  Frankfurt,  Germany  [email protected]  Speech  contains  temporal  structure  at  the  acoustic  level  that  must  be  extracted  to  enable  linguistic  processing.  To  investigate  the  basis  of  this  early  analysis  and  identify  which  brain  regions  exhibit  the  appropriate  sensitivity  and  specificity,  we  used  ‘sound  quilts’  –  stimuli  constructed  by  shuffling  segments  of  foreign  speech,  approximately  preserving  speech  properties  at  short  timescales  while  profoundly  disrupting  them  at  longer  scales.  We  manipulated  the  amount  of  natural  speech  structure  by  varying  the  quilt  segment  length.  Using  fMRI,  we  identified  bilateral  regions  of  the  superior  temporal  sulcus  whose  responses  to  speech  quilts  increased  with  segment  length.  This  effect  did  not  occur  for  non-­‐speech  quilts,  suggesting  tuning  to  speech-­‐specific  temporal  structure.  When  examined  parametrically,  the  response  to  speech  quilts  plateaued  at  segment  lengths  of  ~500  ms.  Quilts  made  from  time-­‐compressed  speech  yielded  a  similar  plateau  despite  the  increase  in  stimulus  structure  per  unit  time.  The  imaging  

Page 30: Complete program including all scientific contributions (21 MB, PDF)

  17  

results  point  to  a  locus  of  speech  analysis  in  human  auditory  cortex  (STS)  with  an  intrinsic  temporal  limit  between  syllables  and  words.  The  speech  signal  requires  one  form  of  analysis.  Human  language,  famously,  is  hierarchically  structured,  and  mental  representations  of  such  structure  are  necessary  for  successful  language  comprehension.  In  speech,  however,  hierarchical  linguistic  structures,  such  as  words,  phrases,  and  sentences,  are  not  clearly  defined  physically  and  must  therefore  be  internally  constructed  during  comprehension.  How  multiple  levels  of  abstract  linguistic  structure  are  built  and  concurrently  represented  remains  unclear  and  controversial.  We  demonstrate  using  MEG  that,  during  listening  to  connected  speech,  cortical  activity  of  different  time  scales  is  entrained  concurrently  to  track  the  time  course  of  linguistic  structures  at  different  hierarchical  levels.  Critically,  entrainment  to  hierarchical  linguistic  structures  is  dissociated  from  the  neural  encoding  of  acoustic  cues  as  well  as  from  processing  the  predictability  of  incoming  words.  The  results  demonstrate  syntax-­‐driven,  internal  construction  of  hierarchical  linguistic  structure  via  entrainment  of  hierarchical  cortical  dynamics.      S3/3:  Tuesday,  16/Sep/2014,  8:30am  -­‐  10:00am  ID:  209  

Temporal  integration  resulting  from  short-­‐term  plasticity  in  auditory  cortex  Patrick  J.  C.  May  Dept.  of  Biomedical  Engineering  and  Computational  Science,  School  of  Science,  Aalto  University,  Finland  [email protected]  It  is  essential  for  auditory  processing  that  incoming  sounds  are  represented  in  the  context  of  preceding  events.  This  requires  a  memory  mechanism  which  integrates  or  binds  information  over  time.  The  neural  mechanism  which  would  allow  this  type  of  binding  has  remained  elusive.  In  the  current  presentation,  I  discuss  the  possibility  that  short-­‐term  plasticity  (adaptation)  -­‐  emerging  from  synaptic  depression  -­‐  offers  such  a  binding  mechanism.  Adaptation  is  thought  to  lead  to  a  number  of  experimentally  observed  phenomena.  Non-­‐invasively,  the  most  obvious  is  the  suppression  of  event-­‐related  responses  in  the  MEG  and  

EEG.  Specifically,  amplitude  attenuation  of  the  N1m  can  be  observed  with  stimulus  repetition  and  this  is  followed  by  response  recovery  (the  so  called  mismatch  response)  to  rare  deviant  events.  However,  the  simplified  stimulation  with  which  these  attenuation-­‐recovery  phenomena  are  revealed  may  belie  the  more  useful  aspects  of  synaptic  plasticity.  Computational  simulations  of  auditory  cortex  show  that  plasticity  is  necessary  for  core  and  parabelt  columns  of  the  auditory  cortex  to  respond  selectively  to  speech  sounds,  monkey  calls,  and  other  spectrally  and  temporally  complex  stimuli.  In  this  view,  while  short-­‐term  synaptic  plasticity  modulates  the  N1m  response  and  allows  for  change  detection,  its  real  functional  significance  is  the  contribution  it  makes  to  temporal  integration  which  is  required  for  the  processing  of  complex  natural  sounds  such  as  speech.    ID:  273  

The  coding  of  surprise  in  auditory  cortex  Israel  Nelken  Dept.  of  Neurobiology,  The  Silberman  Institute  of  Life  Sciences,  Hebrew  University  of  Jerusalem,  Israel  [email protected]  The  responses  of  neurons  throughout  the  auditory  system  are  strongly  modulated  by  the  temporal  structure  of  the  stimulating  sequence.  One  way  of  studying  this  sensitivity  is  through  stimulus-­‐specific  adaptation  (SSA)  –  the  specific  reduction  in  the  responses  to  a  common  stimulus  that  is  not,  or  only  partially,  generalized  to  other  stimuli.  SSA  in  the  auditory  system  is  widespread  -­‐  it  is  present  in  all  mammalian  species  in  which  it  has  been  tested,  and  is  present  at  least  from  the  inferior  colliculus  all  the  way  to  auditory  cortex.  The  simplest  model  for  SSA  is  based  on  adaptation  of  narrowly  tuned  modules,  and  may  underlie  SSA  in  many  parts  of  the  auditory  system.  I  will  argue  that  this  mechanism  for  SSA  does  not  encode  the  deviations  from  expectations  that  would  be  associated  with  the  term  ‘surprise’.  While  responses  in  the  inferior  colliculus  are  roughly  consistent  with  this  model,  when  using  both  tones  and  broadband  stimuli,  neurons  in  auditory  cortex  are  not:  their  responses  to  deviant  stimuli  in  oddball  sequences  are  larger  than  expected  from  the  model,  and  they  show  both  selectivity  and  SSA  to  broadband  stimuli  

Page 31: Complete program including all scientific contributions (21 MB, PDF)

  18  

that  are  incompatible  with  the  model.  I  will  show  how  specific  subclasses  of  neurons  in  auditory  cortex  differ  in  their  SSA  and  deviance  sensitivity.  Using  optogenetic  techniques,  I  will  show  that  cortical  inhibition  controls  the  level  of  deviance  sensitivity  shown  by  principal  neurons.  These  results  suggest  that  surprise  is  an  essential  component  of  the  responses  of  cortical  neurons  (but  perhaps  not  of  subcortical  neurons).      ID:  201  

Predictive  processing  supports  listening  in  complex  environments  Alexandra  Bendixen  Carl  von  Ossietzky  University  of  Oldenburg,  Dept.  of  Psychology  Germany  alexandra.bendixen@uni-­‐oldenburg.de  The  nature  of  acoustic  information  transmission  poses  significant  challenges  to  the  auditory  system:  Temporally  overlapping  signals  must  be  disentangled  into  the  underlying  sources,  and  any  analysis  must  be  performed  in  real  time,  with  no  possibility  to  re-­‐visit  missing  information.  Current  theories  posit  that  these  complex  operations  are  accomplished  by  means  of  predictive  processing:  The  auditory  system  uses  prior  information  to  predict  upcoming  sounds,  

thereby  reducing  processing  complexity  as  the  predicted  signals  arrive.  Here,  the  use  of  such  predictive  strategies  during  sound  source  segregation  will  be  demonstrated  based  on  behavioral  and  EEG  evidence.  Results  of  several  studies  converge  to  suggest  that  predictability  supports  sound  source  segregation  not  only  when  it  is  present  in  the  sound  source  of  interest  (perceptual  foreground),  but  also  when  it  is  present  in  other  sound  sources  that  the  listener  wishes  to  ignore  (perceptual  background).  It  will  then  be  discussed  whether  these  laboratory  findings  can  reasonably  be  extended  towards  more  ecologically  valid  environments,  containing  predictability  in  a  wider  sense.  To  this  aim,  we  introduced  different  types  of  uncertainty  into  the  auditory  sensory  input  and  assessed  by  means  of  EEG  whether  predictive  processing  is  still  operative  under  such  conditions.  Results  show  that  predictive  processing  scales  gradually  with  the  amount  of  uncertainty  in  the  sound  sequences.  Altogether,  exploiting  sound  predictability  in  an  automatic  manner  appears  to  be  a  feasible  mechanism  for  trying  to  derive  meaning  from  the  complex  acoustic  mixture  arriving  at  the  ears.    

 

Page 32: Complete program including all scientific contributions (21 MB, PDF)

  19  

Session  4:  Auditory  cortex:  Clinical  aspects    The  Conference  on  Auditory  Cortex  so  far  has  focused  on  basic  research  of  auditory  functions  with  the  aim  of  bridging  the  gap  between  animal  and  human  research.  This  time  we  would  like  to  make  a  first  step  towards  bridging  another  gap,  namely  between  fundamental  and  clinical  research.  Therefore,  we  devoted  one  conference  session  to  three  major  clinical  topics  in  auditory  research,  viz.  auditory  based  language  impairment,  restoration  of  hearing  by  cochlear  implants,  and  tinnitus.  The  aim  of  this  session  is  to  provide  an  overview  of  the  achievements  in  the  respective  research  areas  and  to  define  challenging  future  questions.  In  addition,  we  intend  to  arouse  more  interest  in  clinical  aspects  of  auditory  functions,  both  to  transfer  knowledge  from  basic  research  into  the  clinic  and  to  better  understand  normal  auditory  processing.    Tuesday,  16/Sep/2014,  10:30am  -­‐  12:30pm   ID:  305  

Disorders  of  the  auditory  brain:  How  auditory  neuroscience  and  clinical  observations  inform  each  other  Timothy  D.  Griffiths  Institute  of  Neuroscience,  Newcastle  University,  United  Kingdom  [email protected]  I  will  describe  work  to  define  human  systems  for  the  analysis  of  pitch,  pitch  sequences,  timing  and  rhythm.  The  work  is  based  on  fMRI  BOLD  measurement,  indirect  measurement  of  brain  oscillatory  activity  using  MEG,  and  direct  measurement  of  oscillatory  activity  using  electrocorticopgraphy  and  depth  electrode  recording.  These  normal  systems  become  deranged  in  clinical  disorders  including  positive  disorders  such  as  tinnitus  and  musical  hallucinations  and  central  deficits  such  as  auditory  agnosia.  The  studies  of  the  normal  and  abnormal  system  are  mutually  informative.  I  will  argue  that  a  framework  based  on  predictive  coding  allows  insights  into  both.    

ID:  108

The  auditory  cortex  and  tinnitus:  A  comparison  between  animal  and  human  studies  Jos  Jan  Eggermont  Dept.  Physiology  and  Pharmacology,  University  of  Calgary,  Canada  [email protected]  Is  the  auditory  cortex  important  for  the  tinnitus  percept?  If  one  looks  at  the  number  of  animal  studies  on  tinnitus  in  brainstem  and  midbrain  auditory  nuclei  in  comparison  to  those  devoted  to  the  thalamus  and  auditory  cortex  one  would  dismiss  it  as  relevant.  However,  if  one  looks  at  human  imaging  and  electrophysiology  studies,  the  picture  is  completely  opposite.  Here  beside  studies  related  to  auditory  cortex,  a  large  number  of  papers  now  focuses  on  the  brains  default  networks  and  changes  therein  in  tinnitus  patients.  Tinnitus  is  never  occurring  in  isolation,  it  typically  develops  after  hearing  loss  and  not  infrequently  for  losses  at  frequencies  not  tested  in  clinical  audiology.  Furthermore  tinnitus  is  often  accompanied  by  hyperacusis,  which  in  its  most  frequent  form  as  increased  loudness  sensitivity  may  reflect  the  central  gain  change  in  the  auditory  system  that  occurs  after  hearing  loss.  In  its  most  serious  form,  a  painful  experience  accompanying  even  moderate  level  sounds,  it  may  result  from  oversensitivity  of  the  type  II  nerve  fibers  in  the  cochlea  that  sense  the  activity  of  the  outer  hair  cells  (here  I  speculate).  I  will  first  review  the  electrophysiological  findings  in  thalamus  and  cortex  pertaining  to  animal  research  into  tinnitus.  This  will  take  the  form  of  sorting  out  the  changes  in  tonotopic  maps,  spontaneous  firing  rate,  burst  firing,  and  changes  in  pair-­‐wise  neural  cross-­‐correlation  induced  by  two  tinnitus  inducing  agents  that  are  commonly  used  in  animal  experiments.  These  are  systemic  application  of  sodium  salicylate,  and  noise  exposure  at  levels  ranging  from  those  do  not  cause  a  hearing  loss,  only  cause  a  temporary  threshold  shift,  or  cause  a  permanent  hearing  loss.  Following  this  we  will  review  some  neuro-­‐imaging  and  electrophysiological  findings  in  auditory  cortex  in  humans  with  tinnitus.  The  correlative  triad  

Page 33: Complete program including all scientific contributions (21 MB, PDF)

  20  

mentioned  above  confounds  studies  on  the  mechanism  of  tinnitus,  as  neither  hearing  loss  nor  hyperacusis  are  necessary  conditions  for  tinnitus  to  occur.    ID:  286  

Cortical  plasticity  and  re-­‐organization  in  hearing  loss  Anu  Sharma  University  of  Colorado  at  Boulder,  United  States  of  America  [email protected]  A  basic  tenet  of  neuroplasticity  is  that  the  brain  will  re-­‐organize  following  sensory  deprivation.  Sensory  deprivation  appears  to  tax  the  brain  by  changing  its  normal  resource  allocation.  Hearing  impaired  adults  and  children  who  receive  intervention  with  hearing  aids  and  cochlear  implants  provide  a  platform  to  examine  the  trajectories  and  characteristics  of  deprivation-­‐induced  and  experience-­‐dependent  plasticity  in  the  central  auditory  system.  We  review  the  evidence  for  sensitive  periods  for  development  of  the  central  auditory  pathways.  A  sensitive  period  in  early  childhood  appears  to  coincide  with  the  period  of  maximal  synaptogenesis  in  auditory  cortex.  Implantation  within  this  sensitive  period  provides  the  auditory  experience  needed  for  refinement  of  essential  synaptic  pathways.  Compensation  for  the  deleterious  effects  of  hearing  loss  may  also  include  recruitment  of  alternative  or  additional  brain  networks  to  perform  auditory  tasks.  Cross-­‐modal  recruitment  is  an  aspect  of  plasticity  that  is  apparent  in  hearing  loss.  In  congenital  deafness,  somatosensory  and  visual  appear  to  recruit  higher-­‐order  auditory  areas  impacting  auditory  outcomes  with  a  cochlear  implant.  In  recent  studies,  we  find  that  cross-­‐modal  re-­‐organization  and  changes  in  neural  resource  allocation  are  also  evident  in  adult-­‐onset  post-­‐lingual  hearing  loss.  Our  high-­‐density  EEG  experiments  suggest  that  age-­‐related  hearing  loss  results  in  significant  changes  in  neural  resource  allocation,  reflecting  patterns  of  increased  listening  effort  and  decreased  cognitive  reserve  which  may  be  associated  with  dementia-­‐related  cognitive  decline.  Overall,  it  appears  that  the  functional  activation  of  cognitive  circuitry  resulting  from  cortical  reorganization  in  deafness  is  predictive  

of  outcomes  after  intervention  with  amplification  or  electrical  stimulation.  A  better  understanding  of  cortical  development  and  reorganization  in  auditory  deprivation  has  important  clinical  implications  for  optimal  intervention  and  habilitation  of  these  patients.    Research  supported  by  the  U.S.  National  Institutes  of  Health.    

 ID:  275  

Unraveling  the  biology  of  auditory  learning  in  humans  Nina  Kraus  Auditory  Neuroscience  Laboratory,  Dept.  of  Communication  Sciences,  Northwestern  University,  United  States  of  America  [email protected]  Our  neural  probe,  although  nominally  of  midbrain  origin,  serves  as  a  snapshot  of  the  larger  auditory  system  involving  sensory,  cognitive,  and  reward  centers.  With  it,  assessing  large  quantities  of  subjects  across  the  age  span,  in  cross-­‐sectional  and  longitudinal  designs,  and  with  training,  we  have  uncovered  some  “neural  signatures.”  Because  of  the  close  adherence  to  the  evoking  stimulus,  and  that  the  stimulus  is  acoustically  complex,  this  biological  activity  can  be  thoroughly  characterized  in  terms  of  timing,  harmonics  and  phase.  We  can  also  examine  its  inter-­‐trial  consistency  and  phase  locking.  From  this  broad  canvas,  we  have  been  able  to  discern  neural  signatures  of  auditory  learning  that  have  promising  clinical  applications.  We  have  found  signatures  of  enhancement,  such  as  seen  in  musicians  and  bilinguals;  we  have  found  signatures  of  deprivation  such  as  seen  in  poverty  and  clinical  conditions  such  as  language  disorders  and  difficulty  hearing  in  noise.  The  effect  on  the  response  is  not  global;  the  response  characteristics  that  are  affected  differ  widely:  sliders  on  a  studio  mixer  rather  than  a  volume  knob.  Given  the  known  mutability  of  the  auditory  system,  and  starting  from  the  grounding  of  the  signature  responses,  we  are  able  to  investigate  learning-­‐related  neuroplasticity  in  individuals.  Learning  approaches  include  amplification,  music  instruction  and  software-­‐based  training.  With  training,  we  have  observed  a  change  in  response  properties;  older  individuals  regain  a  “young”  response  signature;  poor  readers’  responses  look  more  like  those  of  good  

Page 34: Complete program including all scientific contributions (21 MB, PDF)

  21  

readers.  The  hope  is  that  with  such  a  measure,  uniformity  can  be  achieved—across  populations,  across  species,  across  labs,  and  in  the  clinic—in  our  understanding  of  auditory  

learning  and  brain  health.    Supported  by  NIH;  NSF;  Knowles  Hearing  Center;  see  www.brainvolts.northwestern.edu.  

 

Page 35: Complete program including all scientific contributions (21 MB, PDF)

  22  

 

   

Page 36: Complete program including all scientific contributions (21 MB, PDF)

  23  

Session  5:  Multisensory  interplay  in  auditory  cortex    The  problems  of  how  the  different  senses  merge  in  the  brain  and  of  how  the  brain  associates  this  information  with  behavioral  demands  have  kept  neuroscientists  busy  already  for  several  decades.  Initially,  research  focused  on  "classical"  multisensory  brain  structures  like  the  superior  colliculus  and  the  parietal  cortex;  recent  research  also  includes  low-­‐level  ("unisensory")  cortical  areas.  In  this  session,  authors  from  various  fields  of  animal  and  human  research  will  present  their  scientific  results  and  views  on  the  role  of  the  auditory  cortex  in  multisensory  interplay.  They  will  highlight,  for  example,  specific  functions  of  the  different  auditory  fields  in  multisensory  integration  processes,  comparisons  to  other  sensory,  "classical"  multisensory  and  higher-­‐order  association  areas  of  the  brain,  anatomical  pathways  and  mechanisms  of  multisensory  integration  at  various  cellular  and  areal  levels,  the  role  of  multisensory  information  in  learning,  memory,  and  behavior,  and  cross-­‐modal  reorganization  processes  following  sensory  impairments.    S5/1:  Tuesday,  16/Sep/2014,  2:00pm  -­‐  3:30pm    ID:  120  

Multisensory  interplay  in  the  primary  auditory  cortex  (A1):  Anatomical  pathways,  functional  implications,  and  comparisons  to  S1  and  V1  Eike  Budinger  Dept.  Systems  Physiology  of  Learning,  Leibniz  Institute  for  Neurobiology  Magdeburg,  Germany  budinger@lin-­‐magdeburg.de  Converging  evidence  from  recent  anatomical  and  electrophysiological  studies  in  animals  as  well  as  non-­‐invasive  imaging  studies  in  humans  have  shown  that  multisensory  integration  does  not  only  recruit  higher-­‐level  association  cortex,  but  also  low-­‐level  and  even  primary  sensory  cortices.  Here,  I  will  review  possible  anatomical  pathways  and  functional  implications  of  multisensory  interplay  in  the  primary  auditory  cortex  (A1)  of  different  mammals  including  humans  and  I  will  compare  the  results  on  A1  with  those  on  the  primary  somatosensory  (S1)  and  visual  cortex  (V1).  

Generally,  there  are  at  least  three  possible  neuronal  pathways  mediating  multisensory  interactions  in  A1,  which  are  not  mutually  exclusive:  (i)  Auditory  and  non-­‐auditory  information  could  be  integrated  at  subcortical  levels  and  then  be  conveyed  “bottom-­‐up”  to  AI.  This  integration  could  occur  within  the  “classical”  auditory  pathway  or  within  multisensory  subcortical  structures,  which  project  to  AI.  (ii)  Auditory  and  non-­‐auditory  information  could  be  integrated  in  AI.  The  non-­‐auditory  information  could  be  directly  relayed  to  AI  either  from  subcortical  or  from  cortical  brain  regions,  which  serve  essentially  unisensory  functions.  (iii)  AI  could  receive  feedback,  “top-­‐down”,  inputs  from  multisensory  “higher-­‐order”  centers  of  the  cortex.  There  are  strong  evidences  for  all  three  possibilities  in  various  mammalian  species.  Most  noteably,  there  are  direct  projections  from  thalamic  nuclei  of  other  sensory  modalities  to  A1  as  well  as  direct  interconnections  between  A1,  S1,  and  V1  (possibility  ii).  These  connections  could,  for  example,  mediate  short  latency  neuronal  integration  processes,  which  in  turn  might  be  suitable  for  the  decrease  of  reaction  times  and  for  the  increase  of  the  detection  of  weak  multimodal  stimuli.  S1  and  V1  also  receive  direct  inputs  from  thalamic  nuclei  and  cortical  regions  of  other  sensory  modalities.  However,  the  input  ratios  of  crossmodal  thalamocortical  inputs  and  the  nature  of  corticocortical  connections  (i.e.  feedback,  feedforward,  lateral)  of  S1,  V1,  and  A1  differ,  suggesting  a  different  role  or  mechanisms  of  multisensory  interplay  in  the  three  primary  sensory  cortices.    ID:  270  

Somatosensory  processing  in  ferret  core  auditory  cortex  M.  Alex  Meredith,  Brian  L.  Allman  Virginia  Commonwealth  University  School  of  Medicine,  United  States  of  America  [email protected]  The  recent  demonstration  that  the  primary  sensory  cortices  exhibit  multisensory  

Page 37: Complete program including all scientific contributions (21 MB, PDF)

  24  

responses  represents  a  paradigm  shift  for  neuroscience.  This  finding  has  been  based  largely  upon  the  visual  and  auditory  sensory  modalities  and  their  representations,  almost  to  the  exclusion  of  somatosensation.  Therefore,  the  present  investigation  examined  the  core  auditory  cortices  (anterior  –  AAF,  and  primary  auditory-­‐  A1,  fields)  for  tactile  (as  well  as  visual  and  auditory)  responsivity.  Multiple  single-­‐unit  recordings  from  anesthetized  ferret  cortex  yielded  311  histologically  verified  neurons  of  which  nearly  all  (n=310)  were  activated  by  acoustic  stimulation.  As  expected,  a  small  proportion  (11%)  was  also  influenced  by  visual  cues,  but  a  larger  number  (19%)  was  affected  by  tactile  stimulation.  Tactile  effects  occurred  as  overt,  active  spiking  responses  in  bimodal  auditory-­‐tactile  neurons,  or  as  suppression  of  concurrent  auditory  activation  in  subthreshold  multisensory  neurons.  Furthermore,  tactile  effects  were  observed  even  among  auditory  neurons  defined  as  unisensory:  at  the  population  level,  unisensory  auditory  neurons’  response  to  acoustic  stimulation  was  significantly  suppressed  by  co-­‐presentation  of  a  tactile  cue.  Further  analysis  of  the  entire  neuron  sample  revealed  that  tactile  inputs  consistently  exhibited  the  most  robust  influence  not  as  independent  somatosensory  effects,  but  as  a  modulator  of  the  responses  to  auditory  stimulation.  Anatomically,  that  the  core  auditory  cortices  receive  a  major  input  (34%  of  all  external  projections)  from  the  rostral  suprasylvian  sulcal  somatosensory  representation  supports  the  observed  tactile  effects.  Furthermore,  both  early  and  late  deafness  or  partial  hearing  loss  in  ferrets  results  in  the  crossmodal  reorganization  of  the  ferret  core  auditory  cortices  as  essentially  somatosensory  representations.  Collectively,  these  results  demonstrate  that  multisensory  effects  in  auditory  cortex  are  not  exclusively  visual  and  that  somatosensation  can  play  a  significant  role  in  acoustic  processing  in  the  auditory  cortex  of  hearing  individuals  as  well  as  in  the  brain’s  plasticity  following  hearing  loss.    Supported  by  NIH  Grant  NS39460  and  VCU  PRIP  (MAM)  and  NSERC  Discovery  grant  (BLA).    

ID:  292  

Crossmodal  plasticity  of  the  auditory  cortex  in  deafness:  From  anatomy  to  brain  imaging  in  cochlear  implanted  deaf  patients  Pascal  Barone  Centre  de  Recherche  Cerveau  et  Cognition,  Faculté  de  Médecine  de  Rangueil,  Toulouse,  France  [email protected]­‐tlse.fr  There  is  now  a  large  body  of  psychophysical  and  neuroimaging  studies  in  both  animal  and  human  subjects  showing  that  auditory  deprivation  from  early  developmental  stages  leads  to  functional  compensations  that  favor  the  spared  modalities.  Perceptual  crossmodal  compensation  in  deafness  is  accompanied  by  functional  reorganizations  such  as  an  invasion  of  the  deprived  auditory  cortical  areas  by  visual  functions.  The  degrees  of  functional  reorganization  and  cross-­‐modal  compensation  are  highly  dependent  on  the  age  at  which  the  sensory  deprivation  occurs,  as  a  result  of  the  decreasing  capacities  of  adaptive  plasticity  of  the  brain  from  birth  to  adulthood.  Our  work  is  aimed  at  understanding  the  neuronal  mechanisms  of  cortical  plasticity  in  adult  and  during  development  that  support  crossmodal  reorganization  after  deafness.  Further,  a  hearing  can  be  restored  through  cochlear  implant  (CI),  the  functional  interactions  between  the  visual  and  auditory  modalities  will  be  assess  in  light  of  the  capacity  of  the  auditory  system  to  regain  its  original  function.  First  in  congenital  deaf  cats  anatomical  tracing  performed  at  the  level  of  the  auditory  areas  A1  and  DZ  revealed  that  most  of  the  aeral  specificity  of  the  connectivity  pattern  of  AI  and  DZ  is  preserved  (Barone  et  al,  PLoS  One  2013).  However  sparse  non  auditory  inputs  from  visual  thalamic  (LP)  and  cortical  regions  (areas  20/21)  were  observed  toward  A1  and  DZ  respectively.  This  lack  of  a  massive  reorganization  of  the  auditory  connectivity  suggests  that  most  of  crossmodal  compensation  after  deafness  is  supported  by  the  normal  network  of  heteromodal  connectivity  implicated  in  multisensory  interactions  (Cappe  et  al,  Hear.  Res  2009).  Such  result  are  supported  by  our  brain  imaging  study  performed  in  postlingual  adult  deaf  CI  patients.  PET  scan  brain  imaging  studies  revealed  a  crossmodal  visual  activation  in  the  

Page 38: Complete program including all scientific contributions (21 MB, PDF)

  25  

auditory  temporal  areas  during  speechreading.  These  abnormal  activity  levels  diminish  with  post-­‐implantation  time  and  tend  towards  the  levels  observed  in  normal  hearing  (Rouger  et  al,  Human  Brain  Map.  2012).  Further,  as  the  strategy  adapted  by  CI  users  for  speech  comprehension  is  linked  to  brain  plasticity,  we  search  for  brain  regions  whom  the  level  activity  at  time  of  implantation  is  correlated  with  the  level  of  auditory  recovery.  Correlations  were  observed  in  a  set  of  areas  including  the  auditory  cortex  with  the  highest  correlation  in  the  occipital  cortex  involved  in  visual  processing.  Indeed,  the  initial  high  activity  of  the  visual  cortex  provides  the  best  potential  to  favor  auditory  recuperation  (Strelnikov  et  al,  Brain  2013).  In  a  more  general  perspective,  the  influence  of  the  visual  cortex  on  the  efficiency  of  the  purely  auditory  speech  perception  suggests  the  existence  of  some  neural  facilitation  mechanisms  that  link  both  sensory  modalities.  Such  visuo-­‐auditory  synergy  may  be  a  reflection  of  the  multisensory  nature  of  speech  processing  and  supports  the  important  role  of  visual  input  for  speech  comprehension  in  cochlear  implanted  postlingual  deaf  patients.      S5/2:  Wednesday,  17/Sep/2014,  8:30am  -­‐  10:00am   ID:  288  

Cholecystokinin  from  the  entorhinal  cortex  enables  encoding  of  visuoauditory  memory  in  the  auditory  cortex  Jufang  He  Dept.  of  Biology  and  Chemistry,  City  University  of  Hong  Kong,  Hong  Kong  SAR,  China  [email protected]  Patients  with  damage  to  the  medial  temporal  lobe  show  deficits  in  forming  new  declarative  memories  but  can  still  recall  older  memories,  suggesting  that  the  medial  temporal  lobe  is  necessary  for  encoding  memories  in  the  neocortex.  Here,  we  found  that  cortical  projection  neurons  in  the  perirhinal  and  entorhinal  cortices  were  mostly  immunopositive  for  cholecystokinin  (CCK).  Local  infusion  of  CCK  in  the  auditory  cortex  of  anesthetized  rats  induced  plastic  changes  that  enabled  cortical  neurons  to  potentiate  their  responses  or  to  start  responding  to  an  auditory  

stimulus  that  was  paired  with  a  tone  that  robustly  triggered  action  potentials.  CCK  infusion  also  enabled  auditory  neurons  to  start  responding  to  a  light  stimulus  that  was  paired  with  a  noise  burst.  In  vivo  intracellular  recordings  in  the  auditory  cortex  showed  that  synaptic  strength  was  potentiated  after  two  pairings  of  presynaptic  and  postsynaptic  activity  in  the  presence  of  CCK.  Infusion  of  a  CCKB  antagonist  in  the  auditory  cortex  prevented  the  formation  of  a  visuo-­‐auditory  association  in  awake  rats.  Finally,  activation  of  the  entorhinal  cortex  potentiated  neuronal  responses  in  the  auditory  cortex,  which  was  suppressed  by  infusion  of  a  CCKB  antagonist.  Together,  these  findings  suggest  that  the  medial  temporal  lobe  influences  neocortical  plasticity  via  CCK-­‐positive  cortical  projection  neurons  in  the  entorhinal  cortex.  In  the  second  part  of  the  experiment,  the  bilaterally  electrode-­‐implanted  rat  was  trained  to  retrieve  water-­‐reward  from  either  the  leftmost  or  the  rightmost  hole  depending  on  which  hemisphere  of  the  auditory  cortex  stimulation  was  triggered  after  it  initiated  the  trial.  After  the  stimulation  site  of  one  hemisphere  was  infused  with  CCK,  a  previously  irrelevant  light  stimulus  was  then  paired  with  the  electrical  stimulation  of  the  infused  hemisphere  for  multiple  sessions  in  the  anesthetized  rat.  The  auditory  cortex  neurons  responded  to  the  light  stimulus  in  both  anesthetized  and  behavioral  conditions.  All  rats  approached  to  the  “engineered”  hole  after  they  triggered  light  stimulus  instead  of  electrical  stimulation  of  the  auditory  cortex  one  week  after  the  first  conditioning.  The  behavioral  experiment  revealed  that  the  artificially  memory  was  transferred  to  the  behavioral  action,  providing  a  scientific  foundation  for  “memory  implantation”.    Supported  by  the  Hong  Kong  Research  Grants  Council  (CRF09/9,  561410,  561111,  561212,  T13-­‐607/12R).    

Page 39: Complete program including all scientific contributions (21 MB, PDF)

  26  

ID:  271  

Visually-­‐induced  modulations  in  human  auditory  cortex:  Evidence  from  functional  imaging  studies  on  temporal  processing  and  temporal  recalibration  Toemme  Noesselt  Dept.  of  Biological  Psychology,  Institute  of  Psychology  II,  Otto-­‐von-­‐Guericke  University  Magdeburg,  Germany  [email protected]  Previous  research  on  audiovisual  temporal  perception  suggested  that  audition  dominates  vision  in  the  temporal  domain.  For  instance,  auditory  stimuli  can  induce  illusory  visual  stimuli  or  change  visual  flicker  rate.  However,  perceived  audiovisual  synchrony  does  not  always  rely  on  perfect  physical  synchrony  of  visual  and  auditory  input  but  can  be  flexibly  adjusted  to  the  current  situation.  While  this  adaptation  effect  is  well-­‐documented  on  the  behavioral  level,  the  neural  underpinnings  of  this  effect  are  still  unknown.  In  a  series  of  fMRI-­‐experiments  in  humans  we  first  identified  the  visual  and  auditory  regions  involved  in  synchronous  and  asynchronous  audiovisual  stream  processing/perception.  We  found  that  the  neural  representations  of  the  driven  (visual)  and  driving  (auditory)  modality  were  modulated  by  audiovisual  synchrony.  In  particular,  fMRI-­‐signals  in  low-­‐level  auditory  cortex  were  modulated  by  audiovisual  synchrony.  In  addition,  regions  in  superior  parietal,  superior  temporal  and  frontal  regions  differentially  responded  to  audiovisual  asynchrony.  In  a  second  fMRI-­‐  experiment  we  tested  for  effects  of  adaptation  to  audiovisual  asynchrony  within  the  regions  modulated  in  the  first  experiment.  Behaviorally,  the  point  of  subjective  simultaneity  (PSS)  for  test  stimuli  was  shifted  toward  the  side  of  audiovisual  asynchrony  (visual  leading/auditory  leading)  of  the  preceding  adaptation  period.  fMRI-­‐signals  in  parietal  and  frontal  regions,  which  coded  asynchronous  perceptions  in  the  first  experiment,  declined  during  the  adaptation  phase  for  asynchronous  stimulation.  Implications  of  these  results  will  be  discussed.    

ID:  283  

The  behavioural  relevance  of  auditory  contributions  to  multisensory  interactions  spans  from  detection  to  single-­‐trial  memories  Micah  M.  Murray1,2,3  1The  Laboratory  for  Investigative  Neurophysiology,  Dept.  of  Clinical  Neurosciences  and  Dept.  of  Radiology,  The  University  Hospital  Center  and  University  of  Lausanne,  Switzerland;  2The  Electroencephalography  Brain  Mapping  Core,  Centre  for  Biomedical  Imaging  (CIBM),  Lausanne,  Switzerland;  3The  Center  for  Neuroscience  Research,  Dept.  of  Clinical  Neurosciences,  The  University  Hospital  Center  and  University  of  Lausanne,  Switzerland  [email protected]  This  talk  will  provide  a  synthesis  of  our  efforts  to  identify  the  spatio-­‐temporal  brain  dynamics  and  behavioural  relevance  of  auditory-­‐visual  multisensory  interactions  in  humans  and  the  consequence  such  have  had  on  our  understanding  of  the  functional  selectivity  of  low-­‐level  auditory  and  visual  cortices.  Across  studies  we  have  used  combinations  of  psychophysics,  ERPs,  fMRI  and  TMS.  Using  these  techniques  in  multisensory  research  often  prompted  (if  nor  required)  improvements  in  signal  analysis  methods  that  will  likewise  be  briefly  summarized  during  the  course  of  this  talk  and  which  can  be  used  more  generally  for  other  domains  of  research.  Several  general  conclusions  about  auditory-­‐visual  interactions  in  humans  are  supported  relatively  solidly  from  cumulative  results  of  ourselves  and  others,  in  part  because  they  derive  from  multiple  brain  imaging/mapping  methods.  First,  (near)  primary  cortices  are  loci  of  multisensory  convergence  and  interactions.  Second,  these  effects  occur  at  early  latencies  (i.e.  <100ms  post-­‐stimulus  onset).  Third,  these  effects  directly  impact  behaviour  and  perception.  Finally,  multisensory  interactions  affect  not  only  current  stimulus  processing,  but  also  later  unisensory  recognition.  Current  unisensory  (auditory  or  visual)  object  recognition  and  brain  activity  are  incidentally  affected  by  prior  single-­‐trial  multisensory  experiences;  the  efficacy  of  which  is  predictable  from  an  individual’s  spatio-­‐temporal  dynamics  of  multisensory  interactions.  Together,  these  data  underscore  how  multisensory  research  is  changing  long-­‐

Page 40: Complete program including all scientific contributions (21 MB, PDF)

  27  

held  models  of  functional  brain  organization  and  perception.    Financial  support  has  been  provided  by  the  Swiss  National  Science  Foundation  (grants  320030-­‐149982  to  MMM  and  

P2LAP3-­‐151771  to  AT  as  well  as  the  National  Centre  of  Competence  in  Research  project  ‘‘SYNAPSY,  The  Synaptic  Bases  of  Mental  Disease’’  [project  51AU40-­‐125759])  and  by  the  Swiss  Brain  League  (2014  Research  Prize  to  MMM).  

 

Page 41: Complete program including all scientific contributions (21 MB, PDF)

  28  

 

   

Page 42: Complete program including all scientific contributions (21 MB, PDF)

  29  

Session  6:  Learning  in  auditory  cortex    Quite  generally,  neurobiological  research  on  learning  has  to  bridge  a  categorical  gap  because  learning  is  a  phenomenon  defined  on  the  behavioral  and  psychological  level.  In  auditory  cortex  research,  the  identification  of  potential  neural  mechanisms  underlying  specific  alterations  of  behavior  or  psychophysical  performance  induced  by  learning  has  been  particularly  successful.  In  this  session,  speakers  will  report  and  discuss  recent  findings  of  physiological  mechanisms  underlying  learning  and  learning-­‐related  phenomena  on  multiple  levels,  ranging  from  cellular  physiology,  via  neural  network  dynamics  and  imaging  results  to  behavior  and  psychophysics.  The  scope  of  the  session  comprises  both  fundamental  research  on  the  neuronal  mechanisms  sub-­‐serving  learning-­‐induced  plasticity  and  their  potential  clinical  implications.  A  particular  emphasis  lies  on  the  conceptual  exploitation  of  the  complementary  results  derived  from  human  and  animal  research  in  this  field.    S6/1:  Wednesday,  17/Sep/2014,  10:30am  -­‐  12:00pm   ID:  247  

Transforming  auditory  associative  experiences  into  auditory  memory  with  plasticity  in  A1  Kasia  M  Bieszczad1,2  1  Dept.  of  Neurobiology  and  Behavior,  University  of  California  Irvine,  United  States  of  America;  2College  for  Life  Sciences,  Wissenschaftskolleg  zu  Berlin  -­‐  Institute  for  Advanced  Study  [email protected]  A  major  function  of  the  cerebral  cortex  is  to  store  memory.  Associative  learning  produces  a  frank  reorganization  of  sensory  cortex,  which  has  been  intensely  studied  in  the  context  of  learning  auditory  associations  between  sounds  and  their  behavioral  significance,  e.g.,  by  links  to  rewarding  outcomes.  For  example,  associative  representational  plasticity  in  primary  auditory  cortex  (A1)  enhances  the  cortical  organization  for  specific  acoustic  cues  (frequency,  sound  level,  FM  sweep  direction,  etc.)  that  predict  reward.  How  do  specific  cues  come  to  be  enhanced  in  A1?  This  is  a  key  

question  because  an  apparent  function  of  signal-­‐specific  reorganization  in  A1  is  to  enhance  the  subsequent  strength  of  cue-­‐specific  auditory  memory  (e.g.,  Bieszczad  &  Weinberger  2010  PNAS;  2012  EJN).  Therefore,  understanding  the  circumstances  under  which  plasticity  in  A1  occurs  is  essential  to  understand  the  basis  of  robust  auditory  memory  formation.  Indeed,  learning  does  not  always  produce  plasticity,  nor  does  it  always  occur  with  gross  effects  on  cortical  reorganization  (e.g.,  map  expansions  for  sound-­‐frequency  cues  can  be  large,  small,  or  undetectable).  Importantly,  the  lack  of  induction  cannot  be  explained  by  differences  in  training  paradigms  as  identical  training  protocols  can  yield  differential  results  on  cortical  reorganization  (neural  effects)  and  auditory  memory  (long-­‐term  behavioral  effects)  without  conspicuous  effects  on  acquisition  (short-­‐term  behavioral  effects)  per  se.  In  this  talk  I  will  present  data  that  suggest  mechanisms  of  induction  of  A1  plasticity  at  two  levels  –  behavioral  and  epigenetic  –  that  potentially  explain  the  conditions  necessary  to  form  auditory  memory  that  is  strong  and  cue-­‐specific.  The  research  presented  will  aim  to  approach  a  causal  account  of  mechanisms  of  auditory  memory  across  behavioral  and  neural  levels,  including  a  novel  pharmacological  approach  in  the  domain  of  molecular  epigenetics.  Findings  in  this  domain  are  highly  relevant  for  the  development  of  small-­‐molecule  therapeutic  and  combined  pharmaco-­‐behavioral  clinical  strategies  for  effective  treatment  of  hearing  and  auditory  learning  disorders.    ID:  272  

Active  suppression  and  encoding  of  vocal  signals  in  single  cortical  neurons  during  auditory  selective  attention  Timothy  Gentner,  Emily  Caporello-­‐Bluvas  Dept.  of  Psychology,  University  California  San  Diego,  United  States  of  America  [email protected]  Tracking  acoustic  communication  signals  in  natural,  noisy,  environments  requires  selective  attention.  Auditory  selective  attention  influences  broad-­‐scale  measures  of  neural  

Page 43: Complete program including all scientific contributions (21 MB, PDF)

  30  

activity,  such  as  EEG  and  LFP,  but  its  effects  on  the  encoding  of  acoustic  communication  signals  in  single  neurons  and  well-­‐defined  populations  of  single  neurons  are  unknown.  We  recorded  extracellular  action  potentials  from  single  neurons  in  the  secondary  auditory  forebrain  region  CLM  of  awake  behaving  songbirds  while  controlling  their  attention  to  different  conspecific  songs  overlapping  in  time.  Most  CLM  neurons  show  time-­‐varying  responses  that  are  significantly  modulated  by  selective  attention.  As  a  population,  responses  resembled  the  target  and  distractor  signals  more  closely  when  the  animal  responded  correctly  than  when  it  responded  incorrectly.  To  understand  how  the  functional  goal  of  selective  attention  -­‐-­‐  improving  perception  of  specific  sensory  signals  amongst  competing  targets  –  might  be  implemented,  we  sorted  neurons  on  the  basis  of  spike-­‐width.  This  revealed  a  population  of  wide-­‐spiking  neurons  whose  responses  carry  information  about  both  the  attended  and  unattended  signals,  and  surprisingly,  a  population  of  narrow-­‐spiking  (putative  inhibitory  inter-­‐)  neurons  that  preferentially  encode  a  signal  only  when  it  is  unattended.  These  results  support  a  mechanistic  model  of  selective  auditory  attention  that  involves  the  enhanced  encoding  of  target  streams  and  the  active  suppression  of  unattended  streams,  and  suggests  that  the  computations  underlying  these  encoding  schemes  are  tied  to  physiologically  distinct  neuronal  subtypes.      ID:  302  

Dopamine-­‐related  plasticity  in  animal  and  human  auditory  cortex  Frank  W.  Ohl1,2,  André  Brechmann3  

1Dept.  Systems  Physiology  of  Learning,  Leibniz  Institute  for  Neurobiology  Magdeburg,  Germany;  2Institute  of  Biology,  Otto-­‐von  Guericke  University  Magdeburg,  Germany;  3Special  Lab  Non-­‐Invasive  Brain  Imaging,  Leibniz  Institute  for  Neurobiology  Magdeburg,  Germany  frank.ohl@lin-­‐magdeburg.de  Several  animal  and  human  studies  indicate  that  the  neurotransmitter  dopamine  is  implicated  in  both  auditory  learning  and  learning-­‐related  plasticity  of  auditory  cortex  function.  However,  in  neither  domain  its  precise  role  is  fully  understood.  Here  we  review  recent  findings  from  animal  and  human  studies  in  our  

laboratories  on  potential  roles  of  dopamine.  Animal  studies  demonstrate  roles  of  dopamine  for  both  reward-­‐  and  punishment-­‐motivated  auditory  learning.  The  general  validity  of  widespread  conceptualizations  of  dopamine  function  based  on  results  obtained  with  reward-­‐learning  paradigms  can  be  tested  in  avoidance  paradigms  where  learning  depends  on  the  negative  prediction  error  for  an  aversive  stimulus,  i.e.  the  absence  of  a  predicted  punishment  as  a  consequence  of  a  successful  avoidance  behavior.  On  the  neuronal  circuit  level  effects  of  dopamine  were  studied  using  a  combination  of  behavioral  assays,  current-­‐source  density  analyzes,  pharmacological  manipulation  and  electrical  stimulation.  Results  indicate  that  dopamine  unfolds  its  action  during  early  phases  of  learning  by  transiently  increasing  the  gain  of  a  positive  cortico-­‐thalamocortical  feedback  loop  that  enhances  states  of  high  persistent  activity  in  auditory  cortex  evoked  by  behaviorally  relevant  stimuli.  Human  fMRI  studies  on  auditory  category  learning  in  which  subjects  had  to  learn  by  trial  and  error  that  a  certain  feature  or  combination  of  features  are  reinforced,  were  performed  to  identify  the  network  of  learning-­‐related  brain  areas.  The  representation  of  target  and  non-­‐target  sounds  in  auditory  cortex  changed  differentially  over  the  course  of  a  single  fMRI  session.  However,  a  straight  forward  interpretation  of  such  activation  as  dopamine-­‐related  cannot  be  made  since  similar  activations  result  from  non-­‐reinforcing  feedback.  Experiments  investigating  the  effect  of  feedback  on  auditory  cortical  activity  in  subjects  under  L-­‐DOPA  or  placebo  indicated  that  auditory  cortex  is  activated  at  the  time  point  of  reward  outcome,  but  that  the  responses  are  not  dependent  on  the  reward  itself  but  on  whether  the  outcome  confirmed  the  subjects'  expectations.    

Page 44: Complete program including all scientific contributions (21 MB, PDF)

  31  

S6/2:  Wednesday,  17/Sep/2014,  2:00pm  -­‐  4:00pm   ID:  304  

Learning-­‐induced  plasticity  in  the  processing  of  auditory  spatial  cues  Andrew  J.  King,  Peter  Keating,  Johannes  C.  Dahmen,  Fernando  R.  Nodal,  Victoria  M.  Bajo  Dept.  of  Physiology,  Anatomy  and  Genetics,  University  of  Oxford;  United  Kingdom  [email protected]  The  behavioural  relevance  of  sounds  can  have  a  profound  effect  on  the  way  they  are  represented  in  the  brain.  In  particular,  experience-­‐dependent  plasticity  in  these  representations  has  been  shown  to  accompany  auditory  learning.  Most  research  in  this  field  has  focused  on  the  effects  of  associative  learning  on  the  response  properties  of  neurons  in  the  primary  auditory  cortex  of  animals  with  intact  hearing.  An  ability  to  adapt  through  experience  to  altered  auditory  inputs  arising,  for  example,  from  partial  hearing  loss  is  also  critical  to  survival.  Our  studies  in  ferrets  have  demonstrated  that  the  auditory  system  is  able  to  accommodate  changes  in  the  relationship  between  spatial  cue  values  and  sound  source  direction  resulting  from  occlusion  of  one  ear,  and  therefore  to  maintain  accurate  sound  localization  in  spite  of  the  highly  abnormal  inputs  available.  Adaptation  to  altered  auditory  spatial  cues  is  possible  both  during  development  and  in  later  life,  and,  at  least  in  adulthood,  this  process  is  disrupted  by  inactivation  of  primary  or  non-­‐primary  regions  of  the  auditory  cortex  and  by  the  loss  of  cholinergic  neurons  in  the  basal  forebrain  that  target  the  cortex.  Our  behavioural  and  physiological  studies  suggest  that  the  ability  to  compensate  for  unilateral  hearing  loss  relies  on  multiple  mechanisms.  These  include  adaptive  shifts  in  neuronal  sensitivity  to  the  altered  binaural  cues,  in  particular  interaural  level  differences.  However,  the  primary  basis  for  auditory  spatial  learning  involves  a  reweighting  of  different  cues,  with  localization  judgments  becoming  more  dependent  on  the  monaural  spatial  cues  provided  to  the  intact  ear  and  less  on  the  binaural  cues  that  are  altered  by  the  hearing  loss.  Importantly,  this  plasticity  is  context  specific  since  changes  in  cue  weighting  can  be  reversed  as  soon  as  normal  hearing  is  

restored,  ensuring  that  the  auditory  system  uses  the  optimal  strategy  for  localizing  sound  under  different  hearing  conditions.  How  these  complementary  mechanisms  of  plasticity  interact  remains  to  be  identified,  but  the  finding  that  the  brain  can  utilize  different  strategies  to  adapt  to  altered  inputs  highlights  the  remarkable  flexibility  of  auditory  spatial  processing.      ID:  306  

Perceptual  learning  in  the  developing  auditory  cortex  Shaowen  Bao  Helen  Wills  Neuroscience  Institute,  University  of  California  Berkeley,  United  States  of  America  [email protected]  Learning  has  been  defined  as  an  enduring  change  in  the  mechanisms  of  behavior  that  results  from  experience  with  the  environmental  events.  Perceptual  learning  is  the  specific  and  relatively  permanent  modification  of  perception  and  behavior  following  sensory  experience.  Exposure  to  specific  acoustic  experience  in  the  critical  period  of  early  sensory  development  alters  cortical  sound  representations  and  perceptual  behavior,  and  therefore  is  a  form  of  perceptual  learning.  However,  the  type  of  perceptual  learning  resulting  from  early  sensory  exposure  is  unique  in  that  it  does  not  involve  an  explicit  training  process  -­‐  there  is  no  instruction  on  the  desired  response  or  feedback  for  the  actual  response.  In  the  absence  of  instructions  or  feedbacks,  how  does  the  auditory  system  know  what  and  how  to  learn  in  order  to  adapt  to  its  specific  acoustic  environment?  Nature  acoustic  environment  typically  comprises  environmental  sounds  (e.g.,  wind  blow,  water  flow…),  and  animal  vocalizations  (pup  calls  and  adult  encounter  calls)  and  non-­‐vocalization  sounds  (e.g.,  from  footsteps,  wing  flaps  …).  Among  those  sounds,  animal  vocalizations  are  arguably  the  most  structured  and  biologically  relevant.  They  are  complex  and  diverse,  but  also  have  some  common  characteristics.  For  example,  most  mammalian  vocalization  calls  are  repeated  at  a  temporal  rate  in  the  range  from  5  to  10  Hz.  Within  a  vocalization  bout,  the  calls  are  repeated  with  variations.  These  statistical  structures  provide  a  basis  for  categorization  of  animal  

Page 45: Complete program including all scientific contributions (21 MB, PDF)

  32  

vocalizations:  1)  sounds  that  are  temporally  spaced  in  a  bout  at  5-­‐10  Hz  likely  belong  to  the  same  category;  2)  the  differences  among  individual  sounds  within  a  bout  likely  represent  category  variability.  Electrophysiological  and  behavioral  studies  indicate  that  1)  auditory  cortex  over-­‐represents  sounds  repeated  at  6  Hz,  but  not  2  or  15  Hz,  and  2)  sequential  structure  between  sounds  can  shape  representational  and  perceptual  boundary.  These  findings  indicate  that  the  developing  auditory  cortex  is  shaped  by  the  statistical  structures  of  the  acoustic  environment,  and  developmental  cortical  plasticity  is  a  mechanism  underlying  perceptual  learning.    The  research  was  supported  by  National  Institute  of  Health.      ID:  303  

Understanding  the  network  for  top-­‐down  control  of  auditory  representation  Stephen  V.  David  Oregon  Health  and  Science  University,  United  States  of  America  [email protected]  The  mammalian  auditory  system  involves  a  network  of  hierarchically  organized  areas  that  shape  representations  according  to  the  current  demands  of  behavior.  Previous  work  has  shown  a  diversity  of  behavioral  effects  in  auditory  cortex  and  suggests  that  these  effects  increase  in  more  central  areas  of  the  processing  hierarchy.  In  order  to  build  a  systematic  understanding  of  how  behavioral  state  influences  representations  across  this  network,  we  are  taking  a  two-­‐pronged  approach.  First  we  study  how  distinct  aspects  of  behavioral  state  influence  representations  in  a  single  brain  area.  Second,  we  compare  the  effects  of  the  same  behavioral  manipulation  at  different  levels  of  the  auditory  hierarchy.  To  contrast  the  influence  of  different  aspects  of  behavioral  state  on  auditory  processing,  we  trained  ferrets  on  a  discrimination  task  in  which  selective  attention  and  overall  effort  are  controlled  separately  but  stimuli  are  identical  between  behavior  conditions.  We  recorded  single-­‐unit  activity  in  primary  auditory  cortex  (A1)  during  these  behaviors.  When  selective  attention  was  directed  to  a  stimulus  at  a  neuron’s  BF,  evoked  activity  was  weaker  than  when  attention  was  directed  away  from  BF.  Spontaneous  spike  rate  did  not  change.  When  

overall  effort  was  manipulated,  on  the  other  hand,  we  observed  changes  in  both  evoked  and  spontaneous  activity.  Thus  these  two  aspects  of  behavior  state  have  distinct  influence  on  activity  in  A1,  suggesting  distinct  functional  interfaces  for  the  respective  top-­‐down  control  signals.  To  compare  effects  of  the  same  behavioral  state  variables  at  different  levels  of  the  auditory  hierarchy,  we  compared  behaviorally-­‐driven  changes  during  a  simple  tone  detection  behavior  in  midbrain  inferior  colliculus  (IC)  to  changes  previously  reported  in  A1.  Very  little  attention  has  been  given  to  the  possibility  of  behavioral  influences  in  IC,  but  a  substantial  descending  projection  from  auditory  cortex  suggests  that  cortical  feedback  may  modulate  incoming  auditory  signals.  In  IC  single  units,  we  observed  a  suppression  of  neural  responses  during  behavior  that  depended  on  the  similarity  of  the  target  tone  frequency  to  neural  BF,  as  in  the  previous  A1  study.  However,  the  suppression  effects  in  IC  reflected  global  changes  in  gain,  rather  than  the  local  spectral  tuning  shifts  observed  in  A1.  Ongoing  studies  are  investigating  the  effects  of  cortical  inactivation  on  behavioral  effects  in  IC.      ID:  103  

Cortical  plasticity  improves  auditory  perception  Robert  Froemke  New  York  University  School  of  Medicine,  United  States  of  America  [email protected]  Our  lab  studies  neuromodulation  and  plasticity  of  the  cerebral  cortex.  We  generally  focus  on  the  functional  consequences  of  changes  to  synaptic  transmission  in  the  auditory  cortex  of  rats  and  mice,  in  terms  of  behavioral  improvements  and  enhanced  sensory  perception.  I  will  discuss  new  and  unpublished  work  from  our  lab  on  acetylcholine,  norepinephrine,  and  oxytocin,  describing  how  these  molecular  signals  act  to  alter  cortical  representations  of  sensory  stimuli  at  the  synaptic  and  spiking  levels,  and  the  consequences  of  these  changes  for  auditory  recognition  tasks  and  social  behavior.    

Page 46: Complete program including all scientific contributions (21 MB, PDF)

  33  

S6/3:  Wednesday,  17/Sep/2014,  4:30pm  -­‐  6:00pm   ID:  307  

Functional  and  structural  correlates  of  auditory  abilities:  Predispositions  and  plasticity  Robert  Zatorre1,2  1Montreal  Neurological  Institute,  McGill  University,  Canada;  2International  Laboratory  for  Brain,  Music  and  Sound  Research,  Canada  [email protected]  Speech  and  music  provide  good  model  systems  of  sensory-­‐motor  processing  to  understand  how  brain  function  and  structure  are  affected  by  learning.  Recent  evidence  indicates  that  individual  differences  in  anatomical  and  functional  properties  of  the  neural  architecture  affect  both  learning  and  performance.  This  lecture  will  review  findings  that  reiterate  evidence  of  brain  plasticity  as  an  outcome  of  training,  but  also  point  to  the  predictive  validity  of  neuroimaging  data  in  relation  to  new  learning  in  speech  and  music  domains.  Indices  of  neural  sensitivity  to  certain  stimulus  features  have  been  shown  to  predict  individual  rates  of  learning;  individual  network  properties  of  brain  activity  are  especially  relevant  in  this  regard,  as  they  may  reflect  patterns  of  functional  connectivity  that  differ  systematically  across  individuals,  and  that  may  facilitate  or  constrain  learning.  Similarly,  numerous  studies  have  shown  that  anatomical  features  of  auditory  cortex  and  related  structures,  along  with  their  connectivity,  can  be  predictive  of  new  sensory-­‐motor  learning  ability.  Implications  of  this  growing  body  of  literature  are  discussed  in  the  context  of  basic  science  and  of  potential  applications.      ID:  174  

Neural  coding  of  (newly-­‐)  learned  sound  categories:  The  contribution  of  early  auditory  cortical  areas  Elia  Formisano  Maastricht  Brain  Imaging  Center,  Maastricht  University,  The  Netherlands  [email protected]  The  transformation  of  acoustic  signals  into  abstract  (categorical)  representations  is  the  essence  of  the  efficient  and  goal-­‐directed  neural  processing  of  sounds.  While  the  human  

and  animal  auditory  system  is  perfectly  equipped  to  process  spectrotemporal  sound  features,  adequate  sound  identification  and  categorization  require  neural  sound  representations  that  are  invariant  to  irrelevant  stimulus  parameters.  Crucially,  what  is  relevant  and  irrelevant  is  not  intrinsic  to  the  physical  stimulus  structure  but  needs  to  be  learned  over  time,  often  through  integration  of  information  from  other  senses.  Despite  a  large  amount  of  research  on  the  phenomenon  of  perceptual  categorization,  no  clear  answer  could  yet  be  found  on  where  and  how  abstract  sound  categories  are  represented  in  the  brain.  Whereas  animal  research  provides  increasing  evidence  for  complex  processing  abilities  of  early  auditory  areas,  results  from  human  studies  tend  to  promote  more  hierarchical  processing  models  in  which  categorical  perception  relies  on  higher  order  temporal  and  frontal  regions.  In  this  talk,  I  will  discuss  this  apparent  discrepancy  and  illustrate  the  potential  pitfalls  attached  to  research  on  categorical  sound  processing.  Separating  perceptual  and  acoustical  processes  possibly  represents  the  biggest  challenge.  In  this  respect,  examining  learning-­‐  or  experience-­‐  induced  changes  of  sound  representations  in  early  (and  higher-­‐level)  auditory  areas  helps  unraveling  their  nature.  It  is  crucial  to  note  that  many  “perceptual”  and  “learning-­‐induced”  effects,  demonstrated  in  animal  models,  did  not  manifest  as  changes  in  overall  signal  level.  I  will  present  recent  research  showing  that  while  these  effects  may  remain  inscrutable  to  univariate  contrast  analyses  typically  employed  in  human  neuroimaging,  modern  analysis  techniques  -­‐  such  as  fMRI-­‐decoding  –  is  capable  of  unraveling  perceptual  processes  in  distributed  activation  patterns.  It  is  also  becoming  increasingly  evident  that  in  order  to  grasp  the  full  capacity  of  auditory  processing  in  low-­‐level  auditory  areas,  it  is  necessary  to  consider  the  susceptibility  of  neural  responses  to  context  and  task  and  the  capacity  of  flexibly  adapt  processing  resources  according  to  the  environmental  demands.  Finally,  I  will  describe  novel  methodological  improvements  in  measurement  techniques  (high  field  fMRI)  and  data  analysis  (e.g.  modeling  of  multidimensional  fMRI-­‐tuning)  that  promise  to  

Page 47: Complete program including all scientific contributions (21 MB, PDF)

  34  

bring  the  advances  from  animal  and  human  research  closer  together.    ID:  274  

Musical  training  indices  neuroplastic  changes  of  multisensory  nature  within  the  auditory  cortex  Christo  Pantev  Institute  for  Biomagnetism  and  Biosignalanalysis,  University  of  Muenster,  Germany  pantev@uni-­‐muenster.de  Recent  neuroscientific  evidence  indicate  that  multisensory  integration  does  not  only  occur  in  higher  level  association  areas  of  the  cortex  as  the  hieratical  models  of  sensory  perception  assumed,  but  also  in  regions  traditionally  thought  of  as  uni-­‐sensory,  such  as  the  auditory  cortex.  Nevertheless,  it  is  not  known  whether  expertize  induced  neuroplasticity  can  alter  

multisensory  processing  that  occurs  these  low  level  regions.  The  present  study  used  magnetoencephalography  to  investigate  whether  musical  training  may  induce  neuroplastic  changes  of  multisensory  nature  within  the  auditory  cortex.  MEG  data  of  4  different  experiments  are  used  to  demonstrate  the  effect  of  musical  expertize  along  with  the  effect  of  music  reading  training  in  the  convergence  of  auditory,  somatosensory  and  visual  stimuli  in  the  auditory  cortex.  The  cross-­‐sectional  design  of  the  3  experiments  allows  us  to  infer  that  long-­‐term  musical  training  causes  these  neuroplastic  changes,  while  the  short-­‐term  training  design  of  the  4rth  experiment  to  causally  infer  that  multisensory  music  reading  training  affects  the  multimodal  processing  of  the  auditory  cortex.  

 

Page 48: Complete program including all scientific contributions (21 MB, PDF)

  35  

Posters  and  short  oral  presentations  of  selected  posters    

Sunday,  14/Sep/2014,  3:00pm  -­‐  3:30pm  

Short  oral  presentation  of  posters  with  ID  numbers  125,  167,  169,  179,  and  239.  

 

Sunday,  14/Sep/2014,  4:00pm  -­‐  6:00pm  

Presentation  of  posters  with  odd  numbers  and  of  poster  220.  

 

Monday,  15/Sep/2014,  3:00pm  -­‐  3:30pm  

Short  oral  presentation  of  posters  with  ID  numbers  106,  126,  180,  186,  and  232.  

 

Monday,  15/Sep/2014,  4:00pm  -­‐  6:00pm  

Presentation  of  posters  with  even  numbers  and  of  posters  123  and  173.  

 

List  of  poster  abstracts  in  order  of  their  ID  numbers:  

 ID:  102    Echo-­‐acoustic  flow  modifies  the  cortical  map  of  target  range  in  bats  Sophia  Bartenstein1,  Nadine  Gerstenberg1,  Dieter  Vanderelst2,  Herbert  Peremans3,  Uwe  Firzlaff1  1Technical  University  Munich,  Germany;  2University  of  Bristol,  United  Kingdom;  3Universiteit  Antwerpen,  Belgium  [email protected]  Information  from  peripheral  sensors  is  typically  organized  in  the  brain  as  topographic  representation  of  sensory  epithelial  surfaces  (‘structural  maps’)  or  as  maps  of  sensory  information  derived  from  neural  computation  (‘computational  maps’).  Echolocating  bats  use  the  delay  between  their  sonar  emissions  and  the  reflected  echoes  to  measure  target  range,  a  crucial  parameter  for  avoiding  collisions  or  capturing  prey.  In  many  bat  species  target  range  is  represented  as  an  orderly  organized  computational  map  of  echo  delay  in  the  auditory  cortex.  While  the  importance  of  static  maps  is  clear,  little  is  known  about  dynamic  changes  in  map  representations.  Combining  dynamic  acoustic  stimulation  in  virtual-­‐space  with  extracellular  recordings  we  show  that  the  computational  map  of  target  range  in  the  bat  Phyllostomus  discolor  is  

modified  by  the  continuously  changing  flow  of  acoustic  information  perceived  during  flight  (‘echo-­‐acoustic  flow’).  Neurons  in  the  dorsal  auditory  cortex  encode  echo-­‐acoustic  flow  information  about  the  geometric  relation  between  targets  and  the  bat’s  flight  trajectory,  rather  than  echo  delay  per  se.  Specifically,  the  cortical  representation  of  close-­‐range  targets  is  enhanced  when  the  lateral  passing  distance  of  the  target  decreases.  This  flow-­‐dependent  enhancement  of  target  representation  could  trigger  motor-­‐behaviours  like  vocal-­‐control  or  flight  manoeuvres.  Our  results  demonstrate  that  the  computational  map  of  a  behavioural  relevant  sensory  parameter  can  undergo  dynamical  modification  to  quickly  adapt  to  task  specific  requirements.  The  dynamic  enhancement  of  the  representation  of  the  most  relevant  information  in  a  sensory  map  might  represent  the  neural  substrate  for  adaptive  behaviour  which  is  important  to  link  perception  and  action  in  dynamically  changing  complex  environments.  

Page 49: Complete program including all scientific contributions (21 MB, PDF)

  36  

ID:  104    

Dissociable  influences  of  primary  auditory  cortex  and  the  posterior  auditory  field  on  neuronal  responses  in  the  dorsal  zone  of  auditory  cortex  Melanie  A.  Kok,  Daniel  Stolzberg,  Trecia  A.  Brown,  Stephen  G.  Lomber  University  of  Western  Ontario,  London,  Canada  [email protected]  The  current  model  of  hierarchical  processing  in  auditory  cortex  has  been  based  mainly  on  anatomical  connectivity,  while  functional  interactions  between  individual  regions  have  remained  largely  unexplored.  Using  cortical  deactivation,  previous  work  has  addressed  functional  reciprocal  connectivity  between  primary  auditory  cortex  (A1),  the  anterior  and  posterior  auditory  fields  (AAF  and  PAF),  and  second  auditory  cortex  (A2).  Thus,  the  purpose  of  the  present  study  was  to  expand  this  functional  assessment  of  inputs  to  a  higher-­‐order  auditory  area,  the  dorsal  zone  (DZ).  Because  they  comprise  the  two  largest  auditory  cortical  inputs  to  DZ,  cryoloops  were  placed  over  A1  and  PAF  based  on  cortical  tonotopy  (for  A1)  and  known  sulcal  and  gyral  landmarks  (A1  &  PAF).  Based  on  the  current  model  of  auditory  cortical  hierarchy,  it  was  predicted  that  deactivation  of  these  areas  would  significantly  influence  neuronal  response  rates  in  DZ.  Neuronal  responses  in  DZ  were  recorded  while  broadband  noise  stimuli,  as  well  as  pure  tones,  were  delivered  during  reversible  deactivation  of  A1  alone,  PAF  alone,  or  A1  and  PAF  together.  Deactivation  of  A1  alone  significantly  reduced  neuronal  firing  rates  in  DZ,  regardless  of  the  stimulus.  A1  deactivation  also  resulted  in  increased  neuronal  thresholds  and  decreased  receptive  field  bandwidths  for  DZ  tuning  curves.  Deactivation  of  PAF  alone  moderately  affected  DZ  neuronal  responses,  most  notably  at  high  sound  intensity  levels;  however,  changes  in  DZ  neuronal  responses  during  PAF  deactivation  were  not  ubiquitous  across  stimulus  sets.  PAF  deactivation  also  had  an  effect  on  the  tuning  curve  properties  of  DZ  neurons,  but  the  effects  observed  were  not  as  robust  as  those  observed  during  A1  deactivation.  Combined  cooling  of  A1  and  PAF  together  was  largely  driven  by  the  effects  of  A1  deactivation,  as  in  most  cases,  neuronal  responses  during  deactivation  of  both  

A1  and  PAF  were  indistinguishable  from  those  of  A1  deactivation  alone.  Together,  these  results  support  the  current  model  of  auditory  cortical  hierarchical  organization,  in  that  deactivation  of  the  two  auditory  cortical  regions  with  the  largest  inputs  (A1  and  PAF)  resulted  in  measurable,  but  dissociable  changes  in  neuronal  responses  in  DZ.  Further,  inputs  arising  from  A1  may  be  more  critical  in  terms  of  shaping  DZ  responses  to  tones  and  noise  bursts  than  those  from  PAF.      ID:  105    

A  correlate  of  informational  masking  in  anesthetized  primary  auditory  cortex  can  be  explained  by  basic  neuronal  tuning  properties  Peter  Bremen1,2,  John  C  Middlebrooks2  1Donders  Institute  Nijmegen,  The  Netherlands;  2University  of  California  Irvine,  United  States  of  America  [email protected]  Psychophysical  signal  detection  in  complex  listening  environments  is  vulnerable  to  masking  by  competing  sounds,  even  if  the  maskers  are  remote  in  frequency  from  the  signal.  This  phenomenon  is  called  informational  masking  (IM)  and  is  thought  to  reflect  a  breakdown  in  the  formation  of  discrete  signal  and  masker  auditory  objects.  Here,  we  sought  evidence  of  IM  in  primary  auditory  cortex  (A1)  of  anesthetized  cats.  Stimuli  were  presented  from  calibrated  free-­‐field  speakers  arranged  in  the  horizontal  plane.  We  fixed  the  signal  at  contralateral  40  deg  and  varied  masker  locations.  Stimuli  were  four  pure-­‐tone  pulses  repeated  at  2.5,  5  and  10  pulses  per  second.  Each  pulse  contained  4  masker  components  and  (on  half  the  trials)  one  signal  component.  We  set  signal  frequency  and  level  to  the  unit’s  characteristic  frequency  and  to  various  levels  above  threshold.  Masker  frequencies  were  held  constant  or  randomized  across  pulses.  We  defined  a  ±1/3,  ±1/2,  or  ±1  oct  band  centered  on  the  stimulus.  Within-­‐band  maskers  had  all  components  within  this  band,  whereas  out-­‐of-­‐band  maskers  contained  frequencies  outside  of  the  band.  We  presented  individual  masker  tones  at  40  dB  above  unit  threshold  and  gated  them  either  synchronously  or  asynchronously  with  the  signal.  Interestingly,  we  observed  masking  by  

Page 50: Complete program including all scientific contributions (21 MB, PDF)

  37  

components  outside  the  reported  critical  band  of  auditory  nerve  fibers.  Frequency-­‐tuning  curves  in  A1,  however,  are  considerably  broader  than  peripheral  critical  bands,  and  masker  components  that  produced  appreciable  masking  generally  fell  within  A1  tuning  curves.  As  a  result,  neuronal  thresholds  for  signal  detection  were  lower  for  1)  out-­‐of-­‐band  compared  to  within-­‐band  maskers,  2)  for  asynchronous  compared  to  synchronous  maskers,  and  for  3)  random  re  constant  frequency  maskers.  Furthermore,  we  found  that  spatial  separation  (~80  deg)  of  the  signal  and  masker  sources  led  to  mild  improvements  in  signal  detection.  These  observations  roughly  mirrored  results  from  human  psychophysics.  We  found  no  indication  of  IM  or  across-­‐frequency  auditory  object  formation  in  anesthetized  A1  aside  from  that  accountable  by  broad  central  tuning  curves.  We  deem  three  explanations  possible:  1)  IM  is  a  form  of  energetic  masking  at  the  level  of  A1;  2)  IM  and  auditory  object  formation  arise  outside  of  A1;  and  3)  they  are  a  product  of  cortico-­‐cortical  feedback  loops,  which  are  effectively  silenced  under  anesthesia.  We  plan  to  address  these  possibilities  with  future  studies  in  awake-­‐behaving  animals.      ID:  106   Inhibitory  development  and  control  of  cortical  temporal  processing  Xiaoyang  Long1,  Rongrong  Han2,1,  Dongqin  Cai1,  Yang  Liu1,  Limin  Zhao3,  Kexin  Yuan1  

1Tsinghua  University,  China,  People's  Republic  of;  2WeiFang  Medical  University,  China,  People's  Republic  of;  3Affiliated  Hospital  of  WeiFang  Medical  University,  China  [email protected]  In  early  postnatal  life,  inhibitory  circuits  are  readily  sculpted  by  sensory  experience  to  enable  cortical  maturation  and  map  plasticity1-­‐5.  In  the  primary  auditory  cortex  (A1),  in  particular,  the  development  of  the  tonotopic  map  is  governed  by  the  experience-­‐dependent  refinement  of  inhibitory  synaptic  strength  across  the  whole  receptive  field6.  However,  not  all  stimulus  features  are  topographically  represented  in  the  cortex,  for  example,  features  of  the  temporal  stimulus  domain7.  Whether  and  how  inhibitory  circuits  are  involved  in  cortical  processing  of  temporal  features,  such  as  stimulus  sequences,  in  the  

context  of  development  remains  unknown.  Here  we  show  that,  in  developing  rat  A1,  the  inhibitory  time  course  and  its  plasticity  play  a  crucial  role  in  the  maturation  of  temporal  sequence  processing  8-­‐12.  By  applying  whole-­‐cell  recordings  in  vivo,  we  find  that,  within  the  range  of  ethological  sound  repetition  rates13,  even  low-­‐repetition-­‐rate  stimuli  evoke  sustained  inhibition  in  developing  rat  A1.  This  long-­‐lasting  inhibition  arises  from  the  remarkably  long  decay  time  of  inhibitory  conductances  early  in  maturation  and  suppresses  cortical  responses  to  successive  stimuli.  Strikingly,  only  3-­‐5  minutes  of  exposure  to  high-­‐  or  low-­‐repetition-­‐rate  stimuli  dramatically  shortens  or  prolongs  the  time  course  of  inhibition.  The  exposure-­‐dependent  shortening  of  the  inhibitory  time  course  during  maturation  enables  a  neuron  to  respond  to  higher  stimulus  repetition  rates  due  to  the  emergence  of  a  more  adult-­‐like  integration  pattern  of  excitation  and  inhibition14-­‐16.  Thus,  our  results  reveal  a  novel  form  of  inhibitory  synaptic  plasticity,  highlighting  the  unique  contribution  of  inhibitory  temporal  dynamics  to  the  maturation  of  cortical  temporal  processing.      ID:  107    

Neural  correlates  of  spatial  hearing  in  acoustically  complex  situations:  Insights  from  electrical  neuroimaging  Jörg  Lewald1,  Stephan  Getzmann2  1Ruhr  University  Bochum,  Germany;  2Leibniz  Research  Centre  for  Working  Environment  and  Human  Factors  Dortmund,  Germany  [email protected]  One  of  the  most  remarkable  perceptual  capacities  of  humans  is  their  ability  to  detect,  localize,  and  selectively  attend  to  a  particular  sound  source  of  interest  in  complex  auditory  scenes  composed  of  multiple  competing  sources,  reverberation,  and  noise.  Despite  its  essential  importance  for  both  communication  and  orientation  in  space  in  everyday  life,  the  neural  basis  of  this  so-­‐called  “cocktail-­‐party  phenomenon”  has  remained  largely  unknown.  Using  event-­‐related  potentials  (ERPs)  in  combination  with  standardized  low-­‐resolution  brain  electromagnetic  tomography  (sLORETA)  in  fourty  healthy  human  subjects,  we  focussed  on  the  localization  of  a  target  sound  source  in  

Page 51: Complete program including all scientific contributions (21 MB, PDF)

  38  

the  presence  of  multiple  competing  sources  relative  to  the  localization  of  a  single  target  presented  in  isolation.  In  the  multiple-­‐sources  condition,  four  different  animal  vocalizations  were  presented  simultaneously,  each  at  a  different  azimuth  position.  Subject  localized  a  previously  defined  target  vocalization  by  pressing  one  out  of  four  response  buttons.  In  the  single-­‐source  condition,  the  same  target  was  presented  in  isolation.  Only  trials  with  correct  responses  were  included  in  the  analysis  of  electrophysiological  data.  The  analysis  of  the  vertex  ERPs  indicated  stronger  amplitudes  with  multiple  than  single  sound  sources  at  the  time  of  the  P1  and  N2  components,  while  amplitudes  were  stronger  with  single  than  multiple  sources  at  the  time  of  the  N1  and  P2  components.  To  reveal  brain  areas  specifically  involved  in  sound  localization  in  the  presence  of  multiple  distractor  sources,  responses  to  multiple  sources  were  contrasted  with  single  sources  using  sLORETA  for  the  P1-­‐N1  and  the  N1-­‐P2  peak-­‐to-­‐peak  differences.  Electrical  neuroimaging  of  the  P1-­‐N1  complex  revealed  maximum  activation  in  right  inferior  parietal  lobule,  precuneus,  postcentral  gyrus,  and  insula,  indicating  higher  activation  by  multiple,  than  single,  sound  sources.  For  the  N1-­‐P2  complex,  maximum  activation  was  found  in  right  posterior  superior  temporal  and  middle  temporal  gyri,  indicating  higher  activation  by  multiple,  than  single,  sound  sources.  Electrical  neuroimaging  of  the  P2-­‐N2  complex  revealed  maximum  activation  in  right  inferior  frontal  and  middle  frontal  gyri,  indicating  higher  activation  by  multiple,  than  single,  sound  sources.  These  results  document  a  complex  chronology  of  successive  excitatory  and  inhibitory  activations  within  a  cortical  network  specifically  concerned  with  spatial  hearing  in  complex  situations.      ID:  109    

Bimodal  stimulus  timing  dependent  plasticity  in  primary  auditory  cortex  is  altered  after  noise-­‐induced  tinnitus  Gregory  Joseph  Basura  University  of  Michigan,  United  States  of  America  [email protected]  Background:  Primary  auditory  cortex  (A1)  neurons  demonstrate  bimodal  (auditory-­‐somatosensory)  integration  that  is  stimulus-­‐

timing  dependent,  as  demonstrated  in  dorsal  cochlear  nucleus  (Koehler  and  Shore,  PloS  One,  2013),  with  Hebbian  and  anti-­‐Hebbian  timing  rules  analogous  to  in  vitro  spike-­‐timing  dependent  plasticity  (STDP).  After  noise  exposure,  and  tinnitus,  there  are  changes  in  bimodal  integration  and  plasticity  in  DCN.  The  rationale  for  the  present  study  was  to  determine  if  tinnitus-­‐associated  changes  in  STDP  principles  like  those  found  in  DCN  also  exist  in  A1  after  noise-­‐induced  tinnitus.  Methods:  Four-­‐shank,  32-­‐channel  silicon  electrodes  were  placed  in  A1  of  sham  and  noise-­‐exposed  guinea  pigs  with  and  without  evidence  of  tinnitus  as  indicated  by  gap-­‐induced  pre-­‐pulse  inhibition  of  the  acoustic  startle.  Stimulus-­‐timing  dependent  plasticity  was  measured  by  comparing  tone-­‐evoked  responses  and  spontaneous  activity  before,  5  and  15  minutes  after  bimodal  (tone-­‐spinal  trigeminal  nucleus;  Sp5)  stimulation  with  alternating  pairing  orders  (tone-­‐Sp5  or  Sp5-­‐tone)  and  intervals  (40,  20,  10  and  0ms).  Results:  Bimodal  stimulation  in  sham  controls  and  in  noise-­‐exposed  animals  without  tinnitus  induced  suppression  or  facilitation  of  tone-­‐evoked  firing  rates  5  min  after  pairing,  and  predominantly  Hebbian-­‐like  timing  rules  15  minutes  after  pairing.  In  contrast,  noise-­‐exposed  animals  with  tinnitus  showed  Hebbian  timing  rules  5  min  after  pairing  and  predominantly  anti-­‐Hebbian-­‐rules  15  min  after  pairing.  Conclusions:  The  present  findings  demonstrate  that,  like  the  DCN,  A1  responses  following  bimodal  stimulation  reflect  STDP.  Moreover,  noise-­‐induced  tinnitus  can  modify  multisensory  integration  in  A1  and  influence  temporal  relationships  of  converging  auditory  and  non-­‐auditory  sensory  systems.  This  effect  on  sensory  processing  may  improve  the  understanding  of  mechanisms  driving  neural  changes  in  A1  and  ultimately  lead  to  treatments  for  tinnitus.  

Page 52: Complete program including all scientific contributions (21 MB, PDF)

  39  

ID:  110    

Neural  computations  underlying  temporal  and  rate  coding  in  auditory  cortex  Daniel  Bendor  University  College  London,  United  Kingdom  [email protected]  When  a  brief  sound  is  slowly  repeated,  the  resulting  percept  is  a  stream  of  discrete  events,  referred  to  as  acoustic  flutter.  If  the  sound’s  repetition  rate  increases  above  ~40-­‐45  Hz,  the  percept  changes  from  flutter  to  fusion;  the  sensation  of  discrete  events  is  transformed  into  a  fused  percept,  with  a  pitch  equal  to  its  repetition  rate.  Within  auditory  cortex,  repetitive  acoustic  stimuli  are  encoded  by  two  main  types  of  responses,  synchronized  and  non-­‐synchronized.  Synchronized  neurons  represent  a  repeated  sound  temporally  by  virtue  of  their  ability  to  stimulus  lock  to  the  onset  of  each  repeated  sound  for  repetition  rates  within  the  perceptual  range  of  flutter.  Non-­‐synchronized  neurons  form  a  complimentary  neural  code,  increasing  their  firing  rate  monotonically  with  repetition  rate  over  the  perceptual  range  of  fusion.  To  explore  the  underlying  mechanisms  that  could  generate  these  dichotomous  neural  coding  regimes,  I  created  a  leaky  integrate  and  fire  (LIF)  computational  model  of  an  auditory  cortical  neuron.  Using  this  model,  I  find  that  strong,  delayed  inhibition  (relative  to  excitation)  leads  to  stimulus  synchronization  while  non-­‐synchronized  responses  can  be  generated  by  excitation  occurring  in  close  temporal  proximity  with  weaker  inhibition.  To  help  validate  this  model,  I  recorded  single  unit  activity  in  the  auditory  cortex  of  four  awake  marmosets,  and  tested  several  predictions  made  by  this  computational  model,  including  the  existence  of  additional  neural  coding  regimes  and  the  ability  of  some  neurons  to  switch  between  synchronized  and  non-­‐synchronized  response  modes.  These  results  suggest  that  the  underlying  mechanism  responsible  for  temporal  and  rate  coding  in  auditory  cortex  can  be  parsimoniously  explained  as  a  byproduct  of  inhibition  varying  in  strength  and  timing.  

ID:  111    

Communication  call  evoked  layer  specific  neuronal  response  pattern  in  the  auditory  cortex  of  Mongolian  gerbils  Markus  Schaefer,  Manfred  Kössl  Goethe-­‐University  Frankfurt  am  Main,  Germany  [email protected]  Biologically  important  communication  sounds  of  mammals  are  often  composed  of  a  complex  structure  of  time-­‐varying  spectral  features,  which  is  an  important  aspect  of  the  auditory  behaviour  and  crucial  for  their  social  interactions.  However,  communication  sounds  evoked  neuronal  responses  are  poorly  investigated  in  literature  and  it  is  virtually  impossible  to  directly  study  neural  mechanisms  for  processing  of  communication  sounds,  e.g.,  speech  in  humans.  Animal  models  may  provide  valuable  information  about  common  mechanisms  for  perception  of  communication  sounds.  At  the  level  of  spiking  activity  a  number  of  studies  in  various  species  have  demonstrated  that  natural  vocalizations  generally  may  produce  stronger  neural  responses  than  do  their  time  reversed  versions  and  call  evoked  local  field  potentials  in  the  auditory  cortex  can  uniquely  encode  each  call  type.  But  are  differences  also  visible  at  the  level  of  the  intracolumnar  current  flows  of  the  six  layered  auditory  cortex.  Here  we  recorded  call  evoked  local  field  potentials  and  multiunit  spiking  activity  from  perpendiculary  inserted  linear  multi-­‐contact-­‐electrodes  spacing  all  cortical  layers  to  calculate  laminar  current  source  density  distributions  in  the  left  primary  auditory  cortex  of  Mongolian  gerbils.  Animals  were  presented  pure  tones  at  their  respective  characteristic  frequencies,  conspecific  communication  calls  and  their  reversed  versions  at  80  dB  SPL  and  20  dB  above  the  minimal  response  threshold  of  respective  neurons.  Current  source  density  (CSD)  patterns  were  parcellated  and  quantifyed  to  analyse  the  size,  latency,  extend  and  strength  of  respective  sink  and  sources.  It  could  be  shown,  that  different  conspecific  communication  calls  elicit  call  specific  CSD-­‐patterns  while  following  the  intracolumnar  circuitry.  Current  sinks  of  warning  calls  appear  to  have  shorter  latencies  compared  to  pure  tone  stimulation  of  same  duration.    

Page 53: Complete program including all scientific contributions (21 MB, PDF)

  40  

ID:  112    

Tonotopic  mapping  in  patients  with  unilateral  lesions  Sandra  Da  Costa1,  Melissa  Saenz2,3,  Wietske  Van  der  Zwaag4,  Pierre-­‐André  Rapin5,  Stephanie  Clarke1  1CHUV,  DNC,  NPR,  Lausanne,  Switzerland;  2CHUV,  DNC,  LREN,  Lausanne,  Switzerland;  3EPFL,  IBI-­‐STI,  Lausanne,  Switzerland;  4EPFL,  CIBM,  Lausanne,  Switzerland;  5Institution  de  Lavigny,  Lavigny,  Switzerland  Sandra.Borges-­‐Da-­‐[email protected]  The  primary  auditory  cortex  (PAC)  is  central  to  human  auditory  abilities,  yet  its  anatomical  location  remains  unclear.  In  control  subjects,  we  measured  two  large  tonotopic  subfields  of  PAC  (A1  and  R)  relative  to  the  underlying  anatomy  of  Heschl’s  gyrus  (HG).  The  data  reveals  a  clear  anatomical-­‐functional  relationship  that  indicated  the  location  of  PAC  across  the  range  of  common  morphological  variants  of  HG  (single  gyri,  partial  or  complete  duplications).  The  size  and  shape  of  these  subfields  are  proper  to  each  hemisphere  and  subject.  Here,  we  speculate  that  A1  and  R  (but  also  others  non-­‐primary  subfields)  could  be  modulated  by  events  such  as  stroke  or  traumatic  brain  injury  (TBI).  We  performed  tonotopic  mapping  in  six  patients  and  twelve  healthy  controls  at  3T.  Ascending  and  descending  progressive  cycles  of  pure  tone  bursts  (from  88  to  8000  Hz  in  half-­‐octave  steps)  were  presented  in  blocks  of  32  seconds  during  two  8  minutes  runs.  PAC  was  functionally  defined  as  the  largest  cluster  in  HG  containing  the  primary  mirror-­‐symmetric  gradients  in  each  hemisphere  and  subject.  Frequency  distributions  (percentages  for  each  frequency  representation)  were  calculated  based  on  the  frequency  preferences  normalized  by  the  total  amount  of  voxels  within  our  region  of  interest.  Then,  each  time  course  was  extracted,  normalized  and  averaged  across  preferred  frequency  in  order  to  get  the  percent  signal  change  variation  per  presented  frequency.  Tonotopic  gradients  were  maintained  in  ispsi-­‐  and  contralesional  hemispheres,  despite  some  relative  alterations  in  the  frequency  representations.  Frequency  distributions  were  slightly  shifted  towards  the  low  frequencies  in  patients  with  hemispheric  lesions,  with  bigger  shift  for  bigger  lesions  or  lesions  near  PAC.  

Percent  signal  change  variations  were  different  in  patients,  with  an  ispsilesional  drop  around  1000  Hz  in  patients  with  hemispheric  lesions  and  a  contralesional  increase  in  patients  with  cerebellar  lesions.  Tonotopic  maps  were  (1)  preserved  only  if  primary  and  non-­‐primary  auditory  areas  were  spared  by  the  lesion,  and  (2)  strongly  influenced  by  the  distance  between  PAC  and  the  lesion.    ID:  113    

Lateralized  processing  of  basic  acoustic  parameters  and  the  effect  of  sequential  comparison  Nicole  Angenstein,  André  Brechmann  Leibniz  Institute  for  Neurobiology  Magdeburg,  Germany  nicole.angenstein@lin-­‐magdeburg.de  Acoustic  parameters  of  a  current  sound  segment  like  intensity,  duration  and  frequency  are  not  judged  in  an  absolute  manner  but  in  relation  to  preceding  sound  segments,  e.g.  the  decision  as  to  whether  a  given  tone  is  short  or  long  can  only  be  made  relative  to  a  reference.  As  acoustic  information  of  sound  sequences  unfolds  over  time,  for  the  evaluation  of  these  sequences  the  information  of  individual  segments  need  to  be  stored  until  the  evaluation  is  finished  and  has  to  be  sequentially  updated.  Such  sequential  processing  is  suggested  to  mainly  involve  the  left  hemisphere.  With  functional  magnetic  resonance  imaging  (fMRI)  we  investigated  the  lateralization  of  processing  in  the  human  auditory  cortex  (AC)  for  duration,  intensity  and  direction  of  frequency  modulations  (FM).  Additionally,  we  looked  for  changes  in  activity  due  to  additional  sequential  comparison  of  these  parameters.  For  that  we  used  a  method  that  is  able  to  elucidate  differential  hemispheric  contribution  to  the  processing  based  on  an  increase  in  activity  by  presenting  additional  noise  contralateral  to  the  task-­‐relevant  stimuli.  For  the  categorization  of  FM  tones  according  to  their  FM  direction  we  confirmed  a  strong  involvement  of  the  right  AC.  The  pairwise  sequential  comparison  of  this  parameter  led  to  an  additional  involvement  of  the  left  AC.  The  processing  of  intensity  is  strongly  left  lateralized  irrespective  of  the  type  of  stimuli  (FM  tones,  harmonic  tones  without  FM)  and  

Page 54: Complete program including all scientific contributions (21 MB, PDF)

  41  

tasks  (without  and  with  sequential  comparison).  For  the  categorization  of  tones  according  to  their  duration  the  right  AC  was  stronger  involved  for  FM  tones  and  the  left  AC  was  stronger  involved  for  unmodulated  tones.  For  both  intensity  and  duration,  additional  sequential  comparison  of  tones  according  to  these  parameters  led  to  a  stronger  involvement  of  the  left  AC  in  contrast  to  the  mere  categorization  of  tones  according  to  these  parameters.  In  accordance  with  previous  studies  on  sequential  comparison,  the  results  show  that  the  left  AC  is  additionally  involved  when  fundamental  acoustic  parameters  have  to  be  sequentially  compared.  The  need  to  compare  a  feature  between  tones  seems  to  drive  an  additional  involvement  of  the  left  AC  regardless  whether  the  main  location  for  the  processing  of  this  feature  is  the  left  or  the  right  AC.  Furthermore,  additional  brain  resources  outside  the  AC  seem  to  be  required  during  sequential  comparison  in  contrast  to  categorization.    Supported  by  Deutsche  Forschungsgemeinschaft  (DFG,  AN  861/4-­‐1).  

 ID:  114    

Corticofugal  modulation  of  cochlear  activity  Katharina  Jäger,  Manfred  Kössl  Goethe-­‐University  Frankfurt  am  Main,  Germany  [email protected]­‐frankfurt.de  The  corticofugal  descending  auditory  system  is  a  complex  neuronal  network  that  reaches  the  cochlear  hair  cells  through  the  olivocochlear  pathway,  which  makes  it  a  major  contributor  to  form  feedback  loops  that  could  modulate  afferent  responses.  So  far  only  one  study  demonstrated  a  direct  regulatory  role  of  auditory  cortex  activity  on  cochlear  potentials,  suggesting  the  presence  of  two  functional  pathways  from  the  cortex  to  the  cochlea.  These  two  pathways  are  assumed  to  be  the  medial  and  the  lateral  olivocochlear  system.  By  manipulation  of  auditory  cortical  activity  through  sodium  ion-­‐channel  blockers  like  lidocaine,  the  outer  hair  cell  function  can  be  evaluated  using  otoacoustic  emissions  as  a  non-­‐invasive  measurement  of  the  cochlear  amplifier.  Here,  distortion-­‐product  otoacoustic  emissions  (DPOAEs)  were  recorded  in  

anaesthetized  mongolian  gerbils,  Meriones  unguiculatus,  before  and  after  auditory  cortex  deactivation  by  lidocaine  microinjections  in  the  ipsilateral  or  contralateral  hemisphere.  DPOAEs  were  evoked  over  a  broad  frequency  range  of  0.5-­‐40  kHz  at  levels  of  60/50  dB  SPL  and  40/30  dB  SPL,  respectively.  The  cortical  frequency  characteristics  of  the  place  of  lidocaine  injection  were  determined  using  extracellular  recordings  with  carbon  electrodes.  As  a  control,  in  some  animals  saline  was  injected  instead  of  lidocaine.  Cortical  microinjections  of  lidocaine  induced  reversible  amplitude  shifts  of  DPOAEs  in  all  tested  animals.  The  most  common  effect  was  a  DPOAE  amplitude  decrease,  but  some  animals  showed  DPOAE  amplitude  enhancements  after  injection.  Effects  were  distributed  across  all  tested  frequencies  and  not  restricted  to  the  preferred  frequency  of  the  cortical  site  of  injection.  In  most  animals,  the  DPOAE  amplitude  completely  recovered  after  80  minutes.  Injections  in  the  ipsilateral  hemisphere  induced  effects  with  comparable  magnitudes  to  those  after  injections  in  the  contralateral  hemisphere.  In  contrast,  almost  no  changes  in  DPOAE  levels  were  obtained  after  saline  microinjections.  These  results  indicate  that  deactivation  of  auditory  cortex  activity  through  lidocaine  has  a  massive  impact  on  peripheral  auditory  responses  in  form  of  DPOAEs,  probably  through  cortico-­‐olivocochlear  pathways.  Effects  seem  to  be  wide-­‐spread  across  frequencies,  suggesting  an  ubiquitous  influence  of  cortical  activity  on  cochlear  processes.  Furthermore  ipsilateral  projections  seem  to  be  influenced  as  much  as  contralateral  projections.    ID:  115    

Neural  plasticity  and  attention  in  normal  hearing  and  in  tinnitus  Larry  Evan  Roberts  McMaster  University  Hamilton,  Canada  [email protected]  Most  if  not  all  models  of  tinnitus  generation  propose  that  neural  plasticity  contributes  to  the  neural  changes  that  underlie  tinnitus.  It  has  also  been  proposed  that  the  disparity  between  what  the  auditory  cortex  predicts  it  should  be  hearing  (this  prediction  coded  by  aberrant  synchronous  neural  activity  in  primary  auditory  

Page 55: Complete program including all scientific contributions (21 MB, PDF)

  42  

cortex  coding  for  the  tinnitus  percept)  and  input  delivered  to  the  brain  by  the  damaged  cochlea  activates  neural  systems  that  support  auditory  attention  as  well.  Our  research  has  investigated  how  the  expression  of  neural  plasticity  and  attention  in  the  normal  hearing  human  brain  appears  to  be  modified  in  individuals  experiencing  tinnitus.  The  findings  support  the  view  that  the  rules  that  describe  auditory  remodeling  in  the  normal  hearing  brain  are  modified  by  the  presence  of  tinnitus-­‐related  neural  activity.  Tinnitus-­‐related  modifications  include  a  relaxation  of  constraints  on  auditory  representations  in  primary  auditory  cortex,  impaired  temporal  plasticity  in  subcortical  pathways,  and  reduced  modulation  by  attention  of  brain  responses  evoked  by  sounds  in  the  tinnitus  frequency  region  of  primary  auditory  cortex  and  nonspecifically  in  nonprimary  auditory  cortex.    Supported  by  NSERC  of  Canada  and  the  Tinnitus  Research  Initiative.  

 ID:  116    

Dopamine-­‐modulated  recurrent  corticoefferent  feedback  in  primary  auditory  cortex:  Perceptual  salience  and  memory  function  Max  Happel1,2,  Matthias  Deliano1,  Juliane  Handschuh1,  Frank  W.  Ohl1,2,3  1Leibniz  Institute  for  Neurobiology  Magdeburg,  Germany;  2Otto-­‐von-­‐Guericke  University  Magdeburg,  Germany;  3Center  for  Behavioral  Brain  Sciences  Magdeburg,  Germany  mhappel@lin-­‐magdeburg.de  Dopamine  modulates  neural  circuits  throughout  the  brain  and  has  important  roles  in  motor  control,  reward,  attention,  and  learning.  In  primary  auditory  cortex  (AI),  dopamine  is  required  for  learning  and  long-­‐term  memory  formation.  However,  the  circuit-­‐effects  of  layer-­‐dependent  dopaminergic  neurotransmission  in  sensory  cortex  and  their  possible  roles  in  perception,  learning  and  memory  are  largely  unknown.  In  a  recent  study,  we  gained  first  insights  into  the  circuit  functions  of  dopamine  in  auditory  cortex  by  using  current-­‐source-­‐density  analyses  to  compare  synaptic  activation  patterns  evoked  by  auditory  stimulation  in  the  presence  and  absence  of  a  D1/D5  dopamine  receptor  agonist  in  gerbil  AI  (Happel  et  al.,  2014).  

Activation  of  D1/D5  receptors  lead  to  sustained  auditory  (thalamocortical)  input  processing  via  a  local  and  polysynaptic  recurrent  cortico-­‐thalamocortical  feedback  loop  originating  from  infragranular  (corticoefferent)  sub-­‐circuits.  A  detailed  circuit  analysis  of  this  dopamine-­‐modulated  corticoefferent  feedback  related  its  activation  to  the  generation  of  behaviorally  relevant  signals  and  perception  in  a  behavioral  detection  task.  Dopaminergic  modulation  of  such  recurrent  corticoefferent  feedback  might  allow  for  learning-­‐induced  gain  control  promoting  the  read-­‐out  of  task-­‐related  information  from  cortical  synapses  and  improving  perceptual  salience  and  learning.  We  could  further  emphasize  the  translational  relevance  of  this  corticothalamic  feedback-­‐gain  circuitry  involved  in  learning  and  memory  malfunctions  in  the  5xFAD  mouse  model  for  Alzheimer’s  disease.  Disruption  of  neuronal  networks  in  the  Alzheimer-­‐afflicted  brain  is  increasingly  recognized  as  a  key  correlate  of  cognitive  and  memory  decline  in  Alzheimer  patients.  In  the  5xFAD  model  we  found  impaired  functions  of  pyramidal  cells  in  infragranular  layers  leading  to  a  loss  of  the  corticoefferent  feedback-­‐gain.  This  specific  disruption  of  normal  cross-­‐laminar  cortical  processing  coincided  with  mnemonic  deficits  in  contextual  and  cued  fear  conditioning  and  preceded  the  occurrence  of  cell  death.  We  therefore  revealed  a  possible  circuit  mechanism  of  memory  deficits  in  early  AD  (Lison  et  al.,  2013).    ID:  117    

Cortical  processing  of  spectrally  degraded  speech  as  revealed  by  intracranial  recordings  Kirill  V.  Nourski1,  Ariane  E.  Rhone1,  Mitchell  Steinschneider2,  Hiroto  Kawasaki1,  Hiroyuki  Oya1,  Matthew  A.  Howard1  1The  University  of  Iowa;  United  States  of  America;  2Albert  Einstein  College  of  Medicine  NewYork,  United  States  of  America  kirill-­‐[email protected]  Speech  perception  can  withstand  a  considerable  amount  of  signal  degradation.  This  is  exemplified  by  cochlear  implant  (CI)  users  who  may  achieve  excellent  speech  comprehension  despite  severely  limited  spectral  information.  Understanding  the  

Page 56: Complete program including all scientific contributions (21 MB, PDF)

  43  

cortical  processing  of  normal  and  spectrally  degraded  speech  can  help  define  the  roles  of  different  auditory  and  auditory-­‐related  fields  in  speech  perception  and  potentially  contribute  to  improvements  in  CI  design  and  stimulation  paradigms.  Subjects  were  normal-­‐hearing  neurosurgical  patients  undergoing  chronic  invasive  monitoring  for  medically  refractory  epilepsy.  Stimuli  were  utterances  (/aba/,  /ada/,  /apa/,  /ata/),  spoken  by  a  male  talker.  The  stimuli  were  spectrally  degraded  using  a  noise  vocoder  (1-­‐8  bands)  and  were  presented  in  target  detection  and  stimulus  identification  tasks.  Electrophysiological  data  were  recorded  simultaneously  from  Heschl’s  gyrus  (HG),  posterolateral  superior  temporal  gyrus  (PLST),  and  inferior  and  middle  frontal  gyri  (IFG,  MFG)  using  multicontact  depth  and  subdural  grid  electrodes.  Responses  were  characterized  as  averaged  auditory  evoked  potentials  (AEPs)  and  event-­‐related  band  power.  In  posteromedial  HG  (auditory  core),  AEPs  had  short  latencies  and  featured  peaks  that  reflected  consonant  release  and  frequency-­‐following  responses  to  the  voice  fundamental  of  the  natural  stimuli.  High  gamma  (70-­‐150  Hz)  responses  were  similar  in  magnitude  for  vocoded  and  natural  stimuli,  contrasting  with  that  seen  on  PLST,  where  natural  stimuli  elicited  larger  and  broader  patterns  of  high  gamma  activity.  Responses  from  non-­‐core  cortex  on  anterolateral  HG  had  long  latencies  and  were  often  selective  for  natural  stimuli.  IFG  and  MFG  exhibited  complex  response  patterns  that  paralleled  stimulus  intelligibility,  task  difficulty  and  experience  with  the  stimuli.  Findings  highlight  marked  differences  in  representation  of  noise-­‐vocoded  speech  across  core,  non-­‐core  and  auditory-­‐related  cortical  areas.  They  support  a  scheme  wherein  acoustic  stimulus  attributes  encoded  within  the  auditory  core  are  transformed  into  phonetic  representations  at  the  level  of  PLST.  Auditory-­‐related  areas  appear  to  subserve  functions  related  to  comprehension  of  stimuli  and  task  performance.  By  modeling  the  patterns  of  cortical  activity  elicited  by  CI  stimulation,  the  intracranial  data  lay  foundation  for  better  understanding  cortical  processing  of  degraded  speech  and  the  improvements  that  occur  in  CI  users  with  rehabilitation  and  experience.    

ID:  118    

Signal  coding  and  perception  of  iterated  rippled  noise  with  cochlear  implant  (CI)  users  Luise  Wagner,  Rahne  Torsten  University  Hospital  Halle  (Saale),  Germany  luise.wagner@uk-­‐halle.de  Pitch  is  one  of  the  primary  auditory  percepts.  Variation  of  pitch  is  associated  with  the  perception  of  melodies.  Thus,  perception  of  pitch  is  important  for  music  and  language  perception  as  well  as  for  segregating  the  sources  of  concurrent  sounds.  Auditory  pitch  detection  relies  on  cochlear  and  central  regularity  detection.  Normal  hearing  listeners  use  temporal  fine  structure  and  the  envelope  of  signals  for  encoding  of  pitch.  In  CI  users  the  transfer  of  spectral  components  and  temporal  fine  structure  is  limited  and  the  perception  of  pitch  and  timbre  still  difficult.  We  examined  iterated  rippled  noise  (IRN)  perception  in  normal  hearing  listeners  and  CI  users  ,  i.e,  white  noise  is  delayed  and  added  on  its  original  (Yost  1996).  The  frequency  of  the  perceived  tonal  component  is  determined  by  the  reciprocal  of  the  delay  and  its  strength  by  the  amount  of  added  iterations.  Difference  limen  for  IRN  iterations  were  measured  psychoacoustically.  Auditory  evoked  potentials  were  measured  with  32-­‐channel  EEG  recordings.  Pitch  onset  response  was  found  for  IRN  in  both  groups.  First  results  will  be  discussed.    Yost  WA  (1996)  Pitch  of  iterated  rippled  noise.  Journal  of  the  Acoustical  Society  of  America  100(1):511-­‐8  

 ID:  119    

Stimulus  specific  adaptation  to  simple  and  complex  sounds  in  freely  moving  rats  Ana  Polterovich1,2,3,  Amit  Yaron1,2,3,  Israel  Nelken1,2  1Hebrew  University  of  Jerusalem,  Israel;  2Edmund  and  Lily  Safra  Center  for  Brain  Sciences,  Israel;  3equally  contributing  [email protected]  In  order  to  survive,  animals  must  be  able  to  predict  what  is  going  to  occur  next  and  plan  their  reactions  appropriately.  A  way  to  do  this  is  to  extract  relevant  information  from  the  past  and  build  a  statistical  model  of  the  environment  that  can  be  used  to  predict  future  

Page 57: Complete program including all scientific contributions (21 MB, PDF)

  44  

events.  Indeed,  numerous  studies  have  demonstrated  sensitivity  of  neural  activity  to  the  overall  probability  of  a  stimulus.  One  of  the  manifestations  of  such  sensitivity  is  stimulus-­‐specific  adaptation  (SSA):  a  decrease  in  responses  to  a  common  stimulus  that  does  not  generalize,  or  only  partially  generalizes,  to  other  stimuli.  SSA  has  been  studied  mainly  in  anesthetized  animals  and  mainly  with  pure  tones,  and  so  its  relevance  for  real-­‐world  tasks  is  not  clear.  Here  we  present  a  preliminary  report  of  studies  of  SSA  using  awake,  freely  moving  rats,  as  well  as  our  attempts  to  test  SSA  with  complex  sounds.  We  are  recording  the  electrophysiological  responses  in  primary  auditory  cortex  with  a  16-­‐electrode  array,  in  an  acute-­‐awake  preparation  where  the  electrodes  are  implanted  on  the  same  day  as  the  recording  session.  The  rats  move  around  a  computer-­‐controlled  environment  under  video  control,  while  listening  to  different  auditory  stimuli.  We  report  here  SSA  to  pure  tones  and  to  sounds  as  complex  as  human  speech  in  the  awake,  non-­‐behaving  rat.      ID:  121    

Cortical  modulation  of  spike-­‐time  precision  in  the  medial  geniculate  body  of  the  thalamus  during  reversible  deactivation  of  primary  auditory  cortex  in  cats  Daniel  Stolzberg,  Blake  E.  Butler,  Melanie  A.  Kok,  Stephen  G.  Lomber  University  of  Ontario,  London,  Canada  [email protected]  The  functional  role  of  corticothalamic  feedback  projections  from  primary  auditory  cortex  (A1)  to  neurons  in  the  medial  geniculate  body  (MGB)  is  not  well  understood.  One  hypothesis  suggests  that  cortical  activity  modulates  the  temporal  dynamics  of  thalamic  neuronal  responses  in  order  to  improve  the  coding  fidelity  of  ascending  sensory  information.  In  order  to  investigate  its  role  in  modulating  the  temporal  precision  of  spike  trains  from  MGB  neurons,  A1  was  reversibly  deactivated  using  a  cryoloop  while  recording  from  a  multichannel  electrode  array  in  the  MGB  of  ketamine-­‐anesthetized  cats.  Metric-­‐space  analysis  was  used  to  quantify  the  reliability  of  MGB  spike-­‐time  coding  strategies  in  response  to  normal  

and  time-­‐reversed  vocalizations  before,  during,  and  after  deactivation  of  A1.  Similar  to  the  findings  of  previous  studies  on  coding  in  the  MGB,  the  majority  of  neurons  utilized  a  temporal  coding  (>90%)  over  a  rate  coding  strategy.  Deactivation  of  A1  primarily  resulted  in  a  decrease  in  the  temporal  precision  of  spike  trains  from  MGB  neurons,  as  well  as  a  decrease  in  mutual  information,  a  measure  of  a  neuron’s  selectivity  for  a  normal  or  time-­‐reversed  vocalization.  These  preliminary  results  support  the  hypothesis  that  A1  plays  a  role  in  modulating  the  temporal  dynamics  of  MGB  neural  responses  to  sound.      ID:  122    

MGm  makes  it  big:  Ultrastructure  of  thalamocortical  “giant“  boutons  Katja  Saldeitis1,  Karin  Richter2,  Henning  Scheich1,  Eike  Budinger1  1Leibniz  Institute  for  Neurobiology  Magdeburg,  Germany;  2Otto-­‐von-­‐Guericke  University  Magdeburg,  Germany  katja.saldeitis@lin-­‐magdeburg.de  The  auditory  system  comprises  some  very  large  axonal  terminals,  among  them  the  endbulb  and  the  calyx  of  Held  in  the  brainstem,  and  those  formed  by  corticothalamic  pyramidal  neurons  originating  in  layer  V  (referred  to  as  “drivers”,  e.g.  Lee  &  Sherman,  2010,  Front.  Neurosci.  4).  A  hitherto  unknown  population  of  “giant”  boutons  arising  from  the  medial  division  of  the  medial  geniculate  body  (MGm)  was  recently  discovered  in  course  of  tracing  studies  on  the  thalamocortical  connections  of  the  gerbil  auditory  cortex  (Saldeitis  et  al,  2014,  J.  Comp.  Neurol.  522).  Specific  features  (such  as  rapid,  high-­‐fidelity  transmission)  of  the  so  far  known  “giant”  terminals  have  been  related  to  their  size  (“form  fits  function”).  Therefore,  and  due  to  their  preferred  (column-­‐like)  location  in  infragranular  layers  of  auditory  cortex  we  speculate  that  the  giant  synapses  from  MGm  play  an  important  role  in  specific  cortical  activities.  By  means  of  small  injections  of  the  tract  tracer  biocytin  into  the  MGm  to  anterogradely  label  thalamocortical  boutons,  and  pre-­‐embedding  staining  for  transmission  electron  microscopy,  we  aimed  to  give  a  first  description  of  the  ultrastructure  of  MGm  terminals,  which  in  turn  

Page 58: Complete program including all scientific contributions (21 MB, PDF)

  45  

will  provide  evidence  about  their  putative  functions.  We  identified  labeled  boutons  having  cross-­‐section  areas  of  about  1µm²  (normal  boutons)  up  to  5  µm²  (giant  boutons).  Giant  (but  also  normal  sized  labeled)  terminals  contain  a  large  pool  of  clear,  round  vesicles,  and  form  multiple  asymmetric  synapses  with  their  postsynaptic  targets,  which  are  mainly  dendritic  spines.  This  indicates  that  they  exert  excitatory,  presumably  glutamatergic,  effects  on  layer  V  and/or  VI  pyramidal  cells.  Noticeable,  compared  to  adjacent  non-­‐labeled  terminals,  boutons  from  the  MGm  have  a  high  mitochondrial  fraction,  suggesting  that  they  consume  much  energy.  Together,  it  is  conceivable,  that  their  transmission  has  a  strong,  temporally  precise  influence  on  the  postsynaptic  neurons,  which  (considering  their  columnar  distribution  pattern  in  auditory  cortex)  may  make  the  MGm  neurons  able  to  orchestrate  and  synchronize  the  activity  of  multiple  cortical  ensembles.    ID:  123    

Behavioral  and  neural  correlates  of  perceptual  ambiguity  in  auditory  stream  segregation  Susann  Deike1,  Peter  Heil1,  Martin  Böckmann-­‐Barthel2,  Lena-­‐Vanessa  Dolležal3,  Georg  Klump3,  André  Brechmann1  1Leibniz  Institute  for  Neurobiology  Magdeburg,  Germany;  2Otto-­‐von-­‐Guericke  University  Magdeburg,  Germany;  3Carl  von  Ossietzky  University  Oldenburg,  Germany  sdeike@lin-­‐magdeburg.de  In  experiments  on  auditory  stream  segregation  using  ABAB  or  ABA_  sound  sequences,  three  perceptual  domains  have  traditionally  been  distinguished.  The  sound  sequences  are  predominantly  perceived  as  a  single  stream  when  the  physical  differences  between  the  A  and  the  B  sounds  are  small,  and  as  two  segregated  streams  when  the  differences  are  large  (unambiguous  sequences).  Both  of  these  percepts  are  possible  and  the  listener  can  switch  between  them  when  the  differences  are  of  intermediate  size  (ambiguous  sequences).  Such  ambiguous  sequences  are  suited  to  probe  the  neural  basis  of  streaming  because  different  perceptual  organizations  can  be  studied  without  varying  physical  stimulus  parameters.  Here,  we  describe  behavioral  as  well  as  neural  

correlates  that  relate  to  general  aspects  of  decision  making  on  perceptually  ambiguous  sound  sequences.  In  psychophysical  and  fMRI  experiments,  human  subjects  were  asked  to  listen  to  the  sound  sequences  (ABAB  or  ABA_  )  and  to  indicate  their  percept  (one  stream,  two  streams),  either  continuously  during  the  sequence  presentations  (psychophysical  study)  or  at  the  end  of  the  sequences  (fMRI).  Several  psychophysical  measures  differed  clearly  between  unambiguous  and  ambiguous  sequences.  For  ambiguous  sequences,  the  time  to  the  first  decision  was  longer  and  the  switching  rate  and  the  proportion  of  sequences  with  switches  was  higher  compared  to  unambiguous  sequences.  In  the  fMRI  study,  we  found  specific  BOLD  responses  for  the  ambiguous  sequence  in  higher-­‐level  areas,  specifically  the  posterior  medial  prefrontal  cortex  and  the  posterior  cingulate  cortex.  The  two  regions  are  associated  with  cognitive  functions  related  to  monitoring  decision  uncertainty  and  higher  task  demands,  respectively.  Thus,  both  studies  suggest  that  perceptual  ambiguity  is  characterized  by  an  uncertainty  to  decide  for  one  perceptual  organization  and  by  a  higher  cognitive  load  due  to  this  uncertainty.  Hence,  it  should  be  taken  into  account  in  the  analysis  of  results  from  streaming  experiments  that  additional  processing  may  be  involved  when  subjects  listen  to  ambiguous  sequences  which  is  not  specifically  related  to  streaming  per  se  but  to  decision  making  in  general.    Supported  by  the  ‘DFG’  [SFB/TRR31].  

 ID:  124    

Postnatal  development  and  plasticity  of  anatomical  pathways  suitable  for  multisensory  integration  processes  in  rodent  primary  sensory  cortices  A1,  S1,  and  V1  Julia  U.  Henschke1,  Patrick  Kanold2,  Henning  Scheich1,  Eike  Budinger1  1Leibniz  Institute  for  Neurobiology  Magdeburg,  Germany;  2University  of  Maryland,  College  Park,  United  States  of  America  Julia.henschke@lin-­‐magdeburg.de  Multisensory  integration  does  not  only  recruit  higher-­‐level  association  cortex,  but  also  low-­‐

Page 59: Complete program including all scientific contributions (21 MB, PDF)

  46  

level  and  even  primary  sensory  cortices.  Recently,  we  showed  that  the  primary  auditory  (A1),  somatosensory  (S1),  and  visual  (V1)  cortex  of  adult  Mongolian  gerbils  receive  convergent  inputs  from  brain  structures  of  non-­‐matched  senses  (Henschke  et  al.,  Brain  Structure  and  Function,  2014).  The  underlying  anatomical  pathways  include  a  thalamocortical  (TC)  and  a  corticocortical  (CC)  system,  which  might  preferentially  serve  short  latency  integration  processes  in  the  primary  sensory  areas.  Here,  we  ask  how  the  multisensory  TC  and  CC  systems  develop  and  change  during  the  total  lifespan  of  the  animals.  Knowledge  about  mechanisms  underlying  these  changes  during  development  will  provide  insights  into  plastic  processes  caused  by  experience,  learning,  and  sensory  deprivation.  We  approached  the  issue  by  stereotaxic  pressure  injections  of  the  retrograde  tracer  Fluorogold  into  A1,  S1,  and  V1  at  postnatal  days  1  (somatosensation  already  active),  9  (before  ears  and  eyes  open),  15  (ear  canals  open),  21  (eyes  open),  28  (weaned),  120  (young  adult),  and  1000  (old  age)  to  identify  cells  that  project  to  the  particular  areas.  Our  cell  counts  demonstrated  especially  in  the  first  postnatal  weeks  large  changes  of  the  developing  multisensory  TC  and  CC  connections;  mainly  due  to  an  initial  competition  between  the  developing  senses  and  a  subsequent  structural  consolidation  of  the  sensory  pathways  during  the  critical  and  sensitive  phase.  At  adult  stages,  many  crossmodal  TC  and  CC  connections  remain;  however,  most  of  them  disappear  during  aging.  To  test  if  the  changes  in  crossmodal  connectivity  are  due  to  a  selective  generation  of  projection  neurons,  a  loss  of  these  neurons,  a  reorganization  of  axonal  branches,  and/or  changes  in  the  nature  of  the  transmission  systems  (driving,  modulatory,  inhibitory)  we  counterstained  the  histological  sections  with  antibodies  against  markers  for  neurogenesis  (Doublecortin),  cell  apoptosis  (Caspase-­‐3),  axonal  plasticity  (GAP34),  and  calcium-­‐binding  proteins  (Calbindin,  Parvalbumin).  Our  results  show  that  during  normal  development  TC  and  CC  projection  neurons  are  not  newborn,  do  not  die,  and  major  axonal  reorganization  processes  are  mediated  by  neurons  within  the  non-­‐lemniscal  thalamic  nuclei  and  primary  sensory  cortices  itself.

ID:  125    

Fine  spatial  representation  of  interaural  level  differences  in  the  auditory  cortex:  A  two-­‐photon  imaging  study  Mariangela  Panniello,  Andrew  J.  King,  Johannes  C.  Dahmen,  Kerry  M.  Walker  University  of  Oxford,  United  Kingdom  [email protected]  Hearing  research  has  been  revolutionized  by  the  recent  application  of  in  vivo  two-­‐photon  calcium  imaging  to  the  study  of  auditory  cortex  (AC),  thanks  to  the  high  spatial  sampling  rate  of  this  technique.  The  topographic  representation  of  sound  frequency,  recognized  as  the  main  organizational  principle  of  primary  AC,  has  been  shown  to  be  absent  at  a  fine  spatial  scale  (within  tens  of  micrometers)  in  mice.  Here,  we  use  two-­‐photon  calcium  imaging  to  investigate  the  responses  of  neurons  in  mouse  primary  AC  to  sound  level  differences  between  the  two  ears  (Interaural  Level  Differences;  ILD)  at  a  much  higher  spatial  resolution  than  has  previously  been  possible.  Previous  extracellular  recording  studies  have  described  bands  or  clusters  of  neurons  with  similar  binaural  interaction  properties,  and  the  only  evidence  for  a  topographic  organization  of  ILD  sensitivity  across  the  auditory  cortical  surface  has  been  reported  in  bats.  Stereotaxic  injections  of  an  AAV  vector  carrying  GCaMP6m,  a  genetically  encoded  calcium  indicator,  were  performed  in  the  AC  of  mice  aged  5-­‐6  weeks.  Two-­‐photon  imaging  of  auditory  cortical  activity  was  carried  out  3-­‐6  weeks  later  in  anesthetized  animals.  During  imaging,  we  presented  noise  bursts  over  a  0-­‐30  dB  ILD  range,  as  well  as  monaurally  to  each  ear  with  an  average  binaural  level  of  either  70  or  90  dB  SPL.  We  found  a  patchy  arrangement  of  binaural  preference.  Small  neuronal  clusters  (50-­‐60  µm²)  showing  a  common  preferred  ILD  were  often  found  adjacent  to  clusters  with  different  (even  contralateral)  ILD  tuning.  We  did  not,  however,  find  evidence  for  binaural  bands  in  the  mouse  AC.  These  results  are  in  accordance  with  previous  electrophysiology  studies  that  propose  a  poorly  ordered  spatial  representation  of  ILD  in  the  AC  at  a  large  spatial  scale.  However,  the  dense  spatial  sampling  of  2-­‐photon  imaging  demonstrated  that  locally  clustered  ILD  preferences  exist  among  neighboring  auditory  cortical  neurons.

Page 60: Complete program including all scientific contributions (21 MB, PDF)

  47  

ID:  126    

Responses  to  natural  sounds  reveal  the  functional  organization  of  human  auditory  cortex  Sam  Norman-­‐Haignere,  Josh  McDermott,  Nancy  Kanwisher  Massachusetts  Institute  of  Technology,  Cambridge,  United  States  of  America  [email protected]  Auditory  cortex  is  critical  to  speech  recognition,  music  perception,  and  the  ability  to  infer  useful  information  from  acoustic  scenes.  However,  the  functional  organization  of  auditory  cortex  remains  poorly  understood  compared  with  visual  cortex.  This  is  in  part  because  studies  typically  test  only  a  small  number  of  hypotheses  about  auditory  cortical  organization,  limited  in  part  by  the  constraints  of  using  relatively  modest  numbers  of  stimuli.  To  overcome  these  limitations,  we  measured  cortical  responses  with  fMRI  to  diverse  collection  of  165  individual  natural  sounds.  We  then  took  a  data-­‐driven  approach  to  explore  whether  there  was  organization  in  the  measured  responses  to  these  sounds.  The  response  of  each  voxel  to  the  165  sounds  was  modeled  as  a  weighted  combination  of  an  unknown  number  of  canonical  response  profiles,  each  potentially  representing  the  selectivity  of  an  underlying  neuronal  sub-­‐population.  We  used  independent  components  analysis  (ICA)  to  recover  these  components,  and  then  explored  the  function  of  each  component  by  correlating  its  response  profile  with  acoustic  measures  and  category  labels  (e.g.  speech,  music).  The  analysis  revealed  five  components  that  collectively  explained  all  of  the  replicable  variance.  These  components  had  surprisingly  distinctive  and  interpretable  response  profiles  despite  the  lack  of  functional  or  anatomical  constraints  imposed  by  the  analysis.  The  response  profiles  of  two  components  were  strongly  correlated  with  acoustic  measures  of  either  spectral  energy  or  pitch  strength,  and  did  not  respond  selectively  to  any  of  the  categories  tested.  In  contrast,  two  other  components  exhibited  pronounced  category-­‐selectivity,  one  for  speech  and  one  for  musical  sounds,  and  weak  correlations  with  our  acoustic  measures.  A  fifth  component  responded  preferentially  to  environmental  sounds  other  than  speech  or  music.  Projecting  

these  five  components  back  into  the  brain  revealed  a  clear  anatomical  pattern.  The  components  with  strong  acoustic  correlations  explained  response  variation  in  regions  in  and  around  primary  auditory  cortex,  while  the  category-­‐selective  components  occupied  distinct  regions  of  non-­‐primary  auditory  cortex.  Collectively,  these  results  indicate  that  pitch  and  speech  are  fundamental  organizing  dimensions  of  auditory  cortex,  and  suggest  the  existence  of  an  anatomically  distinct  neural  pathway  for  processing  music.      ID:  127    

Diffusion  MRI  of  the  arcuate  fasciculus  in  prelingually  deaf  patients  Theresa  Finkl1,  Alfred  Anwander2,  Angela  D.  Friederici2,  Johannes  Gerber3,  Alexander  Mainka1,  Dirk  Muerbe1,  Anja  Hahne1  1University  Hospital  Dresden,  Germany;  2Max-­‐Planck-­‐Institute  for  Human  Cognitive  and  Brain  Sciences  Leipzig,  Germany;  3University  Hospital  Dresden,  Germany  theresa.finkl@uniklinikum-­‐dresden.de  Prelingually  deaf  patients,  who  receive  a  cochlear  implant  (CI)  in  adulthood  generally  develop  only  a  limited  ability  to  understand  spoken  language  despite  the  ameliorated  hearing  conditions  provided  by  the  implant.  Besides,  patients  who  have  acquired  some  basic  verbal  utterances  are  hardly  able  to  change  the  abnormalities  in  their  speaking.  As  successful  processing  of  speech  on  both  levels  requires  not  only  an  intact  auditory  pathway,  but  also  an  effectively  operating  language  network,  we  investigated  the  relationship  between  prelingual  deafness  and  white  matter  anatomy  of  the  arcuate  fasciculus  as  a  major  language-­‐associated  tract  by  means  of  dMRI  (diffusion  magnetic  resonance  imaging).  Six  prelingually  deaf  adults  with  bilateral  hearing  loss  (mean  age  33,  range  26-­‐39,  2  men)  and  six  normal-­‐hearing  controls  (mean  age  31,  range  25-­‐42,  2  men)  took  part  in  the  study.  Each  subject  underwent  one  MR  scanning  session,  in  which  a  T1-­‐  and  a  diffusion-­‐weighted  data  set  was  acquired.  Subsequent  tractography  was  carried  out  using  region  of  interest  analyses.  Deterministic  tractography  revealed  well-­‐developed  arcuate  fasciculi  in  all  subjects.  Patients  displayed  higher  values  of  mean  diffusivity  (MD)  and  lower  fractional  anisotropy  (FA)  in  the  left  arcuate  fasciculus  compared  to  

Page 61: Complete program including all scientific contributions (21 MB, PDF)

  48  

the  control  group.  In  dMRI,  FA  is  a  measure  for  the  directionality  of  diffusion  and  takes  high  values  for  strong  directionalities  (e.g.  thick  fiber  bundles  with  pronounced  myelinisation).  MD  describes  the  overall  diffusion,  being  high  in  the  absence  of  restricting  boundaries  (bundles  of  loose  fibers).  Connecting  Broca’s  and  Wernicke’s  area,  the  arcuate  fasciculus  constitutes  one  of  the  principal  pathways  within  the  language  network  and  is  involved  in  speech  production  and  perception.  Although  this  pathway  is  well  developed  in  prelingually  deaf  patients,  high  mean  diffusivity  in  combination  with  low  anisotropy  indicates  that  its  fibers  are  less  organized  and  less  myelinated  than  fibers  of  the  arcuate  fasciculus  in  the  control  group.  This  can  be  attributed  to  auditory  deprivation  during  the  sensitive  period  of  language  acquisition  in  early  childhood  and  provides  additional  information  about  the  neuroanatomical  prerequisites  for  hearing  and  speech  rehabilitation  of  CI  patients.      ID:  128    

Stimulus-­‐specific  adaptation  to  temporal  gaps  Bshara  Awwad,  Amit  Yaron,  Ana  Polterovich,  Israel  Nelken  Hebrew  University  of  Jerusalem,  Israel  [email protected]  The  auditory  system  is  capable  of  following  rapid  changes  in  sounds.  The  ability  to  detect  short  (1-­‐10  ms)  gaps  in  noise  has  been  well-­‐studied  both  in  humans  and  in  animal  models.  The  gap  detection  test  is  clinically  used  to  assess  the  temporal  resolution  of  the  auditory  system,  and  is  correlated  with  deficits  in  speech  perception  in  humans.  Stimulus-­‐specific  adaptation  (SSA),  the  decrease  in  responses  to  a  common  stimulus  that  does  not  generalize,  or  only  partially  generalizes,  to  other  stimuli,  has  been  mainly  investigated  in  the  spectral  domain  of  sound.  Here  we  report  the  existence  of  SSA  to  gaps.  We  used  oddball  sequences  composed  of  either  200  ms  long  noise  bursts  or  noise  bursts  with  a  gap  100  ms  after  stimulus  onset;  the  noise  was  either  broadband  or  narrowband  (…  octaves).  We  recorded  extracellular  activity  (local  field  potentials  and  multiunit  activity)  from  the  primary  auditory  cortex  of  both  anesthetized  and  awake,  freely  

moving  rats  in  response  to  such  sequences.  We  found  significant  responses  to  gaps  as  short  as  2  ms,  as  short  as  behavioral  acuity.  The  responses  to  gap  stimuli  when  deviant  were  larger  than  the  responses  to  the  same  stimuli  when  standard,  in  both  anesthetized  and  freely  moving  rats.  We  conclude  that  SSA  may  be  elicited  not  only  for  spectral,  but  also  for  temporal,  stimulus  features.      ID:  129    

Cortical  neurons  of  bats  do  not  respond  to  all  individual  syllables  in  natural  communication  phrases  Julio  Hechavarria,  Manfred  Kössl  Goethe-­‐University  Frankfurt  am  Main,  Germany  [email protected]­‐frankfurt.de  Acoustic  communication  is  widely  used  in  the  animal  kingdom  as  a  mean  of  information  exchange.  Communication  sounds  carry  information  that  has  to  be  pieced  together  by  the  listener(s)  to  form  meaningful  “percepts”.  The  auditory  cortex  is  regarded  as  the  place  where  percepts  are  formed  from  the  neuronal  responses  evoked  by  incoming  sounds.  However,  the  mechanisms  by  which  cortical  neurons  cope  with  natural  communication  streams  remain  controversial.  Using  micro-­‐wire  arrays  (16  penetrating  electrodes  organized  in  a  2x8  configuration)  we  investigated  the  response  of  cortical  neurons  of  short-­‐tailed  fruit  bats  (Carollia  perspicillata)  to  natural  communication  call  sequences  from  conspecifics.  Calls  were  recorded  from  adult  individuals  while  softly  pinching  the  skin  behind  their  neck.  Calls  produced  under  these  conditions  are  defined  as  “distress  calls”  and  they  are  known  to  evoke  exploratory  behaviours  in  conspecifics,  to  activate  the  neuro-­‐endocrine  system,  and  to  boost  genetic  expression  in  the  cortex.  We  observed  that  cortical  neurons  respond  strongly  to  individual  sound  elements  (i.e.  syllables)  in  the  distress  call  phrases,  when  the  syllables  are  played  randomly  and  separated  by  500  ms  from  one  another.  However,  to  our  surprise,  when  communication  phrases  were  played  in  their  natural  form,  most  neurons  fired  only  in  response  to  the  first  syllable  in  each  phrase.  The  response  to  the  following  syllables  was  strongly  suppressed.  The  latter  suggests  that,  at  least  in  bats,  individual  neurons  are  not  able  

Page 62: Complete program including all scientific contributions (21 MB, PDF)

  49  

to  keep  up  with  natural  communication  call  streams.  Local  field  potentials  (LFPs)  were  analysed  to  study  call-­‐evoked  responses  at  the  level  of  local  neuronal  populations.  A  comparison  between  LFP  amplitudes  evoked  by  randomly-­‐played  syllables  and  natural  communication  phrases  revealed  attenuation  in  the  LFP  response  to  the  natural  streams.  In  spite  of  the  observed  response  attenuation,  we  did  observe  that  in  most  recording  sites  at  least  one  of  the  tested  communication  streams  “entrained”  LFP  waveforms,  that  is,  the  LFP  waveform  followed  the  amplitude  envelope  of  natural  communication  streams.  Such  LFP  entraining  synchronizes  activity  across  recording  sites.  Overall,  our  results  suggest  that  tracking  natural  communication  streams  in  the  bat  auditory  cortex  might  depend  less  on  the  spiking  activity  of  individual  neurons,  and  more  on  the  synchronized  activity  across  neuronal  populations.      ID:  130    

Impact  of  the  extracellular  matrix  in  auditory  cortex  on  memory  stability  and  learning  flexibility  Hartmut  Niekisch1,  Matthias  Deliano1,  Frank  W.  Ohl1,2,  Renato  Frischknecht1,  Max  Happel1,2  1Leibniz  Institute  for  Neurobiology  Magdeburg,  Germany;  2Otto-­‐von-­‐Guericke  University  Magdeburg,  Germany  Hartmut.Niekisch@lin-­‐magdeburg.de  Remodeling  of  synaptic  networks  are  indispensable  key  events  during  learning  and  memory  formation  and  re-­‐consolidation  throughout  life.  The  extracellular  matrix  (ECM)  has  been  considered  to  serve  for  such  stabilization  of  synaptic  networks  in  the  adult  brain.  Whether  the  ECM  might  thereby  govern  learning-­‐related  plasticity,  life-­‐long  memory  re-­‐formation  and  higher  cognitive  functions  is  largely  unknown.  Recent  research  from  our  lab  has  enlightened  a  new  role  of  the  mature  ECM  actively  organizing  the  balance  between  structural  stability  and  functional  synaptic  plasticity.  We  investigated  the  impact  of  local  enzymatic  removal  of  the  ECM  in  auditory  cortex  of  adult  Mongolian  gerbils  on  auditory  re-­‐learning  behavior.  Cortex-­‐dependent  auditory  relearning  was  induced  by  the  contingency  reversal  within  a  frequency-­‐modulated  (FM)  tone  discrimination  

shuttle-­‐box  task,  which  requires  high  behavioral  flexibility.  ECM  removal  immediately  before  the  contingency-­‐change  in  the  training  paradigm  improved  the  relearning  performance,  but  without  generally  impacting  the  retrieval  of  previous  acquired  memories.  Hence,  ECM-­‐removal  opened  short-­‐term  windows  of  enhanced  activity-­‐dependent  reorganization  promoting  complex  forms  of  behavioral  strategy  change  during  learning  (Happel  et  al.,  PNAS,  2014).  Essentially,  our  results  implicate  a  novel  function  of  the  cortical  ECM  as  a  potential  regulatory  switch  to  adjust  the  balance  between  stability  and  plasticity  in  the  adult  brain  which  might  also  open  new  directions  in  applied  neurosciences.  We  further  identified  that  dynamic  changes  of  the  ECM  around  synapses  potentially  regulate  synaptic  short-­‐term  plasticity  by  enhanced  synaptic  exchange  of  postsynaptic  receptors  in  vitro  (Frischknecht  et  al.,  Nat  Neurosci,  2009).  Therefore,  we  continued  to  investigate  the  potential  role  of  intrinsic  proteolytically  induced  ECM  remodeling  promoting  learning-­‐related  plasticity  in  the  adult  brain.  Preliminary  Western  blot-­‐data  quantifying  proteolytic  cleavage  of  selected  ECM-­‐proteins  in  different  brain  regions  of  naïve  mice  and  mice  trained  in  FM-­‐discrimination  learning  will  be  presented.      ID:  131    

Timing  matters  for  abstract  pitch  processing  Annekathrin  Weise1,  Sabine  Grimm1,2,  Nelson  J.  Trujillo-­‐Barreto3,  Erich  Schröger1  1University  of  Leipzig,  Germany;  2University  of  Barcelona,  Spain;  3Ciudad  Habana,  Cuba  akweise@uni-­‐leipzig.de  Central  auditory  functions  can  automatically  extract  abstract  regularities  from  a  dynamically  changing  soundscape.  Evidence  comes  from  an  abstract  pitch  paradigm  in  which  the  2nd  tone  of  repeatedly  presented  pairs  had  a  higher  pitch  than  the  1st  tone  of  the  respective  pair;  absolute  pitch  values  varied  across  pairs.  2nd  tones  that  rarely  violated  the  pitch  relation  (e.g.  2nd  tone  of  lower  pitch)  elicited  the  Mismatch  Negativity  (MMN;  the  brain’s  error  signal  to  rule  violations).  We  studied  whether  the  timing  between  events,  falling  either  within  or  outside  a  critical  time  window  (~350  ms),  impacts  the  extraction  of  abstract  pitch  

Page 63: Complete program including all scientific contributions (21 MB, PDF)

  50  

relations.  Via  an  abstract  pitch  paradigm  we  tested  MMN  to  rule  violating  pitch  relations  in  three  conditions.  In  Short  condition  tone  duration  (90  ms)  and  stimulus  onset  asynchrony  (SOA)  between  tones  forming  a  pair  were  short  (110  ms).  In  the  conditions  Long  Gap  and  Long  Tone  SOA  was  long  (510  ms).  In  Long  Gap  tone  durations  were  identical  to  Short  (90  ms),  while  the  silent  within-­‐pair  interval  was  prolonged  by  400  ms.  In  Long  Tone  the  duration  of  the  1st  tone  was  prolonged  by  400  ms,  while  the  silent  interval  was  comparable  to  Short  (20  ms).  We  found  comparable  frontocentral  MMN  amplitudes  across  conditions,  indicating  that  pitch  relations  were  extracted.  Source  analyses  revealed  MMN  generators  in  the  supratemporal  cortex.  Interestingly,  they  were  located  more  anterior  when  the  silent  interval  was  long  (Long  Gap)  rather  than  short  (Short,  Long  Tone).  Moreover,  frontal  generators  were  activated  when  SOAs  were  long  (Long  Gap,  Long  Tone).  Thus,  timing  impacts  how  the  system  processes  abstract  pitch  relations.      ID:  133    

Functional  imaging  of  pitch  perception  in  the  auditory  cortex  of  the  cat    Blake  E.  Butler,  Amee  J.  Hall,  Stephen  G.  Lomber  University  of  Western  Ontario,  London,  Canada  [email protected] Pitch  perception  typically  involves  complex  spectrotemporal  processing  in  which  harmonically-­‐related  components  of  a  complex  sound  are  combined  to  create  a  single  percept.  Although  the  spectral  and  temporal  cues  to  pitch  are  established  at  a  cochlear  level,  across  both  human  and  non-­‐human  primates  the  pitch  percept  first  emerges  beyond  the  primary  auditory  cortex.  Behavioural  paradigms  have  demonstrated  pitch  sensitivity  in  a  number  of  other  animal  models,  however  much  less  is  known  about  where  this  percept  is  formed  in  these  species.  Using  a  methodology  first  described  by  Brown  and  colleagues  (2014),  we  used  high  field  functional  imaging  (7T  fMRI)  to  locate  the  pitch  centre  in  cat  auditory  cortex.  Normal  hearing  cats  were  presented  with  an  iterated  rippled  noise  (IRN)  stimulus  designed  to  elicit  a  400  Hz  pitch  percept,  and  bandpass  filtered  to  remove  spectral  content  in  the  

region  of  resolvable  harmonics.  These  same  cats  were  also  presented  with  a  no-­‐pitch  version  of  this  IRN  stimulus  (IRNo),  which  preserves  the  slowly  varying  spectrotemporal  fluctuations  of  IRN,  but  removes  the  pitch-­‐evoking  temporal  fine  structure.  Finally,  a  narrowband  noise  stimulus  with  energy  confined  to  the  same  passband  as  the  IRN  stimuli  was  presented.  Contrasts  between  the  pitch-­‐evoking  stimulus  (IRN)  and  the  non-­‐pitch-­‐evoking  stimuli  (IRNo,  noise)  highlight  the  locus  of  pitch  processing  in  cat  auditory  cortex.  Furthermore,  this  work  provides  the  basis  for  further  electrophysiological  studies  in  which  we  hope  to  identify  single  units  that  are  responsive  to  a  wide  variety  of  pitch-­‐evoking  stimuli.      ID:  134    

Constraint-­‐induced  sound  and  music  therapy  for  sudden  sensorineural  hearing  loss  Hidehiko  Okamoto1,2,  Munehisa  Fukushima3,  Henning  Teismann2,  Lothar  Lagemann2,  Tadashi  Kitahara3,4,  Hidenori  Inohara4,  Ryusuke  Kakigi1,  Christo  Pantev2  1National  Institute  for  Physiological  Sciences  Tokyo,  Japan;  2University  of  Muenster,  Germany;  3Osaka  Rosai  Hospital,  Japan;  4Osaka  University,  Japan  [email protected]  Sudden  sensorineural  hearing  loss  (SSHL)  is  an  idiopathic  condition  characterized  by  acute  hearing  loss.  Based  on  several  national  surveys,  an  estimate  of  SSHL  incidence  rates  is  around  30  cases  per  100,000  people  per  year.  The  likelihood  of  hearing  recovery  strongly  depends  on  both  the  severity  of  hearing  loss  at  presentation  and  the  time  between  SSHL  incidence  and  initial  audiogram.  Roughly  speaking,  one  third  of  patients  recover  completely,  another  one  third  of  patients  recover  partially,  and  the  rests  show  no  recovery.  Even  though  the  etiology  of  SSHL  has  been  investigated  intensively,  knowledge  and  understanding  of  SSHL  remains  limited.  We  report  here  the  development  and  evaluation  of  “constraint-­‐induced  sound  therapy  (Okamoto  et  al.,  Sci  Rep.  2014,  4:e3927)”,  which  is  based  on  a  well-­‐established  neuro-­‐rehabilitation  approach,  especially  for  stroke  patients  (Taub  et  al.,  J  Rehabil  Res  Dev,  1999,  36:  237-­‐251),  and  an  enriched  acoustic  environment  (Norena  and  Eggermont,  J  

Page 64: Complete program including all scientific contributions (21 MB, PDF)

  51  

Neurosci,  2014,  25:  699-­‐705).  In  the  present  study,  we  plugged  (i.e.  constrained)  the  canal  of  the  healthy  ear  of  SSHL  patients  and  urged  them  to  actively  use  the  affected  ear  by  listening  to  daily-­‐life  surrounding  sounds  and  music  that  was  presented  through  a  headphone  over  the  affected  ear.  Treatment  outcome  was  evaluated  by  comparing  the  mean  pure  tone  audiograms  of  two  groups  of  SSHL  patients:  the  CONTROL  group  (N  =  31)  received  only  the  standard  corticosteroid  therapy,  while  the  TARGET  group  (N  =  22)  additionally  received  the  constraint-­‐induced  sound  therapy.  Moreover,  by  means  of  magnetoencephalography  we  measured  the  auditory  evoked  fields  in  six  TARGET  group  patients.  The  results  showed  that  the  TARGET  group  showed  significantly  better  recovery  of  hearing  function  compared  to  the  CONTROL  group.  Additionally,  the  auditory  evoked  fields  elicited  by  monaural  sound  stimulation  showed  that  the  laterality  indices  of  both  auditory  steady  state  and  N1m  responses  significantly  increased  over  time.  The  constraint-­‐induced  sound  therapy  could  have  prevented  maladaptive  auditory  cortex  reorganization  and  appears  to  be  an  effective  treatment  option  for  SSHL.      ID:  135    

Human  auditory  cortex  detects  interaural  time  differences  in  high-­‐frequency  sound  Nelli  Salminen,  Alessandro  Altoè,  Marko  Takanen,  Olli  Santala,  Ville  Pulkki  Aalto  University,  Finland  [email protected]  Sound  sources  are  localized  based  on  various  acoustical  cues  of  which  the  most  important  is  the  interaural  time  difference  (ITD).  ITD  is  best  detected  from  the  fine  structure  of  low-­‐frequency  sounds  (<  1.3  kHz)  but  if  extracted  from  the  envelope,  the  usefulness  of  ITD  would  extend  to  higher  sound  frequencies.  Psychoacoustical  studies  show  that  human  subjects  can  detect  this  envelope  ITD  cue  with  a  resolution  that  makes  it  potentially  relevant  for  sound  source  localization.  However,  the  neural  bases  of  envelope  ITD  detection  have  so  far  been  addressed  only  in  animal  electrophysiology.  Here,  we  performed  a  combined  psychoacoustical  and  MEG  study  

aiming  to  evaluate  the  sensitivity  of  the  human  brain  to  envelope  ITD  and  to  identify  the  features  of  cortical  activity  that  predict  behavioral  performance  in  envelope  ITD  detection.  We  found  two  types  of  sensitivity  to  envelope  ITD  in  the  human  auditory  cortex.  First,  the  amplitude  of  the  auditory  cortical  N1  response  was  larger  for  sounds  with  very  large  ITD  than  for  those  with  no  ITD.  This  preference  for  long  over  short  ITD  is  consistent  with  binaural  processing  previously  described  in  the  lateral  superior  olive  of  experimental  animals.  Second,  we  found  ITD-­‐specific  adaptation  of  the  N1  response  amplitude  between  left-­‐  and  right-­‐leading  ITDs.  Such  tuning  could  potentially  originate  from  the  medial  superior  olive  that  generates  neural  tuning  to  lateral  ITDs  in  low-­‐frequency  sounds.  Further,  the  ITD-­‐specific  adaptation  occurred  within  the  physiologically  plausible  range  of  delays.  This  suggests  that  the  human  cortex  has  neural  sensitivity  to  envelope  ITD  with  a  resolution  that  could,  in  principle,  serve  the  localization  of  real  sound  sources.  The  neural  sensitivity  found  in  MEG  was  consistent  with  behavioral  performance  in  the  psychoacoustical  test.  At  the  group  level,  neural  sensitivity  to  envelope-­‐ITD  was  limited  to  the  lowest  modulation  frequencies  in  which  all  subjects  could  also  detect  ITD  in  the  psychoacoustical  experiment.  At  the  individual  level,  the  neural  sensitivity  predicted  behavioral  ITD  detection  thresholds  and  thereby  could  account  for  inter-­‐individual  differences  in  behavioral  performance.  In  conclusion,  the  human  auditory  cortex  supports  the  localization  of  high-­‐frequency  sounds  based  on  ITD  and  this  cortical  sensitivity  is  correlated  to  behavioral  performance  in  ITD  detection.      ID:  136    

Secondary  auditory  cortex  and  basolateral  amygdala  interactions  are  essential  during  remote  fear  memory  recall:  The  importance  of  theta  rhythms  Marco  Cambiaghi,  Benedetto  Sacchetti  Universita'  degli  Studi  di  Torino,  Italy  [email protected]  Negative  experiences  are  quickly  learned  and  long  remembered.  The  secondary  auditory  

Page 65: Complete program including all scientific contributions (21 MB, PDF)

  52  

cortex  (Te2)  and  the  basolateral  amygdala  (BLA)  are  both  involved  in  long-­‐term  frightening  memories.  Indeed,  in  auditory  fear  conditioned  rats,  secondary  auditory  cortex  is  essential  for  encoding  the  emotional  valence  acquired  by  the  auditory  stimuli  at  remote  time  points.  Brain  oscillations,  particularly  the  theta  rhythm  (4-­‐12  Hz),  seem  to  play  a  crucial  role  in  the  memory  coding  process  and  connections  with  amygdala.  The  present  study  was  addressed  to  examine  the  electrical  activity  of  the  secondary  auditory  cortex  and  of  basolateral  amygdala  in  the  recall  of  fear  memories  at  one  day  and  one  month  after  fear  conditioning.  To  this  aim,  we  performed  LFP  recording  in  Te2  and  BLA  of  rats  24  hours  and  30  days  after  the  association  of  acoustic  conditioned  stimuli  (CS,  tone)  and  aversive  unconditioned  stimulus  (US,  electric  shock).  Power  spectral  analysis  of  Te2  activity  during  the  recall  of  aversive  memories  showed  strong  changes  in  the  theta  band,  at  both  24h  and  30  days.  Similarly  for  both  conditions,  low-­‐theta  frequencies  (4-­‐7  Hz)  power  increased  during  memory  recall.  On  the  contrary,  high-­‐theta  (7-­‐12  Hz)  power  decreased  at  both  recent  and  remote  retrieval.  Moreover,  low-­‐theta  frequencies  were  found  to  be  essential  for  Te2-­‐BLA  interconnections.  Theta  rhythm  is  essential  in  mnemonic  processes  in  higher  order  auditory  cortex.  Our  study  demonstrates  the  functional  involvement  of  Te2  in  mediating  the  expression  of  auditory  fear  memory  at  remote  time  point  and  we  showed  that  during  the  recall  of  those  experiences  the  activity  of  Te2  and  BLA  is  highly  synchronized.    ID:  137    

Phase  entrainment  of  EEG  oscillations  to  high-­‐level  features  of  speech  sound  and  its  perceptual  consequences  Benedikt  Zoefel1,2,  Rufin  VanRullen1,2  1Centre  de  Recherche  Cerveau  et  Cognition,  CNRS,  France;  2Université  Paul  Sabatier  Toulouse,  France  [email protected]­‐tlse.fr  Previous  studies  showed  that  neural  oscillations  entrain  their  phase  to  speech  sound,  a  mechanism  that  is  assumed  to  improve  speech  intelligibility  by  aligning  the  brain’s  high  and  low  excitability  phases  to  

relevant  and  irrelevant  events.  However,  in  everyday  speech  sound,  speech  information  (the  amount  of  information  that  the  listener  can  extract  from  the  speech  signal  at  a  given  moment)  is  always  confounded  with  overall  amplitude  modulations:  There  is  no  speech  information  when  spectral  energy  is  absent;  there  are  moments  of  silence  or  low  spectral  energy  between  successive  phonemes.  Consequently,  neural  phase  entrainment  could  reflect  a  simple  passive  ‘following’  of  changes  in  sound  amplitude  (a  low-­‐level  process)  and/or  a  true  adaptation  to  the  rhythm  of  speech  information  (a  high-­‐level  process).  We  were  interested  in  determining  the  existence  of  such  high-­‐level  entrainment,  and  evaluating  its  perceptual  consequences.  To  do  so,  we  constructed  novel  speech/noise  stimuli  without  systematic  fluctuations  in  sound  amplitude  or  spectral  content,  while  keeping  fluctuations  in  speech  information  and  intelligibility.  This  construction  made  it  possible  to  isolate,  for  the  first  time,  the  rhythmic  patterns  of  speech  information  without  concomitant  changes  in  sound  amplitude.  We  tested  high-­‐level  phase  entrainment  in  two  experiments:  In  a  psychophysical  study  (9  subjects),  auditory  clicks  at  threshold  level  were  presented  at  random  moments  during  our  speech/noise  snippets.  In  a  second  study,  12  subjects  listened  to  our  stimuli  while  electroencephalography  (EEG)  was  recorded,  again  with  clicks  presented  at  random  moments.  In  both  studies,  subjects  indicated  click  detection  by  a  button  press.  As  a  result,  we  found  that  theta-­‐band  (2-­‐8Hz)  oscillations  indeed  entrained  to  speech  rhythm  (as  assessed  by  speech-­‐EEG  phase-­‐locking)  even  when  speech  information  was  not  accompanied  by  changes  in  sound  amplitude  or  spectral  content.  Importantly,  this  high-­‐level  phase  entrainment  had  perceptual  consequences:  In  the  psychophysical  study,  click  detection  was  best  at  phases  corresponding  to  maximal  speech  information  and  decreased  continuously,  with  worst  performance  at  phases  of  minimal  speech  information.  In  the  EEG  study,  as  expected,  click  detection  depended  on  the  entrained  EEG  phase  just  before  the  click.  In  summary,  we  show  that  neural  oscillations  adjust  their  phase  to  high-­‐level  features  of  speech  sound,  and  

Page 66: Complete program including all scientific contributions (21 MB, PDF)

  53  

that  this  phase  entrainment  has  perceptual  consequences.    ID:  138    

Encoding  of  voice  “shape”  and  “texture”  in  the  auditory  cortex  Marianne  Latinus1,2,  Frances  Crabbe2,  Pascal  Belin1,2  1Aix  Marseille  Université,  CNRS,  France;  2University  of  Glasgow,  United  Kingdom  marianne.latinus@univ-­‐amu.fr  How  are  individual  voices  represented  in  the  auditory  cortex?  In  a  previous  study,  we  demonstrated  norm-­‐based  encoding  of  voices  in  a  three-­‐dimensional  space.  In  the  present  study,  we  further  investigate  this  hypothesis  by  manipulating  independently  the  dimensions  of  the  voice  space.  16  participants,  performing  a  pure  tone  detection  task,  were  scanned  in  a  3.0T  Tim  Trio  scanner  (Siemens)  using  an  event-­‐related  design  (TR=2s).  Stimuli  were  32  natural  female  and  male  voices  as  well  as  voices  obtained  by  morphing  each  individual  voice  with  the  same-­‐gender  average  voice  with  STRAIGHT.  STRAIGHT  allows  morphing  independently  information  of  “texture”(aperiodicity  and  spectral  amplitude)  and  “shape”  (F0  and  formant  frequencies);  we  created  two  sets  of  stimuli  for  which  we  morphed,  relative  to  the  average  voice,  either  textural  information  (texture  block)  –  keeping  the  parameters  of  shape  unchanged  –  or  information  of  shape  (shape  block),  with  textural  information  unchanged.  In  each  bloc,  five  stimuli  were  created  for  each  individual/average  voice  pair:  a  caricature  (150%),  the  original  voice  (100%),  an  anti-­‐caricature  (50%),  the  average  voice  (0%)  and  an  anti-­‐voice  (-­‐50%).  We  used  the  regions  defined  by  an  independent  voice  localizer  as  region  of  interest  to  measure  the  brain  activity  induced  by  the  different  conditions  in  each  experimental  block.  Results  showed  that  activity  in  the  TVA  is  correlated  with  morph  level:  activity  decreased  for  voices  closer  to  the  mean,  in  particular  for  the  texture  block,  confirming  that  textural  information  is  essential  in  the  representation  of  voices.  Whole-­‐brain  analyses  ran  using  the  different  levels  of  morphing  (150%,  100%,  50%,  0%  and  -­‐50%)  as  parametric  modulators  were  run  

independently  for  each  block  using  a  second-­‐order  polynomial  expansion.  In  the  texture  block,  we  showed  a  positive  quadratic  relation  between  brain  activity  and  levels  of  morph  in  the  right  superior  temporal  cortex  and  a  negative  relation  in  the  fusiform  gyrus.  On  the  contrary,  in  the  shape  block,  a  positive  quadratic  relation  was  observed  in  the  left  inferior  frontal  gyrus.  By  manipulating  independently  information  of  shape  and  information  of  texture  we  identified  distinct  brain  regions  involved  in  the  processing  of  vocal  shape  and  texture.  Activation  of  the  TVAs  is  highly  dependent  on  textural  information,  and  suggests  that  the  representation  of  voices  strongly  rely  on  textural  information.    ID:  139    

Coincidence  detection  mechanisms  in  auditory  perceptual  grouping  of  spectrotemporal  cues    Alex  Brandmeyer,  Jonas  Obleser  Max  Planck  Institute  for  Human  Cognitive  and  Brain  Sciences  Leipzig,  Germany  [email protected] Auditory  perception  involves  the  analysis  of  spectrotemporally  distributed  sensory  signals,  and  grouping  them  into  coherent  representations.  One  biologically  plausible  model  that  has  been  used  to  account  for  various  aspects  of  sensory  processing  in  both  audition  and  vision  is  the  coincidence  detector.  Here  we  investigate  whether  a  coincidence  detection  model  can  account  for  behavioral  effects  observed  in  an  auditory  perceptual  grouping  task.  Acoustic  textures  consisting  of  densely  layered  frequency  modulated  tone  sweeps  within  a  defined  spectral  bandwidth  served  as  stimuli.  Texture  coherence  can  be  manipulated  by  varying  the  proportion  of  sweeps  with  the  same  direction  and  speed,  leading  to  a  more  or  less  salient  sense  of  direction.  Participants  (N=11)  completed  a  direction  identification  task  (up/down)  across  a  stimulus  set  that  varied  parametrically  in  both  coherence  and  spectral  center.  A  main  effect  of  coherence  was  found,  with  performance  improving  as  a  function  of  increasing  coherence.  An  coherence  x  spectral  center  interaction  was  also  observed,  in  that  stimuli  with  either  high  

Page 67: Complete program including all scientific contributions (21 MB, PDF)

  54  

or  low  spectral  centers  biased  the  perception  of  low  coherence  stimuli.  An  encoding  model  was  used  in  which  a  free  parameter  representing  spectral  resolution  was  parametrically  varied  in  a  range  between  .6  and  3.6  semitones.  Coincidence  detection  was  implemented  as  a  discrete  time-­‐lagged  process  in  which  idealized  auditory  filter  banks  receive  input  from  spectrally  adjacent  channels,  allowing  for  rate  estimates  of  local  spectrotemporal  motion.  Model  decisions  were  calculated  as  a  signed  mean  of  rate  estimates.  The  free  parameter  was  fit  to  individual  data  using  a  least-­‐squares  method.  Model  results  captured  the  main  effect  of  coherence  along  with  the  coherence  x  spectral  center  interaction  effect.  A  high  correlation  (r  =  -­‐.77,  p  <  .01)  between  individual  task  performance  and  the  estimated  spectral  resolution  parameter  was  also  observed.  Additional  analyses  explored  the  relationship  between  the  present  encoding  model  and  models  used  to  generate  so-­‐called  auditory  image  representations.  These  results  are  consistent  with  accounts  of  auditory  cortical  processing  in  which  spectrotemporal  receptive  field  (STRF)  tuning  of  neurons  in  primary  and  non-­‐primary  regions  underlies  the  perception  of  spectrotemporal  modulation  patterns  in  complex  sounds.  They  also  serve  as  a  starting  point  for  neuroimaging  research  investigating  the  mechanisms  underlying  auditory  perceptual  grouping.      ID:  140    

Enhancement  of  brain  event-­‐related  potentials  to  speech  sounds  is  associated  with  compensated  reading  skills  in  dyslexic  children  Kaisa  Lohvansuu1,  Jarmo  A.  Hämäläinen1,  Annika  Tanskanen1,  Leena  Ervast2,  Heikki  Lyytinen1,  Paavo  H.T.  Leppänen1  1University  of  Jyväskylä,  Finland;  2University  of  Oulu,  Finland  [email protected]  We  studied  speech  sound  processing  of  dyslexic  children  with  EEG-­‐based  brain  event-­‐related  potentials  using  a  high-­‐density  sensor  array.  We  found  enhanced  brain  responses  to  shortening  of  a  phonemic  length  in  pseudo-­‐words  (/at:a/  vs.  /ata/)  in  30  dyslexic  children  compared  to  58  typically  reading  control  

children  and  51  typically  reading  children  with  familial  risk  for  dyslexia.  The  enhanced  brain  responses  were  associated  with  better  performance  in  phoneme  length  discrimination,  as  well  as  with  reading  and  writing  accuracy.  Further  analyses  revealed  that  the  brain  responses  of  those  children  with  dyslexia  who  had  largest  responses  originated  from  a  more  posterior  area  of  the  right  temporal  cortex  as  compared  to  the  responses  of  the  other  two  groups.  This  suggests  a  compensatory  mechanism  in  a  sub-­‐group  of  children  with  dyslexia  involving  brain  areas  usually  activated  by  phonological  information.      ID:  141    

Top-­‐down  modulation  of  cortical  responses  to  voice  and  speech:  Developmental  changes  from  childhood  to  adulthood  Milene  Bonte,  Anke  Ley,  Elia  Formisano  Maastricht  University,  The  Netherlands  [email protected]  Human  listeners  are  surprisingly  efficient  in  selecting,  grouping  and  processing  relevant  acoustic  elements  of  a  sound  while  ignoring  other  elements  of  the  same  sound  and  the  possible  interference  of  background  noise.  In  adults,  this  processing  has  been  shown  to  rely  on  neural  mechanisms  that  enable  flexible  representations  of  the  same  sound  depending  on  the  current  behavioral  goal.  Much  less  is  known  on  how  -­‐  during  development  -­‐  these  processes  change  and  reach  their  mature  efficiency.  Here  we  measured  functional  MRI  responses  while  children  (8-­‐9  years,  n=10),  adolescents  (14-­‐15  years,  n=13)  and  adults  (~24  years,  n=10)  listened  to  the  same  speech  sounds  (vowels  /a/,  /i/  and  /u/)  spoken  by  different  speakers  (boy,  girl,  man)  and  performed  a  delayed-­‐match-­‐to-­‐sample  task  on  either  speech  sound  or  speaker  identity.  All  participants  performed  well-­‐above  chance  level  (50%)  on  the  delayed-­‐match-­‐to-­‐sample  speaker  and  vowel  tasks.  Accuracy  of  speaker  identification  was  comparable  across  age  groups  (Group:  F(2,30)=0.37;  n.s.),  but  girl/boy  voices  were  more  difficult  to  recognize  than  the  adult  voice  (Stimulus:  F(2,60)=18.0;  p=0.000;  mean  (SD)  %  correct:  boy  89.9  (6.9);  girl  82.9  (12.2);  man  96.7  (5.3)).  Accuracy  of  vowel  identification  was  lower  in  children  than  

Page 68: Complete program including all scientific contributions (21 MB, PDF)

  55  

in  adolescents  and  adults  (Group:  F(2,30)=10,0;  p=0.000;  mean  (SD)  %  correct:  children  95.4  (3.6);  adolescents  99.1  (1.5);  adults  99.3  (1.0)),  without  significant  stimulus  differences.  Across  age  groups,  speech  sounds  evoked  BOLD  responses  in  a  wide  expanse  of  superior  temporal  cortex,  in  the  inferior  frontal  cortex,  the  medial  prefrontal  cortex,  and  especially  during  the  vowel  task,  in  the  posterior  temporal  cortex.  Task  modulations  of  sound-­‐evoked  responses  showed  developmental  changes  that  were  most  apparent  when  comparing  children  and  adults,  with  intermediate  effects  in  adolescents.  Most  interestingly,  a  cluster  on  the  right  superior  temporal  gyrus/sulcus,  with  strong  voice  selectivity  in  independent  voice  localizer  data,  showed  an  age-­‐related  increase  in  speaker-­‐task  specific  activity.  This  result  suggests  an  incremental  specialization  for  the  active  processing  of  voices  in  the  right  superior  temporal  cortex.  An  age-­‐related  increase  in  vowel-­‐task  specific  activity  was  observed  in  a  smaller  right  posterior  temporal  cluster.  Because  the  vowel  task  required  matching  of  vowel  sounds  to  letters,  this  result  may  relate  to  continued  refinement  of  letter-­‐speech  sound  associations  with  reading  experience.      ID:  142    

Effect  of  hearing  loss  on  auditory  cortex  responses  to  vocoded  vocalizations  Yonane  Aushana1,  Chloé  Huetz1,  Christian  Lorenzi2,  Jean-­‐Marc  Edeline1  1CNRS  and  Université  Paris  Sud,  France;  2CNRS,  Institut  d'étude  de  la  Cognition  Bron,  Ecole  Normale  Supérieure  Paris,  France  chloe.huetz@u-­‐psud.fr  Many  psychoacoustic  studies  have  shown  that  cochlear  hearing  loss  patients  suffer  from  difficulties  in  understanding  speech  in  adverse  listening  conditions.  Whether  this  stems  from  an  abnormal  representation  of  “temporal  fine  structure”  (TFS)  information  at  central  stages  of  the  auditory  system,  is  an  important  but  still  unanswered  question.  Here,  we  aim  at  determining  (1)  whether  and  how  responses  of  primary  ACx  neurons  are  modified  when  the  TFS  is  degraded  in  natural  communication  sounds,  (2)  whether  background  masking  noise  yields  an  additive  degradation  effect  and  (3)  whether  ACx  neurons  in  hearing  impaired  

animals  (HI)  show  a  similar  degradation  effect.  Neuronal  activity  was  collected  in  the  ACx  of  urethane  anesthetized  guinea  pigs  using  arrays  of  16  electrodes  placed  in  the  tonotopic  field  A1.  Hearing  loss  was  realized  for  half  of  the  animals  by  a  single  2h  exposure  to  a  120dB  5kHz  pure  tone.  Responses  to  4  different  “whistle”  conspecific  vocalizations  were  presented  in  their  normal  version  then  without  TFS  cues.  The  removal  of  TFS  cues  was  performed  by  processing  each  vocalization  with  a  tone  vocoder:  in  each  of  the  frequency  bands,  the  original  TFS  was  replaced  by  a  sine  tone  at  the  central  frequency  of  that  band.  We  used  tone  vocoders  using  38,  20  and  10  frequency  bands.  Normal  and  vocoded  whistles  (75dB)  were  also  presented  against  a  steady  noise  masker  set  at  65dB.  Compared  with  the  responses  to  normal  whistles,  the  responses  of  ACx  neurons  to  vocoded  whistles  were  altered  in  terms  of  firing  rate,  spike  timing  and  mutual  information.  For  normal  animals,  the  lower  the  number  of  frequency  bands,  the  largest  the  decrease  for  all  neuronal  responses  indices  (firing  rate,  spike  timing  reliability,  mutual  information);  the  strongest  effects  were  obtained  with  the  10  frequency  bands  vocoder.  This  was  not  the  case  for  HI  animals:  information  in  temporal  patterns  was  already  strongly  impacted  with  the  38  frequency  bands  vocoder,  and  masking  noise  amplified  this  effect.  We  show  that  the  responses  of  primary  auditory  cortex  neurons  are  severely  altered  when  vocoding  stimuli,  both  in  terms  of  response  strength  and  in  terms  spike-­‐timing  precision.  Moreover,  we  show  that  hearing  loss  modifies  the  way  ACx  neurons  are  impacted  by  vocoding  and  masking  noise.    

Page 69: Complete program including all scientific contributions (21 MB, PDF)

  56  

ID:  144    

Alteration  of  frequency  tuning  and  temporal  precision  of  auditory  cortex  neurons  after  categorization  between  rising  vs.  falling  sweeps    Quentin  Gaucher,  Chloé  Huetz,  Caroline  Tith,  Victor  Adenis,  Jean-­‐Marc  Edeline  CNPS,  CNRS;  Univ.  Paris-­‐Sud,  France  quentin.gaucher@u-­‐psud.fr Over  the  last  years,  many  studies  have  described  the  receptive  field  reorganizations  of  auditory  cortex  neurons  occurring  when  a  particular  sound  frequency  became  significant.  It  has  been  claimed  that  the  aversive  or  appetitive  nature  of  the  reward  influences  the  changes  detected  in  auditory  cortex  during  a  learning  task  (David  et  al.,  PNAS,  2011).  These  data  were  obtained  in  awake,  behaving,  animals  during  tasks  where  the  animals’  attention  and  strategies  could  differ  in  the  aversive  and  appetitive  conditions.  To  clarify  this  issue,  we  trained  animals  to  categorize  rising  and  falling  sweeps  in  an  aversive  (1)  and  an  appetitive  (2)  tasks.  We  analyzed  the  effects  of  training  on  auditory  cortex  neurons  in  anesthetized  conditions,  i.e.,  when  no  difference  in  terms  of  attention  and  strategies  can  be  suspected.  Experiment  1:  Rats  were  trained  in  a  shuttle  box  to  discriminate  between  rising  (CS+,  predicting  a  footshock)  and  a  falling  sweeps  (CS-­‐).  After  reaching  a  threshold  of  90%  of  correct  responses,  they  were  trained  to  generalize  to  3  different  sets  of  rising  and  falling  sweeps.  Their  performance  decreased  when  a  new  pair  of  CS+/CS-­‐  was  introduced  but  returned  to  90%  of  correct  responses  for  each  pair  of  CS+/CS-­‐  in  2  sessions.  Experiment  2:  Water-­‐deprived  guinea  pigs  were  trained  to  discriminate  between  a  CS+  (rising  or  falling  sweep,  water  rewarded)  and  a  CS-­‐  (rising  or  falling  sweep).  Once  the  animals  have  learned  the  initial  discrimination,  3  other  sets  of  sweeps  were  introduced  (same  stimuli  as  in  experiment  1).  After  both  behavioral  experiments  (24-­‐48h),  spectro-­‐temporal  receptive  fields  (STRFs)  of  auditory  cortex  neurons  were  tested  under  urethane  anesthesia.  Results:  In  the  aversive  task,  the  STRFs  of  trained  rats  were  larger  both  in  terms  of  

bandwidth  and  of  duration  compared  to  control  animals.  The  response  strength  within  the  STRFs  was  also  higher.  In  the  appetitive  task,  the  STRFs  of  trained  guinea-­‐pigs  were  larger  in  terms  of  response  duration  but  not  in  terms  of  bandwidth  compared  to  control  animals;  the  response  strength  within  the  STRFs  was  also  higher.  Conclusions:  These  results  suggest  that  when  tested  under  general  anesthesia  (without  attentional  effects)  the  consequences  of  an  aversive  or  appetitive  version  of  a  categorization  task  on  cortical  receptive  fields  are  not  fundamentally  different.  Thus,  the  differences  previously  reported  could  be  the  consequences  of  different  animal’s  strategies  or  different  attentional  load.      ID:  145    

Diversity  in  expression  of  calcium-­‐binding  proteins  in  the  auditory  forebrain  of  echolocating  bats  Julia  Heyd1,  Manfred  Kössl2,  Cornelia  Voss2,  Emanuel  C.  Mora3,  Silvio  Macias3,  Marianne  Vater1  1University  Potsdam,  Germany;  2Goethe-­‐University  Frankfurt  am  Main,  Germany;  3University  of  Havana,  Cuba  vater@uni-­‐potsdam.de  We  studied  the  distribution  of  immunoreactivity  to  antibodies  directed  against  the  calcium-­‐binding  proteins  (CaBPs)  parvalbumin,  calbindin  and  calretinin  in  the  medial  geniculate  body  (MGB)  and  auditory  cortex  (AC)  of  two  bat  species  that  differ  in  their  sonar  system.  The  insectivorous  mustached  bat  (Pteronotus  parnellii)  uses  Dopplersensitive  sonar  for  general  orientation,  prey  detection  and  identification  whereas  the  short-­‐tailed  fruit  bat  (Carollia  perspicillata)  employs  wide-­‐band  sonar  mainly  for  general  orientation.  The  auditory  cortex  of  both  species  contains  chronotopically  organized  fields.  In  other  mammals,  these  CaBPs  are  markers  for  functionally  distinct  lemniscal  and  nonlemniscal  pathways:  Parvalbumin  is  strongly  expressed  in  the  tonotopically  organized  core  regions  (ventral  division  of  MGB  and  its  target,  the  primary  AC)  whereas  calbindin  and  calretinin  preferentially  or  exclusively  label  the  “secondary”  or  belt  regions  of  the  thalamus  (dorsal  and  medial  

Page 70: Complete program including all scientific contributions (21 MB, PDF)

  57  

divisions  of  MGB)  that  project  more  diffusely  to  primary  and  secondary  cortical  areas.  The  parvalbumin  labeling  patterns  in  the  MGB  strikingly  differed  between  the  two  species.  In  the  short-­‐tailed  fruit  bat,  parvalbumin-­‐immunoreactive  (-­‐ir)  somata  were  confined  to  the  suprageniculate.  In  contrast,  in  the  mustached  bat,  parvalbumin-­‐ir  somata  additionally  occurred  throughout  the  ventral,  medial  and  most  of  the  dorsal  division.  In  both  species,  abundant  somatic  labeling  with  calbindin  and  calretinin  antibodies  was  found  throughout  the  MGB  except  for  the  suprageniculate,  a  pattern  which  is  unique  among  mammals.  CaBP-­‐antibodies  labeled  distinct  subpopulations  of  nonpyramidal  neurons  in  the  AC  of  both  species.  There  was  no  evidence  for  regional  specific  differences  in  the  distribution  of  labeled  somata  and  neuropil  (primary  AC  vs.  chronotopic  fields)  but  there  were  species  specific  differences  in  laminar  distribution  patterns  of  labeled  somata.  The  labeling  patterns  indicate  a  specialized  status  of  the  suprageniculate  in  bats  and  furthermore  argue  for  a  hypertrophied  and  specialized  core  system  involved  in  analysis  of  echolocation  signals.    Supported  by:  DFG  and  Potsdam  graduate  school  

 ID:  146    

Developing  the  fundament  for  language  -­‐  auditory  discriminative  abilities  of  congenitally  deaf  children  in  the  first  months  after  cochlear  implantation  Niki  Katerina  Vavatzanidis1,2,  Dirk  Mürbe2,  Anja  Hahne2  1Max  Planck  Institute  for  Human  Cognitive  and  Brain  Sciences  Leipzig,  Germany;  2University  Hospital  Dresden,  Germany  niki.vavatzanidis@uniklinikum-­‐dresden.de  Background:  Congenitally  deaf  and  severely  hearing-­‐impaired  children  can  get  access  to  hearing  when  receiving  a  cochlear  implant  –  a  neuroprosthesis  that  directly  stimulates  the  auditory  nerve.  If  implanted  at  a  young  age  (<4  years),  chances  are  good  for  acquiring  normal  oral  speech,  despite  the  prolonged  absence  of  any  auditory  stimulation  and  the  non-­‐natural  input.  Understanding  what  infants  actually  hear  with  the  implant  in  the  critical  age  of  language  

acquisition  would  help  to  understand  a)  the  auditory  system  and  its  plasticity  after  an  input-­‐deprived  period,  and  b)  how  language  acquisition  evolves  if  it  starts  considerably  later  than  normal  due  to  the  absence  of  sensory  input.  Critically,  a  lack  of  sensitivity  to  basic  auditory  cues  such  as  vowel  length  or  syllable  stress  has  been  shown  to  co-­‐occur  with  later  language  impairment.  We  focused  on  vowel  length  as  one  of  the  most  basic  but  linguistically  relevant  cues,  since  in  e.g.  German  it  is  both  semantically  relevant  as  well  as  a  marker  of  syllable  stress,  which  in  turn  is  relevant  for  speech  segmentation  and  thus  for  language  acquisition.  Methods:  16  early  implanted  congenitally  deaf  children  (age  at  implant  activation:  0;11-­‐3;9y,  mean:  1;6y  –  time  of  implant  use:  0-­‐8months)  were  tested  repeatedly  electrophysiologically:  1)  before  the  implantation,  2)  after  first  fitting  and  after  3)  two,  4)  four,  5)  six  and  6)  eight  months  of  implant  use.  The  syllables  /ba/  and  /ba:/  were  presented  in  a  classical  oddball  paradigm.  A  control  group  matched  gender  and  age  of  implanted  children  measured  after  4  months  of  implant  use.  Results:  2  months  after  the  first  hearing  experience  with  the  implant,  the  ERP  of  the  deviating  long  syllable  differed  significantly  from  the  long  syllable  (p=0.02),  with  the  effect  increasing  and  stabilizing  with  duration  of  implant  use.  No  such  differentiation  was  detectable  for  the  implanted  children  pre-­‐operatively  and  at  the  time  of  first  fitting.  After  four  months  of  implant  use,  ERPs  reached  the  levels  of  the  control  group.  Conclusion:  Whereas  directly  after  first  activation  of  the  implant  there  is  no  sign  of  discrimination  between  long  and  short  syllables,  a  first  response  can  be  seen  after  2  months  of  hearing  experience,  becoming  more  robust  with  increasing  hearing  experience.  Already  after  four  months  the  discriminative  response  of  implanted  children  resembles  that  of  age  peers.  Thus  one  of  the  fundaments  for  further  language  acquisition  is  laid  after  a  short  period  of  time.    

Page 71: Complete program including all scientific contributions (21 MB, PDF)

  58  

ID:  147    

Cortical  oscillations  and  spiking  activity  associated  with  Artificial  Grammar  learning  in  the  monkey  auditory  cortex  Yukiko  Kikuchi,  Adam  Attaheri,  Alice  Milne,  Benjamin  Wilson,  Christopher  I.  Petkov  Newcastle  University,  United  Kingdom  [email protected]  Artificial  Grammars  (AG)  can  be  designed  to  emulate  certain  aspects  of  language,  such  as  the  structural  relationship  between  words  in  a  sentence.  Towards  developing  a  primate  model  system  to  study  at  the  neuronal  level,  we  obtained  evidence  that  monkeys  can  learn  certain  relationships  in  sequences  of  nonsense  words  generated  from  an  auditory  AG  (Wilson  et  al.,  2013).  Here,  we  ask  how  monkey  auditory  cortical  neurons  evaluate  the  within-­‐word  acoustics  and/or  between-­‐word  sequencing  relationships,  and  whether  these  aspects  engage  theta  and  gamma  oscillations,  which  are  critical  for  speech  processing  in  human  auditory  cortex  (e.g.,  Giraud  &  Poeppel,  2012).  We  recorded  local-­‐field  potentials  (LFPs)  and  single-­‐unit  activity  (SUA)  from  4  fMRI  localised  auditory  core  (A1  &  R)  and  lateral  belt  (ML  &  AL)  subfields  in  two  macaques  (124  sites).  During  each  recording  session,  the  monkeys  were  first  habituated  to  exemplary  sequences  generated  by  the  AG.  We  then  recorded  neuronal  activity  in  response  to  identical  nonsense  words,  either  in  the  context  of  a  sequence  that  followed  the  AG  structure  (‘correct’)  or  one  that  violated  its  structure  (‘violation’).  In  response  to  nonsense  words,  the  LFP  power  significantly  increased  in  a  broad  range  of  frequency  bands  (4-­‐100  Hz),  including  at  theta  (4-­‐10Hz)  and  low  (30-­‐50Hz)  and  high  (50-­‐100Hz)  gamma  frequencies.  We  also  observed  a  consistent  increase  in  the  inter-­‐trial  phase  coherence,  in  particular  in  the  theta  band.  Theta  phase  was  associated  with  gamma  power  modulations  in  response  to  the  nonsense  words,  in  the  correct  or  violation  sequences,  respectively,  in  42%  vs.  39%  of  sites.  Moreover,  a  substantial  proportion  of  the  LFP  sites  showed  differential  responses  to  the  nonsense  words  depending  on  whether  the  nonsense  word  was  in  the  context  of  a  ‘correct’  or  ‘violation’  sequence  in  theta  (35  /124  sites),  low  gamma  (37/124)  and  high-­‐gamma  (25/124)  bands.  We  provide  evidence  that  monkey  

auditory  neuronal  responses,  including  theta  and  gamma  nested  oscillations,  are  associated  with  both  the  processing  of  nonsense  words  and  the  relationship  between  the  words,  as  governed  by  an  Artificial  Grammar.  These  nonhuman  primate  results  likely  reflect  domain  general,  evolutionarily  conserved  neuronal  processes,  rather  than  those  that  are  language  specific  in  humans.    Support:  Wellcome  Trust  New  Investigator  Award  (CIP;  WT102961MA).      ID:  148    

BDNF  deletion  in  the  cochlea/lower  brainstem  leads  to  cortical  deficits  over  age  Sze  Chim  Lee1,  Dario  Campanelli1,  Ksenya  Varakina1,  Dan  Bing1,  Annalisa  Zuccotti1,  Wibke  Singer1,  Lukas  Rüttiger1,  Thomas  Schimmang2,  Marlies  Knipper1  1University  of  Tuebingen,  Germany;  2Universidad  de  Valladolid  y  Consejo  Superior  de  Investigaciones  Científicas,  Spain  [email protected]  Tissue-­‐specific  deletion  of  brain-­‐derived  neurotrophic  factor  (BDNF)  in  the  whole  cochlea,  dorsal  cochlear  nucleus,  and  inferior  colliculus  was  found  to  be  preventive  against  loss  of  auditory  brainstem  response  (ABR)  thresholds,  ABR  wave  I  amplitudes,  and  loss  of  inner  hair  cell  (IHC)  synaptic  ribbons  after  exposure  to  traumatizing  sound  (Zuccotti  et  al.,  2012).  The  present  study  aimed  to  assess  if  the  deletion  of  BDNF  in  the  cochlea/lower  brainstem  alters  the  vulnerability  of  hearing,  sound  processing,  and  cortical  plasticity  over  age.  We  compared  the  auditory  function  by  using  auditory  brainstem  response  (ABR)  and  distortion  product  otoacoustic  emission  (DPOAE)  measurements  on  young  and  aged  conditional  BDNF  Pax2  KO  mice.  We  also  analyzed  the  influence  of  acoustic  noise  exposure  on  hearing  loss  in  young  and  aged  animals.  We  furthermore  investigated  plasticity  dependent  genes  and  patterns  of  perisomatic  disinhibiton  in  the  inferior  colliculus  and  the  auditory  cortex  of  the  KO  mice  and  the  respective  aged-­‐matched  controls  over  age.  Analyses  of  tissue-­‐specific  BDNF  KO  mice  over  age  showed  profound  differences  in  auditory  

Page 72: Complete program including all scientific contributions (21 MB, PDF)

  59  

function  and  noise  vulnerability  between  KO  mice  and  the  controls.  We  discuss  the  results  in  the  context  of  a  differential  role  of  BDNF  for  bottom-­‐up  /  top-­‐down  circuits  that  may  prevent  vulnerability  during  aging.      ID:  149    

Gap  detection  thresholds  are  determined  by  oscillatory  activity  in  the  auditory  cortex  Alina  Baltus1,2,  Christoph  S  Herrmann1,2,3  1Carl  von  Ossietzky  University  Oldenburg,  Germany;  2Coordinated  research  project  SFB-­‐TRR  31  (“The  active  auditory  system”),  German  Research  Foundation,  Germany;  3Research  Center  Neurosensory  Science,  Carl  von  Ossietzky  University  Oldenburg,  Germany  alina.baltus@uni-­‐oldenburg.de  It  has  been  proposed  that  auditory  temporal  resolution  (ATR)  is  related  to  oscillatory  brain  activity  (Giraud  &  Poeppel,  2012).  As  a  behavioral  measurement  of  ATR,  gap  detection  (GD)  thresholds  obtained  in  a  between-­‐channel  GD  task  are  thought  to  reflect  the  limit  of  ATR.  Between-­‐channel  GD  task  are  more  difficult  than  within-­‐channel  GD  tasks  and  are  therefore  considered  to  require  processes  in  areas  of  the  cerebral  cortex,  i.e.  auditory  cortex  (Phillips  et  al.,  1997).  Further  evidence  from  single  unit  recordings  in  monkey  auditory  cortex  (Malone  et  al.,  2010)  support  the  idea  that  neural  oscillations  in  the  auditory  cortex  underlie  ATR  reflected  in  observed  between-­‐channel  GD-­‐thresholds.  In  our  first  experiment,  we  estimated  between-­‐channel  GD-­‐thresholds  as  a  measurement  of  auditory  temporal  resolution  (ATR)  with  a  3  down/1  up  staircase  procedure.  Obtained  GD-­‐thresholds  lie  in  the  order  of  tens  of  milliseconds  which  correspond  to  frequencies  in  the  gamma  range.  Electrophysiological  resonance  behavior  in  the  gamma  range  suggests  a  neuronal  generator  mechanism  which  determines  the  resonance  behavior  of  the  cerebral  cortex  (Zaehle  et  al.,  2010).  Listening  to  amplitude  modulated  (AM)  tones  triggers  an  auditory  steady  state  response  (ASSR)  with  a  spectral  peak  at  the  AM  frequency.  In  our  second  experiment  we  varied  the  AM  frequency  in  the  gamma  range  to  obtain  an  ASSR  curve  as  a  function  of  resonance  behavior.  Individual’s  ASSR  curves  showed  a  non-­‐linear  response  behavior  with  a  clear  peak  in  the  gamma  range,  which  can  be  

interpreted  as  the  brain’s  preferred  frequency.  To  investigate  the  relationship  between  ATR  and  resonance  frequency  we  compared  individual’s  between-­‐channel  GD-­‐thresholds  as  an  expression  of  ATR  and  individual  peaks  in  the  ASSR  as  a  measurement  of  individual’s  resonance  frequency  of  the  auditory  cortex.  Results  of  15  individuals  from  the  first  and  second  experiment  revealed  a  significant  negative  relationship  (Spearman:  r  =  -­‐  0.46,  p  =  0.04).  Therefore,  we  conclude  that  a  higher  preferred  oscillation  facilitates  faster  processing  of  auditory  stimuli  and  leads  to  shorter  GD-­‐thresholds.  These  findings  suggest  that  ATR  is  determined  by  oscillatory  activity  in  the  auditory  cortex  and  is  reflected  in  the  ability  to  detect  gaps.      ID:  150    

Investigating  categorization  selectivity  in  the  auditory  cortex  with  high  spatial  resolution  fMRI  Scott  A.  Love1,2,  Marianne  Latinus1,2,  Pascal  Belin1,2  1Institut  de  Neurosciences  de  la  Timone,  Aix  Marseille  Université  &  CNRS,  France;  2Centre  for  Cognitive  Neuroimaging,  Institute  of  Neuroscience  and  Psychology,  University  of  Glasgow,  United  Kingdom  [email protected]  During  voice  categorization  the  brain  distinguishes  between  vocal  and  non-­‐vocal  sounds.  In  human  fMRI,  larger  activity  to  vocal  than  non-­‐vocal  sounds  is  seen  in  the  upper  bank  of  the  superior  temporal  sulcus  and  these  functional  areas  have  been  termed  the  Temporal  Voice  Areas  (TVAs;  Belin  et  al,  2000):  similar  functional  regions  exist  in  the  macaque  and  dog  (Petkov  et  al,  2008;  Andics  et  al,  2014).  TVAs  are  identified  using  blocks  of  fairly  heterogeneous  stimuli,  large  voxels,  spatial  smoothing  and  group  statistics.  The  purpose  of  the  current  study  was  twofold:  1)  understand  the  fine-­‐scale  functional  structure  of  the  TVA  with  high-­‐resolution  functional  imaging  (HR-­‐fMRI),  2)  examine  the  selectivity  profile  of  the  TVA  with  more  homogeneous  categories  than  voice  vs  non-­‐voice.  To  inform  positioning  of  the  HR-­‐fMRI  slices  of  the  main  experiment,  participants  (N=10)  were  scanned  (Siemens  3T)  with  a  standard  voice  localiser  (voxel  size  3mm3).  Pseudo  real-­‐time  analysis  identified  voxels  with  a  greater  response  to  vocal  than  

Page 73: Complete program including all scientific contributions (21 MB, PDF)

  60  

non-­‐vocal  sounds.  The  HR-­‐fMRI  experiment  included  scanning  14  high-­‐resolution  slices  (1.2x1.2x1.8mm)  positioned  around  regions  of  the  temporal  cortex  significant  in  each  participant’s  voice-­‐localiser.  Participants  listened  to  10s-­‐blocks  from  6  categories  (native  speech,  non-­‐native  speech,  human  vocal  non-­‐speech,  animal  vocal,  human  action  and  environmental  sounds)  while  performing  a  4-­‐alternative  forced  choice  categorisation  task  (human  voice,  animal  sound,  environmental  sound  and  human  action).  HR-­‐fMRI  slices  were  preprocessed  without  normalization  or  spatial  smoothing.  Pairwise  contrast  images  between  each  category  and  every  other  were  generated  and  for  each  category  and  voxel  the  number  of  significant  pairwise  comparisons  were  calculated  to  derive  a  selectivity  index  (max  =  5).  On  average,  890  voxels  had  a  selectivity  index  greater  than  1,  i.e.,  discriminated  between  at  least  two  categories.  Selectivity  of  5  was  essentially  observed  for  native  speech:  3.3%  of  voxels.  Selectivity  of  4  was  observed  in  28  and  17%  of  voxels  for  native  and  foreign  speech  respectively,  with  37%  overlap.  Using  HR-­‐fMRI  and  more  homogeneous  categories,  we  did  not  uncover  areas  of  selectivity  for  non-­‐vocal  sounds  that  could  have  been  hidden  by  more  numerous  vocal-­‐selective  neurons  within  a  larger  voxel.  Selectivity  was  greatest  for  both  native  and  non-­‐native  speech  followed  by  human  vocal  stimuli,  animal  vocal  stimuli  and  lastly  human  action  and  environmental  sounds.      ID:  151    

Sensorimotor  predictive  coding  in  the  auditory  cortex  during  vocal  production  in  the  macaque  monkey  Makoto  Fukushima1,  Matthew  Mullarkey1,  Alexandra  Doyle1,  Richard  Saunders1,  Naotaka  Fujii2,  Bruno  Averbeck1,  Mortimer  Mishkin1  1National  Institutes  of  Health,  Bethesda,  United  States  of  America;  2RIKEN  Wako,  Brain  Science  Institute  Saitama,  Japan  [email protected]  During  vocal  production,  an  individual’s  own  voice  is  perceived  without  being  confused  with  sounds  produced  by  external  sources.  To  achieve  normal  perception  of  self-­‐generated  sounds,  the  auditory  cortex  must  be  able  to  differentiate  self-­‐generated  sounds  from  sounds  produced  externally,  presumably  by  

integrating  corollary  discharges  from  the  motor  system.  Previous  studies  have  shown  that  the  primary  auditory  cortex  responds  to  mismatch  between  expected  and  actual  auditory  feedback  during  vocal  production,  but  the  coding  property  of  this  mismatch  signal  and  its  underlying  cortical  network  interaction  are  not  well  understood.  We  trained  a  rhesus  monkey  to  vocalize  Coo  calls  for  water  rewards  with/without  loud  background  white-­‐noise  playback.  Then  we  recorded  subdural  field  potentials  with  a  chronically  implanted  electrocorticographic  (ECoG)  array.  This  ECoG  array  consisted  of  256  recording  sites  for  bipolar  recording  at  128  locations  that  included  the  medial  wall,  its  dorsal  and  ventral  lateral  surfaces,  and  the  supratemporal  plane  (STP)  in  the  lateral  sulcus.  We  found  that  the  two  most  caudal  sites  in  STP  showed  robust  increases  in  power  in  the  lower  gamma  band  (30-­‐70  Hz)  after  call  onset  in  the  presence  of  noise,  whereas  the  gamma  band  power  in  these  sites  decreased  after  call  onset  in  the  absence  of  noise.  An  ANOVA  indicated  that  this  low-­‐gamma-­‐power  modulation  was  significantly  explained  by  the  difference  in  the  auditory  feedback,  and  not  by  the  difference  in  the  amplitude  of  calls  under  the  two  conditions  (i.e.  the  Lombard  effect).  Furthermore,  we  were  able  to  decode  the  fundamental  frequency  of  Coo  calls  produced  in  noise  from  the  gamma  power  with  a  cross-­‐validated  linear  regression  model.  These  results  suggest  that  the  gamma-­‐band  power  in  primary  auditory  cortex  carries  information  about  the  mismatch  in  spectral  content  of  expected  and  actual  auditory  feedback.  Interestingly,  we  did  not  find  this  mismatch  activity  in  the  higher-­‐order  auditory  cortex  on  the  rostral  STP,  suggesting  that  it  was  not  relayed  from  higher-­‐order  to  primary  auditory  cortex.  We  also  found  a  robust  increase  of  gamma-­‐band  power  in  primary  motor  cortex,  the  supplementary  motor  area,  and  medial  prefrontal  cortex.  This  increase  generally  started  before  the  onset  of  the  call,  and  thus  this  activity  could  encode  motor  commands  associated  with  vocal  production.  These  motor  areas  could  also  be  potential  cortical  sources  of  the  mismatch  signal  found  in  the  primary  auditory  cortex.    

Page 74: Complete program including all scientific contributions (21 MB, PDF)

  61  

ID:  152    

Neural  processing  of  voices  in  autism  spectrum  disorder  Stefanie  Schelinski1,  Kamila  Borowiak1,  Katharina  von  Kriegstein1,2  1Max  Planck  Institute  for  Human  Cognitive  and  Brain  Sciences  Leipzig,  Germany;  2Humboldt  University  of  Berlin,  Germany  [email protected]  Hearing  another  person  talking  provides  information  about  speaker-­‐specific  characteristics  like  the  speaker’s  identity.  Brain  areas  responding  to  human  voice  sounds  have  been  identified  along  the  superior  temporal  sulcus  (STS)  with  speaker  identity  being  predominantly  processed  in  the  right  STS.  In  autism  spectrum  disorders  (ASD)  the  role  of  speaker-­‐specific  characteristics  (i.e.  speaker  identity  recognition)  in  processing  voices  is  unclear.  Here,  we  systematically  investigate  neural  mechanisms  of  voice  processing  in  ASD  using  two  established  approaches  to  localise  voice-­‐sensitive  brain  regions.  Sixteen  adults  with  high-­‐functioning  ASD  and  sixteen  typically  developed  controls  (age,  gender,  and  IQ  matched)  participated  in  two  functional  magnetic  resonance  imaging  (fMRI)  experiments.  In  experiment  1,  participants  passively  listened  to  blocks  of  vocal  (speech  and  non-­‐speech)  and  non-­‐vocal  sounds  (e.g.  musical  instruments,  nature,  animals).  In  experiment  2,  participants  performed  speaker  identity  recognition  and  speech  recognition  tasks.  In  this  experiment  we  presented  blocks  of  two-­‐  word  sentences  spoken  by  three  speakers.  Participants  decided  whether  a  speaker  matched  the  identity  of  a  target  speaker  (speaker  identity  task)  or  whether  the  content  of  a  sentence  matched  the  content  of  a  target  sentence  (speech  task).  Critically,  blocks  for  both  tasks  contained  exactly  the  same  set  of  stimuli,  only  the  task  instructions  differed.  In  experiment  1  we  found  greater  voice-­‐sensitive  blood-­‐oxygenation-­‐level-­‐dependent  (BOLD)  responses  along  the  bilateral  STS  in  the  ASD  as  well  as  in  the  control  group  (p  <  .05  family  wise  error  (FWE)  corrected).  In  contrast,  in  experiment  2  we  found  a  voice-­‐sensitive  cluster  of  enhanced  BOLD  response  in  the  right  middle/posterior  STS  that  was  greater  in  controls  compared  to  the  ASD  group  (p  <  .05  FWE,  small  volume  

corrected  for  the  right  STS).  The  findings  indicate  that  in  high-­‐functioning  ASD  neural  processing  of  speaker-­‐specific  information  (i.e.  voice  identity  recognition)  is  altered  whereas  the  more  general  processing  of  human  voice  sounds  including  speech  is  within  the  normal  range.  Our  findings  contrast  previous  evidence  that  voice  sensitive  neural  responses  along  the  STS  are  absent  in  ASD.  Altered  functioning  of  voice  identity  processing  that  is  distinguishable  from  speech  processing  might  be  a  correlate  of  fundamental  neural  mechanisms  that  underlie  communication  deficits  in  ASD.      ID:  153    

Decoding  sound  location  from  auditory  cortex  during  a  relative  localisation  task  Katherine  C.  Wood,  Stephen  Town,  Huriye  Atilgan,  Gareth  P.  Jones,  Jennifer  K.  Bizley  University  College  London,  United  Kingdom  [email protected]  Many  studies  have  investigated  the  ability  of  human  listeners  to  localise  sounds  in  space  to  an  absolute  location  (e.g.  Stevens  and  Newman,  1936).  Other  studies  have  compared  the  minimum  discriminable  difference  in  spatial  location  that  a  listener  can  reliably  discern;  the  minimum  audible  angle  (Mills,  1958).  However,  very  few  studies  have  investigated  relative  sound  localisation,  i.e.  reporting  the  relative  position  of  two  sequentially  presented  sources.  Determining  the  relative  location  of  two  sound  sources  or  the  direction  of  movement  of  a  source  are  ethologically  relevant  tasks.  Here  we  report  multi-­‐unit  activity  from  auditory  cortex  of  ferrets  performing  a  relative  localisation  task.  Ferrets  were  trained  in  a  positively  conditioned  2AFC  task  to  report  whether  a  target  sound  originated  from  the  left  or  right  of  a  preceding  reference.  In  standard  testing,  the  target  and  reference  stimuli  were  150  ms  noise  bursts  separated  by  a  10  ms  gap.  The  reference  was  presented  from  one  of  6  locations  in  the  frontal  180°  and  the  target  was  presented  from  a  speaker  30°  to  the  left  or  right.  We  also  presented  low  pass  (<1  kHz),  band  pass  (3-­‐5  kHz)  and  shortened  stimuli  (100  and  50  ms)  and  stimuli  with  a  50  ms  interval.  We  recorded  using  32  individually  moveable  tungsten  electrodes,  in  a  4x4  array  in  each  side  of  the  head.  

Page 75: Complete program including all scientific contributions (21 MB, PDF)

  62  

We  have  a  total  of  1284  recordings  which  showed  sound-­‐evoked  activity  (p<0.05,  t-­‐test  of  mean  firing  rate  in  50  ms  before  and  after  stimulus  onset)  from  207  unique  recording  sites  in  two  ferrets.  Of  the  1284  unit  recordings,  34%  and  26%  of  recordings  from  ferret  1  and  ferret  2  showed  significant  tuning  to  the  location  of  the  reference  sound  (p<0.05  ANOVA  on  firing  rate  during  reference  presentation  and  reference  location,  post-­‐hoc  analysis  to  look  at  tuned  locations).  Overall,  39%  of  unit  recordings  were  tuned  to  contralateral  space,  10%  tuned  to  midline  locations,  and  51%  were  ipsilaterally  tuned.  Preliminary  ROC  analysis  on  the  target-­‐evoked  spike  count  showed  that  a  small  fraction  of  the  tuned  unit  recordings  showed  a  significant  choice  probability  (16%)  and  a  similar  fraction  (16%)  reliably  reported  the  direction  of  the  stimulus.  On-­‐going  analysis  is  exploring  the  contribution  of  ILD  and  ITD  cues  to  spatial  tuning  through  the  use  of  band-­‐pass  stimuli,  and  relating  other  response  measures,  such  as  cortical  location  and  frequency  tuning,  to  spatial  tuning  and  the  likelihood  of  observing  a  significant  choice  probability.      ID:  154    

A  task  of  selective  attention  to  sound  in  rats  Elena  Andreeva,  Wolfger  von  der  Behrens  University  &  ETH  Zurich,  Switzerland  [email protected]  How  does  the  cortical  processing  of  behaviorally  relevant,  attended  sounds  differ  from  that  of  irrelevant,  distracting  sounds?  Although  changes  in  neural  firing  rate,  synchronization,  variability,  and  receptive  field  plasticity  have  all  been  observed  with  attention,  the  laminar  circuitry  underlying  these  changes  remains  unexplored.  We  aim  to  investigate  how  attention  operates  on  the  level  of  the  cortical  microcircuit  by  assessing  layer-­‐specific  changes  in  rat  auditory  cortex  that  occur  as  the  animal  engages  in  a  task  of  selective  auditory  attention.  To  this  end,  we  trained  rats  to  respond  to  a  20  dB  amplitude  drop  in  a  sequence  of  pure-­‐tone  pips  of  a  target  frequency  (e.g.,  6  kHz)  while  an  interleaved  pip  sequence  of  a  distractor  frequency  (e.g.,  16  kHz)  was  presented  from  a  

speaker  on  the  opposite  side.  The  animal,  head-­‐fixed,  reported  the  side  of  the  target  frequency  by  licking  sugar  water  from  a  spout  on  the  corresponding  side  within  a  short  time  window  of  the  amplitude  drop.  Rats  learned  to  localize  the  side  of  the  target  stimulus  with  an  accuracy  of  75%  when  presented  alone  and  ~65%  when  presented  together  with  a  distractor  of  the  same  volume.  This  is  the  first  demonstration  of  successful  pure  tone  localization  in  rodents  that  are  head-­‐fixed  and  thus  unable  to  facilitate  localization  by  orienting  towards  the  source  of  sound.  To  investigate  the  layer-­‐specific  effects  of  attention  in  differently-­‐tuned  regions  of  auditory  cortex,  trained  animals  were  implanted  with  four-­‐shank  silicon  probe  arrays,  eight  recording  sites  per  shank  allowing  to  sample  multi-­‐unit  and  LFP  activity  across  all  cortical  layers.  A  great  heterogeneity  of  neural  responses  was  recorded  in  the  animals  during  behavior.  Neurons  separated  by  only  200  µm  in  cortical  depth  varied  by  as  much  as  two  octaves  in  frequency  tuning  and  40  dB  in  amplitude  selectivity.  Responses  to  interleaved  target-­‐distractor  pip  sequences  revealed  tuning-­‐related  differences  in  adaptation.  We  have  established  a  task  for  directing  the  animal’s  feature-­‐selective  attention  towards  either  of  two  competing  auditory  stimuli.  By  switching  the  target  frequency  within  a  session,  the  animal’s  internal  state  can  be  altered  while  keeping  the  external  stimulation  constant,  an  important  prerequisite  for  our  ongoing  investigation  of  the  neural  basis  of  attention.    ID:  155    

Modified  representations  in  auditory,  visual  and  somatosensory  cortices  following  deafness  Carmen  Wong1,  Andrej  Kral2,  Stephen  G.  Lomber1  1The  University  of  Western  Ontario,  London,  Canada;  2Hannover  Medical  University,  Germany  [email protected]  Sensory  deprivation  can  alter  the  anatomical  and  functional  development  of  cortical  structures  normally  allocated  to  processing  the  lost  sensory  modality.  For  example,  both  volumetric  reductions  to  auditory  cortex  and  reallocation  of  auditory  areas  to  visual  or  somatosensory  processing  have  been  reported  

Page 76: Complete program including all scientific contributions (21 MB, PDF)

  63  

in  deaf  subjects.  While  changes  incurred  to  a  sensory  system  following  loss  of  its  peripheral  input  has  been  investigated  extensively,  studies  focusing  on  cortical  changes  to  the  remaining  sensory  systems  are  more  limited.  To  examine  the  influence  of  acoustic  experience  on  sensory  cortex  organization,  areas  within  auditory,  visual,  and  somatosensory  cortex  were  examined  in  hearing  and  congenitally  deaf  cats.  Cerebral  cytoarchitecture  was  visualized  with  the  monoclonal  antibody  SMI-­‐32,  a  marker  of  neurofilament  proteins  used  to  demarcate  sensory  cortical  areas  in  many  species.  Auditory,  visual,  and  somatosensory  cortical  areas  were  delineated  and  their  volumes  quantified.  In  deaf  cats,  anterior  auditory  areas  were  significantly  reduced  in  volume,  resulting  in  an  overall  decrease  in  the  total  volume  of  auditory  cortex.  Volumetric  reductions  to  anterior  auditory  areas  were  complemented  by  significant  expansions  in  neighbouring  somatosensory  regions.  Although  the  total  visual  cortex  volume  did  not  differ  between  hearing  and  deaf  cats,  visual  areas  were  not  impervious  to  deafness,  with  expansions  to  areas  17  and  18  and  reductions  to  ventral  visual  areas.  As  the  total  volume  of  cortex  examined  did  not  differ  between  our  hearing  and  deaf  animals,  acoustic  deprivation  appeared  to  specifically  affect  the  volumetric  proportions  allocated  to  auditory,  visual  and  somatosensory  cortices.  Overall  this  study  demonstrates  the  importance  of  sensory  input  in  establishing  cortical  representations  of  multiple  sensory  modalities,  and  the  anatomical  consequences  of  early  sensory  loss.      ID:  156    

Direct  mapping  of  the  cortical  tinnitus  network  Phillip  E  Gander1,  William  Sedley2,  Sukhbinder  Kumar2,3,  Hiroyuki  Oya1,  Christopher  K  Kovach1,  Kirill  V  Nourski1,  Hiroto  Kawasaki1,  Matthew  A  Howard1,  Timothy  D  Griffiths1,2,3  1University  of  Iowa,  United  States  of  America;  2Newcastle  University,  United  Kingdom;  3University  College  London,  United  Kingdom  phillip-­‐[email protected]  Tinnitus  occurs  when  peripheral  hearing  damage  leads  to  secondary  changes  in  ongoing  brain  activity.  These  central  mechanisms  are  poorly-­‐understood,  partly  because  

experimental  evidence  is  mostly  indirect,  meaning  it  does  not  reflect  the  real-­‐time  perception  of  tinnitus,  and/or  it  does  not  provide  a  direct  measure  of  neural  activity.  Therefore  it  has  so  far  been  impossible  to  map  out  the  anatomy  and  physiology  of  the  brain  networks  responsible  for  causing  tinnitus  without  relying  heavily  on  speculation.  Nonetheless,  testable  hypotheses  have  recently  been  proposed  about  the  possible  architecture  of  a  ‘tinnitus  core’  network,  defined  as  the  minimum  neural  network  that  must  be  active  in  order  for  tinnitus  to  be  perceived.  Here  we  test  this  hypothesis  in  a  human  neurosurgical  subject,  with  typical  bilateral  tonal  tinnitus  and  high-­‐frequency  hearing  loss,  who  had  an  extensive  array  of  electrocorticography  and  depth  electrodes  placed  for  the  localization  of  epilepsy.  Tinnitus  loudness  was  modulated  with  residual  inhibition  using  noise,  and  quantified  with  real-­‐time  ratings.  We  found:  1)  Suppression  of  tinnitus  correlated  with  widespread  reductions  in  delta  (1-­‐4  Hz)  oscillatory  power  throughout  most  of  auditory  cortex,  and  large  parts  of  non-­‐auditory  cortex  in  temporal,  parietal,  limbic  and  motor  areas.  These  areas  also  showed  changes  in  inter-­‐regional  delta  phase  coherence  with  tinnitus  suppression,  and  we  interpret  this  as  demonstrating  a  ‘tinnitus  driving’  network,  propagating  the  thalamic  delta  rhythm  into  global  networks  relevant  to  perception,  emotion  and  cognition.  2)  Theta  (4-­‐8  Hz)  and  alpha  (8-­‐12  Hz)  power  was  similarly  suppressed  in  most  of  these  areas,  except  in  areas  linked  to  auditory  memory  (mesial  temporal  lobe  structures  and  inferior  parietal  cortex)  where  it  increased.  We  interpret  these  discrete  areas  of  theta/alpha  increase  as  delineating  a  ‘tinnitus  memory’  network.  3)  High  beta  (20-­‐28  Hz)  and  gamma  (28-­‐144  Hz)  power  increased,  during  tinnitus  suppression,  throughout  auditory  cortex  and  in  posterior  temporal,  inferior  parietal,  sensorimotor  and  parahippocampal  cortex.  We  propose  these  areas  constitute  a  ‘tinnitus  perception’  network,  representing  changes  to  the  ongoing  percept.  4)  Cross-­‐frequency  coupling  changes  accompanied  tinnitus  suppression  in  Heschl’s  gyrus,  superior  temporal  gyrus,  parahippocampal  cortex  and  inferior  parietal  cortex,  which  we  propose  are  the  sites  and  

Page 77: Complete program including all scientific contributions (21 MB, PDF)

  64  

mechanisms  of  interaction  between  the  three  sub-­‐networks  described.      ID:  157    

Combined  rate  and  temporal  encodings  yield  stable  envelope  processing  in  behaving  monkey  auditory  cortex  Roohollah  Massoudi1,  Marc  van  Wanrooij1,2,  Huib  Versnel3,  John  van  Opstal1  1Radboud  University  Nijmegen,  The  Netherlands;  2Radboud  University  Nijmegen  Medical  Centre,  The  Netherlands;  3University  Medical  Center  Utrecht,  The  Netherlands  [email protected]  Temporal  envelope  processing  of  complex  sounds  is  a  major  function  of  auditory  cortex  (AC),  and  crucial  for  speech  intelligibility.  Although  neural  sensitivity  to  amplitude-­‐modulated  noises  (AM)  has  been  studied  in  AC,  and  some  studies  have  reported  on  its  role  in  AM  discrimination  tasks,  little  is  known  about  how  different  behavioral  states  of  the  listener  would  influence  AM  sensitivity.  Here,  we  analyzed  the  spontaneous  activity,  the  sound-­‐onset  response,  and  the  sustained  response  of  monkey  AC  cells,  when  animals  could  be  in  different  behavioral  states,  varying  from  passive  sound  exposure,  to  engagement  in  a  non-­‐predictive  and  predictive  sound-­‐change  detection  task.  We  analyzed  the  monkeys’  reaction  times  as  a  function  of  AM  modulation  and  predictability  in  the  task,  and  found  a  systematic  relationship  between  reaction  time  and  acoustic  sensitivity.  We  determined  modulation  transfer  functions  (MTFs)  to  quantify  the  behavioral  and  single-­‐unit  neuronal  responses  for  a  range  of  amplitude  modulation  frequencies  (AMF).  Task  involvement  altered  the  strength  of  envelope  phase-­‐locking  of  cells,  their  mean  firing  rate,  and  trial-­‐by-­‐trial  variability.  We  also  quantified  the  strength  of  neuron’s  temporal  modulation-­‐following  response  (mMTF)  by  Fourier  analysis,  and  found  that  it  was  task-­‐independent  for  AMF’s  between  5.6  to  45  Hz,  but  changed  between  passive  and  active  listening  conditions  for  both  lower  and  higher  AMF’s.  These  results  indicate  that  the  mMTF  remains  stable  for  the  AMFs,  for  which  AC  cells  employ  a  combination  of  both  rate  and  temporal  encoding  mechanisms.  Furthermore,  our  findings  suggest  that  mMTF  is  a  better  measure  for  the  

quantification  of  temporal  envelope  encoding  of  auditory  cortex  neurons,  as  it  depends  on  both  the  firing  rate  and  the  strength  of  envelope  phase-­‐locking.      ID:  158    

Greenwood  frequency-­‐position  relationship  as  revealed  by  optical  imaging  in  guinea  pig  primary  auditory  cortex  Wen-­‐Jie  Song,  Masataka  Nishimura  Kumamoto  University,  Japan  song@kumamoto-­‐u.ac.jp  Orderly  representation  of  sound  frequency  over  space,  or  tonotopy,  is  a  hallmark  of  the  primary  auditory  cortex  (A1).  A  quantitative  relationship  between  sound  frequency  and  cortical  position,  however,  remains  to  be  further  explored.  Here  we  examined  this  relationship  in  guinea  pig  A1  by  presenting  stimulus  tones  in  a  wide  frequency  range,  and  recording  the  evoked  cortical  responses  with  a  high  spatial  resolution  optical  imaging  technique.  We  determined  three  best-­‐frequency  positions  as  the  cortical  positions  in  A1  for  each  tone  frequency:  the  onset  response  position,  the  peak  amplitude  position,  and  the  maximum  rise  rate  position  of  the  response  evoked  by  a  tone  of  the  frequency.  In  each  and  all  animals  (n  =  23)  examined,  a  nonlinear  log  frequency-­‐position  relationship  was  found  for  each  of  the  three  indices,  and  the  frequency-­‐position  relationship  was  always  well  described  by  a  Greenwood  equation,  with  correlation  coefficients  greater  than  0.99.  Cortical  magnification  factor,  measured  in  octave/mm,  was  found  to  be  a  log  function  of  frequency.  Because  sound  frequency  is  represented  in  the  two  dimensional  cortical  sheet,  our  results  do  not  fully  capture  all  features  of  frequency  representation  in  A1,  but  the  results  do  establish  a  quantitative  relationship  for  sound  frequency  and  cortical  position  in  guinea  pig  A1  along  the  frequency  axis.  Our  results  should  find  application  in  an  array  of  studies  including  modeling  of  the  auditory  cortex.    

Page 78: Complete program including all scientific contributions (21 MB, PDF)

  65  

ID:  159    

Pupil-­‐size-­‐dependent  auditory-­‐evoked  cortical  responses  in  anesthetized  rats  Hirokazu  Takahashi,  Hiroyuki  Tokushige,  Tomoyo  I.  Shiramatsu,  Takahiro  Noda,  Ryohei  Kanzaki  The  University  of  Tokyo,  Japan  [email protected]­‐tokyo.ac.jp  The  pupil  size  is  highly  correlated  with  neural  activity  in  the  locus  coeruleus,  a  small  collection  of  noradrenergic  neurons.  The  locus  coeruleus-­‐noradrenaline  system  has  widely  distributed,  ascending  projections  to  the  neocortex,  possibly  playing  general  roles  in  arousal  regulation  and  environmental  responsiveness.  Recent  studies  showed  that  the  pupil  size  exhibited  spontaneous,  rhythmic  changes  on  the  order  of  minutes  even  under  anesthetized  conditions,  which  covaried  with  the  cortical  state,  i.e.,  the  pattern  of  spontaneous  cortical  signals.  In  the  present  study,  we  further  tested  whether  and  how  the  pupil  size  covaries  stimulus-­‐evoked  cortical  responses  in  the  auditory  cortex  of  anesthetized  rats.  Six  male  Wistar  rats  at  8-­‐9  postnatal  weeks  were  used.  Rats  were  anesthetized  with  isoflurane  (3%  at  induction  and  1%  for  maintenance)  and  held  in  a  fixed  position  using  a  head-­‐holding  device.  The  right  auditory  cortex  was  surgically  exposed  and  the  tone-­‐evoked  activities  were  epipially  mapped  with  a  surface  microelectrode  array.  During  the  recording,  the  pupil  size  was  also  measured  with  an  infrared  camera.  Click  or  tone  bursts  were  presented  every  700  ms.  For  tone  stimuli,  10  different  frequencies  (2  –  50  kHz)  were  presented  randomly.  Stimulus  specific  adaptation  (SSA)  was  also  characterized  during  an  oddball  paradigm  with  2-­‐  and  4-­‐kHz  tones.  Consistent  with  previous  studies,  the  pupil  size  spontaneously  fluctuated  with  a  2-­‐min  cycle.  The  amplitudes  of  tone-­‐evoked  responses  were  negatively  correlated  with  the  pupil  size.  This  negative  correlation  was  significantly  higher  in  response  to  high  frequency  50-­‐kHz  tones  than  others,  and  also  higher  in  the  primary  auditory  cortex  than  either  in  the  anterior  or  ventral  auditory  fields.  Both  the  standard-­‐  and  deviant-­‐evoked  responses  equally  exhibited  the  negative  correlation,  and  hence,  SSA  did  not  covary  with  the  pupil  size.  Lastly,  to  test  the  causal  effect  of  pupil  diameter  and  cortical  

responses,  nociceptive  electrical  stimulus  was  applied  at  limbs  to  dilate  the  pupil;  this  pupil  dilation  was  also  associated  with  significant  decreases  of  cortical  evoked  responses.  Thus,  the  autonomic  system  is  likely  to  mediate  the  pupil  fluctuation  either  spontaneously  or  in  a  stimulus-­‐driven  manner,  which  is  associated  with  some  significant  effects  on  the  evoked  responses  in  the  sensory  cortex.    This  work  was  supported  in  part  by  SCOPE  (121803022)  and  KAKENHI  (25135710,  26242040).      ID:  160    

Local-­‐field  potentials  to  speech  sound  features  in  the  primary  auditory  cortex  of  rats  Jari  Kurkela,  Mustak  Ahmed,  Eeva-­‐Kaarina  Pellinen,  Paavo  H.T.  Leppänen,  Jarmo  Hämäläinen,  Piia  Astikainen  University  of  Jyväskylä,  Finland  [email protected]  The  capability  to  discriminate  between  different  speech  sound  features  is  essential  for  understanding  spoken  language.  Furthermore  active  exposure  to  auditory  stimuli  can  improve  this  ability,  as  seen  on  behavioral  and  brain  level  in  humans.  Fascinatingly,  it  has  been  shown  that  rats  and  other  rodents  also  has  this  ability,  thus  it  is  not  unique  only  to  humans.  We  tested  rat’s  ability  to  discriminate  different  speech  sound  features,  and  brain  plasticity  after  passive  training.  Eighteen  animals  divided  into  two  groups  were  passively  exposed  to  auditory  material  (either  syllables  changes  or  syllable  duration  changes  presented  in  oddball  condition)  for  ten  consecutive  days,  one  hour  per  day.  After  the  exposure,  local-­‐field  potentials  were  recorded  epidurally  above  their  primary  auditory  cortex  to  the  both  syllable  changes  and  syllable  duration  changes  while  the  rats  were  urethane-­‐anesthetized.  We  found  that  both  types  of  changes  in  speech  sounds  produced  MMN  responses  to  deviant  stimuli,  but  after  exposure  no  training  effect  was  found  in  either  condition.  It  is  unclear  whether  the  inability  to  find  the  training  effect  was  due  the  insufficient  exposure  or  other  methodical  aspects  of  this  experiment.  Consequently,  in  the  future  it  is  interesting  to  investigate  whether  training  effects  can  be  found  in  humans,  for  example  for  foreign  speech  sound  features.  

Page 79: Complete program including all scientific contributions (21 MB, PDF)

  66  

ID:  161    

Context-­‐dependent  representation  of  auditory  time  in  working  memory  Sundeep  Teki1,  Timothy  D.  Griffiths1,2  1University  College  London,  United  Kingdom;  2Newcastle  University,  United  Kingdom  [email protected]  The  brain  can  hold  information  about  multiple  objects  in  working  memory.  It  is  not  known,  however,  whether  intervals  of  auditory  time  can  be  stored  in  memory  as  distinct  items.  Furthermore,  the  neural  substrates  that  represent  time  intervals  in  working  memory  are  also  poorly  understood.  In  this  study,  we  developed  a  novel  behavioural  paradigm  to  examine  temporal  memory  where  listeners  were  required  to  reproduce  the  duration  of  a  single  probed  interval  from  a  sequence  of  intervals.  Listeners  received  precise  feedback  (in  ms)  of  their  memory  performance  that  was  quantified  in  terms  of  precision.  We  ran  a  series  of  experiments  and  demonstrate  that  memory  performance  significantly  varies  as  a  function  of  temporal  structure  (better  memory  in  regular  vs.  irregular  sequences),  interval  size  (better  memory  for  sub-­‐  vs.  supra-­‐second  intervals)  and  memory  load  (poor  memory  for  higher  load).  Memory  performance  was  invariant  to  attentional  cueing,  in  contrast  to  cueing  results  from  vision  or  audition.  Using  functional  magnetic  resonance  imaging  at  3T,  we  investigated  encoding  of  time  into  working  memory  as  a  function  of  the  temporal  structure  and  memory  load  of  the  sequences.  An  orthogonal  design  was  used  where  the  temporal  regularity  of  the  sequences  varied  for  a  fixed  number  of  intervals,  and  in  a  separate  condition,  the  number  of  intervals  were  varied  whilst  the  temporal  regularity  was  constant.  We  demonstrate  that  perceptual  timing  areas  including  the  cerebellum  and  striatum,  and  the  parietal  cortex  encode  temporal  memory  as  a  function  of  temporal  regularity  and  memory  load  respectively.  Structural  magnetic  resonance  imaging  data  revealed  parallel  changes  in  grey  matter  density  that  correlated  with  behavior  in  a  similar  network  of  areas  as  implicated  by  the  functional  BOLD  data.  Our  data  represent  the  first  systematic  investigation  of  temporal  memory  in  auditory  sequences  and  support  the  emerging  

hypothesis  that  time  intervals  are  allocated  a  working  memory  resource  that  varies  with  the  amount  of  other  temporal  information  in  a  sequence.  The  imaging  data  represent  the  first  neural  evidence  suggesting  that  core  areas  of  the  temporal  processing  network  including  the  cerebellum  and  striatum  also  encode  memory  for  time  intervals  in  a  context-­‐dependent  manner  and  that  the  parietal  cortex  acts  as  a  hub  for  storing  not  only  sensory  information  in  working  memory,  but  also  temporal  information.      ID:  162    

Task-­‐dependent  modulations  of  the  fMRI  BOLD  response  in  monkey  auditory  cortex  Heather  Slater1,  Emma  Salo2,  Ross  Muers1,  Teemu  Rinne2,  Christopher  Petkov1  1Newcastle  University,  United  Kingdom;  2University  of  Helsinki,  Finland  [email protected]  Human  neuroimaging  studies  have  shown  that  operations  in  auditory  cortex  are  strongly  modulated  by  active  tasks.  Yet,  virtually  all  prior  imaging  studies  in  awake  nonhuman  animals  were  conducted  under  passive  stimulation.  To  help  bridge  the  gap  between  human  fMRI  studies  using  active  tasks  and  animal  models,  we  trained  two  macaques  to  perform  an  auditory  spatial  task  during  fMRI,  with  and  without  competing  visual  stimuli.  The  monkeys  were  presented  with  pairs  of  “coo”  vocalisation  sounds  that  either  changed  in  spatial  location  (target:  virtual  acoustic  space  change  from  -­‐90°  to  +90°  in  azimuth)  or  were  presented  from  the  same  location  (nontarget:  repeated  location  in  -­‐90°  or  +90°).  The  monkeys  were  rewarded  for  pressing  a  lever  to  auditory  targets  and  withholding  their  response  to  nontargets.  Approx.  40%  of  randomly  selected  auditory  stimulus  trials  had  competing  visual  stimuli  (pairs  of  low-­‐contrast  monkey  face  stimuli  presented  either  in  two  different  spatial  locations  or  in  one  location).  These  conditions  allowed  us  to  investigate  activations  to  sounds  presented  during  an  active  auditory  task  (auditory  only  trials)  and  to  evaluate  the  influence  of  visual  stimuli  on  both  behaviour  and  associated  task-­‐dependent  fMRI  modulations.  After  behavioural  training,  simulating  the  MRI  environment  (ca.  5  sessions/wk  for  >18  months  with  each  

Page 80: Complete program including all scientific contributions (21 MB, PDF)

  67  

monkey),  the  monkeys  were  scanned  with  fMRI  at  4.7  Tesla  while  performing  the  auditory  spatial  discrimination  task.  This  resulted  in  9  fMRI  scanning  runs  (ca.  900  testing  trials)  per  monkey  with  auditory  performance  above  chance.  As  expected,  sound  presentation  was  associated  with  reliable  activation  of  auditory  cortex  (sound  trials  compared  to  silent  trials).  Task  performance  significantly  modulated  activations  in  most  auditory  cortical  fields,  where  stronger  activations  were  associated  with  better  performance.  Moreover,  enhanced  activations  in  visual  cortical  areas  were  observed  when  the  monkeys’  performance  was  influenced  by  visual  stimulation  during  the  audio-­‐visual  stimulus  conditions.  These  results  provide  insights  into  how  task  performance  modulates  activations  in  the  nonhuman  primate  brain  at  the  regional  level  during  an  active  auditory  spatial  task  with  and  without  competing  visual  stimuli.    *Equal  contribution:  HS,  ES  and  RM.  Support:  Academy  of  Finland  (TR);  Wellcome  Trust  (CIP;  WT102961MA);  BBSRC  U.K.  (CIP;  BB/J009849/1)    ID:  163    

Hippocampal  local-­‐field  potentials  to  spectro-­‐temporally  complex  sounds  in  awake  rabbits  Piia  Astikainen1,  Eeva-­‐Kaarina  Pellinen1,  Paavo  Alku2,  Miriam  Nokia1  1University  of  Jyväskylä,  Finland;  2Aalto  University,  Finland  [email protected]  Electrophysiological  studies  have  shown  that  hippocampus  responds  to  changes  in  serially  presented  sinusoidal  sounds.  However,  its  role  in  discriminating  spectro-­‐temporally  complex  sounds  is  unclear.  We  recorded  local-­‐field  potentials  from  the  dentate  gyrus  of  the  hippocampal  formation  in  awake  rabbits.  In  oddball  condition,  frequently  presented  ‘standard’  sounds  were  rarely  (p=.01)  and  randomly  replaced  by  infrequent  ‘deviant’  sounds.  Speech  (/ki:/  vs.  /pi:/)  and  non-­‐speech  sounds  with  carefully  matched  acoustic  features  were  presented  in  separate  stimulus  conditions.  Deviant  sounds  elicited  two  prominent  peaks  of  positive  polarity  approximately  at  70  ms  and  120  ms  after  stimulus  onset.  There  were  no  differences  between  the  speech  and  non-­‐speech  stimulus  

conditions.  /Pi:/  and  its  non-­‐speech  counterpart  as  the  deviant  stimulus  modulated  both  peaks  (larger  responses  to  deviants  than  standards),  while  the  modulation  to  /ki:/  and  its  non-­‐speech  counterpart  was  found  only  in  the  first  peak.  The  results  show  that  the  dentate  gyrus  of  the  hippocampus  in  rabbit  responds  to  rare  changes  in  spectro-­‐temporally  complex  sounds.  The  current  experimental  paradigm  thus  provides  an  effective  tool  for  investigating  hippocampal  function  in  receptive  language  context  in  an  animal  that  has  neither  linguistic  brain  structures  nor  long-­‐term  memory  traces  to  speech  sounds.      ID:  164    

Cerebral  processing  of  affective  non-­‐verbal  vocalizations  using  MEG  and  voice  morphing:  Single-­‐subject  GLM  analysis  Emilie  Salvia1,  Sonja  A.  Kotz2,  Patricia  Bestelmeyer3,  Cyril  Pernet4,  Guillaume  A.  Rousselet1,  Bruno  L.  Giordano1,  Joachim  Gross1,  Pascal  Belin1  1University  of  Glasgow,  United  Kingdom;  2University  of  Manchester,  United  Kingdom;  3University  of  Bangor,  United  Kingdom;  4University  of  Edinburgh,  United  Kingdom  [email protected]  Background  Studies  suggested  rapid  processing  of  emotional  information  arising  from  the  auditory  cortex,  i.e.  from  ~100ms  after  stimulus  onset.  However,  it  is  not  entirely  clear  to  what  extent  these  early  ‘emotional’  effects  are  in  fact  driven  by  acoustics:  sounds  that  vary  in  affective  properties  also  tend  to  have  a  different  acoustic  structure.  We  examined  (1)  whether  early  affective  effects  can  be  observed  at  the  single-­‐participant  level  and  (2)  whether  these  early  effects  are  based  on  acoustical  rather  than  perceptual  features.    Method  MEG  was  used  to  assess  the  cerebral  response  to  affective  voices.  Stimuli  consisted  of  affective  auditory  bursts  from  the  Montreal  Affective  Voices  Battery  manipulated  via  morphing  to  parametrically  vary  acoustical  structure  and  perceived  emotional  properties.  We  performed  a  single-­‐subject  analysis  (>6000  trials  per  subject)  and  used  a  toolbox  implementing  the  General  Linear  Model  (GLM)  for  EEG/MEG  data  (LIMO  EEG).  ‘Simple’  models  

Page 81: Complete program including all scientific contributions (21 MB, PDF)

  68  

including  an  affective  regressor  (Arousal/Valence)  and  ‘combined’  models  including  also  acoustical  regressors  were  estimated.  We  tested  the  impact  of  the  regressors  on  3  Event  Related  Fields  (ERF)  components:  2  early  components,  i.e.  N100,  P200,  reflecting  auditory  cortex  activity,  and  a  later  one,  i.e.  LPP.    Results  ERF  results  show  auditory  stimulus  responses  ~100ms  (N100)  and  ~200ms  (P200)  after  stimulus  onset;  there  are  positive  or  negative  signal  amplitude  variation  over  the  right  and  left  temporal  sensors  and  contralateral  sensors  show  opposite  polarities.  A  positive  signal  amplitude  variation  over  the  left  central  parietal  sensors  was  observed  at  ~400-­‐600ms  (LPP).  ‘Simple’  models  results  show  significant  early  and  late  affective  effects  on  the  signal  variance  at  these  sensors  located  over  the  auditory  and  centro-­‐parietal  cortices.  However,  the  ‘combined’  models  showed  few  remaining  effects  of  Arousal  after  removing  the  acoustically-­‐explained  variance  while  significant  effects  of  Valence  remained  especially  at  a  late  processing  stage.    Conclusion  Early  effects  of  Arousal  are  largely  explained  by  variance  in  acoustical  features  showing  that  understanding  vocal  emotional  messages  requires  analysing  and  integrating  a  variety  of  acoustical  cues.  Valence  contributes  more  strongly  to  variance  independently  of  acoustics,  particularly  at  later  processing  stages.  Emotional  voices  processing  requires:  (1)  analysis  of  acoustical  cues;  (2)  elaboration  of  stimulus  evaluation  along  affective  dimensions.    

ID:  165    

Conspecific  objects  exhibit  preferential  multisensory  integration  Pawel  J.  Matusz1,2,  Antonia  Thelen1,3,  Eveline  Geiser1,  Jean-­‐Francois  Knebel1,4,  Celine  Cappe5,  Micah  M.  Murray1,3,4  1Vaudois  University  Hospital  Center  and  University  of  Lausanne,  Switzerland;  2University  of  Oxford,  United  Kingdom;  3Vanderbilt  University,  United  States  of  America;  4Center  for  Biomedical  Imaging,  Switzerland;  5Centre  de  Recherche  Cerveau  &  Cognition,  France  [email protected]  Rudimentary  and  complex  stimuli,  including  environmental  objects,  both  elicit  multisensory  interactions  during  early  post-­‐stimulus  stages.  However,  processing  of  auditory  (and  visual)  object  categories  has  been  typically  dissociated  between  living  and  man-­‐made  categories,  and  additional  evidence  points  to  preferential  processing  of  conspecific  stimuli,  such  as  voices  (or  faces).  Our  study  assessed  whether  such  preferences  engender  facilitated  multisensory  integration  of  some  objects  over  others  and/or  alter  the  underlying  neural  mechanisms.  We  recorded  160-­‐channel  EEG  from  14  healthy  adults  performing  a  living/man-­‐made  go-­‐nogo  categorization  involving  environmental  objects  presented  as  sounds,  drawings  or  auditory-­‐visual  pairs.  Behavioural  analyses  based  on  the  inverse  efficiency  scores  (median  reaction  time  divided  by  percent  correct  responses  revealed  an  overall  advantage  for  discriminating  living  vs.  man-­‐made  objects,  irrespective  of  the  sensory  condition.  There  was  no  evidence  for  multisensory  facilitation.  A  3x3  ANOVA  with  sub-­‐categories  of  living  objects  (conspecifics,  mammals,  birds)  and  sensory  condition  revealed  multisensory  facilitation  exclusively  for  conspecifics.  EEG  analyses  followed  an  electrical  neuroimaging  approach  and  were  restricted  to  distracter  trials  to  avoid  motor  confounds  when  comparing  multisensory  and  summed  unisensory  brain  responses.  A  3x2  ANOVA  with  factors  of  category  (conspecifics,  mammals,  birds)  and  response  type  (pair/sum)  revealed  a  significant  interaction  due  to  nonlinear  auditory-­‐visual  integration  of  neural  responses  (global  field  power)  to  conspecifics  at  ~50ms  post-­‐stimulus  onset  that  was  not  observed  for  other  categories.  These  results  provide  the  first  evidence  that  auditory-­‐visual  

Page 82: Complete program including all scientific contributions (21 MB, PDF)

  69  

objects  that  refer  to  conspecifics  exhibit  facilitated  multisensory  integration.      ID:  166    

Lifelong  changes  in  the  auditory  cortex  for  voice  perception  Zhang  Jingting1,  Fraser  W.  Smith2,  Bruno  L.  Giordano1,  Marie-­‐Hélène  Grosbras1,  Guillaume  A.  Rousselet1,  Pascal  Belin1  1University  of  Glasgow,  United  Kingdom;  2University  of  East  Anglia,  United  Kingdom  [email protected]  Aging  does  not  influence  cognition  in  a  simple  way,  with  some  cognitive  functions  declining  in  response  to  age-­‐related  neural  tissue  loss  while  others  remaining  preserved  with  aging.  Current  evidence  on  auditory  processing  is  more  focused  on  speech,  rather  than  voice.  Pervasive  age-­‐related  brain  atrophy,  including  in  auditory  cortex,  creates  the  necessity  of  studying  whether  and  how  voice  processing  in  auditory  cortex  changes  with  age.  To  address  this  issue,  in  an  fMRI  study  we  manipulated  auditory  vocal  and  non-­‐vocal  signals  and  measured  the  relationship  between  age,  functional  activity  and  grey  matter  density.  Fifty-­‐six  healthy  adults  across  a  wide  age  range  (20-­‐86  years,  M  =  49.7  years,  SD  =  18.9)  passively  listened  to  sounds  with  eyes  closed  while  being  scanned.  The  experimental  paradigm  consisted  of  a  classical  voice  localizer  scan  (http://vnl.psy.gla.ac.uk/resources.php)  contrasting  blocks  of  vocal  vs  non-­‐vocal  sounds  to  identify  the  temporal  voice  areas  (TVA),  which  mostly  cover  the  middle  and  anterior  parts  of  the  bilateral  superior  temporal  sulcus  (STS)  in  auditory  cortex  (Belin  et  al.,  2000).  The  stimuli  contained  40  8-­‐sec  blocks  of  sounds.  Half  of  the  blocks  had  only  vocal  sounds  (both  speech  and  nonspeech),  and  the  other  half  had  only  non-­‐vocal  sounds  (e.g.,  environmental  sounds).  Voxel-­‐Based  Morphometry  analysis  showed  that  extensive  regions  of  cortex  covering  the  whole  brain,  including  auditory  cortex,  had  reduced  grey  matter  density  with  increasing  age.  To  study  the  relationship  between  activity  and  age,  we  conducted  linear  and  nonlinear  correlations  of  activity  with  age.  Results  showed  activation  in  bilateral  STS,  left  precentral  and  left  inferior  frontal  gyrus  for  vocal  versus  non-­‐vocal  sounds  independent  of  

age,  indicating  the  critical  role  of  this  system  in  voice-­‐specific  processing  across  the  life  span.  We  observed  a  significant  linear  relationship  between  activity  for  vocal  versus  non-­‐vocal  sounds  and  age,  with  increased  activity  in  bilateral  postcentral  gyrus  and  right  superior  occipital  gyrus  with  advancing  age.  The  age-­‐related  changes  in  postcentral  regions  might  reflect  changes  in  articulation-­‐related  features  in  voice  perception,  as  in  speech  perception  (Pulvermüller  et  al.,  2006).  These  findings  altogether  suggest  the  major  voice-­‐selective  system  in  auditory  cortex  is  preserved  despite  of  age-­‐related  brain  atrophy  but  the  neural  activity  of  articulation-­‐related  features  in  voice  perception  may  increase  with  age.    ID:  167    

The  neural  representations  of  phonetic  features  in  the  auditory  cortex  during  speech  perception,  speech  production,  and  inner  speech  Jessica  Arsenault1,2,  Bradley  Buchsbaum1,2  1Rotman  Research  Institute  Toronto,  Canada;  2University  of  Toronto,  Canada  [email protected]  Mental  imagery  involves  modality-­‐specific  reactivation  of  neural  pathways  that  are  important  for  direct  perception  (Hubbard,  2010).  Within  the  auditory  modality,  the  perception  of  speech  produces  patterns  of  activity  in  the  superior  temporal  gyrus  (STG)  that  are  associated  with  phonetic  features  such  as  voicing  and  manner  of  articulation  (Mesgarani,  Cheung,  Johnson,  &  Chang,  2014).  There  is  a  debate  about  the  extent  to  which  the  activation  of  low-­‐level  acoustic-­‐phonetic  features  are  required  for  auditory  imagery  associated  with  inner  speech  (i.e.,  Corley,  Brocklehurst,  &  Moat,  2011).  The  objective  of  the  current  study  was  to  use  functional  magnetic  resonance  imaging  (fMRI)  and  multivariate  pattern  analysis  (MVPA)  to  assess  whether  or  not  distributed  representations  in  the  STG  associated  with  phonetic  features  during  the  perception  of  auditory  speech  are  also  activated  during  silent  inner  speech.  Participants  took  part  in  three  different  fMRI  sessions  within  one  week.  During  one  session,  participants  were  asked  to  subvocally  rehearse  consonant-­‐vowel  syllables  (i.e.,  “ba”),  with  special  instructions  to  not  move  their  mouths  

Page 83: Complete program including all scientific contributions (21 MB, PDF)

  70  

or  make  any  sound  (inner  speech  condition).  In  another  session,  auditory  stimuli  were  perceived  as  participants  passively  listened  to  the  same  syllables  (speech  perception  condition).  A  final  session  required  participants  to  silently  mouth  the  same  syllables  while  in  the  scanner  such  that  overt  speech-­‐motor  movements  were  produced  in  the  absence  of  external  auditory  feedback  (mouthing  condition).  MVPA  was  performed  in  order  to  classify  the  distributed  activity  reflecting  three  phonetic  features:  voicing,  manner  of  articulation,  and  place  of  articulation.  Results  show  that  within  the  auditory  cortex,  phonetic  feature  classification  was  worse  during  inner  speech  than  in  speech  perception  or  mouthing.  While  inner  speech  and  speech  perception  produced  non-­‐overlapping  classification  maps,  overlap  was  observed  between  speech  perception  and  mouthing  throughout  the  STG.  The  neural  patterns  support  the  notion  that  phonetic  features  are  indeed  impoverished  during  inner  speech.  The  fact  that  the  mouthing  condition  produced  stronger  classification  accuracy  in  the  auditory  cortex  than  inner  speech  suggests  that  more  peripheral  motor  commands  may  be  driving  low-­‐level  feature  representations  in  auditory  cortex  through  an  efference  copy  mechanism.    References  Corley,  M.,  Brocklehurst,  P.  H.,  &  Moat,  H.  S.  (2011).  Error  biases  in  inner  and  overt  speech:  evidence  from  tongue  twisters.  Journal  of  Experimental  Psychology.  Learning,  Memory,  and  Cognition,  37(1),  162–75.  doi:10.1037/a0021321  Hubbard,  T.  L.  (2010).  Auditory  imagery:  empirical  findings.  Psychological  Bulletin,  136(2),  302–29.  doi:10.1037/a0018436  Mesgarani,  N.,  Cheung,  C.,  Johnson,  K.,  &  Chang,  E.  F.  (2014).  Phonetic  feature  encoding  in  human  superior  temporal  gyrus.  Science  (New  York,  N.Y.),  343(6174),  1006–10.  doi:10.1126/science.1245994    

 ID:  168    

Do  cochlear  implant  users  process  faces  differently?  Maren  Stropahl1,  Karsten  Plotz2,  Rüdiger  Schönfeld2,  Pascale  Sandmann1,3,4,  Maarten  De  Vos1,4,  Stefan  Debener1,4  1Carl  von  Ossietzky  University  Oldenburg,  Germany;  2Evangelisches  Krankenhaus  Oldenburg;  3Hannover  Medical  School,  Germany;  4Cluster  of  Excellence  "Hearing4all"  maren.stropahl@uni-­‐oldenburg.de  Cochlear  implants  (CI)  can  partially  restore  hearing  in  post-­‐lingually  deafened  individuals.  There  is  evidence  that  the  auditory  cortex  

takes  over  visual  functions  during  a  period  of  auditory  sensory  deprivation.  While  deafness-­‐induced  reorganization  may  contribute  to  superior  visual  abilities  in  hearing-­‐impaired  individuals,  a  residual  pattern  of  visual  take-­‐over  after  the  implantation  of  a  CI  seems  maladaptive  for  restoring  speech  intelligibility  based  on  the  input  provided  by  a  CI  (Sandmann  et  al.,  2012,  Brain).  The  aim  of  the  present  study  was  to  obtain  more  information  about  visual  processing  in  CI  users.  Specifically  we  investigated  whether  the  electrophysiological  correlate  of  face  processing,  the  face-­‐selective  N170  component  of  the  event-­‐related  potential  (ERP),  is  different  in  CI  users  compared  to  normal  hearing  individuals.  Given  that  hearing-­‐impaired  listeners  often  rely  on  faces  to  better  understand  speech  (lip-­‐reading)  we  expected  a  more  efficient  face  processing  in  this  group.  High-­‐density  electroencephalogram  data  were  recorded  from  N=21  experienced  CI  users  and  N=21  age-­‐matched  controls  (aged  20  to  74  years)  performing  a  face  versus  house  discrimination  task.  Lip-­‐reading  abilities  and  speech  intelligibility  were  assessed.  A  face-­‐index  expressing  the  face-­‐selectivity  of  the  N170  component  was  calculated  (Sadeh  et  al.,  2010,  Human  Brain  Mapping).  Evaluation  of  ERP  topographies  revealed  significant  group  differences  compatible  with  the  predicted  pattern  of  visual  take-­‐over  in  the  CI  group.  For  the  CI  group  the  face-­‐index  significantly  correlated  with  the  duration  of  deafness  (r=-­‐.40),  showing  a  more  pronounced  difference  between  the  N170  component  for  faces  compared  to  the  N170  component  for  houses  (more  negative  index)  with  a  longer  duration  of  deafness.  Additionally,  the  face-­‐Index  was  associated  with  the  age  at  hearing  loss  onset  (r=.39).  Taken  together,  the  results  confirm  a  topographic  difference  in  face  processing  between  the  groups,  and  identify  for  the  CI  users  a  relation  to  the  duration  of  auditory  deprivation.  Source  localization  results  will  be  reported  and  implications  for  CI  outcome  prediction  will  be  discussed.    

Page 84: Complete program including all scientific contributions (21 MB, PDF)

  71  

ID:  169    

Visual  experience  influences  an  auditory  cortex  critical  period  Todd  M  Mowery,  Vibhu  C  Kotak,  Dan  H  Sanes  New  York  University,  United  States  of  America  [email protected]  During  development,  primary  sensory  cortices  go  through  brief  epochs  of  increased  plasticity  known  as  critical  periods  (CP).  However,  sensory  modalities  do  not  begin  to  function  at  the  same  time,  suggesting  that  they  may  influence  one  another  as  they  come  online  (Gottlieb,  1971).  Here,  we  asked  whether  the  onset  of  visually-­‐evoked  activity  can  influence  an  auditory  cortex  CP  during  which  synaptic  inhibition  is  vulnerable  to  hearing  loss.  Since  auditory  cortex  synaptic  inhibition  is  quite  sensitive  to  early  experience  (Mowery  et  al  2014),  we  first  identified  the  CP  during  which  spontaneous  inhibitory  postsynaptic  currents  (sIPSC)  are  vulnerable  to  hearing  loss.  We  varied  the  age  of  hearing  loss  onset  by  inserting  bilateral  earplugs  on  different  days,  beginning  when  the  ear  canals  open  (P11).  These  experiments  demonstrated  that  the  CP  closed  abruptly  at  P18,  near  the  time  when  eyelids  normally  open.  Therefore,  we  tested  whether  early  eyelid  opening  (P14),  or  delayed  eyelid  opening  (P23),  would  influence  this  inhibitory  CP.  When  eyelids  were  opened  early,  the  auditory  cortex  CP  closed  early,  by  P16.  In  contrast,  when  eyelid  opening  was  delayed,  the  auditory  cortex  CP  was  also  delayed  by  several  days.  This  principle  held  for  sIPSC  amplitudes,  time  constant,  and  frequency.  Taken  together,  these  results  strongly  suggest  that  visual  input  directly  influences  an  auditory  cortex  CP.  This  finding  has  implications  for  cross-­‐modal  influence  on  maturation,  especially  as  it  pertains  to  transient  deprivation  or  premature  experience.      ID:  170    

The  effects  of  behavioral  engagement  in  an  auditory  same/different  task  on  cortical  responses  in  marmoset  monkeys  Michael  Scott  Osmanski,  Xiaoqin  Wang  Johns  Hopkins  University  Baltimore,  United  States  of  America  [email protected]  A  central  question  in  auditory  neuroscience  is  how  brain  activity  gives  rise  to  perception  and,  

further,  how  different  behavioral  states  modulate  responses  across  auditory  cortex.  Recent  work  has  shown  that  neurons  in  primary  auditory  cortex  (A1)  can  be  adaptively  modulated  by  factors  related  to  the  degree  of  engagement  in  a  psychophysical  task.  However,  the  role  of  active  behavior  in  modulating  neural  response  properties  across  auditory  cortex  (including  secondary  cortical  fields  such  as  belt  and  parabelt  regions)  remains  a  largely  open  question.  To  begin  to  address  this  question,  we  trained  marmoset  monkeys  on  an  auditory  delayed  match-­‐to-­‐sample  task  (“Same/Different”)  in  which  subjects  were  presented  with  two  sounds,  separated  by  a  short  delay  period,  drawn  from  a  large  corpus  of  different  acoustic  stimuli.  Animals  were  required  to  lick  at  a  feeding  tube  if  the  sounds  were  different  and  withhold  responding  if  they  were  identical.  After  mastering  this  task,  animals  were  then  transferred  to  a  series  of  test  stimulus  sets  comprised  of  a  number  of  spectrally  and  temporally  complex  sounds,  including  vocalizations.  In  addition,  we  implanted  animals  with  a  16  channel  multi-­‐electrode  array  covering  a  large  portion  of  auditory  cortex.  We  sought  to  examine  changes  in  neural  activity  across  recording  sites  (i.e.,  between  putative  core  [A1]  and  lateral  belt  auditory  fields)  when  animals  were  engaged  in  the  behavior  task  compared  to  passively  listening  to  the  same  stimuli.  Overall,  our  results  show  significant  changes  in  stimulus-­‐evoked  firing  rates  during  active  behavior  compared  to  passive  listening.  Specific  changes  in  neural  responses  varied  based  on  task  condition,  including  trial  type  (Same/Different)  and  behavioral  outcome  (e.g.,  Hit/False  Alarm).  These  data  support  previous  studies  describing  modulation  of  neural  responses  as  a  function  of  engagement  in  a  behavior  task,  in  addition  to  a  potential  functional  differentiation  between  core  and  belt  regions.    Supported  by  NIH  grants  DC003180  to  XQW  and  DC013150  to  MSO    

Page 85: Complete program including all scientific contributions (21 MB, PDF)

  72  

ID:  171    

Spiking  in  auditory  cortex  following  thalamic  stimulation  is  dominated  by  cortical  network  activity  Matthew  I.  Banks,  Bryan  M.  Krause  University  of  Wisconsin  Madison,  United  States  of  America  [email protected]  Introduction:  Recent  evidence  suggests  that  the  state  of  the  cortical  network  prior  to  sensation  can  have  a  profound  impact  on  neural  responses  and  perception.  In  rodent  auditory  cortex,  sensory  responses  are  reported  to  occur  in  the  context  of  network  events,  similar  to  brief  UP  states,  that  produce  'packets'  of  spikes  and  are  associated  with  synchronized  synaptic  input.  However,  traditional  models  based  on  data  from  visual  and  somatosensory  cortex  predict  that  sensory  stimuli  activate  ascending  thalamocortical  pathways  that  evoke  sequential  activation  of  cells  in  layers  4,  2/3  and  5  (L4>L2/3>L5).  The  relationship  between  these  two  types  of  sensory-­‐evoked  spatio-­‐temporal  activity  patterns  is  unclear.  Here,  we  investigated  the  laminar  response  pattern  to  stimulation  of  TC  afferents  auditory  thalamocortical  (TC)  brain  slices.  We  show  that  although  monosynaptic  spiking  responses  to  TC  afferents  occur,  the  vast  majority  of  spikes  fired  following  TC  stimulation  occur  during  brief  UP  states  and  outside  the  context  of  the  L4>L2/3>L5  activation  sequence.  Methods:  Auditory  TC  slices  were  prepared  from  B6CBAF1/J  mice  (3  -­‐  12  weeks).  TC  afferents  were  electrically  stimulated  in  the  MGv  or  in  the  superior  thalamic  radiation.  Laminar  profiles  of  synaptic  and  spiking  responses  were  obtained  via  (1)  whole  cell  and  on  cell  recordings  from  cells  throughout  layers  2-­‐6;  (2)  current  source  density  and  multiunit  activity  recorded  in  all  laminae  simultaneously  using  multhichannel  electrodes;  and  (3)  Ca  imaging,  in  which  cells  were  loaded  with  OGB-­‐1  AM  throughout  the  cortical  laminae  to  identify  spiking  cells  as  a  function  of  cortical  depth.  Results:  Monosynaptic  subthreshold  TC  responses  with  similar  latencies  were  observed  throughout  layers  2  -­‐  6,  presumably  via  synapses  onto  dendritic  processes  located  in  granular  thalamo-­‐recipient  layers.  However,  monosynaptic  spiking  was  rare,  and  occurred  

primarily  in  L4  and  L5  GABAergic  interneurons.  Spiking  was  dense  during  TC-­‐evoked  brief  UP  states  and  occurred  primarily  in  pyramidal  cells.  These  network  events  always  involved  infragranular  layers,  whereas  involvement  of  supragranular  layers  was  variable.  During  UP  states,  latencies  were  comparable  between  infragranular  and  supragranular  cells.  Discussion:  These  data  suggest  that  sensory  stimuli  are  processed  in  parallel  at  the  network  level  by  two  distinct  circuits  in  auditory  cortex.    Supported  by  National  Institutes  of  Health  (M.I.B.:  R01  DC006013;  B.M.K.:  T32  GM007507).      ID:  172    

Comparing  cortical  pitch  responses  in  humans  and  monkeys  Bevil  R.  Conway1,  Samuel  Norman-­‐Haignere2,  Nancy  G.  Kanwisher2,  Josh  H.  McDermott2  1Wellesley  College,  United  States  of  America;  2  Massachusetts  Institute  of  Technology,  United  States  of  America  [email protected]  Pitch  perception  is  a  fundamental  component  of  hearing  that  is  thought  to  be  important  for  many  species.  Humans  possess  stereotyped  brain  regions  that  respond  preferentially  to  sounds  with  pitch  (e.g.  speech  vowels,  piano  notes)  compared  with  sounds  that  lack  pitch  (e.g.  whispering,  drumming).  These  regions  can  be  consistently  identified  in  individual  human  subjects  using  fMRI,  by  contrasting  responses  to  harmonic  tones  with  responses  to  frequency-­‐matched  noise;  and  these  regions  extend  from  part  of  primary  auditory  cortex  (the  low-­‐frequency  portion  of  the  tonotopic  map)  into  anterior  auditory  cortex  (Norman-­‐Haignere  et  al.,  J.  Neurosci.,  2013).  Here  we  use  fMRI  to  test  whether  similar  regions  are  present  in  rhesus  macaque  monkeys.  In  Experiment  I,  we  measured  responses  in  two  fixating  macaques  to  the  same  contrast  we  have  previously  tested  in  humans:  harmonic  tones  versus  noise,  each  presented  in  5  different  frequency  ranges  (spanning  5  octaves:  0.3  -­‐  9.6  kHz).  This  2  (pitch  vs.  noise)  x  5  (different  frequency  ranges)  factorial  design  allowed  us  to  measure  both  frequency-­‐selectivity  (i.e.  tonotopy)  and  pitch  responses.  Consistent  with  previously  published  results,  the  monkeys  showed  tonotopic  organization  that  was  similar  to  that  in  humans:  regions  

Page 86: Complete program including all scientific contributions (21 MB, PDF)

  73  

selective  for  low  frequencies  alternated  with  regions  selective  for  high  frequencies  along  the  posterior-­‐to-­‐anterior  axis  of  auditory  cortex.  Unlike  in  humans,  however,  there  were  no  regions  in  monkeys  that  responded  more  to  harmonic  tones  than  frequency-­‐matched  noise.  This  was  true  both  within  tonotopically  defined  regions  of  interest  as  well  as  across  the  whole  brain.  In  Experiment  II,  we  measured  responses  in  ten  humans  and  two  monkeys  to  a  diverse  collection  of  165  natural  sounds  that  varied  in  their  pitch  strength.  The  results  of  this  experiment  provided  additional  evidence  that  selective  responses  to  sounds  with  pitch  are  unique  to  human  auditory  cortex.  Low-­‐frequency  regions  in  human  auditory  cortex  responded  more  to  natural  sounds  with  a  strong  pitch,  consistent  with  the  finding  that  pitch-­‐responsive  regions  in  humans  are  co-­‐located  with  low-­‐frequency  regions  of  the  tonotopic  map.  But  in  monkeys,  the  response  of  low-­‐frequency  regions  was  correlated  only  with  the  presence  of  low-­‐frequency  energy,  and  not  with  pitch  strength.  These  results  suggest  that  brain  regions  with  a  preferential  response  to  sounds  with  pitch  may  be  absent  in  macaque  auditory  cortex.    Grant/Other  Support:  NIH  Grant  EY023322  (BRC),  NSF  Grant  0918064  (BRC),  NIH  Grant  P41EB015896,  NIH  Grant  S10RR021110,  NIH  Grant  EY13455  (NGK),  Grant/Other  Support:  McDonnell  Foundation  (JM)      ID:  173    

MEEG  evidence  that  prediction  fosters  a  reliable  perception  of  the  causal  structure  of  the  world  Alessandro  Tavano1,  Burkhard  Maess2,  Erich  Schroeger1  1University  of  Leipzig,  Germany;  2Max  Planck  Institute  for  Human  Cognitive  and  Brain  Sciences,  Germany  tavano@uni-­‐leipzig.de  How  does  the  human  brain  reflect  the  causal  structure  of  the  world?  One  way  is  to  have  sensory  systems  extracting  predictable  patterns  in  input,  since  regularly  occurring  events  are  likely  to  reflect  coherent,  distinguishable  sources.  More  generally,  the  brain  would  actively  exploit  sensory  inferences  based  on  stimulus  expectancies  to  obtain  a  reliable  model  of  the  current  state  of  affairs  in  the  world.  However,  this  stance  leaves  open  

the  question  as  to  the  nature  of  such  inferences.  It  has  been  shown  that  when  highly  probable  stimuli  are  omitted,  the  brain’s  response  is  partially  similar  to  that  elicited  by  the  actual  stimuli.  This  suggests  that  prediction  or  “knowing  what  next”  activates  deputy  sensory  cortices  in  a  stimulus-­‐specific  manner,  perhaps  in  advance  or  at  least  concurrently  with  the  actual  input  (omission  paradigm).  However,  if  the  neural  activity  “filling  in”  for  the  omitted,  highly  expected  sound  caused  sensation  –  e.g.,  hearing  missing  tones  –,  it  would  contradict  the  core  assumption  that  prediction  fosters  a  reliable  perception  of  the  world  around  us,  as  participants  would  hear  a  sound  when  there  is  none.  We  used  human  EEG  to  investigate  the  functional  nature  of  prediction  in  audition  by  omitting  predictable  vs.  unpredictable  pure  tones,  delivered  in  pairs  outside  the  focus  of  attention.  The  omission  of  predictable  sounds  generated  an  N1  response  closely  resembling  that  of  the  actual  sound,  extending  previous  findings.  Crucially,  the  omission  of  highly  predictable  tones  elicited  a  larger  distraction  response  (P3a)  than  the  omission  of  unpredictable  sounds,  proving  that  the  absence  of  the  tone  was  better  noticed  when  the  tone  was  highly  expected.  In  two  further  EEG  and  MEG  experiments  we  demonstrated  that  the  “resemblance”  between  the  brain  responses  to  the  omitted  and  actual  sounds  can  be  extended  as  to  obtain  virtually  perfect  cortical  simulations  of  omitted  sounds  at  both  sensor  (EEG)  and  source  (MEG)  spaces,  overriding  the  traditional  concept  of  “stimulus  template”.  We  conclude  by  proposing  that  auditory  predictions  are  precise  (point-­‐wise)  neural  hypotheses  about  what  is  in  the  world  as  we  hear  it,  and  what  is  not.      ID:  175    

Trial-­‐to-­‐trial  variation  of  auditory  evoked  potentials  and  mismatch  negativity  in  rat  auditory  cortex  Tomoyo  Isoguchi  Shiramatsu,  Hirokazu  Takahashi  The  University  of  Tokyo,  Japan  [email protected]­‐tokyo.ac.jp  Mismatch  Negativity  (MMN)  refers  to  a  negative  deflection  in  auditory  evoked  potential  (AEP)  in  response  to  sound  changes.  We  have  reported  that  MMN  in  rats  is  not  a  

Page 87: Complete program including all scientific contributions (21 MB, PDF)

  74  

mere  effect  of  stimulus-­‐specific  adaptation  (SSA),  while  middle  latency  potential  (P1)  exhibited  strong  SSA.  In  this  study,  we  investigated  whether  MMN  amplitude  depends  on  SSA  of  P1,  based  on  grand  averaged  analysis  and  single  trial  analysis.  Eleven  Wistar  rats,  at  postnatal  week  8-­‐10,  with  a  body  weight  of  250-­‐310g,  were  used  in  the  experiment.  Rats  were  anesthetized  with  isoflurane  (3%  at  induction  and  1-­‐2%  for  maintenance),  and  their  right  auditory  cortex  were  surgically  exposed.  A  surface  microelectrode  array  with  a  grid  of  10×7  recording  sites  epipially  recorded  AEPs  during  an  oddball  paradigm.  The  test  stimuli  were  60-­‐dB  SPL,  100-­‐ms-­‐duration  tone  bursts.  The  test  frequencies  were  either  10  or  12  kHz.  In  each  block,  540  standards  (90%)  and  60  deviants  (10%)  were  delivered  every  700  ms,  and  the  grand-­‐averaged  and  single-­‐trial responses  of  standard  and  deviant  AEP  were  obtained.  In  either  the  grand-­‐averaged  or  single-­‐trial  AEPs,  the  amplitudes  of  deviant  P1  and  MMN  were  quantified.  P1  amplitude  was  defined  as  the  maximum  potential  within  50  ms  from  the  stimulus  onset.  MMN  amplitude  was  defined  as  the  maximum  within  50  –  150-­‐ms  post-­‐stimulus  latency  in  the  subtraction  waveform  of  the  deviant  response  from  standard  response.  First,  in  the  grand-­‐averaged  responses,  we  found  a  positive  correlation  between  the  deviant  P1  and  MMN  (R  =  0.73,  p  <  0.001),  suggesting  that  the  AEP  amplitude  depends  on  the  activity  level  of  auditory  cortex.  However,  amplitudes  in  single-­‐trial  responses  did  not  exhibit  correlation  between  P1  and  MMN  waves.  More  interestingly,  MMN  amplitude  exhibited  a  bimodal  distribution  while  P1  amplitude  showed  a  unimodal  distribution,  suggesting  that  MMN  is  generated  only  in  some  trials  but  not  in  other  trials.  Furthermore,  there  was  very  weak  positive  correlation  between  MMN  amplitude  in  single  trial  and  the  number  of  preceding  standard  tones  (R=0.03,  p<0.05).  Thus,  MMN  is  likely  to  appear  independently  of  SSA  of  P1  in  an  ‘all-­‐or-­‐none’  manner.    This  work  was  partially  contracted  by  SCOPE  (121803022)  and  supported  by  KAKENHI  (25135710,  26242040).    

ID:  176    

Development  of  cortico-­‐cortical  and  thalamocortical  excitatory  neural  circuits  in  the  human  auditory  cortex  Soumya  Iyengar1,  Arvind  Singh  Pundir1,  Utkarsha  A.  Singh1,  Nikhil  Ahuja1,  Bishen  Radotra2,  Praveen  Kumar3,  PC  Dikshit4,  SK  Shankar5,  Anita  Mahadevan5  1National  Brain  Research  Centre,  India;  2PGIMER,  Chandigarh,  India;  3Base  Hospital,  Delhi  Cantonment,  New  Delhi,  India;  4Maulana  Azad  Medical  College,  Delhi,  India;  5NIMHANS,  Bangalore,  India  [email protected]  Axons  in  all  layers  of  the  human  auditory  cortex  are  immunoreactive  for  heavy  and  medium  chain  neurofilaments  (a  marker  for  axonal  maturity)  by  25GW  and  the  density  of  the  neurofilament-­‐rich  plexus  in  the  cortical  wall  become  adult-­‐like  during  the  first  postnatal  year  in  humans  (9  postnatal  months).  In  order  to  study  the  origin  of  these  axons,  we  studied  the  expression  of  the  vesicular  glutamate  transporters  1  and  2  which  are  known  to  predominate  in  either  cortico-­‐cortical  synapses  (VGLUT-­‐1)  or  thalamocortical  synapses  (VGLUT-­‐2).  We  found  that  levels  of  VGLUT-­‐2  mRNA  were  higher  in  postmortem  human  auditory  cortex  samples  before  birth  compared  to  the  postnatal  period.  In  contrast,  levels  of  VGLUT-­‐1  mRNA  were  low  before  birth  and  increased  during  the  postnatal  period  to  peak  at  adolescence  and  then  decreased  in  adulthood.  Further,  immunohistochemistry  revealed  that  both  VGLUT-­‐1  and  VGLUT-­‐2  proteins  were  expressed  in  the  presumptive  human  auditory  cortex  at  25GW.  Higher  levels  of  VGLUT-­‐1  immunoreactivity  were  present  in  Layers  II  and  III  (supragranular  layers)  and  Layers  V  and  VI  (infragranular  layers)  compared  to  Layer  IV  as  early  as  34GW  and  this  pattern  was  maintained  until  adulthood.  Immunoreactivity  for  VGLUT-­‐1  was  the  highest  during  adolescence  in  the  primary  auditory  cortex,  as  was  the  case  for  VGLUT-­‐1  mRNA.  In  contrast,  a  dense  band  of  VGLUT-­‐2-­‐positive  terminals  began  to  appear  in  Layer  IV  of  the  presumptive  Heschl’s  gyrus  at  34GW  and  formed  a  clear  band  in  this  layer  by  37G.  There  was  a  marked  increase  in  the  density  of  VGLUT2  immunoreactive  fibers  centered  at  Layer  IV  by  18  postnatal  months,  which  decreased  somewhat  by  adulthood.  

Page 88: Complete program including all scientific contributions (21 MB, PDF)

  75  

Immunoreactivity  for  VGLUT-­‐2  was  not  restricted  to  Layer  IV  but  was  also  present  in  axon  terminals  in  other  layers,  especially  in  Layers  V  and  VI,  starting  at  34GW.  Our  results  suggest  that  thalamic  axons  which  utilize  glutamate  begin  to  innervate  the  human  auditory  cortex  as  early  as  25GW  and  gradually  increase  in  density  by  the  first  postnatal  year,  after  which  they  appear  to  undergo  pruning.  Our  results  also  suggest  that  VGLUT-­‐1  labeled  cortico-­‐cortical  synapses  begin  to  form  in  the  human  auditory  cortex  during  prenatal  development.    ID:  177    

Categorical  perception  of  consonants  and  vowels:  Behavioral  and  magnetoencephalographic  evidence  Christian  Friedrich  Altmann,  Maiko  Uesaki,  Kentaro  Ono,  Masao  Matsuhashi,  Tatsuya  Mima,  Hidenao  Fukuyama  Kyoto  University,  Japan  [email protected]  This  experiment  aimed  at  investigating  categorical  perception  of  consonants  compared  to  vowels.  To  this  end,  we  designed  stimuli  along  a  phonological  continuum  from  /ba/  to  /da/,  /bo/  to  /do/,  /ba/  to  /bo/,  and  /da/  to  /do/,  thus  entailing  changes  of  the  consonant  or  the  vowel  of  a  consonant-­‐vowel  (CV)  syllable.  In  a  behavioral  experiment,  we  first  determined  the  category  boundaries  for  each  individual  participant.  Then,  while  measuring  magnetoencephalography  (MEG),  we  presented  participants  with  consecutive  pairs  of  either  same  or  different  CV  syllables.  In  case  of  different  stimuli,  the  two  CV  syllables  were  either  chosen  from  within  the  same  category  or  they  crossed  a  category-­‐boundary.  During  the  MEG  experiment,  participants  actively  discriminated  the  stimulus  pairs.  Behaviorally,  we  found  that  discrimination  was  easier  for  the  between-­‐  compared  to  the  within-­‐category  contrast  for  both  consonants  and  vowels.  However,  this  categorical  effect  was  significantly  stronger  for  the  consonants  compared  to  vowels,  in  line  with  a  more  continuous  representation  of  vowels.  At  the  neural  level,  we  observed  significant  repetition  suppression  of  MEG  evoked  fields,  i.e.,  lower  amplitudes  for  physically  same  compared  to  different  stimulus  pairs,  from  around  430  to  

500  ms  after  onset  of  the  second  stimulus.  Source  reconstruction  revealed  generating  sources  of  this  repetition  suppression  effect  within  the  left  superior  temporal  lobe.  A  region-­‐of-­‐interest  analysis  within  this  region  showed  a  clear  categorical  effect  for  consonants,  but  not  for  vowels.  Thus,  our  study  corroborates  the  proposition  that  categorical  effects  are  stronger  for  consonants  compared  to  vowels.  Furthermore,  it  provides  further  evidence  for  the  important  role  of  left  superior  temporal  areas  in  categorical  representation  during  active  phoneme  discrimination.      ID:  178    

Unilateral  tinnitus:  Changes  in  connectivity  measured  with  fMRI  Cris  Lanting1,  Emile  de  Kleine1,  Dave  Langers1,2,  Pim  van  Dijk1  1University  of  Groningen,  The  Netherlands;  2University  of  Nottingham,  United  Kingdom  [email protected]  Introduction  Tinnitus  is  a  percept  of  sound  that  is  not  related  to  an  acoustic  source  outside  the  body.  Mechanisms  in  the  central  nervous  system  are  believed  to  play  a  role  in  its  pathology.  It  is  thought  that,  following  hearing  loss,  neurons  may  change  the  strength  of  existing  connections.  As  a  result,  spontaneous  firing  rates  may  increase,  as  well  as  the  synchrony  across  multiple  neurons.  Functional  magnetic  resonance  imaging  was  used  to  investigate  differences  in  the  connectivity  patterns;  possibly  reflecting  increased  synchrony,  across  nuclei  in  the  auditory  path.    Methods  All  imaging  experiments  were  performed  on  a  3T  MRI  system  (Philips  Intera)  with  an  eight-­‐channel  SENSE  head  coil.  Three  8-­‐min  runs  were  acquired  consisting  of  51  identical  single-­‐shot  T2*-­‐sensitive  EPI  volumes  (TR  10  s;  TE  22  ms;  voxel-­‐size  1.0  ×  1.0  ×  2.0  mm3).  Fourteen  subjects  with  unilateral  tinnitus  were  recruited  as  well  as  sixteen  subjects  without  tinnitus,  all  without  neurological  and  psychiatric  history.  We  obtained  the  time-­‐courses  of  ten  auditory  nuclei  (bilateral  CN,  IC,  MGB,  primary  auditory  cortex,  secondary  cortex)  and  the  vermis  of  the  cerebellum.  These  arrays  were  concatenated  

Page 89: Complete program including all scientific contributions (21 MB, PDF)

  76  

over  subjects  resulting  in  a  matrix  containing  all  the  time-­‐courses  across  subjects.  For  each  group,  the  covariance  matrix  was  calculated,  containing  the  Pearson  cross-­‐correlation  for  all  possible  ROI  pairs.    Results  The  characteristics  of  the  connectivity  patterns  did  not  relate  to  the  laterality  of  tinnitus.  The  lateralization  for  left-­‐  or  right  ear  stimuli,  as  expressed  in  a  lateralization  index,  was  considerably  smaller  in  subjects  with  tinnitus  compared  to  that  in  controls.  Reduced  functional  connectivity  between  the  brainstem  and  auditory  cortex  was  observed  in  subjects  with  tinnitus  compared  to  controls.    Conclusion  Reduced  connectivity  between  brainstem  and  cortex  is  consistent  with  two  existing  models  of  tinnitus  generation.  In  one  model,  tinnitus  corresponds  to  a  deficit  the  connection  between  the  limbic  system  and  the  auditory  thalamus  [Rauschecker  2010],  normally  inhibiting  tinnitus-­‐related  activity.  In  the  other,  tinnitus  relates  to  increased  large-­‐scale,  slow-­‐rate  oscillatory  coherent  thalamocortical  activity  [Llinás  1999].  In  both  models,  a  change  in  the  function  of  the  auditory  thalamus  would  lead  to  an  reduced  connectivity  between  brainstem  and  cortex,  suggesting  an  important  role  for  the  medial  geniculate  body  of  the  thalamus.    ID:  179    

Modulation  of  the  cortical  representation  of  vocalizations  in  the  guinea  pig  by  the  amygdala  David  B  Green,  Mark  N  Wallace,  Alan  R  Palmer  MRC  Institute  of  Hearing  Research  Nottingham,  United  Kingdom  [email protected]  Guinea  pigs  have  a  repertoire  of  at  least  eleven  vocalisations  that  are  context  dependent,  communicating  information  about  danger,  identity  and  emotional  state.  Most  of  these  vocalizations  can  be  produced  by  electrical  stimulation  of  a  variety  of  structures  in  the  brain  even  when  the  animal  is  anaesthetised.  We  have  elicited  eight  calls  from  urethane-­‐anaesthetised  guinea  pigs  by  stimulating  parts  of  the  limbic  system  including  the  anterior  

cingulate  cortex,  hypothalamus,  midline  thalamus  and  basal  amygdala.  Of  the  eight  distinct  vocal  patterns  elicited  by  electrical  stimulation,  six  unambiguously  matched  spontaneous  calls,  while  the  remaining  two  were  identified  as  unnatural  versions  of  one  spontaneous  call.  There  seems  to  be  strong  emotional  modulation  of  animal  calls  that  presumably  involves  the  limbic  system.  Here  we  investigate  whether  activity  in  the  limbic  portion  of  the  call  production  pathways  can  also  modulate  the  sensory  representation  of  conspecific  vocalizations.  We  acoustically  presented  recorded  calls,  while  electrically  stimulating  the  basal  amygdala  –  an  emotion-­‐mediating  structure  that  is  involved  in  the  affective  prosody  of  human  speech.  Of  the  eight  functional  areas  in  the  guinea  pig  auditory  cortex,  the  two  most  responsive  to  vocalizations  are  the  primary  area  (AI)  and  the  adjacent  ventrorostral  belt  area  (VRB).  However,  in  this  study,  we  found  evidence  of  a  new  area  extending  between  the  rhinal  sulcus  and  the  previously  defined  VRB.  This  area  responds  poorly,  or  not  at  all,  to  pure  tones  yet  is  highly  selective  to  conspecific  vocalisations.  It  may  constitute  a  communication-­‐related  parabelt  area  and,  if  so,  would  be  the  first  parabelt  area  described  in  the  guinea  pig.  Electrical  stimulation  in  the  basal  amygdala  was  combined  with  auditory  presentation  of  a  range  of  conspecific  vocalisations,  whilst  recording  neural  activity  in  AI,  VRB  and  the  suprarhinal  area.  In  all  three  cortical  areas,  neuronal  responses  to  the  acoustic  vocalizations  could  be  enhanced  or  suppressed  depending  on  the  call  type  by  simultaneous  electrical  stimulation.  This  is  direct  evidence  that  the  amygdalar  portion  of  the  limbic  system  can  modulate  the  sensory  representation  of  communication  calls  in  primary  and  secondary  cortical  areas.  

Page 90: Complete program including all scientific contributions (21 MB, PDF)

  77  

ID:  180    

Appearing  and  disappearing  objects  in  acoustic  scenes  are  supported  by  distinct  neural  representations:  Evidence  from  MEG  Ediz  Sohoglu,  Maria  Chait  University  College  London,  United  Kingdom  [email protected]  Change  detection  is  a  critical  computation  in  hearing  and  underlies  our  capacity  to  perceive  complex  and  time-­‐varying  sounds  such  as  music  and  speech  (Näätänen  et  al.,  2001;  Bizley  and  Cohen,  2013).  However,  the  precise  brain  mechanisms  by  which  change  detection  is  accomplished,  particularly  in  complex  ongoing  scenes,  remain  unknown.  In  the  current  MEG  study,  we  test  the  hypothesis  that  changes  in  acoustic  scenes  are  represented  in  fundamentally  different  ways  depending  on  whether  the  change  involves  an  appearing  or  disappearing  object  in  the  ongoing  scene.  Listeners  were  presented  with  scenes  containing  four  or  ten  auditory  objects,  formed  from  rapid  pure-­‐tone  sequences  that  each  had  a  unique  frequency  and  amplitude  modulation  rate.  On  some  trials,  one  of  these  objects  appeared  at  a  variable  time  relative  to  scene  onset  while  on  other  trials  one  object  disappeared  from  the  scene.  An  additional  control  condition  involved  scenes  without  a  change.  While  MEG  was  collected,  listeners  were  required  to  actively  detect  the  changing  objects.  Our  results  show  that  listeners  are  quicker  and  more  accurate  in  detecting  appearing  rather  than  disappearing  objects.  Underpinning  this  behavioral  difference  are  change-­‐evoked  neural  responses  that  are  not  only  significantly  larger  and  earlier  for  appearing  objects  but  are  also  fundamentally  different:  the  first  observable  responses  to  appearing  and  disappearing  objects  (peaking  at  ~50  ms  and  ~150  ms,  respectively)  associated  with  distinct  spatial  patterns  of  MEG  activity.  These  results  suggest  that  appearing  and  disappearing  objects  are  supported  by  distinct  neural  representations.  One  possible  reason  for  this  asymmetry  is  a  high-­‐level  perceptual  bias  for  appearing  events  (Cole  and  Kuhn,  2010).  Another  is  because  detecting  disappearing  objects  is  a  computationally  harder  problem,  necessarily  requiring  the  prior  

representation  of  the  acoustic  scene  (Cervantes  Constantino  et  al.,  2012).      ID:  181    

Neuronal  entrainment  to  rhythm  in  the  gerbil  inferior  colliculus  Vani  Rajendran1,  Jose  Garcia-­‐Lazaro2,  Nick  Lesica2,  Jan  W  H  Schnupp1  1University  of  Oxford,  United  Kingdom;  2University  College  London,  United  Kingdom  [email protected]  While  the  perception  of  “beat”  in  rhythmic  stimuli  is  a  well-­‐appreciated  human  ability,  the  neural  mechanisms  of  beat  perception  are  poorly  understood.  In  a  recent  study  (Nozaradan  et  al.,  2012),  human  listeners  were  presented  with  rhythmic  patterns  consisting  of  pure  tones  and  silent  gaps  while  an  electroencephalogram  (EEG)  was  recorded.  These  patterns  lacked  a  simple  periodic  structure  but  were  nevertheless  perceived  as  rhythmic,  even  though  the  perceived  “beat”  often  fell  on  silent  intervals.  The  spectrum  of  EEG  activity  revealed  selective  enhancement  of  beat-­‐related  frequencies  and  selective  suppression  of  frequencies  that  did  not  correspond  to  the  perceived  rhythmic  pattern;  furthermore,  these  meter-­‐related  frequencies  were  enhanced  even  when  the  acoustic  energy  in  the  pattern  was  not  predominant  at  these  frequencies,  suggesting  that  these  EEG  components  reflect  a  neural  correlate  of  the  perceived  beat.  To  test  whether  the  neuronal  entrainment  to  beat-­‐related  frequencies  underlying  human  beat  perception  can  be  observed  in  other  species,  we  recorded  responses  from  the  inferior  colliculus  (IC)  of  anaesthetized  gerbils  to  pink  noise  stimuli  with  the  same  rhythmic  patterns  used  by  Nozaradan  et  al.  An  analysis  of  the  gerbil  IC  local  field  potentials  (LFP)  shows  striking  similarity  to  the  human  EEG  spectra  obtained  by  Nozaradan  et  al,  including  the  characteristic  enhancement  of  beat-­‐related  frequencies  and  suppression  of  other  frequencies.  This  surprising  finding  suggests  that  fundamental  mechanisms  of  rhythm  and  beat  processing  are  likely  to  be  very  similar  across  mammalian  species,  and  reside  in  early  stages  of  the  ascending  auditory  pathway.    

Page 91: Complete program including all scientific contributions (21 MB, PDF)

  78  

ID:  182    

Impaired  neural  representation  of  single-­‐trial  low-­‐frequency  speech  information  by  children  with  dyslexia  Alan  Power,  Natasha  Mead,  Lisa  Barnes,  Usha  Goswami  University  of  Cambridge,  United  Kingdom  [email protected]  Children  with  developmental  dyslexia,  a  disorder  of  learning  that  impairs  the  fluency  and  accuracy  of  reading  and  spelling,  have  difficulties  in  oral  phonological  (sound  structure)  tasks  across  languages.  This  cognitive  impairment  in  the  “phonological  representation”  of  word  forms  is  considered  causal  to  the  developmental  disorder,  yet  direct  evidence  for  impaired  neural  encoding  of  speech  is  currently  lacking.  Here  we  present  800  noise-­‐vocoded  words  to  children  with  dyslexia,  to  age-­‐matched  typically-­‐developing  control  children,  and  to  younger  reading-­‐level  matched  control  children  in  a  word  report  task.  Including  younger  typically-­‐developing  children  matched  in  reading  achievement  to  dyslexic  children  controls  for  the  impact  of  reading  experience  on  the  brain.  The  accuracy  of  speech  encoding  was  assessed  via  stimulus  reconstruction  in  EEG.  Children  with  dyslexia  showed  significantly  poorer  word  report  compared  to  CA  controls,  performing  like  younger  RL  children.  Reconstruction  of  the  amplitude  modulations  in  the  speech  was  assessed  in  5  frequency  bands  spanning  0  –  10  Hz.  Compared  to  CA  controls,  children  with  dyslexia  showed  significantly  impaired  encoding  in  the  0  –  2  Hz  (delta)  band,  but  not  in  any  other  low  frequency  band.  RL  controls  performed  like  CA  controls  and  better  than  children  with  dyslexia,  suggesting  that  reduced  reading  experience  was  not  driving  the  dyslexic  impairments.  Individual  differences  in  speech  envelope  encoding  accuracy  were  significantly  correlated  with  phonological  awareness  (sensitivity  to  syllable  stress)  and  accuracy  of  word  report.  These  results  provide  the  first  evidence  that  the  neural  representation  of  the  speech  envelope  is  impaired  in  the  delta  band  in  dyslexia.  Impaired  delta  band  encoding  would  affect  the  prosodic  representation  of  speech,  and  the  representation  of  syllable  stress  and  syllable  boundaries.  Consequently  this  neural  impairment  would  affect  the  

phonological  representation  of  word  forms  in  the  mental  lexicon  in  dyslexia  across  all  languages,  not  just  English,  offering  a  possible  cross-­‐linguistic  neural  cause  of  this  disorder.      ID:  183    

Temporal  predictability  as  a  grouping  cue  in  the  perception  of  auditory  streams  Vani  G  Rajendran1,  Nicol  S  Harper1,  Benjamin  D  Willmore1,  William  M  Hartmann2,  Jan  W  H  Schnupp1  

1University  of  Oxford,  United  Kingdom;  2Michigan  State  University,  United  States  of  America  [email protected]  The  process  of  parsing  acoustic  stimuli  into  coherent  “streams”  of  sound  is  referred  to  as  auditory  streaming.  While  numerous  studies  have  implicated  stimulus  properties  such  as  rate,  frequency  separation,  and  temporal  coherence  on  the  propensity  for  auditory  streams  to  segregate,  relatively  little  is  known  about  how  temporal  regularity  of  a  sound  affects  stream  perception.  We  report  a  role  of  temporal  regularity  on  the  perception  of  auditory  streams.  Listeners  were  presented  with  two-­‐tone  sequences  in  an  A-­‐B-­‐A-­‐B  rhythm  that  was  either  regular  or  had  a  controlled  amount  of  temporal  jitter  added  independently  to  each  of  the  B  tones.  Subjects  were  then  asked  to  report  whether  they  perceived  one  or  two  streams.  The  percentage  of  trials  in  which  two  streams  were  reported  substantially  and  significantly  increased  with  increasing  amounts  of  temporal  jitter.  This  finding  suggests  that  temporal  predictability  of  tones  may  serve  as  a  binding  cue  during  auditory  scene  analysis.      ID:  184    

Using  adaptation  to  investigate  the  neural  mechanisms  of  attention  in  the  human  auditory  cortex  Jessica  de  Boer,  Sarah  Gibbs,  Katrin  Krumbholz  MRC  Institute  of  Hearing  Research  Nottingham,  United  Kingdom  [email protected]  Single  neuron  recordings  in  auditory  cortex  have  suggested  that  attention  causes  a  sharpening  of  neural  frequency  selectivity  [1].  In  humans,  neuroimaging  studies  have  reported  similar  effects  when  using  notched-­‐noise  masking  to  estimate  cortical  frequency  selectivity  [2].  There  is  a  possibility,  however,  

Page 92: Complete program including all scientific contributions (21 MB, PDF)

  79  

that  these  results  were  confounded  by  differences  in  attentional  load  between  different  masking  conditions.  Here,  we  tested  the  effect  of  selective  attention  on  cortical  frequency  tuning  directly,  using  an  adaptation  paradigm  previously  used  in  the  visual  system  [3].  In  this  paradigm,  the  feature  selectivity  of  cortical  neurons  is  assessed  by  measuring  the  degree  of  stimulus-­‐specific  adaptation  of  the  gross  evoked  response  as  a  function  of  the  difference  between  the  adapting  stimulus  and  the  subsequently  presented  probe  stimulus.  If  attention  causes  an  increase  in  neural  selectivity,  it  would  be  expected  that  adaptation  becomes  more  stimulus  specific,  that  is,  more  strongly  dependent  on  the  adapter-­‐probe  difference.  Auditory-­‐evoked  potentials  (AEPs)  were  recorded  from  18  participants  performing  a  dichotic  listening  task.  Tone  sequences  comprising  four  equally  probable  frequencies  were  presented  to  one  ear,  while,  concurrently,  a  sequence  of  waxing  or  waning  noises  was  presented  to  the  other  ear.  The  participants  were  instructed  to  attend  either  the  tones  or  the  noises  (alternating  every  2.5  min)  and  to  detect  rare  oddballs  within  the  attended  stimulus  sequence.  Only  AEPs  to  the  tones  were  recorded.  As  expected,  AEP  amplitude  was  significantly  larger  when  the  tones  were  attended  than  when  they  were  ignored.  Furthermore,  the  effect  of  attention  on  AEP  amplitude  was  significantly  greater  when  the  evoking  tone  was  immediately  preceded  by  a  tone  of  a  different  frequency  than  when  it  was  preceded  by  a  tone  of  the  same  frequency.  This  suggests  that  the  adaptation  caused  by  preceding  tones  was  more  frequency-­‐specific  when  the  tones  were  attended  than  when  they  were  unattended,  implying  that  selective  attention  caused  an  increase  in  cortical  frequency  selectivity.    [1]  Fritz  J.,  Shamma  S.,  Elhilali  M.  and  Klein  D.  (2003).  Nat.  Neurosci.,  6  (11),  1216-­‐1223.  [2]  Ahveninen  J.,  Hamalainen  M.,  Jaaskelainen  I.P.,  Ahlfors  S.P.,  Huang  S.  and  Lin  F.H.  (2011).  Proc.  Natl.  Acad.  Sci.  USA,  108,  4182-­‐4187.  [3]  Murray  S.O.  and  Wojciulik  E.  (2004).  Nat.  Neurosci.,7,  70-­‐74.  

ID:  185    

Neuromodulatory  effects  of  vagus  nerve  stimulation  in  the  rat  auditory  cortex  and  thalamus  Rie  Hitsuyu1,  Tomoyo  I.  Shiramatsu1,  Takahiro  Noda1,  Ryohei  Kanzaki1,  Takeshi  Uno1,  Kensuke  Kawai2,  Hirokazu  Takahashi1  1The  University  of  Tokyo,  Japan;  2NTT  Medical  Center  Tokyo,  Japan  [email protected]­‐tokyo.ac.jp  Vagus  nerve  stimulation  (VNS)  causes  neuromodulatory  effects  in  the  cerebral  cortex,  which  are  useful  not  only  for  therapy  on  intractable  epilepsy  but  also  for  enhancement  of  higher  brain  functions  such  as  cognition  and  memory.  However,  the  mechanisms  of  action  of  VNS  are  poorly  understood.  In  this  study,  we  examined  whether  and  how  VNS  modulates  auditory-­‐evoked  activity  in  the  auditory  cortex  and  thalamus.  VNS  implantation  was  performed  in  6  rats  at  postnatal  week  of  10  –  13.  A  week  after  the  implantation,  neural  activities  in  the  auditory  cortex  and  medial  geniculate  body  were  investigated  under  isoflurane  anesthesia.  A  surface  microelectrode  array  was  used  to  epipially  map  the  auditory  evoked  potentials  (AEP).  In  addition,  a  depth  microelectrode  array  was  used  to  measure  multi-­‐unit  activities  (MUA)  in  the  auditory  cortex  and  thalamus  simultaneously.  Before  and  after  VNS  was  applied,  auditory-­‐evoked  neural  activities  were  characterized  in  terms  of  stimulus  specific  adaptation  (SSA),  reproducibility,  and  temporal  response  property.  VNS  was  a  train  of  0.5-­‐mA  pulses  at  10  Hz  for  30  s  and  the  train  was  delivered  every  5  min  throughout  the  experiments.  Neural  measurements  were  carried  out  in  between  VNS  delivery.  We  found  that  VNS  modulated  SSA  in  cortical  AEP  such  that  strong  SSA  decreased  while  weak  SSA  increased,  suggesting  that  VNS  reduced  variation  of  SSA  in  the  auditory  cortex.  We  also  found  that,  in  the  auditory  cortex,  VNS  decreased  Fano  factor  of  tone-­‐evoked  MUA,  i.e.,  a  measure  of  reproducibility,  when  the  test  frequency  was  close  to  the  characteristic  frequency  (CF),  but  had  little  effects  for  off-­‐CF  tones.  VNS  also  modified  a  temporal  response  property  in  the  auditory  cortex  such  that  the  number  of  spikes  significantly  reduced  in  

Page 93: Complete program including all scientific contributions (21 MB, PDF)

  80  

response  to  fast  click  trains.  In  the  thalamus,  on  the  other  hand,  VNS  is  likely  to  have  less  effect  on  reproducibility  and  temporal  property  than  in  the  cortex.  These  results  suggest  that  VNS  may  have  profound  effects  on  the  auditory-­‐evoked  neural  activities  specifically  in  the  cortex.    This  work  was  partially  supported  by  SCOPE  (121803022)  and  KAKENHI  (25135710,  26242040).      ID:  186    

To  integrate  the  unknown:  Touching  your  lips,  hearing  your  tongue,  seeing  my  voice  Avril  Treille,  Coriandre  Vilain,  Jean-­‐Luc  Schwartz,  Marc  Sato  GIPSA-­‐lab;  Grenoble,  France  Avril.Treille@gipsa-­‐lab.grenoble-­‐inp.fr  Seeing  the  articulatory  gestures  of  the  speaker  significantly  enhances  auditory  speech  perception.  A  key  issue  is  whether  cross-­‐modal  speech  interactions  only  depend  on  well-­‐known  auditory  and  visual  modalities  or,  rather,  might  also  be  triggered  by  other  sensory  sources  less  common  in  speech  communication.  The  present  electro-­‐encephalographic  (EEG)  and  functional  magnetic  resonance  imaging  (fMRI)  studies  aimed  at  investigating  cross-­‐modal  interactions  between  auditory,  haptic,  visuo-­‐facial  and  visuo-­‐lingual  speech  signals  during  the  perception  of  other’s  and  our  own  production.  In  a  first  EEG  study  (n=16),  auditory  evoked  potentials  were  compared  during  auditory,  audio-­‐visual  and  audio-­‐haptic  speech  perception  through  natural  dyadic  interactions  between  a  listener  and  a  speaker.  Shortened  latencies  and  reduced  amplitude  of  early  auditory  evoked  potentials  were  observed  during  both  audio-­‐visual  and  audio-­‐haptic  speech  perception  compared  to  auditory  speech  perception,  providing  evidence  for  early  integrative  mechanisms  between  auditory,  visual  and  haptic  information.  In  a  second  fMRI  study  (n=12),  the  neural  substrates  of  cross-­‐modal  binding  during  auditory,  visual  and  audio-­‐visual  speech  perception  in  relation  to  either  facial  or  tongue  movements  of  a  speaker  (recorded  by  a  camera  and  an  ultrasound  system,  respectively)  were  determined.  In  line  with  a  sensorimotor  nature  of  speech  perception,  common  overlapping  activity  was  observed  for  

both  facial  and  tongue-­‐related  speech  stimuli  in  the  posterior  part  of  the  superior  temporal  gyrus/sulcus  as  well  as  in  the  premotor  cortex  and  in  the  inferior  frontal  gyrus.  In  a  third  EEG  study  (n=17),  auditory  evoked  potentials  were  compared  during  the  perception  of  auditory,  visual  and  audio-­‐visual  stimuli  related  to  our  own  speech  gestures  or  those  of  a  stranger.  Apart  from  a  reduced  amplitude  of  early  auditory  evoked  potentials  during  audio-­‐visual  compared  to  auditory  and  visual  speech  perception,  a  self-­‐advantage  was  also  observed  with  shortened  latencies  of  early  auditory  evoked  potentials  for  self-­‐related  speech  stimuli.  Altogether  our  results  provide  evidence  for  bimodal  interactions  between  auditory,  haptic,  visuo-­‐facial  and  visuo-­‐lingual  speech  signals.  They  further  emphasize  the  multimodal  nature  of  speech  perception  and  demonstrate  that  multisensory  speech  perception  is  partly  driven  by  sensory  predictability  and  by  the  listener’s  knowledge  of  speech  production.      ID:  187    

Transformation  of  temporal  plasticity  from  auditory  midbrain  to  auditory  cortex  Maike  Vollmer1,  Ralph  E.  Beitel2,  Patricia  A.  Leake2  1University  Hospital  Wuerzburg,  Germany;  2University  of  California  San  Francisco,  United  States  of  America  [email protected]  Primary  auditory  cortex  (AI)  is  functionally  altered  by  learning-­‐induced  temporal  plasticity  in  profoundly  deaf  cats  (Beitel  et  al.,  2011;  Vollmer  and  Beitel,  2011).  To  characterize  temporal  plasticity  induced  by  behavioral  training  within  the  auditory  midbrain,  we  studied  temporal  processing  properties  of  neurons  in  the  central  (ICC)  and  external  (ICX)  nuclei  of  the  inferior  colliculus  (IC)  in  animals  with  different  deafness  and  prosthetic  hearing  histories.  We  then  compared  the  IC  results  with  temporal  processing  properties  of  AI  neurons  recorded  in  the  same  animals.  In  neonatally  deafened  juvenile  cats  and  long-­‐deaf  cats  (≥3.5  yr),  we  provided  behaviorally-­‐irrelevant,  passive  electric  cochlear  implant  stimulation,  allowing  us  to  fully  control  their  auditory  experience.  Some  of  these  animals  received  additional  signal-­‐detection  behavioral  training;  a  subgroup  of  long-­‐deaf  animals  

Page 94: Complete program including all scientific contributions (21 MB, PDF)

  81  

received  no  auditory  stimulation  throughout  their  lifetimes.  Adult  deafened,  passively  stimulated  cats  served  as  controls.  In  the  ICX,  a  marginal  deafness  effect  was  observed,  but  electric  stimulation  had  no  effect  on  temporal  processing.  In  the  ICC  and  AI,  temporal  following  and  latency  were  degraded  by  long-­‐term  deafness.  Passive  stimulation  remediated  these  functional  deficits  in  the  ICC  and  to  a  lesser  extent  in  AI.  Compared  to  passive  stimulation  alone,  behaviorally-­‐relevant  stimulation  had  little  or  no  effect  on  neuronal  response  properties  in  the  ICC  but  significantly  enhanced  temporal  processing  in  cortical  field  AI  of  both  deaf  juvenile  and  long-­‐deaf  cats.  This  study  is  unique  in  providing  a  direct  comparison,  in  the  same  animals,  of  experience-­‐induced  temporal  plasticity  at  different  levels  in  the  auditory  system.  Our  results  suggest  that  a  basic  transformation  in  neuronal  processing  occurs  between  auditory  midbrain  and  forebrain,  and  auditory  cortex  emerges  as  a  pivotal  site  for  behaviorally  driven  temporal  plasticity  in  the  profoundly  deaf  cat.    Supported  by  N01-­‐DC-­‐3-­‐1006  and  HHS-­‐N-­‐263-­‐2007-­‐00054-­‐C  (PI:  P.A.  Leake),  NIDCD  R01-­‐DC-­‐02260  (PI:  C.E.  Schreiner)  and  by  DGF  Vo  640/1-­‐1  (PI:  M.  Vollmer).      ID:  188    

Spatial  processing  of  cortical  neurons  in  the  primary  auditory  cortex  after  cholinergic  basal  forebrain  lesion  in  ferrets  Fernando  R  Nodal,  Nicholas  Leach,  Peter  Keating,  Johannes  Dahmen,  Andrew  J.  King,  Victoria  M.  Bajo  Oxford  University,  United  Kingdom  [email protected]  Cortical  acetylcholine  release  has  been  implicated  in  different  cognitive  functions  including  sensory  plasticity.  We  have  recently  shown  that  cortical  cholinergic  innervation  is  also  necessary  for  a  normal  auditory  perception  (J  Neurosci  2013.  33:  6659-­‐71).  To  explore  whether  behavioural  sound  localisation  deficits  observed  in  ferrets  with  reduced  cortical  cholinergic  inputs  were  due  to  changes  in  spatial  sensitivity  of  cortical  neurons,  we  recorded  neural  activity  in  the  primary  auditory  cortex  (A1)  from  3  animal  in  which  nucleus  

basalis  was  previously  lesioned  bilaterally.  Neural  activity  was  recorded  from  146  penetrations  on  the  left  and  right  A1  under  anaesthetia  using  silicon  neuronexus  probes  (single  shank,  16  recording  sites).  Diminished  cholinergic  innervation  was  achieved  by  prior  bilateral  injections  of  the  enzyme  saponin  in  the  nucleus  basalis.  Histological  analysis  after  the  recording  sessions  confirmed  a  mean  loss  of  cholinergic  cells  in  the  nucleus  basalis  of  89.3±7.1%  when  compared  to  control  animals.  This  resulted  in  a  significant  reduction  of  cholinergic  fibres  across  all  auditory  cortex  and  especially  on  the  middle  ectosylvian  gyrus  where  A1  is  located.  The  location  of  the  penetrations  at  the  time  of  the  recordings  and  the  electrophysiological  characterization  that  typically  exhibited  a  mean  latency  ≤20ms,  frequency  tuning  and  mainly  onset  response  allowed  us  to  assign  the  recordings  to  primary  auditory  cortex  (A1).  Frequency  tuning  was  used  to  ensure  an  even  sampling  across  the  tonotopic  axis  of  A1.  Spatial  tuning  was  determined  using  virtual  acoustic  space  techniques  using  200ms  broadband  noise  presented  at  three  different  intensities  (56,70  and  84  dB  SPL)  from  12  locations  separated  30°  in  azimuth  and  interaural  elevation.  Onset  response  spikes  counts  (40ms  time  window)  were  used  to  build  response  plots  and  calculate  the  overall  spatial  preference  as  the  vectorial  sum  of  responses  to  all  spatial  positions.  Most  of  the  units  responded  to  all  the  spatial  locations  and  showed  a  broad  spatial  tuning.  Overall  direction  vectors  indicated  a  contralateral  preference  for  most  units  with  much  less  incidence  of  ipsilateral.  The  majority  of  the  spatial  preference  vectors  were  oriented  towards  the  front  hemifield  (±60°)  regardless  of  lateral  hemispheric  preference.  These  spatial  profiles  are  in  consensus  with  a  population  coding  of  spatial  location  described  in  normal  animals  and  their  properties  enough  to  support  an  accurate  sound  localisation.    

Page 95: Complete program including all scientific contributions (21 MB, PDF)

  82  

ID:  189    

Haemodynamic  pattern  analysis  and  direct  electrical  recording  of  human  brain  activity  during  working  memory  for  tones  Sukhbinder  Kumar1,  Philip  Gander2,  Sabine  Joseph3,  Andrea  R.  Halpern4,  Masud  Husain5,  Kirill  V.  Nourski3,  Hiroyuki  Oya3,  Hiroto  Kawasaki3,  Matthew  A.  Howard3,  Timothy  D.  Griffiths1  1Newcastle  University,  United  Kingdom;  2University  of  Iowa,  United  States  of  America;  3University  College  London,  United  Kingdom;  4Bucknell  University,  United  States  of  America;  5Oxford  University,  United  Kingdom  [email protected]  We  carried  out  pattern  analysis  of  the  fMRI  BOLD  response  and  recorded  local  field  potentials  (LFPs)  from  the  human  brain  during  auditory  working  memory  (WM)  for  tones.  Subjects  were  presented  with  a  low-­‐tone  (<  600  Hz)  and  high-­‐tone  (>  2  kHz)  in  random  order  after  a  visual  cue.  Another  cue  then  informed  the  subjects  which  tone  (first  or  second)  to  keep  in  mind.  A  retention  period  was  followed  by  a  test  tone  and  same/different  decision  indicated  by  button  press.  The  retention  period  was  16s  for  fMRI  and  3s  for  neurophysiology.  fMRI  BOLD  data  on  sixteen  subjects  were  acquired  at  3T  and  subjected  to  separate  multivoxel  pattern  analyses  (MVPA)  to  demonstrate  areas  in  which  activity  predicted  the  tone  perceived  during  perception  or  the  tone  that  was  held  in  mind  during  retention.  For  the  group,  significant  classifier  performance  over  the  whole  retention  period  was  demonstrated  in  Heschl’s  Gyrus  (HG)  and  Planum  Temporale  (PT).  Preliminary  individual  ‘searchlight’  analyses  of  the  whole  brain  with  a  sliding  temporal  window  show  significant  classifier  performance  in  HG  and  PT  during  both  perception  and  retention,  and  suggest  significant  performance  in  the  Inferior  Frontal  Gyrus  and  Hippocampus  during  retention  only.  We  recorded  LFPs  from  two  human  subjects.  The  subjects  were  implanted  with  depth  electrodes  along  the  axis  of  HG  and  subdural  grids  over  temporal  and  frontal  cortex.  We  measured  average  ERPs  and  carried  out  single-­‐trial  time-­‐frequency  analysis.  For  tone  perception,  category-­‐specific  evoked  responses  and  increases  in  gamma-­‐band  power  (60-­‐120  Hz)  were  demonstrated  in  both  subjects  100  ms  after  stimulus  onset  in  HG  and  adjacent  

contacts  in  Superior  Temporal  Gyrus  (STG).  High  tones  elicited  stronger  responses  in  medial  HG  and  low  tones  in  lateral  HG.  For  tone  retention,  sustained  theta-­‐band  (2-­‐6  Hz)  activity  was  observed  in  the  same  contacts  that  showed  gamma-­‐band  responses  during  perception.  The  theta  power  in  HG  showed  a  recency  effect:  the  power  was  greater  when  the  second  tone  was  retained  in  WM.  Theta  power  in  STG  showed  the  opposite  effect.  The  data  support:  1)  a  network  for  auditory  working  memory  maintenance  that  includes  auditory  cortex,  frontal  cortex  and  hippocampus;  2)  theta-­‐band  correlates  of  tone  retention  in  auditory  cortex  in  the  same  neural  ensembles  that  are  active  in  the  gamma  band  during  perception;  3)  neurophysiological  bases  in  the  auditory  cortex  for  interference  effects  within  tonal  working  memory.      ID:  190    

Probing  the  physiology  of  perception:  Invariant  neural  responses  in  ferret  auditory  cortex  during  vowel  discrimination  Stephen  M.  Town,  Katherine  C.  Wood,  Huriye  Atilgan,  Gareth  P.  Jones,  Jennifer  K.  Bizley  University  College  London,  United  Kingdom  [email protected]  Perceptual  invariance  is  the  ability  to  recognize  an  object  despite  variation  in  sensory  input.  For  example,  we  can  recognize  phonetic  components,  such  as  the  vowel  “u”,  across  talkers  with  different  voice  pitches.  However,  it  is  unclear  how  the  brain  supports  perceptual  invariance  and  specifically  whether  neurons  in  auditory  cortex  extract  invariant  representations  of  vowel  identity  across  pitch.  Here  we  study  an  animal  model  of  perceptual  invariance  in  which  ferrets  (n=4)  were  trained  in  a  two-­‐alternative  forced  choice  task  to  discriminate  synthetic  vowel  sounds.  On  each  trial  of  the  task,  the  subject  was  presented  with  two  vowel  sounds  and  required  to  respond  at  a  particular  location  depending  on  vowel  identity.  Across  trials  vowel  pitch  was  varied  and  ferrets  were  required  to  generalize  across  pitch  variation.  During  task  performance,  multi-­‐unit  activity  was  recorded  from  microelectrodes  positioned  in  auditory  cortex.  We  recorded  units  responsive  to  vowels  (those  

Page 96: Complete program including all scientific contributions (21 MB, PDF)

  83  

whose  firing  rate  during  vowel  presentation  differed  by  more  than  3  standard  deviations  from  mean  spontaneous  activity).  For  each  session  a  responsive  unit  was  recorded,  we  asked  if  it  was  possible  to  decode  vowel  identity  from  the  spiking  responses  observed  across  all  pitches.  Using  a  bootstrap  procedure  to  test  significance,  many  units  were  found  to  encode  information  about  vowel  identity  across  pitch.  We  also  decoded  vowel  pitch  across  all  vowel  identities  and  found  that  again,  a  large  of  proportion  of  units  provided  information  about  vowel  pitch  as  well  as  vowel  identity.  By  comparing  classification  of  spiking  responses  over  different  time  windows  and  temporal  resolutions  it  was  possible  to  estimate  the  time  scales  over  which  information  about  vowel  identity  and  pitch  was  signaled.  We  found  classification  of  vowel  identity  tended  to  occur  earlier  in  the  sound  than  pitch.  Comparing  classification  across  sessions  with  the  best  frequencies  of  units  illustrated  that  units  tuned  to  lower  frequencies  tended  to  classify  pitch  better,  although  similar  correlations  were  not  observed  when  decoding  vowel  identity.  Our  results  show  that  auditory  cortical  neurons  may  offer  a  physiological  substrate  for  invariant  perceptual  representations  of  sound  and  that  information  about  multiple  sound  features  may  be  represented  in  auditory  cortex  during  behavior,  even  when  such  features  are  irrelevant  for  task  performance.      ID:  191    

Neural  circuitry  underlying  contrast  gain  control  in  primary  auditory  cortex  James  Cooke,  Benjamin  Willmore,  Jan  Schnupp,  Andrew  J.  King  Oxford  University,  United  Kingdom  [email protected]  While  sensory  environments  can  vary  dramatically  in  their  statistics,  neurons  have  a  limited  dynamic  range  with  which  they  can  encode  sensory  information.  In  sensory  cortex,  this  problem  is  resolved  by  the  systematic  adjustment  of  neural  gain  in  accordance  with  the  contrast  of  sensory  input.  The  biophysical  basis  of  this  computation  has  been  studied  extensively  in  visual  cortex,  where  parvalbumin  positive  (PV+)  interneurons  have  been  

implicated  in  the  adjustment  of  neural  gain.  It  is  not  known,  however,  whether  these  cortical  circuits  represent  a  canonical  feature  of  the  cortex  or  whether  they  are  vision  specific.  We  aim  to  address  this  issue  by  investigating  the  circuit  basis  of  contrast  gain  control  in  primary  auditory  cortex  (A1).  Our  approach  is  to  perform  large  scale  extracellular  recordings  across  all  layers  of  A1  in  anaesthetised  mice  and  to  optogenetically  manipulate  the  activity  of  PV+  interneurons,  in  order  to  test  their  involvement  in  this  computation.      ID:  192    

Neural  entrainment  is  less  responsive  to  attentional  demands  in  older  listeners  Molly  J.  Henry,  Björn  Herrmann,  Obleser  Jonas  Max  Planck  Institute  for  Human  Cognitive  and  Brain  Sciences  Leipzig,  Germany  [email protected]  Increasing  age  is  accompanied  by  decreasing  speech  comprehension  performance  in  the  presence  of  background  noise  that  cannot  be  fully  explained  by  peripheral  hearing  loss.  For  young,  normal  hearing  listeners,  separating  speakers  in  a  “cocktail  party”  capitalizes  on  neural  synchronization  with  attended  speech.  Thus,  an  intriguing  but  as  of  yet  untested  possibility  is  that  age-­‐related  speech-­‐comprehension  deficits  might  be  attributable  to  changes  in  the  fidelity  or  flexibility  of  neural  entrainment.  The  current  electroencephalography  study  characterized  differences  in  entrainment  capacities  between  younger  and  older  adults  under  varying  attentional  demands.  Younger  (age  18–35  years)  and  older  (age  65+  years)  participant  groups  listened  to  10-­‐s  frequency-­‐modulated  sounds  (FM  =  2.8  Hz).  Participants  completed  two  sessions  in  counterbalanced  order;  in  one  session  they  passively  listened  to  the  sounds  (passive),  while  in  the  other  they  detected  the  presence  of  near-­‐threshold  gaps  (active);  gaps  were  present  in  both  stimulation  blocks,  although  their  presence  was  only  relevant  during  active  task  performance.  In  order  to  characterize  differences  between  onset-­‐evoked  neural  responses  between  age  groups,  the  same  participants  completed  a  passive-­‐listening  block  in  which  they  were  presented  with  an  8-­‐minute  tone  sequence  in  which  each  tone  randomly  took  on  one  of  five  frequencies.  

Page 97: Complete program including all scientific contributions (21 MB, PDF)

  84  

This  block  of  stimulation  was  presented  between  the  active  and  passive  blocks  of  the  frequency-­‐modulated  stimuli.  Overall,  entrained  neural  responses  were  larger  when  participants  attended  to  the  stimuli  compared  to  during  passive  stimulation.  However,  the  difference  between  entrainment  strength  for  active  versus  passive  stimulation  was  more  pronounced  in  young  than  in  older  participants.  This  suggests  that  older  participants’  entrained  neural  responses  are  less  flexible  under  changing  attentional  demands.  With  respect  to  evoked  responses,  older  adults  exhibited  a  larger  N1  component  than  younger  adults  during  passive  tone  stimulation,  but  a  smaller  P2.  Gap-­‐detection  hit  rates  were  modulated  by  FM-­‐stimulus  phase,  but  the  degree  of  performance  modulation  was  similar  across  age  groups.  These  results  reveal  critical  age-­‐related  changes  in  the  way  that  entrained  neural  responses  adapt  to  changing  attentional  demands.      ID:  193    

Effect  of  selective  attention  and  streaming  in  bilateral  concurrent  sound  segregation  Anahita  H.  Mehta1,  Andrew  J.  Oxenham2,  Ifat  Yasin1,  Shihab  Shamma3  1University  College  London,  London,  United  Kingdom;  2University  of  Minnesota,  United  States  of  America;  3University  of  Maryland,  College  Park,  United  States  of  America  &  Ecole  Normale  Supérieure,  France  [email protected]  We  aim  to  investigate  the  neural  correlates  and  the  underlying  processes  resulting  in  the  ambiguous  percept  produced  by  a  stimulus  similar  to  one  described  in  Deutsch’s  “octave  illusion”  (Deutsch,  1974).  Each  ear  was  presented  with  a  sequence  of  alternating  pure  tones  of  low  and  high  frequencies.  The  same  sequence  was  presented  to  each  ear,  but  in  opposite  phase,  such  that  the  sequence  in  the  left  ear  could  be  a  High-­‐Low-­‐High…  pattern  whereas  the  sequence  in  the  right  ear  was  a  Low-­‐High-­‐Low…  pattern.  Subjects  were  cued  to  focus  on  a  particular  frequency  and  side,  as  indicated  by  a  priming  sequence  of  tones  that  were  either  all  low  or  all  high  in  frequency  and  were  presented  either  to  the  left  or  right  ear.  The  illusion  reported  by  Deutsch  is  that  subjects  

hear  an  alternating  pattern  of  low  and  high  tones,  with  all  the  low  tones  lateralized  to  one  side  and  all  the  high  tones  lateralized  to  the  other  side.  By  instructing  subjects  to  listen  to  a  particular  frequency  and  side  we  were  able  to  elicit  four  different  percepts  for  the  same  stimulus,  thus  allowing  us  to  study  the  neural  correlates  of  streaming  and  selective  attention.  The  first  EEG  and  psychophysics  study  tested  the  subjects’  ability  to  attend  selectively  to  the  target  sequence.  Subjects  were  asked  to  detect  target  amplitude  deviants  that  were  presented  at  varying  positions.  Analyses  of  the  EEG  recordings  indicated  a  differential  pattern  of  activity  that  systematically  reflected  the  attended  percept.  The  behavioural  data  indicated  that  the  subjects  could  readily  attend  to  the  target  sequence.  The  second  psychophysics  study  investigated  the  effect  of  frequency  separation  on  the  deviant  detection  task.  We  tested  subjects  at  four  different  frequency  separations  and  we  observed  a  systematic  increase  in  performance  with  increasing  frequency  separation.  Lastly,  we  conducted  a  series  of  experiments  to  further  understand  which  of  the  four  tones  contribute  to  the  percept  of  alternating  low  and  high  tones  that  arises  from  this  particular  type  of  stimulus.  We  observed  interesting  and  unexpected  misattributions  of  the  stimuli  in  time  and  location,  extending  the  original  illusion  reports  of  Deutsch.  Overall,  we  find  that  attention  and  expectation  modulate  stimulus-­‐driven  responses  in  auditory  cortex  using  illusory  auditory  stimuli,  and  that  their  effects  can  be  reliably  accessed  with  continuous  EEG  recordings.    Work  supported  by  UCL  Overseas  and  Graduate  Research  Scholarships  and  NIH  grant  R01DC07657.    ID:  194    

Single  unit  and  LFP  activity  in  rostral  superior  temporal  cortex  during  auditory  short-­‐term  memory  Brian  Hayward  Scott1,  Corrie  R.  Camalier1,  Mortimer  Mishkin1,  Pingbo  Yin2  1National  Institute  for  Mental  Health  Bethesda,  United  States  of  America;  2University  of  Maryland,  College  Park,  United  States  of  America  [email protected]  Short-­‐term  memory  (STM)  for  visual  stimuli  has  been  shown  to  engage  the  modality-­‐specific  

Page 98: Complete program including all scientific contributions (21 MB, PDF)

  85  

cortical  areas  that  support  visual  perception.  Although  monkeys  can  perform  auditory  STM  tasks,  their  ability  is  limited  relative  to  that  in  vision,  and  appears  to  depend  on  retention  of  a  stimulus  trace  in  a  passive  form  of  STM.  The  neural  underpinnings  of  this  putative  trace  are  unknown,  but  are  likely  to  engage  non-­‐primary  auditory  cortex,  e.g.,  the  rostral  superior  temporal  plane  and  gyrus,  components  of  the  ventral  auditory  processing  stream.  We  recorded  single-­‐unit  activity  and  local  field  potentials  (LFP)  across  these  regions  while  monkeys  performed  a  serial  delayed-­‐match-­‐to-­‐sample  (DMS)  task.  On  each  trial,  the  monkey  grasped  a  bar  to  initiate  the  presentation  of  a  sample  sound,  followed  by  0-­‐2  nonmatch  sounds  (delay  interval  ~1  s),  before  the  sample  was  presented  again  as  a  match;  the  monkey  released  the  bar  to  indicate  a  match.  In  the  unit  activity,  we  identified  two  phenomena  potentially  associated  with  mnemonic  tasks.  First,  35%  of  units  exhibited  a  sustained  change  in  firing  rate  (excitation  or  suppression)  during  the  delay  interval.  Second,  the  auditory  response  was  modulated  by  task  context  in  20%  of  units,  with  7.5%  showing  match  enhancement  (relative  to  the  sample  presentation),  and  12.5%  showing  match  suppression.  Delay  and  match  suppression  were  observed  throughout  the  trial,  but  the  proportion  of  units  exhibiting  delay  or  match  excitation  declined  significantly  after  the  presentation  of  the  first  nonmatch  sound  (coincident  with  a  marked  increase  in  behavioral  error  rate).  These  characteristics  were  mirrored  in  the  LFP  power.  During  DMS,  the  LFP  response  was  modulated  by  the  task  context  in  which  the  sound  appeared  –  sample  presentations  evoked  larger  power  increases  than  nonmatch  or  match  presentations  across  all  power  bands,  an  effect  which  was  also  apparent  in  the  averaged  response  of  the  single-­‐unit  population.  During  the  first  delay  period,  LFP  power  at  a  given  site  could  be  suppressed  or  enhanced  relative  to  the  pre-­‐trial  baseline.  By  contrast,  only  suppression  was  observed  in  the  second  delay  period  following  a  nonmatch  stimulus.  The  delay-­‐period  modulation  in  the  LFP  spanned  multiple  frequency  bands,  suggesting  that  the  suppression  is  a  network-­‐wide  effect.  Taken  together,  we  find  that  evoked  LFPs  are  modulated  by  task  demands,  and  complement  

the  mnemonic  effects  observed  in  single-­‐unit  activity.      ID:  195    

The  relevance  of  homo-­‐  and  heteroscedasticity  for  the  averaging  of  auditory-­‐evoked  MEG  and  EEG  responses  Reinhard  König1,  Artur  Matysiak1,  Wojciech  Kordecki2,  Cezary  Sielużycki1,3,  Norman  Zacharias1,  Peter  Heil1  1Leibniz  Institute  for  Neurobiology  Magdeburg,  Germany;  2University  of  Business  in  Wrocław,  Poland;  3Team  Normal  and  Abnormal  Motor  Control,  ICM  Brain  and  Spine  Institute,  UPMC  (Paris  6),  INSERM,  CNRS,  Paris,  France  rkoenig@lin-­‐magdeburg.de  In  MEG  and  EEG  data  analyses,  it  is  common  practice  to  arithmetically  average  event-­‐related  magnetic  fields  (ERFs)  or  electric  potentials  (ERPs)  across  single  trials  and  subsequently  across  subjects  to  obtain  the  so-­‐called  grand  mean.  Comparisons  of  grand  means,  for  example  between  conditions,  are  then  often  performed  by  subtraction.  These  operations,  and  their  statistical  evaluation  by  parametric  tests  like  ANOVA,  tacitly  rely  on  the  assumption  that  the  data  follow  the  additive  model,  have  a  normal  distribution,  and  a  homogeneous  variance.  This  may  be  true  for  single  trials,  but  these  conditions  are  rarely  met  when  comparing  ERFs/ERPs  between  subjects,  meaning  that  the  additive  model  is  seldom  the  correct  model  for  computing  grand  mean  waveforms.  We  show,  using  MEG  and  EEG  responses  from  the  auditory  cortex,  that  the  non-­‐normal  distributions  and  the  heteroscedasticity  observed  instead  result  because  ERFs/ERPs  follow  the  mixed  model  with  additive  and  multiplicative  components.  For  peak  amplitudes,  like  the  auditory  M100  and  N100,  the  multiplicative  component  dominates.  Application  of  the  asinh-­‐transform  to  data  following  the  mixed  model  transforms  them  into  the  requested  additive  model  with  its  normal  distribution  and  homogeneous  variance.  Our  findings  question  the  common  practice  of  simply  subtracting  arithmetic  means  of  auditory-­‐evoked  ERFs  or  ERPs  without  proper  transformation  of  the  data.  They  should  thus  have  widespread  implications.      

Page 99: Complete program including all scientific contributions (21 MB, PDF)

  86  

This  work  was  supported  by  the  Deutsche  Forschungsgemeinschaft  (SFB-­‐TRR  31  A6;  KO1713/10-­‐1;  HE1721/10-­‐1).    

 ID:  196    

Neuroimaging  of  tonotopic  maps  in  humans  using  the  travelling  wave  paradigm:  A  puzzling  finding  Dave  Langers1,  Rosa  Sanchez-­‐Panchuelo1,  Susan  Francis1,  Julien  Besle2,  Katrin  Krumbholz2,  Richard  Bowtell1,  Deborah  Hall1  1University  of  Nottingham,  United  Kingdom;  2MRC  Institute  of  Hearing  Research  Nottingham,  United  Kingdom  [email protected]  Tonotopy  is  one  of  the  most  dominant  organisational  principles  in  the  central  auditory  system.  It  is  not  just  relevant  for  our  understanding  of  frequency  processing,  but  also  to  distinguish  functional  subdivisions  in  the  brain.  In  contrast  with  other  sensory  systems  (e.g.  retinotopy  in  human  visual  cortex)  and  in  contrast  with  animals  (e.g.  tonotopy  in  non-­‐human  primates),  the  tonotopic  organisation  of  the  human  auditory  cortex  remains  relatively  poorly  understood.  Still,  more  than  a  dozen  functional  magnetic  resonance  imaging  (fMRI)  studies  have  reported  highly  consistent  best  frequency  maps.  As  a  result,  the  field  is  currently  moving  towards  a  consensus  regarding  their  large-­‐scale  interpretation.  (For  a  recent  review,  see  Saenz  &  Langers,  2014.  Hear.  Res.  307,  42–52.)  As  a  part  of  an  investigation  into  optimal  mapping  paradigms,  we  carried  out  a  study  to  determine  the  response  to  unattended  60-­‐dB-­‐SL  jittered  tone  sequences  sweeping  between  125  and  8000  Hz.  Brain  images  were  collected  using  acquisition  paradigms  that  interspersed  series  of  3-­‐T  fMRI  acquisitions  of  2.2-­‐s  duration  with  periods  of  scanner  silence  of  [a]  8.8  s  (i.e.  sparse),  [b]  2.2  s  (i.e.  gapped),  or  [c]  0.0  s  (i.e.  continuous).  Fourier  analysis  was  used  to  determine  frequency  tuning,  encoded  as  the  sinusoidal  phase  of  the  response  to  the  sweep  stimulus.  All  three  acquisition  paradigms  revealed  robust  sound-­‐evoked  activation  in  bilateral  auditory  cortex  and  extracted  consistent  tonotopic  maps  that  agreed  with  previous  results  in  the  literature.  Effects  of  scanner  noise  were  detectable  in  the  form  of  response  attenuation  near  stimulus  frequencies  that  coincided  with  

the  peaks  in  the  scanner  noise  spectrum.  Responses  progressively  decreased  from  sparse  to  gapped  to  continuous  paradigms,  but  interference  had  moderate  effects  on  the  resulting  tonotopic  maps.  However,  upon  expection  of  the  underlying  response  dynamics,  we  observed  unexpected  anomalies.  In  particular,  whereas  low-­‐  and  high-­‐frequency  regions  in  the  auditory  cortex  as  expected  showed  peak  responses  towards  the  beginning  and  end  of  the  sweep  stimuli,  moderately-­‐tuned  regions  did  not  peak  near  the  middle  of  the  sweeps.  Instead,  their  response  showed  a  bimodal  behaviour,  with  peaks  of  similar  strength  towards  the  sweep's  beginning  and  end.  We  interpret  this  puzzling  observation  to  suggest  that  travelling  wave  paradigms  may  confound  stimulus-­‐dependent  frequency  tuning  with  time-­‐dependent  response  hemodynamics  in  a  non-­‐trivial  way.      ID:  197    

A  hierarchy  of  neural  tuning  to  spectrally  resolved  pitch  in  human  auditory  cortex  Katrin  Krumbholz1,  Jamila  Andoh1,2,  Antje  Heinrich1,  Gemma  Hutchinson1,  Robert  J.  Zatorre2  1MRC  Institute  of  Hearing  Research  Nottingham,  United  Kingdom;  2Montreal  Neurological  Institute,  Canada;  *Authors  KK  and  JA  contributed  equally  to  this  work  [email protected]    The  ability  to  perceive  pitch  is  crucial  for  speech  and  music  perception  and  is  also  important  for  segregating  sounds  from  different  sources.  Pitch-­‐evoking  sounds  are  composed  of  harmonic  frequency  components.  Musical  sounds  and  voiced  speech  contain  low-­‐order  harmonics,  which  are  resolved  by  the  cochlear  filters,  whereas  high-­‐order  harmonics  are  unresolved.  Resolved  harmonics  elicit  a  stronger,  and  more  finely  discriminable,  pitch  than  unresolved  harmonics.  This  has  led  to  the  hypothesis  that  resolved  and  unresolved  pitch  may  be  processed  by  different  mechanisms.  The  aim  of  the  current  study  was  to  test  this  hypothesis  by  measuring  neural  selectivity  for  resolved  and  unresolved  pitch  using  an  adaptation  approach.  Adaptation  refers  to  the  suppression  of  the  response  to  a  probe  stimulus  by  a  preceding  adapter  stimulus.  Importantly,  adaptation  is  stimulus-­‐specific  and  

Page 100: Complete program including all scientific contributions (21 MB, PDF)

  87  

the  degree  of  adaptation  specificity  would  be  expected  to  reflect  the  selectivity  of  the  neuron  populations  responding  to  the  adapter  and  probe:  when  the  adapter  and  probe  activate  overlapping  neuron  populations,  adaption  should  be  strong,  when  they  activate  disparate  populations,  adaptation  should  be  weak.  Here,  adaptation  was  measured  both  psychophysically  and  with  electro-­‐encephalography  (EEG).  The  adapter  and  probe  were  composed  of  iterated  rippled  noise,  which  is  a  type  of  harmonic  sound  with  a  noise-­‐like  waveform  and  adjustable  pitch  strength.  The  pitch  difference  between  them  was  varied  to  measure  adaptation  specificity.  In  different  conditions,  the  adapter  and  probe  were  either  resolved  or  unresolved.  We  found  that,  only  in  the  resolved  conditions  was  adaptation  specific  to  the  adapter  pitch.  Moreover,  the  degree  of  adaptation  specificity  differed  markedly  between  different  deflections  of  the  auditory-­‐evoked  cortical  potentials,  which  occur  at  different  latencies  and  thus  likely  represent  different  stages  of  the  cortical  processing  hierarchy.  The  adaptation  specificity  of  the  latest,  and  thus  presumably  highest-­‐level,  deflection  was  statistically  indistinguishable  from  the  specificity  of  the  psychophysical  adaptation  effect  Our  results  suggest  that  (i)  resolved,  but  not  unresolved,  harmonics  are  processed  by  neurons  that  are  selective  for  pitch  and  (ii)  the  degree  of  pitch  selectivity  changes  across  the  cortical  processing  hierarchy.      ID:  198    

Neural  correlates  of  auditory  pattern  detection  in  humans  Nicolas  Barascud1,  Timothy  D.  Griffiths2,  Karl  J.  Friston1,  Maria  Chait1  1University  College  London,  United  Kingdom;  2Newcastle  University  Medical  School,  United  Kingdom  [email protected]  A  basic  function  of  perception  is  to  detect  patterns  in  ongoing  sensory  input  so  as  to  facilitate  the  prediction  of  future  events.  We  used  functional  magnetic  resonance  imaging  (fMRI)  and  magnetoencephalography  (MEG)  to  study  the  neural  mechanisms  underlying  listeners’  sensitivity  to  the  emergence  and  

violation  of  complex  acoustic  regularities  (characterized  by  repeating  spectro-­‐temporal  patterns)  in  ongoing  sound  sequences.  Stimuli  were  50  ms  tone-­‐pip  sequences  containing  transitions  between  random  and  regularly  repeating  frequency  patterns.  In  the  MEG  experiment  (N=16),  the  stimulus  set  consisted  of  four  frequency  patterns:  REG  –  regularly  repeating  patterns  of  10  tones  (new  patterns  were  generated  for  each  trial);  RAND  –  a  sequence  of  tones  of  random  frequencies;  REG-­‐RAND  and  RAND-­‐REG  sequences  contained  a  transition  between  a  REG  and  RAND  patterns  (transition  time  was  jittered  across  trials).  In  the  fMRI  experiment  (N=16;  different  subjects),  participants  were  exposed  to  randomly  alternating  blocks  of  REG,  RAND  and  ‘silence’  intervals  of  variable  durations.  In  both  experiments,  subjects  were  kept  naïve  and  performed  an  incidental  visual  decoy  task.  MEG  data  show  that  brain  responses  to  the  emergence  of  regularity  in  RAND-­‐REG  signals  occurred  from  about  1.5  cycles,  consistent  with  behavioural  and  modelling  results,  and  indicating  that  the  brain  rapidly  detects  regularities  in  ongoing  input.  Source  analysis  (based  on  MEG  as  well  as  fMRI  data)  revealed  a  network  consisting  of  auditory  cortical  sources  (primary  auditory  cortex  bilaterally;  extending  in  the  left  hemisphere  along  the  superior  bank  of  the  superior  temporal  gyrus;  STG)  and  left  inferior  frontal  gyrus  (IFG),  demonstrating  an  interplay  between  early  sensory  processing  and  ‘higher  level’  frontal  mechanisms  in  the  course  of  regularity  extraction,  even  in  the  absence  of  directed  attention.    This  work  was  supported  by  Wellcome  Trust  grant  093292/Z/10/Z.  

 ID:  199    

Frequency  selectivity  of  cortical  adaptation:  A  comparative  study  in  humans  and  guinea  pigs  Oscar  Woolnough,  Jessica  de  Boer,  Katrin  Krumbholz,  Chris  Sumner  MRC  Institute  of  Hearing  Research  Notthingham,  United  Kingdom  [email protected]  Adaptation,  the  reduction  in  neural  responses  to  repeated  stimuli,  is  a  ubiquitous  phenomenon  throughout  human  and  animal  sensory  systems.  It  has  been  shown  that  

Page 101: Complete program including all scientific contributions (21 MB, PDF)

  88  

adaptation  in  auditory  cortex  is  frequency  specific  [1],  with  greater  frequency  separation  between  adapter  and  probe  tones  reducing  the  degree  of  adaptation.  The  aim  of  the  current  study  was  to  compare  frequency  specificity  of  adaptation  in  human  and  guinea  pig  (GP)  auditory  cortex,  and  to  investigate  how  adaptation  specificity  depends  on  the  properties  of  the  adapter  and  probe  stimuli.  A  recent  study  has  shown  that  using  repeated  presentation  of  adapters  can  enhance  frequency  specificity  of  this  adaptation  [2].  Here  we  have  characterised  the  effects  of  both  adapter  repetition  and  duration  on  the  tuning  of  cortical  adaptation.  Adaptation  was  measured  in  auditory  cortex,  recorded  through  EEG  in  humans  and  via  EEG  and  LFPs  in  GPs.  Pure  tone  adapter-­‐probe  sequences  were  presented  diotically  with  adapter  frequencies  of  0,  0.5  and  1.5  octaves  higher  than  the  1  kHz  probe.  We  analysed  the  resultant  auditory  evoked  potential  (AEP)  amplitudes,  measured  as  the  N1-­‐P2  amplitude,  and  quantified  adaptation  as  the  reduction  in  response  size  in  the  adapted  probe  compared  to  the  unadapted  response.  The  human  EEG  results  confirm  the  previous  results  [2]  that  repeated  adapter  presentation  increases  the  frequency  specificity  of  adaptation.  Our  results  further  show  how  these  effects  depend  on  number  of  repetitions  and  that  no  sharpening  is  observed  when  adapters  are  prolonged  rather  than  repeated.  The  GP  EEG  results  show  comparable  trends.  However,  frequency  selectivity  of  adaptation  was  overall  much  greater  in  GPs  than  in  humans  (GPs  showed  a  50-­‐105%  reduction  in  adaptation  over  1.5  octave  frequency  separation  vs  15-­‐45%  in  humans).  In  fact  at  the  largest  adapter-­‐probe  frequency  separation,  the  GPs  showed  significant  facilitation,  increasing  the  AEP  amplitude  beyond  the  unadapted  amplitude,  whereas  no  facilitation  was  evident  in  humans.  Our  results  suggest,  in  both  humans  and  GPs,  adaptation  contributes  to  refine  the  frequency  tuning  of  adaptation  with  increasing  numbers  of  adapting  tones.  However,  there  are  apparent  qualitative  differences  in  EEG  responses  across  species.  Further  work  will  investigate  how  the  underlying  representation  in  neural  activity  and  local  field  potentials  contribute  to  far  field  potentials.  

 [1]  Brosch  M.,  Schreiner  CE.  (1997)  J  Neurophysiol  [2]  Briley  P.,  Krumbholz  K.  (2013)  J  Neurophysiol      ID:  200    

Sensitivity  to  frequency  modulation  in  ferret  auditory  cortex  Ben  Willmore1,  Nicol  Harper1,  Josh  McDermott2,  Jan  Schnupp1,  Andrew  J.  King1  1University  of  Oxford,  United  Kingdom;  2Massachussetts  Institute  of  Technology,  United  States  of  America  [email protected]  Previous  work  has  characterised  cortical  neurons  in  terms  of  their  sensitivity  to  frequency  modulation  (FM).  Our  own  work,  using  dynamic  random  chords  (DRCs)  to  estimate  spectro-­‐temporal  receptive  fields  (STRFs)  of  cortical  neurons,  tends  to  produce  STRFs  with  little  obvious  FM  sensitivity.  To  understand  this  difference,  we  investigated  the  possibility  that  DRCs  are  particularly  poor  stimuli  for  characterising  FM  sensitivity  (perhaps  as  a  result  of  their  very  stereotyped  spectrotemporal  structure).  To  test  this  hypothesis,  we  compared  DRCs  to  other  sounds  which  might  be  better  suited  to  characterising  modulation  sensitivity.  We  presented  these  sounds  to  anaesthetised  ferrets  while  recording  the  responses  of  neurons  in  primary  cortex.  The  stimuli  were:  (1)  standard  DRCs  with  a  chord  length  of  25ms,  (2)  DRCs  in  which  the  chord  length  was  randomised  between  6.25ms  and  100ms,  (3)  temporally  orthogonal  ripple  combinations  (TORCs),  (4)  modulated  pink  noise  with  a  flat  modulation  spectrum,  and  (5)  excerpts  from  a  range  of  natural  sounds.  For  each  class  of  stimuli,  we  estimated  regularised  STRFs  using  either  lasso  (sparse)  or  ridge  regression.  To  estimate  the  strength  of  FM  sensitivity  in  each  unit,  we  measured  the  separability  of  the  STRFs.  FM  sensitivity  should  appear  in  the  STRFs  as  diagonal  structure,  so  units  which  are  strongly  tuned  for  FM  should  have  relatively  inseparable  STRFs.  Surprisingly,  we  find  that  the  STRF  separability  is  not  significantly  different  for  DRCs  and  other  synthetic  stimulus  classes.  This  suggests  that  DRCs  are  no  worse  for  characterising  FM  than  the  other  synthetic  stimuli.  To  determine  whether  important  structure  was  missing  from  the  STRFs,  we  measured  their  

Page 102: Complete program including all scientific contributions (21 MB, PDF)

  89  

ability  to  predict  neural  responses  to  natural  sounds.  As  expected,  the  STRFs  estimated  using  natural  sounds  provided  the  best  predictions  of  responses  to  natural  sounds  (since  within-­‐class  predictions  are  generally  higher  than  cross-­‐class  predictions).  Amongst  the  STRFs  estimated  using  synthetic  stimuli,  there  were  no  significant  differences  in  predictive  power,  indicating  that  the  DRC  predictions  were  no  worse  than  the  other  classes.  This  suggests  that  the  largely  separable  STRFs  obtained  using  DRCs  provide  a  good  description  of  the  responses  of  cortical  neurons  to  both  synthetic  and  natural  stimuli,  despite  showing  little  sensitivity  to  frequency  modulation.    ID:  202    

Sensitivity  to  language  categories  in  the  auditory  cortex  of  Mandarin-­‐  and  English-­‐speaking  participants  David  Fleming1,  Bruno  Giordano1,  Roberto  Caldara2,  Pascal  Belin1,3,4  1University  of  Glasgow,  United  Kingdom;  2University  of  Fribourg,  Switzerland;  3Université  de  Montréal,  Montréal,  Canada;  4Institut  des  Neurosciences  de  La  Timone,  CNRS  &Université  Aix-­‐Marseille,  France  [email protected]  English  and  Mandarin-­‐speaking  listeners  rate  pairs  of  voices  which  speak  their  native  language  as  more  dissimilar  than  foreign  pairs,  even  when  speech  is  rendered  unintelligible  by  time-­‐reversal.  These  listeners  were  also  sensitive  to  acoustical  differences  between  languages  –  they  recorded  very  high  dissimilarity  ratings  where  two  voices  in  a  pair  spoke  different  languages  (1).  We  examined  the  neural  correlates  of  these  effects  using  an  fMRI  similarity  analysis  approach  (2).  Specifically,  we  hypothesized  that  auditory  cortex  would  be  more  sensitive  to  identity  differences  in  listeners’  native  languages  than  in  a  foreign  language.  Acoustical  differences  between  the  languages  should  be  also  reflected  in  auditory  regions,  where  we  expected  high  dissimilarity  among  responses  to  pairs  of  stimuli  speaking  in  different  languages.  Participants  (native  English  and  Mandarin  speakers)  underwent  a  functional  scan  where  they  listened  to  reversed  speech  clips  from  English  and  Mandarin  female  speakers.  We  extracted  local  patterns  of  activity  across  

participants'  functional  volumes  and  calculated  the  dissimilarity  between  responses  elicited  by  stimulus  pairs  (1-­‐pearson’s  r  across  voxels).  This  procedure  yielded  whole-­‐brain  maps  for  each  pairwise  combination  of  stimuli  which  were  then  correlated  with  predictor  matrices  capturing  hypothesized  dissimilarity  geometries.  These  reflected  1)  native  language  pair  dissimilarity  and  foreign  language  similarity  (better  differentiation  of  different  native  speaker  identities);  and  2)  cross-­‐language  dissimilarity  (better  differentiation  of  identities  across  languages).  We  found  significant  correlations  between  brain  dissimilarities  and  the  cross-­‐language  model  in  bilateral  superior  temporal  gyrus  even  when  partialling  out  the  contribution  of  the  dissimilarity  structure  of  selected  acoustical  features.  Correlations  were  more  distributed  in  left  STG  which  has  been  implicated  in  within-­‐language  categorical  speech  perception  (3).  These  results  indicate  that  listeners  remain  sensitive  to  phonological  differences  between  languages  in  reversed  speech.  This  sensitivity  is  reflected  in  auditory  regions  which  differentiate  languages  even  when  accounting  for  acoustical  dissimilarity  structure  and  when  participants  cannot  comprehend  the  spoken  message.    1.  Fleming  (Under  Review);  2.  Kriegeskorte  (2006)  PNAS;  3.  Chang  (2010)  NatNeuro    ID:  203    

Adaptive  techniques  for  identifying  stimuli  that  drive  highly  selective  auditory  cortex  neurons  in  awake  marmoset  Seth  D.  Koehler,  Michael  S.  Osmanski,  Xiaoqin  Wang  Johns  Hopkins  University  Baltimore,  United  States  of  America  [email protected]  Neurons  outside  of  core  regions  of  auditory  cortex  are  highly  selective,  often  responding  only  to  a  small  subset  of  acoustic  stimuli  that  share  specific  spectro-­‐temporal  features.  This  selectivity  introduces  several  confounds  and  challenges  for  neurophysiological  studies  in  non-­‐primary  auditory  cortex.  For  example,  neurons  that  the  experimenter  cannot  drive  are  usually  excluded  from  analyses,  introducing  a  sampling  bias  towards  more  broadly-­‐tuned  neurons.  Also,  examination  of  how  auditory  

Page 103: Complete program including all scientific contributions (21 MB, PDF)

  90  

cortex  supports  active  behavior  requires  identifying  those  stimuli  that,  in  addition  to  being  perceptually  salient,  can  elicit  robust  neural  responses.  These  confounds  and  challenges  are  compounded  when  studying  several  units  simultaneously  with  a  multi-­‐channel  electrode  array  where  electrodes  can  span  the  entire  tonotopic  axis  and  multiple  cortical  regions.  To  address  this  problem,  we  have  developed  a  comprehensive  stimulus  set  and  a  closed-­‐loop  algorithm  designed  to  rapidly  identify  stimuli  that  elicit  responses  in  the  auditory  cortex  of  awake,  behaving  marmosets.  Neural  responses  were  recorded  from  multi-­‐channel  arrays  of  tungsten  micro-­‐electrodes  (Warp-­‐16,  Neuralynx)  chronically  implanted  to  span  core,  belt,  and  parabelt  regions  of  auditory  cortex  in  two  marmosets.  The  initial  stimulus  set  consisted  of  more  than  1200  unique  stimuli  that  broadly  covered  the  classes  of  stimuli  (i.e.,  tones,  narrow-­‐  and  broad-­‐band  noises,  SAM  and  SFM  tones,  linear  FM  tones,  harmonic  complexes,  vocalizations,  and  natural  sounds)  and  range  of  parameters  (e.g.,  frequency,  intensity,  bandwidth,  modulation  rate,  etc.)  known  to  elicit  responses  across  primate  primary  and  secondary  auditory  cortices.  Stimuli  (5  repetitions)  were  presented  to  the  passive,  awake  animal  at  approximately  2  Hz.  To  minimize  recording  time  for  practical  use,  we  implemented  a  closed  loop  algorithm  to  minimize  the  number  of  repetitions  required  for  each  stimulus.  Finally,  we  identified  those  stimuli  within  each  class  that  elicited  the  strongest,  most  significant  neural  responses.  This  stimulus  set  and  adaptive  algorithm  thus  allows  concurrent,  relatively  rapid  identification  of  those  stimuli  that  most  effectively  drive  neurons  across  primary  and  secondary  auditory  cortices.  This  technique  provides  a  starting  point  for  further  recording  to  estimate  the  optimal  stimulus  for  each  unit  and  a  list  of  effective  stimuli  for  selecting  stimuli  for  joint  neurophysiological  and  behavioral  testing.  

ID:  204    

Understanding  human  neurobiological  underpinnings  of  loudness  perception:  A  MEG  study  Christine  Wyss1,2,  Frank  Boers1,  Wolfram  Kawohl2,  Jorge  Arrubla1,3,  Kaveh  Vahedipour1,  Jürgen  Dammers1,  Irene  Neuner1,3,4,  N.  Jon  Shah1,3,4  1Research  Centre  Juelich,  Germany;  2University  Hospital  of  Psychiatry  Zurich,  Switzerland;  3RWTH  Aachen  University,  Germany;  4Translational  Medicine,  Germany  [email protected]  Introduction  Underlying  generators  in  loudness  perception  in  late-­‐latency  responses  have  been  the  subject  of  a  wide  research  since  the  1980’s  [1,  2].  These  studies  have  let  to  the  view  that  not  only  the  auditory  cortex,  but  also  higher-­‐order  networks  which  ensure  that  the  stimuli  gain  access  to  the  consciousness,  are  activated  in  the  perception  of  sound.  Several  authors  have  proposed  the  involvement  of  a  frontal  source,  predominantly  with  high  intensity  levels.  However,  its  precise  location  is  still  debated  [3,  4].    Methods  Magnetoencephalography  (MEG,  whole-­‐head  248  channels)  was  applied  in  order  to  localise  the  sources  of  the  N1m  (75-­‐125  ms)  component  elicited  by  tones  of  different  intensities  with  high  temporal  resolution.  We  investigated  19  healthy  male  right-­‐handed  subjects  (mean  age  26.5  +-­‐  4.0  years).  Tones  of  six  different  intensities  (10-­‐60  dB  SL,  1000  Hz,  40  ms  duration,  SOA  randomized  between  2-­‐3  s)  were  presented  binaurally  in  a  pseudo-­‐randomized  order  through  earphones  with  plastic  tubes.  Magnetic  field  tomography  [5]  was  used  in  order  to  localise  the  primary  current  density  in  each  voxel  and  at  each  time  point.  Voxel-­‐wise  root  mean  squared  values  were  entered  in  a  generalized  linear  model,  corrected  for  multiple  comparisons.  Within  the  anatomical  regions  of  interest  we  performed  a  time-­‐course  analysis  for  each  intensity  to  elucidate  the  cortical  activation  sequence  across  time.    Results  We  found  significant  activations  in  the  primary  auditory  cortex,  the  posterior  cingulate  cortex  (PCC),  the  premotor  cortex  and  the  primary  

Page 104: Complete program including all scientific contributions (21 MB, PDF)

  91  

somatosensory  cortex  by  comparing  the  tones  with  highest  and  lowest  sensation  levels.  The  time  course  analysis  revealed  that  the  primary  sensory  areas  were  activated  earlier  (90  ms)  than  the  PCC  (100  ms)  and  premotor  cortex  (120  ms).    Conclusion  The  results  show  the  activation  of  a  widespread  network  in  loudness  perception.  The  involvement  of  the  somatosensory  region  is  consistent  with  the  theory  of  multisensory  integration  on  a  low  level  [6].  The  PCC,  which  plays  an  essential  role  as  a  hub  in  intrinsic  connectivity  networks  by  activating  intrinsic  networks  appropriate  for  the  current  behavioural  state  [7],  might  be  involved  in  the  top-­‐down  processing  during  perception.  The  activation  in  the  premotor  cortex  is  in  line  with  other  findings  [1]  and  could  be  in  agreement  with  orientation  of  attention  towards  action  preparation  or  be  related  to  an  aversive  response  to  a  novel  stimulus.    Acknowledgements  Funded  by  Swiss  National  Science  Foundation  (grant  number  P1ZHP3_148704),  EMDO  Stiftung  Zurich  and  the  Initiative  and  Network  Fund  of  the  Helmholtz  Association.    References  1.  Näätänen,  R.  and  T.  Picton,  1987.  Psychophysiology  24:  375-­‐25.  2.  Picton,  T.W.,  et  al.,  1999.  Audiol  Neurootol  4:  64-­‐79.  3.  Giard,  M.H.,  et  al.,  1994.  Electroencephalogr  Clin  Neurophysiol  92:  238-­‐52.  4.  Hari,  R.,  et  al.,  1982.  Electroencephalogr  Clin  Neurophysiol  54:  561-­‐69.  5.  Ioannides,  A.,  J.  Bolton,  and  C.  Clarke,  1990.  Inverse  Probl  6:  523.  6.  Schroeder,  C.E.  and  J.  Foxe,  2005.  Curr  Opin  Neurobiol  15:  454-­‐58.  7.  Leech,  R.  and  D.J.  Sharp,  2014.  Brain  137:  12-­‐32.      ID:  205    

Music,  rhythm  and  developmental  dyslexia:  Investigating  amplitude  envelope  sensitivity  Sheila  Anne  Flanagan,  Usha  Clare  Goswami  University  of  Cambridge,  United  Kingdom  [email protected]  Children  with  developmental  dyslexia  are  impaired  at  tapping  to  a  rhythm,  and  in  perceiving  tempo.  A  core  difficulty  in  developmental  dyslexia  is  a  deficit  in  achieving  reflective  awareness  of  speech  sounds  in  words,  ‘phonological  awareness’.  Phonological  awareness  is  impaired  at  all  linguistic  levels:  

prosodic,  syllabic  and  phonemic.  One  auditory  difficulty  found  in  children  with  dyslexia  is  impaired  processing  of  the  rate  of  change  of  the  amplitude  envelope.  Sensitivity  to  envelope  structure  and  dynamics  is  critical  for  speech  perception  as  it  signals  speech  rate,  stress,  and  tonal  contrasts,  and  reflects  prosodic  and  intonational  information.  Perception  of  amplitude  envelope  rise-­‐time  is  also  linked  to  musical  metrical  sensitivity.  In  turn,  sensitivity  to  beat  patterning  in  music  is  a  strong  predictor  of  children’s  phonological  awareness  and  reading  development.  It  has  been  theorised  that  auditory  temporal  processing  is  achieved  by  the  synchronisation  of  internal  neural  oscillators  to  external  temporal  structure.  The  temporal  sampling  theory  claims  that  envelope  rise  time  difficulties  in  dyslexia  may  lead  to  poor  oscillatory  entrainment  at  low  frequencies  resulting  in  impairments  in  phonology.  This  may  be  investigated  by  considering  the  perceptual  centre  or  P-­‐centre  of  a  sound.  The  P-­‐centre  describes  the  subjective  moment  of  a  sound’s  occurrence.  It  is  used  in  both  the  perception  and  production  of  rhythm.  The  major  acoustic  influence  on  P-­‐centre  timing  is  amplitude  envelope  rise-­‐time.  This  study  evaluates  the  perception  of  P-­‐centres  by  adult  and  child  subjects  with  and  without  dyslexia,  using  a  range  of  tonal,  synthetic  vowel  and  speech  stimuli  in  a  dynamic  rhythm  setting  task.  As  the  perception  of  rhythmic  timing  in  both  speech  and  non-­‐speech  sounds  depends  on  rise  time,  any  rise  time  difficulties  in  dyslexia  would  suggest  concomitant  differences  in  P-­‐centre  perception.  The  relative  timing  of  P-­‐centres  of  adult  and  child  participants  with  and  without  dyslexia  is  compared.  One  aim  is  to  achieve  early  detection  and  develop  effective  remediation  based  on  music  and  rhythm.  

Page 105: Complete program including all scientific contributions (21 MB, PDF)

  92  

ID:  206    

Latency  of  duration-­‐MMN  is  related  to  resting-­‐state  glutamate:  An  1H-­‐MRS  study  in  young  healthy  adults  Kristiina  Kompus1,  Kairi  Kreegipuu2,  Nele  Kuldkepp2,  René  Westerhausen1,  Kenneth  Hugdahl1,  Risto  Näätänen2  1University  of  Bergen,  Norway;  2University  of  Tartu,  Estonia  [email protected]  Mismatch  negativity  (MMN)  is  an  event-­‐related  potential  elicited  by  a  deviant  sound  in  a  train  of  standard  stimuli.  MMN  is  disturbed  in  many  psychiatric  and  neurological  conditions,  in  particular  schizophrenia.  This  makes  the  underlying  neural  mechanisms  particularly  interesting,  as  they  may  reflect  the  disturbed  processes  relevant  for  psychopathology.  The  generation  of  MMN  has  been  suggested  to  be  associated  to  glutamate,  the  main  excitatory  neurotransmitter  in  the  brain.  In  particular,  the  synaptic  plasticity  depending  on  glutamatergic  NMDA  receptors  has  been  suggested  to  underlie  MMN  generation.  The  hypothesis  of  link  between  glutamate  and  MMN  has  been  examined  with  pharmacological  challenge  studies.  As  opposed  to  pharmacological  challenge  studies,  magnetic  resonance  spectroscopy  (1H-­‐MRS)  enables  the  direct  measurement  of  glutamate  in  specific  brain  regions.  In  this  study  we  examined  the  relationship  between  inter-­‐individual  variation  of  1H-­‐MRS-­‐measured  glutamate-­‐glutamine  in  the  superior  temporal  gyrus  and  MMN  for  duration  and  frequency  deviants  in  20  healthy  young  unmedicated  adults  (10  male).  We  found  a  significant  relationship  between  the  latency  of  the  duration-­‐MMN  peak  and  creatine-­‐corrected  glutamate/glutamine  (Glx)  (p=.0003,  eta2=.43),  with  increased  Glx  correlated  to  shorter  latency  of  the  duration-­‐MMN;  the  effect  did  not  significantly  differ  between  the  left  and  right  hemisphere.  The  amplitude  of  the  duration-­‐MMN  was  not  related  to  Glx.  There  were  no  significant  effects  between  Glx  and  frequency-­‐MMN.  The  present  findings  support  the  link  between  glutamate  and  MMN,  in  agreement  with  pharmacological  challenge  studies.  The  findings  also  highlight  that  duration-­‐MMN  may  be  more  sensitive  marker  of  NMDA  receptor  function  than  frequency-­‐MMN,  in  agreement  with  a  more  

attenuated  duration-­‐MMN  in  schizophrenia  patients.      ID:  208    

Hemispheric  lateralization  of  linguistic  prosody  recognition  Jens  Kreitewolf1,  Angela  D.  Friederici1,  Katharina  von  Kriegstein1,2  1Max  Planck  Institute  for  Human  Cognitive  and  Brain  Sciences  Leipzig,  Germany;  2Humboldt  University  of  Berlin,  Germany  [email protected]  Hemispheric  specialization  for  linguistic  prosody  is  a  controversial  issue.  While  it  is  commonly  assumed  that  linguistic  and  emotional  prosody  are  preferentially  processed  in  the  right  hemisphere,  neuropsychological  work  directly  comparing  processes  of  linguistic  and  emotional  prosody  suggests  a  predominant  role  of  the  left  hemisphere  for  linguistic  prosody  processing.  Here,  we  used  two  functional  magnetic  resonance  imaging  (fMRI)  experiments  to  clarify  the  role  of  left  and  right  hemispheres  in  the  neural  processing  of  linguistic  prosody.  In  the  first  experiment,  we  sought  to  confirm  previous  findings  showing  that  linguistic  prosody  processing  compared  to  other  speech-­‐related  processes  predominantly  involves  the  right  hemisphere.  Unlike  previous  studies,  we  controlled  for  stimulus  influences  by  employing  a  prosody  and  a  speech  task  using  the  same  speech  material.  The  second  experiment  was  designed  to  investigate  whether  a  left-­‐hemispheric  involvement  in  linguistic  prosody  processing  is  specific  to  contrasts  between  linguistic  and  emotional  prosody  or  whether  it  also  occurs  when  linguistic  prosody  is  contrasted  against  other  non-­‐linguistic  processes  (i.e.,  speaker  recognition).  Prosody  and  speaker  tasks  were  performed  on  the  same  stimulus  material.  In  both  experiments,  linguistic  prosody  processing  was  associated  with  activity  in  temporal,  frontal,  parietal  and  cerebellar  regions.  Activation  in  temporo-­‐frontal  regions  showed  differential  lateralization  depending  on  whether  the  control  task  required  recognition  of  speech  or  speaker:  recognition  of  linguistic  prosody  predominantly  involved  right  temporo-­‐frontal  areas  when  it  was  contrasted  against  recognition  of  the  speech  message;  when  contrasted  against  speaker  recognition,  

Page 106: Complete program including all scientific contributions (21 MB, PDF)

  93  

recognition  of  linguistic  prosody  predominantly  involved  left  temporo-­‐frontal  areas.  The  results  show  that  linguistic  prosody  processing  involves  functions  of  both  hemispheres  and  suggest  that  recognition  of  linguistic  prosody  is  based  on  an  inter-­‐hemispheric  mechanism  which  exploits  both  a  right-­‐hemispheric  sensitivity  to  pitch  information  and  a  left-­‐hemispheric  dominance  in  speech  processing.      ID:  210    

The  role  of  the  lemniscal  corticothalamic  feedback  system  in  mistuning  detection  in  ferrets  Natsumi  Homma1,  Max  Happel2,  Fernando  R.  Nodal1,  Victoria  M.  Bajo1,  Andrew  J.  King1  1University  of  Oxford,  United  Kingdom;  2Leibniz  Institute  for  Neurobiology  Magdeburg,  Germany  [email protected]  Recent  evidence  suggests  that  corticothalamic  feedback  can  sharpen  the  spectral  receptive  fields  of  thalamic  neurons  and  modulate  the  temporal  precision  of  their  responses.  In  this  study,  we  aimed  to  investigate  the  role  of  the  lemniscal  corticothalamic  feedback  system  in  the  perception  of  spectral  and  temporal  modulations  by  using  mistuning  detection  of  harmonic  sounds.  We  evaluated  the  behavioural  effects  of  selective  elimination  of  corticothalamic  neurons,  projecting  from  the  primary  auditory  cortex  (A1)  to  the  ventral  division  of  the  medial  geniculate  body  (MGBv),  by  chromophore-­‐targeted  laser  photolysis  on  mistuning  detection  in  adult  ferrets.  Neural  recordings  guided  bilateral  injections  of  chlorine  e6-­‐  fluorescent  microbeads  in  MGBv,  and  after  allowing  retrograde  transport  of  the  beads  to  the  cell  bodies,  apoptosis  was  induced  by  infrared  (670  nm)  laser  illumination  of  A1.  Mistuning  detection  was  measured  using  a  positive  conditioned  go/no-­‐go  task  design,  with  three  training  phases  and  two  test  phases.  Complex  harmonic  tones  composed  of  16  harmonics  with  a  fundamental  frequency  (F0=400  Hz)  were  presented  as  a  reference  sound,  while  in  the  target  sound  the  4th  harmonic  was  shifted  to  a  higher  frequency  (0.03-­‐12%)  so  that  it  was  no  longer  an  integer  multiple  of  F0.  The  microbeads  injections  were  made  in  the  thalamus  before  the  test  phases,  and  mistuning  detection  performance  was  

tested  before  and  after  bilateral  laser  illumination  of  A1.  Postmortem  histology  revealed  that  injection  sites  were  located  in  MGBv.  The  cell  densities  of  NeuN-­‐positive  layer  VI  neurons  were  measured  using  the  optical  fractionator  stereological  probe  in  the  anterior,  middle  (where  A1  is  located)  and  posterior  ectosylvian  gyrus.  A  30%  reduction  in  cell  density  in  the  middle  ectosylvian  gyrus  was  observed  relative  to  controls,  supporting  the  selective  elimination  of  corticothalamic  neurons  in  A1.  Based  on  signal  detection  theory,  behavioural  performance  was  quantified  by  the  animals’  d’  scores,  an  index  of  detection  sensitivity,  and  by  psychometric  analysis.  Corticothalamic  lesion  resulted  in  poorer  mistuning  detection  performance,  as  indicated  by  decreased  d’  values  and  a  shift  of  the  psychometric  curves  towards  higher  frequencies,  with  a  threshold  increase  from  8±1  Hz  to  25±2  Hz.  These  results  support  a  role  for  A1-­‐MGBv  corticothalamic  feedback  in  the  accurate  recognition  of  auditory  stimuli.    ID:  211    

Neuronal  basis  for  visual  and  tactile  processing  in  cat  primary  auditory  cortex  Andres  Carrasco1,  Melanie  Kok1,  Alex  Meredith2,  Stephen  G.  Lomber1  1University  of  Western  Ontario,  London,  Canada;  2Virginia  Commonwealth  University  Richmond,  United  States  of  America  [email protected]  Despite  functional  and  structural  evidence  supporting  sensory-­‐specific  processing  pathways  in  cerebral  cortex,  recent  investigations  have  identified  neurons  at  early  stages  of  cortical  activation  capable  of  multisensory  integration.  Hence,  the  aim  of  the  present  study  was  to  bridge  the  copious  lapse  in  multisensory  processing  models,  by  examining  how  multi-­‐modal  signals  influence  the  neuronal  responses  at  the  earliest  stage  of  cortical  activation  in  the  auditory  system.  Using  acute  recording  techniques,  extracellular  response  activity  was  collected  from  the  right  hemisphere  of  six  mature  cats  (felis  catus).  Neuronal  responses  to  isolated  and  combined  presentation  of  acoustic  (noise  bursts),  visual  (flash),  and  somatosensory  (tactile  sweep)  signals  were  measured  across  primary  auditory  

Page 107: Complete program including all scientific contributions (21 MB, PDF)

  94  

cortex  (A1).  Statistical  analyses  of  neuronal  engagement  revealed  widespread  cortical  activation  during  periods  of  acoustic  (82.43%)  and  visual  (34.29%)  stimulation.  These  values  were  contrasted  by  a  near  absence  in  A1  activation  during  epochs  of  tactile  stimulation  (0.84%).  Examination  of  bi-­‐modal  responses  demonstrated  that  exposure  to  acoustic  signals  result  in  higher  peak  response  levels,  shorter  response  latencies,  and  shorter  response  durations  than  those  measured  during  epochs  of  visual  stimulation.  Neuronal  responses  during  sensory  co-­‐stimulation  revealed  modulatory  interaction  effects  (auditory-­‐visual:  excitation;  auditory-­‐visual-­‐somatosensory:  inhibition)  across  A1  neurons.  Collectively,  these  results  support  a  model  of  multisensory  activation  at  the  earliest  level  of  sensory  processing  in  the  auditory  system,  where  acoustic  and  visual  signals  can  engage  and  modulate  A1  activity,  and  somatosensory  stimulation  can  modulate  (inhibit)  but  not  drive  A1  responses.      ID:  212    

EEG  potentials  sensitive  to  Artificial  Grammar  learning  in  nonhuman  primates  Adam  Attaheri,  Yukiko  Kikuchi,  Alice  E.  Milne,  Andy  Hanson,  Benjamin  Wilson,  Kai  Alter,  Christopher  I.  Petkov  Newcastle  University,  United  Kingdom  [email protected]  Artificial  Grammars  (AG)  can  generate  rule-­‐based  sequences  that  emulate  aspects  of  language  structure,  such  as  the  relationship  between  words  in  a  sentence.  Recent  work  has  shown  that  nonhuman  primates  are  sensitive  to  the  relationships  between  sounds  in  an  auditory  AG  (Wilson  et  al.  2013)  and  fMRI  is  revealing  the  brain  regions  involved,  which  include  ventral  frontal  cortex  (Wilson  et  al.,  in  revision).  However,  other  approaches,  such  as  EEG,  allow  investigation  of  the  time  course  of  brain-­‐wide  effects  and  comparisons  with  prior  human  EEG  results.  Here,  we  habituated  two  rhesus  macaques  to  exemplary,  5  element  long,  sequences  of  nonsense  words  generated  by  the  AG.  Then  we  recorded  surface-­‐based  EEG  potentials  in  the  animals  as  they  listened  to  either  ‘correct’  sequences  generated  by  the  AG  structure  or  ‘violation’  sequences,  which  violated  the  AG  structure  by  having  a  single  

illegal  transition  between  nonsense  words.  Critically,  after  this  illegal  transition  in  the  violation  sequences,  the  remaining  nonsense  word  elements  were  identical  to  their  matching  ‘correct’  sequences,  allowing  us  to  analyse  acoustically  identical  parts  of  the  ‘correct’  and  ‘violation’  sequences.  Auditory  Event  Related  Potentials  (ERPs)  were  observed  in  response  to  all  of  the  nonsense  words  in  the  sequences,  each  showing  stereotypical  components  including  the  N100  and  P200.  Violations  of  the  AG  caused  a  significantly  stronger  negativity  peaking  at  ~150ms  post  violation  onset.  This  negativity  resembles  the  human  mismatch  negativity  (MMN),  and  it  may  represent  a  putative  monkey  MMN.  Moreover,  violation  transitions  resulted  in  a  stronger  P200  positivity  and  a  stronger  N400  negativity.  Effects  were  prominent  in  the  frontal  EEG  electrodes,  with  no  notable  hemispheric  differences.  Interestingly  these  reported  EEG  sensitivities  all  occur  much  earlier  in  time  than  those  that  we  have  observed  using  the  same  AG  paradigm  and  extracellular  recordings  from  neurons  in  auditory  cortex  (>500  ms;  Kikuchi  et  al.,  this  meeting),  possibly  indicating  feed-­‐back  effects  on  auditory  cortex.  In  conclusion,  the  experiment  identified  macaque  ERP  potentials  sensitive  to  AG  learning,  which  help  to  clarify  the  interpretation  of  related  monkey  fMRI  and  neuronal  recordings  results.  Furthermore,  comparing  these  ERP  components  to  those  reported  in  humans  for  AG  learning  allows  identifying  evolutionarily  conserved  EEG  components.    Support:  Wellcome  Trust  New  Investigator  Award  (CIP;  WT102961MA).      ID:  213    

Effects  of  loud  noise  exposure  on  sound  processing  in  the  mouse  primary  auditory  cortex  Ondrej  Novak,  Ondrej  Zelenka,  Tomas  Hromadka,  Josef  Syka  Institute  of  Experimental  Medicine  AS  CR  Praha,  Czech  Republic  [email protected]  Exposure  to  loud  sounds  damages  the  function  of  the  inner  ear  and  also  induces  profound  changes  in  the  receptive  fields  of  cortical  neurons,  contributing  to  the  development  of  tinnitus.  However,  the  roles  of  different  

Page 108: Complete program including all scientific contributions (21 MB, PDF)

  95  

neuronal  classes  in  the  development  of  trauma-­‐induced  receptive  field  changes  have  not  yet  been  resolved.  We  evaluated  the  effects  of  acute  acoustic  trauma  on  the  response  properties  of  neurons  in  the  mouse  primary  auditory  cortex  using  single-­‐unit  extracellular  recordings  and  two-­‐photon  calcium  imaging  in  vivo.  Mice  were  anaesthetized  with  ketamine/xylazine  and  acoustic  trauma  was  induced  by  a  5-­‐min  exposure  to  125  dB  SPL  white  noise.  Responses  of  neurons  to  broad-­‐band  noise  and  pure  tones  were  recorded  before  and  after  the  noise  exposure.  We  observed  different  dynamics  of  spiking  responses  to  broadband  noise  before  and  after  the  acoustic  trauma  (n=86  neurons).  Sound-­‐evoked  responses  decreased  in  one  subset  of  neurons  (n=13),  but  increased  in  another  (n=20).  Almost  half  of  the  neurons  (n=38)  did  not  change  their  sound-­‐evoked  activity  and  15  neurons  remained  unresponsive.  Interestingly,  neurons  with  decreased  responsiveness  had  significantly  narrower  spikes  than  other  sound-­‐responsive  neurons.  Spontaneous  activity  and  response  jitter  increased  in  neurons  with  unchanged  or  greater  responses.  Frequency  response  areas  of  individual  neurons  showed  an  increase  in  activity  at  the  flanks  of  responsive  areas  and  a  decrease  in  activity  at  the  initial  receptive  field.  In  two-­‐photon  calcium  imaging  most  neurons  displayed  shifts  in  their  best  frequencies  towards  lower  frequencies  after  the  trauma.  The  observed  effects  suggest  that  an  acute  acoustic  trauma  selectively  disrupts  activity  of  inhibitory  interneurons  in  the  auditory  cortex,  leading  to  specific  changes  in  tuning  and  response  dynamics  of  other  neurons.  To  explore  directly  the  changes  in  activity  of  cortical  interneurons,  we  used  calcium  imaging  in  the  auditory  cortex  of  PV-­‐Cre/TdT  and  SST-­‐Cre/TdT  mice,  expressing  TdTomato  in  parvalbumin-­‐positive  or  somatostatin-­‐positive  interneurons,  respectively.  We  evaluated  acoustic  trauma-­‐induced  changes  separately  for  cortical  layers  4  and  2/3.  Noise-­‐  and  tone-­‐responsiveness  was  disrupted  in  layer  4  significantly  more  than  in  layer  2/3.  The  most  prominent  change  in  layer  4  was  a  selective  decrease  in  noise-­‐responsiveness  of  PV-­‐interneurons.  Tone-­‐

responsiveness  of  SST-­‐interneurons,  however,  decreased  selectively  only  in  layer  2/3.    ID:  214    

Musical  and  vocal  emotions  in  the  auditory  cortex  Sebastien  Paquette1,  Isabelle  Peretz1,  David  Fleming2,  Pascal  Belin1,2,3  1Université  de  Montréal,  Canada.;  2University  of  Glasgow,  United  Kingdom;  3  Aix-­‐Marseille  Université,  France  [email protected]  Background  In  recent  years,  many  have  theorized  about  the  existence  of  common  neuropsychological  substrates  for  conveying  musical  and  vocal  emotions  [1,2].  Although  similar  brain  areas  have  been  associated  with  musical  and  vocal  emotional  processing  in  the  auditory  cortex  (e.g.  the  superior  temporal  sulcus  (STS),  superior  temporal  gyrus  (STG)  [3,4]),  there  is  currently  little  experimental  support  for  the  existence  of  a  common  auditory  emotion  channel  for  vocal  and  musical  emotion  perception.  We  aim  to  provide  an  in-­‐depth  comparison  of  the  musical  and  vocal  emotion  channels  to  identify  their  common  neurobiological  substrates  in  the  auditory  cortex.  Very  similar  musical  and  vocal  stimuli  from  both  an  acoustical  and  ecological  standpoint  will  allow  us  to  directly  explore  these  structures  using  functional  magnetic  resonance  imaging  (fMRI)  and  examine  whether  a  vocal  emotion  pathway  can  be  dissociated  from  a  musical  one.    Methods  Two  batteries  of  stimuli  depicting  basic  emotional  expressions  (happy,  sad,  scary,  neutral)  were  used:  the  Montreal  Affective  Voices  (non-­‐linguistic  vocal  bursts;  mean  duration:  1.3  sec)  [5]  and  the  Musical  Emotional  Bursts  (improvisations  or  imitations  of  an  emotion  on  a  violin  or  a  clarinet;  mean  duration:1.6  sec)  [6].  Twenty  participants  realized  a  one-­‐back  task  while  listening  to  the  affective  bursts  in  three  timbres  (violin,  clarinet,  voice),  during  continuous  fMRI  scanning.  

Page 109: Complete program including all scientific contributions (21 MB, PDF)

  96  

Results  Univariate  analyses,  using  SPM,  revealed  no  main  effect  of  timbre,  but  an  interaction  (emotion  x  timbre)  in  the  Auditory  Cortex  (STG):  vocal  fear  elicited  stronger  activation  than  their  music  counterparts  and  the  opposite  was  found  for  happy  stimuli  (music  stimuli  elicited  stronger  activation).  Activation  patterns  by  vocal  and  musical  emotions  showed  striking  similarities,  which  suggest  that  the  auditory  cortex  treats  both  emotional  stimuli  similarly.  Ongoing  analyses  using  the  searchlight  method,  and  cross-­‐condition  pattern  classification  of  recently  acquired  sparse-­‐sampling  data,  will  allow  us  to  determine  if  the  musical  emotional  pathway  can  be  dissociated  from  the  vocal  one.    [1]  Peretz  (2010)  Oxford  Uni.  Press.  [2]  Juslin,  et  al,  (2003)  Psy.  Bull.  [3]  Kotz  et  al,  (2013)  HBM.  [4]  Aubé,  et  al,  (2014)  SCAN.  [5]  Belin,  et  al,  (2008)  Behav.  Res.  Methods.  [6]  Paquette  et  al,  (2013)  Front  emo  sci.      ID:  215    

Exploring  the  role  of  synchrony  in  spatial  and  temporal  auditory-­‐visual  integration  Gareth  P.  Jones,  Stephen  M.  Town,  Katherine  C.  Wood,  Huriye  Atilgan,  Jennifer  K.  Bizley  University  College  London,  United  Kingdom  [email protected]  Animals  and  humans  integrate  sensory  information  over  time,  and  combine  this  information  across  modalities  in  order  to  make  accurate  and  reliable  decisions  in  complex  and  noisy  sensory  environments.  Little  is  known  about  the  neural  basis  of  this  accumulation  of  information,  nor  the  cortical  circuitry  that  links  the  combination  of  information  between  the  senses  to  perceptual  decision  making  and  behaviour.  Most  previous  examples  of  multisensory  enhancement  have  relied  on  synchrony  dependent  mechanisms,  but  these  mechanisms  alone  are  unlikely  to  explain  the  entire  scope  of  multisensory  integration,  particularly  between  senses  such  as  vision  and  hearing,  which  process  multidimensional  stimuli  and  operate  with  vastly  different  latency  constraints.  Presented  here  are  two  audio-­‐visual  behavioural  tasks,  one  spatial,  one  temporal  (adapted  from  Raposo,  et.  al.  2012),  requiring  subjects  (ferrets  and  humans)  to  accumulate  evidence  from  one  or  both  senses  over  time.  In  

the  temporal  task  subjects  estimated  the  average  rate  of  short  auditory  and/or  visual  events  embedded  in  a  noisy  background  (20  ms  white  noise  bursts  or  flashes)  over  a  defined  time  period  (~1000  ms).  Instantaneous  event  rates  throughout  this  time  period  varied,  meaning  the  accuracy  with  which  the  event  rate  could  be  estimated  increased  over  time.  Similarly,  in  the  spatial  task,  subjects  were  required  to  report  whether  a  greater  event  rate  was  presented  to  the  left  or  right  of  space.  Discrimination  was  assessed  in  both  unisensory  auditory  and  visual  conditions  as  well  as  in  synchronous  and  asynchronous  multisensory  conditions.  In  the  temporal  task,  accuracy  and  reaction  times  for  humans  were  improved  in  both  synchronous  and  asynchronous  multisensory  conditions  (accuracy:  71%  and  72%,  reaction  times:  285±8  and  290±8  ms,  mean±SE,  respectively),  relative  to  the  auditory  and  visual  unisensory  performance  (accuracy:  65%  and  60%,  reaction  times:  322±8  and  343±7  ms,  mean±SE,  respectively).  To  investigate  how  the  additional  information  available  in  the  multisensory  conditions  leads  to  optimised  listening  performance,  these  data  are  being  analysed  in  the  context  of  previously  published  drift  diffusion  models.  Lastly,  to  better  understand  how  such  signals  are  represented  in  the  brain,  recordings  are  being  performed  form  auditory  and  visual  cortex  of  anesthetised  ferrets.    

Page 110: Complete program including all scientific contributions (21 MB, PDF)

  97  

ID:  217    

Electrophysiological  signatures  of  audio-­‐visual  integration  in  young  and  elderly  cochlear-­‐implant  users  Irina  Schierholz1,  Svenja  Schulte2,  Nadine  Hauthal3,  Christoph  Kantzke1,  Mareike  Finke4,  Reinhard  Dengler5,  Pascale  Sandmann1  

 1Central  Auditory  Diagnostics  Lab,  Cluster  of  Excellence  „Hearing4all",  Hannover  Medical  School,  Germany;  2Central  Auditory  Diagnostics  Lab,  Hannover  Medical  School,  Germany;  3Neuropsychology  Lab,  Cluster  of  Excellence  „Hearing4all",  European  Medical  School,  University  of  Oldenburg,  Germany;  4Cluster  of  Excellence  „Hearing4all",  Hannover  Medical  School,  Germany;  5Department  of  Neurology,  Cluster  of  Excellence  „Hearing4all",  Hannover  Medical  School,  Germany  Schierholz.Irina@mh-­‐hannover.de  When  faced  with  a  long  period  of  auditory  deprivation  the  brain  is  known  to  be  sensitive  for  reorganizations  of  the  cortical  areas  in  the  auditory  system.  Auditory  deprivation  may  thus  affect  multisensory  processing  and  can  lead  to  a  change  in  the  integration  of  auditory  and  visual  stimuli  when  the  ability  to  hear  is  restored  with  a  cochlear  implant.  In  this  EEG  study  we  wanted  to  compare  multisensory  integration  between  cochlear-­‐implant  users  (CI)  and  normal-­‐hearing  listeners  (NH).  Furthermore,  we  aimed  to  assess  possible  age  effects  on  uni-­‐  and  multisensory  performance  in  cochlear-­‐implant  users.  Young  (CI:  N=10;  mean  age:  27.5  years,  NH:  N=10;  mean  age:  28.1  years)  and  elderly  (CI:  N=16;  mean  age:  68.94  years,  NH:  N=11;  mean  age:  66.8  years)  cochlear-­‐implant  patients  and  normal-­‐hearing  controls  were  tested  with  a  redundant  target  paradigm  while  EEG  was  simultaneously  recorded.  Participants  were  presented  with  auditory,  visual  as  well  as  audiovisual  stimuli  and  had  to  make  a  speeded  response.  Miller’s  test  of  the  race  model  inequality  was  applied  to  examine  the  effects  of  auditory  deprivation  on  multisensory  integration.  The  preliminary  results  revealed  a  significant  violation  of  the  race  model  inequality  in  cochlear-­‐implant  users  and  normal-­‐hearing  controls,  suggesting  audiovisual  integration  in  both  groups.  However,  the  younger  participants  showed  less  audiovisual  integration  compared  with  the  elderly.  This  points  to  an  age-­‐related  alteration  in  the  ability  to  integrate  auditory  and  visual  

information.  Further  analyses  will  be  conducted  to  investigate  the  neurophysiological  underpinnings  of  altered  audiovisual  integration.  These  findings  will  be  discussed  with  regards  to  consequences  for  rehabilitation  strategies  after  cochlear  implantation.      ID:  218    

Frequency  selectivity  and  myelination  measured  in  human  auditory  cortex  at  7  Tesla  Julien  Besle1,  Olivier  Mougin2,  Rosa  Sanchez-­‐Panchuelo2,  Penny  Gowland2,  Richard  Bowtell2,  Susan  Francis2,  Katrin  Krumbholz1  1Medical  Research  Council  Cambridge,  United  Kingdom;  2University  of  Nottingham,  United  Kingdom  [email protected]  Anatomical  and  electrophysiological  studies  in  non-­‐human  primates  have  subdivided  the  auditory  cortex  into  core  and  belt  areas  showing  distinct  structural  and  functional  properties.  It  remains  unclear  however  whether  analogous  subdivisions  exist  in  the  human  auditory  cortex  and  how  they  are  laid  out  on  the  supratemporal  plane.  Previous  in-­‐vivo  human  MRI  studies  have  led  to  inconsistent  subdivisions  because  tonotopic  mapping  alone  cannot  distinguish  between  sub-­‐areas  with  parallel  tonotopic  gradients.  To  help  interpret  tonotopic  maps,  we  concurrently  measured  tonotopy,  myelination  and  frequency  selectivity  in  the  same  subjects  at  ultra-­‐high  magnetic  field  (7T).  For  structural  mapping  of  myelination,  we  estimated  the  R1  longitudinal  relaxation  rate  (3D  MP2RAGE,  0.6  mm  resolution)  and  the  magnetization  transfer  ratio  (3D  MTRAGE,  0.7  mm  resolution).  For  the  functional  mapping  (sparse  2D  GRE  EPI,  1.5  mm  resolution,  phase-­‐corrected  for  B0-­‐related  distortions),  we  estimated  best  frequency  and  frequency  selectivity  using  trains  of  narrowband  noises  at  7  single  centre  frequencies  and  adaptation  frequency  selectivity  using  trains  of  alternating  centre  frequencies  at  5  frequency  separations.  All  structural  and  functional  measures  were  projected  onto  a  flattened  model  of  the  supra-­‐temporal  cortex,  segmented  from  the  high-­‐resolution  processed  MP2RAGE  volume.  Structural  measures  were  corrected  for  cortical  

Page 111: Complete program including all scientific contributions (21 MB, PDF)

  98  

thickness  and  curvature.  Group-­‐averaged  maps  were  created  using  spherical  registration.  In  all  subjects/hemispheres,  we  identified  at  least  3  tonotopic  gradient  reversals  (4  tonotopic  gradients)  roughly  parallel  to  HG,  with  the  2  central  gradients  (high-­‐to-­‐low-­‐to-­‐high)  centred  on  HG.  On  the  group-­‐averaged  maps,  the  area  of  higher  myelination  at  mid-­‐cortical  depth  corresponded  to  the  medial  part  of  HG  and  the  two  central  gradients,  while  increased  selectivity  was  also  centred  on  HG  but  extended  more  laterally  along  the  entire  central  gradients.  In  individual  maps  however,  higher  myelination  and  selectivity  could  correspond  to  either  or  both  of  the  central  gradients  depending  on  the  subject/hemisphere.  Frequency  adaptation,  when  corrected  for  BOLD  non-­‐linearity,  was  strongest  when  the  2  centre  frequencies  of  the  adaptation  train  were  closest,  which  suggests  genuine  neural  adaptation.  Adaptation  selectivity  showed  a  spatial  distribution  similar  to  that  of  the  response  frequency  selectivity.    ID:  219    

Voice  discrimination  in  zebra  finches  Julie  E.  Elie,  Frederic  E.  Theunissen  University  of  California  Berkeley,  United  States  of  America  [email protected]  Communication  calls  in  birds  can  convey  three  main  types  of  information:  who,  where  and  what.  This  information  can  be  orthogonal,  for  instance  the  same  individual  might  produce  different  types  of  communication  calls  (e.g.  an  aggressive  call,  a  contact  call).  In  this  neuro-­‐ethological  study,  we  investigate  invariance  and  selective  mechanisms  within  the  zebra  finch  (Taeniopygia  guttata)  auditory  cortex  that  lead  to  the  perception  of  individual  identity.  To  explore  how  the  zebra  finch  auditory  system  could  invariantly  treat  signals  that  have  different  social  meanings  but  are  emitted  by  the  same  individual,  we  investigated  perception  of  vocalizations  that  are  used  in  clearly  distinct  social  contexts.  Zebra  finches  utter  a  full  repertoire  of  calls  that,  from  an  acoustical  point  of  view,  exhibit  high  variability:  from  the  broad-­‐band  and  noisy  aggressive  call  to  the  spectrally  structured  distance  call.  In  this  study,  we  first  generated  a  library  containing  the  entire  repertoire  of  female  and  male  zebra  

finches,  organized  along  9  different  semantic  categories  and  annotated  with  the  identity  of  the  individual  and  the  social  context  of  emission.  Using  a  novel  data-­‐driven  acoustic  analysis  we  show  that  there  exist  some  acoustic  cues  that  tease  apart  individuals  irrespective  of  the  vocalization  categories.  Then,  we  conducted  behavioural  conditioning  experiments  to  test  the  ability  of  birds  to  discriminate  individuals,  and  found  that  both  males  and  females  discriminate  voices  irrespective  of  the  vocalization  type  used.  Finally,  we  investigated  the  neural  representation  of  these  social  vocalizations.  We  recorded  the  neural  activity  in  the  primary  auditory  area  (Field  L),  and  in  the  two  secondary  auditory  areas  (NCM  and  CM)  of  6  zebra  finches  in  response  to  the  play  back  of  the  9  distinct  communication  call  categories,  covering  the  repertoire  of  4  adults  and  2  young  per  recording  site.  To  understand  the  nature  of  the  neural  representation  of  the  “who”  information  in  the  auditory  system  we  used  a  decoding  method.  This  method  yields  a  confusion  matrix  that  quantifies  how  well  individual  call  stimuli  can  be  decoded  from  single  spike  trains.  From  the  confusion  matrix  of  individual  calls,  we  explore  the  invariance  and  selective  properties  of  single  units  for  individual  voices.  Combined  with  the  anatomical  position  of  the  recorded  units,  this  approach  sheds  light  on  the  neural  mechanisms  engaged  in  the  auditory  perception  of  individual  identity.    ID:  220    

Correlates  of  stream  segregation  by  phase  differences  in  tone  complexes  in  the  primary  auditory  cortex  Stanislava  Knyazeva,  Elena  Selezneva,  Nikolaos  C.  Aggelopoulos,  Michael  Brosch  Leibniz  Institute  for  Neurobiology  Magdeburg,  Germany  nikolaos.aggelopoulos@lin-­‐magdeburg.de  Psychophysical  studies  have  established  that  differences  in  pitch  or  timbre  (component  phase)  of  complex  tones  can  lead  to  stream  segregation  even  in  the  absence  of  differences  in  power  spectrum,  passband  and  fundamental  frequency  (Roberts  et  al,  2002).  We  have  used  their  paradigm  to  search  for  correlates  of  stream  segregation  in  the  auditory  cortex  of  

Page 112: Complete program including all scientific contributions (21 MB, PDF)

  99  

awake  macaque  monkeys  (Macaca  fascicularis).  We  hypothesized  that  the  firing  rate  or  timing  of  the  responses  of  auditory  cortex  multi-­‐unit  clusters  under  short  and  long  repetition  times  could  provide  a  potential  correlate  for  stream  segregation.  Three  types  of  tone  sequences  of  either  short  (100ms)  or  long  (400ms)  repetition  time  (TRT100%  and  TRT400%  respectively)  were  presented.  The  first  type  had  three  identical  tones  with  the  component  harmonics  at  cosine  phase  (AAA  triplets).  The  other  two  types  had  a  second  tone  with  alternating  (change  in  pitch)  or  random  (change  in  timbre)  phase  onsets  for  the  harmonics  (ABA  triplets).  Only  unresolved  harmonics  of  the  fundamental  frequency  (100  Hz)  were  present.  Neurons  responded  to  all  stimuli  similarly,  when  they  had  a  cosine  component  phase  (AAA  triplets)  in  both  TRT100%  and  TRT400%.  Some  neurons  (group  I),  responded  with  a  higher  firing  rate  specifically  to  the  B  stimulus  in  ABA  triplets,  if  it  consisted  of  alternating  or  random  component  phases,  indicating  a  sensitivity  to  the  phase  of  the  component  frequencies.  In  addition,  there  were  differential  responses  to  the  B  stimuli  with  regard  to  frequency  following.  Both  these  differential  responses  were  present  in  both  TRTs,  so  that  the  firing  rate  and  timing  of  neuronal  responses  cannot  alone  be  a  correlate  of  stream  segregation.  Additionally,  there  was  no  change  in  the  neuronal  responses  over  time  that  might  signal  a  switch  between  the  sequences  being  perceived  as  an  integrated  stream  or  as  two  segregated  streams.  In  another  subpopulation  of  neurons  (group  II),  the  neuronal  responses  to  the  three  tones  during  short  repetition  times  extended  continually  over  the  duration  of  the  triplet,  irrespective  of  the  phase  of  the  component  harmonics,  providing  a  potential  basis  for  stream  integration  and  the  perception  of  the  triplets  as  unitary  auditory  objects.  The  difference  in  response  firing  rate  to  the  B  stimulus  depending  on  component  phase  in  group  I  neurons  may  compete  with  the  perception  of  an  integrated  stream,  suggested  by  the  responses  of  group  II  neurons,  potentially  leading  to  stream  segregation.  

ID:  221    

The  neurobiology  of  voice  processing:  What  have  we  learned  from  neuronal  recordings  in  voice-­‐sensitive  cortex?  Catherine  Perrodin1,  Christoph  Kayser2,  Nikos  K.  Logothetis1,3,  Christopher  I.  Petkov4  1Max  Planck  Institute  for  Biological  Cybernetics  Tuebingen,  Germany;  2University  of  Glasgow,  United  Kingdom;  3University  of  Manchester,  United  Kingdom;  4Newcastle  University  Medical  School,  United  Kingdom  [email protected]  Voice  recognition  is  important  for  social  communication  and  the  human  brain  contains  specialized  voice-­‐sensitive  regions.  Recently,  fMRI  has  been  used  in  primates  and  dogs  to  identify  voice-­‐sensitive  regions  in  the  temporal  lobe  of  nonhuman  animals.  The  primate  work  has  led  to  a  series  of  studies  using  targeted  neuronal  recordings  from  the  anterior  voice-­‐identity  sensitive  fMRI  cluster  in  the  macaque  supratemporal  plane  (STP).  Here,  we  review  these  newly  obtained  insights  into  the  neurophysiology  of  voice-­‐sensitive  neurons  in  the  primate  brain.  The  first  study  investigated  the  neuronal  substrates  underlying  the  sensitivity  to  conspecific  voices  observed  in  fMRI  studies.  Namely,  do  single  neurons  defined  as  ‘voice  cells’,  analogously  to  ‘face  cells’  in  the  visual  system,  exist,  and,  if  so,  are  voice  cells  a  direct  auditory  analog  of  face  cells  in  terms  of  their  functional  properties?  The  neurophysiological  data  revealed  a  modest  proportion  of  voice  cells,  showed  how  these  neurons  encode  both  the  between  and  across  voice  category  stimuli,  and  revealed  interesting  differences  in  the  encoding  properties  of  ‘voice  cells’  relative  to  those  reported  for  face  cells.  The  second  study  explored  the  extent  to  which  this  voice-­‐sensitive  region  is  multisensory,  and  compared  the  results  to  those  from  association  cortex  in  the  superior-­‐temporal  sulcus.  Stimulating  with  dynamic  faces  and  voices,  we  found  that  neurons  in  voice-­‐sensitive  STP  are  highly  sensitive  to  auditory  features  and  show  a  certain  level  of  multisensory  influences.  By  contrast,  neurons  in  association  cortex  are  not  as  sensitive  to  auditory  features  but  demonstrate  greater  specificity  in  their  multisensory  responses,  such  as  being  more  often  associated  with  congruent  stimulus  pairs  than  STP  neurons.  Finally,  a  third  study  investigated  the  link  between  stimulus  features  

Page 113: Complete program including all scientific contributions (21 MB, PDF)

  100  

in  audiovisual  communication  signals  and  the  types  of  multisensory  responses  displayed  by  neurons  within  voice-­‐sensitive  cortex.  We  found  that  natural  audiovisual  asynchronies  that  are  present  in  communication  signals  influence  the  phase  of  ongoing  low-­‐frequency  oscillations  and  also  the  direction  of  neuronal  multisensory  interactions.  Altogether  the  results  provide  new  insights  into  the  neurobiology  of  primate  voice-­‐sensitive  regions,  raise  hypotheses  for  testing  in  the  visual  modality,  and  constrain  theoretical  models  on  voice/face  processing.    Support:  Max  Planck  Society,  Wellcome  Trust  (CIP),  Swiss  National  Science  Foundation  (CP).  

 ID:  222    

Unilateral  hearing  loss  in  the  ferret:  Behavioural  and  electrophysiological  characterisation  of  a  novel  model  of  tinnitus  Joshua  R.  Gold,  Fernando  R.  Nodal,  Andrew  J.  King,  Victoria  M.  Bajo  University  of  Oxford,  United  Kingdom  [email protected]  Tinnitus  is  defined  by  the  reported  presence  of  a  sound  percept  in  the  absence  of  any  environmental  correlate  –  equivalently,  animal  models  have  sought  to  induce  such  a  percept,  verified  using  behavioural  measures  and  understood  by  physiological  and  anatomical  means.  However,  published  data  have  often  neglected  to  obtain  behavioural  and  physiological  measurements  within  the  same  subjects.  We  have  thus  sought  to  expand  the  available  pool  of  knowledge  regarding  tinnitus  neurobiology  by  developing  a  novel  model  of  maladaptive  plasticity  based  upon  selective  sensorineural  hearing  loss  in  the  ferret.  Individual  animals  (n  =  7)  were  tracked  longitudinally  (>12  months),  with  auditory  function  assessed  using  an  operantly-­‐conditioned  gap-­‐detection  paradigm  and  measurement  of  auditory  brainstem  responses  (ABRs).  Upon  the  acquisition  of  stable  behaviour,  animals  were  deafened  unilaterally  by  mechanical  lesion  in  the  spiral  ganglion  at  the  basal  coil  level,  with  further  behavioural  testing  and  ABR  measurement  at  multiple  time  points  post-­‐recovery.  Following  the  lesion,  behavioural  performance  outcomes  were  heterogeneous,  with  a  subset  of  ferrets  

displaying  gap-­‐detection  threshold  elevations  and  correlated  changes  in  late-­‐wave  ABR  features,  akin  to  those  observed  in  human  tinnitus  patients.  In  particular,  these  physiological  changes  were  distinct  from  those  observed  in  animals  without  behavioural  signs  of  tinnitus.  From  this  mixed  cohort,  acute  bilateral  neural  recordings  performed  in  the  auditory  cortices  of  lesioned  ferrets  revealed  changes  in  multiunit  spectrotemporal  response  properties,  including  tonotopic  rearrangement  and  elevations  of  neural  synchrony  and  spontaneous  activity,,  in  accordance  with  published  tinnitus-­‐like  physiology,  and  our  own  behavioural  and  ABR-­‐defined  criteria.  On  the  basis  of  these  physiological  changes,  a  second  subset  of  ferrets  received  chronic  bilateral  fibre-­‐optic  implants  in  eachauditory  cortex,  which  had  previously  been  injected  with  an  AAV-­‐ArchT  construct,  with  the  aim  of  potentially  reversing  the  tinnitus-­‐like  percept  by  silencing  abnormal  cortical  function  in  awake  behaving  animals.    Study  supported  by  the  Wellcome  Trust  and  Action  on  Hearing  Loss.    ID:  223    

Dual  involvement  of  early  auditory  cortex  in  an  auditory  working  memory  task:  A  combined  study  in  human  and  non-­‐human  primates  Artur  Matysiak,  Ying  Huang,  Norman  Zacharias,  Reinhard  König,  Peter  Heil,  Michael  Brosch  Leibniz  Institute  for  Neurobiology  Magdeburg,  Germany  Ying.Huang@lin-­‐magdeburg.de  Working  memory  (WM)  is  defined  as  temporal  retention  of  task-­‐relevant  information  for  goal-­‐directed  behaviours  (D’Esposito,  2007).  Since  WM  requires  high  accuracy  and  flexibility  for  information  retention,  sensory  cortex  is  necessary  to  be  involved  in  this  process.  Here  we  investigated  neural  correlates  of  WM  in  early  auditory  cortex  using  a  multi-­‐level  approach  in  humans,  where  we  monitored  neural  activity  using  magnetoencephalography  (MEG),  and  in  monkeys,  where  we  recorded  local  field  potentials  (LFPs),  multiunit  activity  (MU)  and  single-­‐unit  activity  (SU).  Both  phasic  encoding  and  tonic  delay  activity  were  investigated.  Stimuli  were  four  tone-­‐pairs  with  same  or  

Page 114: Complete program including all scientific contributions (21 MB, PDF)

  101  

different  frequencies  (in  humans  1.5  and  1.6  kHz,  separated  by  a  silent  delay  of  2  s;  in  monkeys  1  and  3  kHz,  800  ms  delay).  Subjects  were  required  to  make  differential  motor  responses  for  the  two  tone-­‐pairs  starting  with  the  low  frequency  tone,  i.e.,  go-­‐response  after  the  low-­‐low  pair  and  nogo  response  after  the  low-­‐high  pair.  Therefore  subjects  had  to  memorize  the  first  tone  to  finish  the  task  and  these  tone-­‐pairs  were  defined  as  high-­‐memory-­‐load  condition.  For  the  two  pairs  starting  with  the  high-­‐frequency  tone,  subjects  made  nogo  responses  after  both.  The  first  tone  was  not  required  to  be  memorized  and  these  pairs  were  defined  as  low-­‐memory-­‐load  condition.  A  series  of  control  experiments  for  stimulus  difference  and  motor  preparation  etc.  were  conducted  on  the  same  subjects  or  on  the  same  neurons.  By  comparing  neural  activity  between  the  high-­‐  and  low-­‐memory-­‐load  conditions,  we  find  that  tonic  delay  activity  was  higher  in  the  high-­‐load  condition  than  that  in  the  low-­‐load  condition  for  human  subjects.  The  differential  delay  activity  was  lateralized  to  the  right  hemisphere.  Similar  results  were  observed  from  monkeys.  The  high-­‐  and  low-­‐load  conditions  was  bi-­‐directionally  differentiated  on  LFPs,  MU  and  SU  activity.  The  differential  delay  activity  mainly  related  to  the  WM  process  since  it  was  task-­‐specific  and  could  not  be  explained  by  the  difference  of  stimulus,  motor  preparation  etc.  Besides  the  tonic  delay  activity,  the  phasic  encoding  activity  was  also  modulated  by  memory-­‐load.  The  phasic  activity  for  the  same  stimulus  was  suppressed  in  the  high-­‐load  condition  relative  to  that  in  the  low-­‐load  condition.  Our  results  in  both  humans  and  macaques  therefore  suggest  that  auditory  cortex  is  involved  in  auditory  WM  and  both  phasic  and  tonic  neural  activity  are  related  to  the  memory  process.  

ID:  224    

Dynamic  activations  of  left  and  right  auditory  related  areas  during  temporal  analyses  of  speech  signals  and  its  relation  to  cortical  structure  Nathalie  Giroud,  Kurthen  Ira,  Keller  Matthias,  Dellwo  Volker,  Meyer  Martin  University  of  Zurich,  Switzerland  [email protected]  During  speech  processing  the  auditory  related  cortex  is  able  to  identify  relevant  acoustic  cues  that  may  be  described  at  the  frequency  and  at  the  time  scale  level.  Frequency  variations  can  have  a  temporal  grain  rate  of  milliseconds  and  therefore  change  rapidly  or  unfold  at  a  rate  of  hundreds  of  milliseconds  and  therefore  change  slowly.  We  examined  auditory  evoked  potentials  (AEPs)  as  a  function  of  temporally  different  speech  cues  in  words  and  syllables.  We  related  the  amplitudes  of  the  AEPs  to  specific  activations  of  the  left  and  right  auditory  related  areas  and  further  explored  dynamic  changes  of  the  activations  over  time.  Additionally  we  will  examine  the  relationship  of  these  activations  to  the  cortical  structure  in  auditory  related  areas.  We  investigated  this  issue  by  (1)  manipulating  rapidly  changing  cues  of  a  consonant-­‐vowel  syllable  by  varying  the  voice-­‐onset  time  (VOT)  and  (2)  by  manipulating  the  rhythmic  patterns  of  a  word  in  order  to  investigate  the  processing  of  slowly  changing  cues.  AEPs  and  structural  MRI  scans  were  so  far  collected  from  21  healthy  young  adults.  We  used  a  pre-­‐attentive  mismatch  negativity  paradigm  and  a  N1/P2  paradigm  in  combination  with  an  inverse  solution  approach  (LORETA).  The  thickness  and  surface  area  of  the  cortex  will  be  calculated  using  a  surface-­‐based  morphometry  approach  (Freesurfer).  AEP  data  show  that  slowly  changing  cues  are  preferentially  processed  in  the  right  middle  temporal  lobe  (MTG),  whereas  rapidly  changing  cues  are  preferentially  processed  in  the  left  MTG.  The  time  course  of  the  lateralization  effects  additionally  show  that  they  are  dynamically  changing  over  time.  To  conclude,  the  source  localizations  show  a  lateralization  effect  of  the  auditory  related  areas  in  line  with  the  “asymmetric  sampling  in  time”  (AST)-­‐model  by  Poeppel,  but  also  implicate  a  very  dynamic  process  over  time.

Page 115: Complete program including all scientific contributions (21 MB, PDF)

  102  

ID:  225    

Auditory  processes  limited  by  visual  load  Katharine  Molloy1,  Maria  Chait1,  Timothy  D.  Griffiths1,2,  Nilli  Lavie1  1University  College  London,  United  Kingdom;  2Newcastle  University,  United  Kingdom  [email protected]  It  is  well  established  that  perception  is  limited  in  conditions  of  high  load  that  overwhelm  perceptual  capacity.  The  effects  of  perceptual  load  have  typically  been  studied  within  sensory  modality,  especially  within  vision,  but  less  work  has  explored  whether  a  large  perceptual  demand  in  one  modality  can  limit  processing  in  another.  Here,  we  show  behavioural  and  magnetoencephalography  (MEG)  data  which  indicate  that  perceptual  load  within  vision  can  affect  auditory  perception  both  for  pure  tones  and  for  figure-­‐ground  segregation.  Participants  performed  visual  search  tasks  of  either  low  load  (feature  pop  out)  or  high  load  (conjunction)  search.  Auditory  targets  were  presented  on  50%  of  trials.  In  the  detection  experiments  the  target  was  a  pure  tone  12dB  above  threshold;  in  figure-­‐ground  segregation,  the  ‘figure’  target  consisted  of  a  repetition  of  multiple  frequency  components  among  a  background  of  randomly  changing  chords  (Stochastic  Figure-­‐Ground,  SFG,  stimuli;  Teki  et  al.,  2013).  In  behavioural  studies,  a  dual  task  paradigm  was  used.  For  the  MEG,  responses  to  the  auditory  stimuli  were  passively  recorded  while  participants  engaged  solely  in  the  visual  load  tasks.  Behaviourally,  both  pure  tone  detection  and  figure  ground  segregation  were  found  to  suffer  under  the  high,  compared  to  low  load  visual  task.  This  reflects  the  phenomenon  of  ‘inattentional  deafness’,  where  normally  audible  sounds  are  missed  when  we  are  overloaded.  For  pure  tones,  auditory  evoked  fields  measured  using  MEG  showed  that  the  M100  response  was  significantly  reduced  under  high  visual  load.  This  was  associated  with  lower  activity  in  secondary  auditory  cortex  (middle  temporal  gyrus  and  superior  temporal  sulcus)  under  high  compared  to  low  load.  Additionally,  a  P3  ‘awareness  positivity’  was  observed  in  the  right  hemisphere  under  low  but  not  high  visual  load.  The  figure-­‐ground  MEG  experiment  is  currently  running  and  data  will  be  discussed  at  the  meeting.  

Overall,  our  data  show  that,  rather  than  the  auditory  system  acting  as  an  autonomous  ‘early  warning  system’,  it  may  actually  be  limited  by  overload  of  perceptual  information,  even  from  other  sensory  modalities.    Reference:  Teki,  S.,  Chait,  M.,  Kumar,  S.,  Shamma,  S.,  &  Griffiths,  T.  D.  (2013).  Segregation  of  complex  acoustic  scenes  based  on  temporal  coherence.  Elife,  2.      ID:  226    

The  effects  of  attention  on  auditory  object  formation  via  temporal  coherence  James  O'Sullivan,  Edmund  Lalor  Trinity  College  Dublin,  Ireland  [email protected]  The  human  brain  has  evolved  to  operate  effectively  in  complex  auditory  environments,  segregating  multiple  continuous  stimuli  into  perceptually  distinct  auditory  objects.  One  theory  which  seeks  to  explain  such  a  percept,  known  as  Temporal  Coherence,  surmises  that  spectral  components  which  modulate  coherently  in  time  will  be  bound  together  to  form  a  single  auditory  stream.  One  stimulus  used  in  stream  segregation  paradigms,  known  as  a  Figure-­‐Ground  stimulus,  consists  of  a  sequence  of  chords  containing  a  random  set  of  pure-­‐tone  components.  Occasionally,  a  subset  of  tonal  components  repeat  in  frequency  over  several  consecutive  chords,  resulting  in  a  spontaneous  percept  of  a  “figure”  popping  out  of  a  random  background  of  varying  chords.  The  saliency  of  the  figure  depends  on  the  quantity  of  tonal  components  with  the  same  temporal  characteristics.  Studying  this  phenomenon  using  non-­‐invasive  techniques  such  as  magneto-­‐  and  electroencephalography  (MEG/EEG)  has  traditionally  been  constrained  by  time-­‐locked  averaging  techniques,  which  make  it  difficult  to  disentangle  particular  components  of  interest  from  the  multitude  of  simultaneous  neural  responses  to  other  stimulus  features.  Recently,  the  application  of  linear  regression  methods  has  allowed  for  the  extraction  of  localized  neural  correlates  of  individual  features  of  interest.  Using  these  methods  in  a  Figure-­‐Ground  detection  paradigm,  we  show  that  it  is  possible  to  extract  a  neural  response  that  is  indicative  of  the  neural  processing  of  temporal  coherence  in  relative  isolation.  Furthermore,  we  show  the  

Page 116: Complete program including all scientific contributions (21 MB, PDF)

  103  

effects  of  attention  on  this  response  in  an  Attended  /  Unattended  paradigm.  Our  findings  show  an  early  effect  of  coherence,  lasting  from  100ms  to  200ms  post  stimulus,  over  both  left  and  right  parietal  scalp  regions,  with  no  significant  difference  between  attended  and  unattended  responses  (p  >  0.05,  paired  t-­‐test).  After  this,  attended  and  unattended  neural  responses  become,  and  remain,  significantly  different  (p  <  0.01,  paired  t-­‐test).  Peaking  at  400ms,  the  attended  response  is  primarily  located  over  left  temporal  areas.  The  unattended  response  peaks  at  a  similar  latency,  but  is  instead  located  over  right  parietal  scalp.  Subsequently,  the  unattended  response  shows  no  further  activation,  whereas  the  attended  response  remains  up  until  600ms  post-­‐stimulus.  These  findings  suggest  an  early  and  automatic  response  to  the  temporal  coherence  of  a  stimulus,  followed  by  a  later  response  driven  by  attentional  engagement.    ID:  227    

Pushing  beyond  the  envelope:  Improved  modeling  of  continuous  speech  processing  in  EEG  using  phonetic  features  Giovanni  Di  Liberto,  James  O'Sullivan,  Edmund  Lalor  Trinity  College  Dublin,  Ireland  [email protected]  The  details  of  how  humans  perform  speech  processing  remain  unknown.  Progress  on  this  problem  has  been  made  in  recent  years  by  the  realization  that  cortical  activity  tracks  the  amplitude  envelope  of  speech.  This  has  facilitated  the  development  of  techniques  based  on  regression  methods  for  mapping  this  representation  of  speech  to  the  recorded  neurophysiological  signal  (EEG).  Further  insights  have  been  achieved  using  a  spectro-­‐temporal  representation,  which  is  obtained  by  partitioning  the  acoustic  signal  into  a  number  of  frequency-­‐bands  and  calculating  the  envelope  of  each  band.  Although  these  methods  are  powerful  tools  that  have  addressed  several  previously  unanswered  questions,  recent  work  with  intra-­‐cranial  recordings  (ECoG)  has  shown  that  high-­‐gamma  cortical  activity  tracks  higher-­‐order  representations  of  speech  based  on  the  phonetic  structure.  

The  current  study  shows  that  a  phonetic  representation  of  speech  can  also  describe  the  mapping  between  speech  and  low-­‐frequency  scalp-­‐recorded  EEG.  Indeed  we  show  that  this  representation  produces  a  marked  improvement  in  mapping  accuracy  over  the  approach  based  on  the  speech  envelope.  In  particular,  90  minutes  of  continuous  natural  speech  was  divided  into  32  trials  and  presented  to  10  subjects.  Multivariate  linear-­‐regression  was  then  employed  on  the  recorded  data  and  predictions  of  the  EEG  signals  were  obtained  using  leave-­‐one-­‐out  cross-­‐validation.  The  models  based  on  a  phonetic  structure  were  better  predictors  of  the  EEG  for  all  subjects,  and  this  was  shown  to  be  significant  using  a  two-­‐tailed  paired  t-­‐test.  Indeed,  a  phonetic  representation  carries  higher-­‐order  information  than  the  speech  amplitude  envelope.  However,  further  investigation  is  necessary  to  elucidate  whether  the  improvement  we  see  is  due  to  a  higher-­‐order  mapping  that  captures  a  categorical  representation  of  the  phonetic  content  or  a  better  encoding  of  the  low-­‐level  speech.  Some  results  have  been  obtained  that  tend  towards  this  former  explanation.  In  particular,  multivariate  models  of  the  system  response  to  the  phonetic  representation  of  speech  permit  the  analysis  of  each  phoneme  independently.  From  this  analysis,  we  show  significant  differences  between  the  responses  to  vowels  and  non-­‐vowels.  In  particular,  we  show  that  a  binary  classification  performed  with  k-­‐means  on  the  phonetic  model  returns  a  partitioning  with  over  90%  accuracy.  Potentially,  the  realised  model  is  an  important  tool  in  the  study  of  how  speech  is  processed  by  the  human  brain.      ID:  228    

Intracranial  investigation  of  auditory  and  visual  speech  selectivity  in  human  auditory  and  auditory-­‐related  cortex  Ariane  E.  Rhone,  Bob  McMurray,  Kirill  V.  Nourski,  Hiroyuki  Oya,  Hiroto  Kawasaki,  Matthew  A.  Howard  III  The  University  of  Iowa,  United  States  of  America  ariane-­‐[email protected]  Although  speech  is  often  considered  an  auditory  phenomenon,  visual  contributions  to  speech  perception  are  well  established.  Human  

Page 117: Complete program including all scientific contributions (21 MB, PDF)

  104  

electrophysiology  and  neuroimaging  studies  have  outlined  a  model  in  which  visual  information  naturally  preceding  the  acoustic  onset  of  speech  can  influence  auditory  processing,  resulting  in  behavioral  facilitation  associated  with  audiovisual  (AV)  versus  audio-­‐alone  (A)  speech.  A  broad  cortical  network  has  been  implicated  in  this  process;  we  used  electrocorticography  to  test  the  visual-­‐alone  (V)  responsiveness  and  speech  sensitivity  of  several  of  these  areas  simultaneously.  Subjects  were  five  normal-­‐hearing  adult  neurosurgical  patients  undergoing  chronic  invasive  monitoring  for  medically  refractory  epilepsy.  Stimuli  were  A  or  V  speech  syllable  /da/  combined  with  nonspeech  stimuli  (/da/-­‐shaped  noise  or  gurning)  or  unimodal  (A  or  V)  /da/.  Electrophysiological  data  were  recorded  from  Heschl’s  gyrus  (HG)  using  multicontact  depth  electrodes.  Subdural  grid  arrays  recorded  simultaneous  activity  on  the  lateral  cortical  surface,  including  superior  temporal  gyrus  (STG),  inferior  frontal  gyrus  (IFG),  precentral  gyrus,  and  middle  temporal  gyrus  (MTG).  Event  related  band  power  in  the  high  gamma  band  (70-­‐150  Hz)  was  measured  in  two  time  windows,  300  ms  following  mouth  motion  onset  to  test  visual  activation  prior  to  acoustic  stimulation  and  400  ms  post  audio  onset.  Unimodal  V  stimuli  activated  sites  on  STG,  IFG,  MTG,  and  precentral  gyrus,  but  not  HG.  Speech  vs.  nonspeech  comparisons  revealed  distinct  patterns  of  activation  in  different  cortical  regions.  Prior  to  sound  onset,  HG  and  STG  did  not  show  speech  selectivity;  sites  on  precentral  gyrus  showed  increased  activation  for  visual  speech  vs.  nonspeech  content.  Following  sound  onset,  STG,  but  not  HG,  showed  increased  high  gamma  for  both  A  and  V  speech.  MTG  showed  increased  activity  for  A  speech  stimuli,  but  no  effect  of  V  speech  vs.  nonspeech.  Activity  on  precentral  gyrus  continued  to  be  greater  for  V  speech  vs.  nonspeech.  Although  IFG  was  activated  by  V  stimuli,  it  was  not  modulated  by  speech  content  in  either  modality.  Despite  widespread  activation  by  V  stimuli,  speech  sensitivity  was  limited  to  nonprimary  auditory  areas  and  did  not  occur  prior  to  acoustic  onset  except  on  precentral  gyrus.  This  suggests  that  neural  processes  subserving  AV  facilitation  emerge  at  the  level  of  nonprimary  and  auditory-­‐related  cortical  areas.

ID:  229    

Successful  lipreading  of  silent  speech  strengthens  the  correlation  between  cortical  activity  and  the  corresponding  speech  envelope  Michael  J.  Crosse,  Hesham  ElShafei,  Edmund  C.  Lalor  Trinity  College  Dublin,  Ireland  [email protected]  Neuroimaging  research  has  shown  that  the  presentation  of  visual  speech  in  the  absence  of  auditory  speech  activates  primary  auditory  cortex  (Calvert  et  al.,  1997;  Pekkola  et  al.,  2004).  However,  due  to  the  limited  temporal  resolution  of  fMRI,  it  is  difficult  to  establish  how  activation  in  auditory  cortex  during  silent  lipreading  is  modulated  over  time  or  what  this  activation  precisely  reflects.  Electrophysiological  measurements  on  the  other  hand  provide  superior  temporal  resolution  rendering  them  more  suitable  methodologies  for  addressing  this  subject.  For  example,  recent  electrophysiological  work  has  demonstrated  that  an  estimate  of  the  acoustic  envelope  can  be  reconstructed  from  EEG  data  which  were  recorded  during  both  audio-­‐only  (A)  and  visual-­‐only  (V)  speech  (Crosse  and  Lalor,  2014).  The  authors  suggested  that  this  latter  effect  was  mainly  driven  by  visual  responses  to  motion  in  the  visual  stimulus.  However,  it  remains  a  possibility  that  auditory  cortical  activity  tracks  the  amplitude  envelope  of  the  unheard  acoustic  signal  during  successful  silent  lipreading.  Here  we  test  this  hypothesis  by  conducting  an  experiment  to  examine  the  effects  of  recalling  a  known  speech  passage  during  silent  lipreading  on  recorded  EEG.  The  subjects  were  trained  on  a  one-­‐minute  AV  speech  stimulus  prior  to  testing.  They  were  then  presented  with  14  trials  of  the  same  AV  stimulus,  14  trials  of  the  same  V  stimulus  without  the  audio  (V-­‐trained)  and  14  trials  of  different  V  stimuli  with  which  they  were  not  familiar  (V-­‐untrained).  Subjects  were  required  to  recall  the  auditory  speech  as  well  as  they  could  during  the  V-­‐trained  condition  and  to  detect  target  words  during  each  of  the  three  conditions.  Subjects  performed  this  target  word  detection  significantly  better  in  the  V-­‐trained  condition  than  in  the  V-­‐untrained  condition.  Preliminary  analysis  of  the  EEG  data  suggests  that  cortical  

Page 118: Complete program including all scientific contributions (21 MB, PDF)

  105  

activity  during  the  V-­‐trained  condition  is  more  closely  correlated  with  the  acoustic  envelope  than  the  V-­‐untrained  condition.  While  this  could  partly  be  due  to  attention  effects  on  visual  processing,  it  is  also  suggestive  of  auditory  cortex  synthesising  tracking  of  the  acoustic  envelope  during  silent  lipreading.    ID:  230    

Magnetoencephalography  reveals  brain  activity  varying  with  the  number  of  retained  tones  in  auditory  short-­‐term  memory  Sophie  Nolden1,2,3,  Stephan  Grimault1,2,4,  Synthia  Guimond1,2,  Christine  Lefebvre1,2,5,  Patrick  Bermudez1,2,  Pierre  Jolicoeur1,2,5  1BRAMS,  Montreal,  Canada;  2CERNEC,  University  of  Montreal,  Canada;  3RWTH  Aachen,  Germany;  4CNRS,  Marseille,  France;  5CRIUGM,  University  of  Montreal,  Canada  [email protected]  The  current  study  focused  on  the  retention  of  tones  in  human  auditory  short-­‐term  memory.  Recent  studies  have  isolated  an  event-­‐related  potential,  the  Sustained  Anterior  Negativity  (SAN),  which  varies  with  memory  load  during  the  retention  of  tones  (for  example  Lefebvre  et  al.,  2013).  Here,  we  used  magnetoencephalography  (MEG)  in  order  to  find  a  magnetic  equivalent  to  the  SAN,  hence  event-­‐related  magnetic  fields  varying  with  memory  load  during  the  retention  of  tones.  In  addition,  we  performed  source  analyses  to  localize  the  neural  generators  of  the  load-­‐sensitive  brain  activity  observed  outside  the  head.  Participants  retained  one  or  two  simultaneously  presented  tones.  After  a  retention  interval  of  2000  ms  a  test  tone  was  presented  and  the  task  was  to  determine  if  that  tone  corresponded  to  the  retained  memory  tones.  Bilateral  event-­‐related  magnetic  fields  over  temporal  and  parietal  areas  varied  with  memory  load.  Source  analyses  revealed  that  activity  in  the  superior  temporal  gyrus  in  both  hemispheres,  in  the  right  inferior  temporal  gyrus,  in  the  right  inferior  frontal  gyrus,  and  in  right  parietal  areas  increased  when  the  number  of  retained  tones  increased.    

ID:  231    

Auditory  perception  in  a  rhythmically  variable  context  depends  on  neural  amplitude  fluctuations  in  multiple  frequency  bands  Björn  Herrmann1,  Molly  J.  Henry1,  Saskia  Haegens2,3,  Jonas  Obleser1  1Max  Planck  Institute  for  Human  Cognitive  and  Brain  Sciences  Leipzig,  Germany;  2Columbia  University  College  of  Physicians  and  Surgeons,  United  States  of  America;  3Nathan  S.  Kline  Institute  Orangeburg,  United  States  of  America  [email protected]  Neural  oscillations  are  thought  to  provide  a  mechanism  to  evaluate  temporal  predictions.  When  acoustic  stimulation  is  temporally  regular,  low-­‐frequency  neural  oscillations  become  entrained  by  the  event  structure.  In  turn,  listening  behavior  is  optimized,  as  expected  events  coincide  with  the  “excitable”  phase  of  the  entrained  oscillation.  However,  it  is  less  clear  how  amplitude  fluctuations  influence  listening  behavior,  in  particular  in  temporally-­‐variable  contexts  in  which  listeners  might  use  either  a  “rhythmic”  or  a  “continuous”  processing  mode.  Thus,  the  current  magnetoencephalography  study  investigated  the  relation  between  neural  amplitude  fluctuations  in  auditory  cortex  and  human  listening  behavior  in  a  rhythmically-­‐variable  listening  situation.  Tone  sequences  varied  in  temporal  regularity  (i.e.,  mean  rate  2  Hz  ±  0.14  Hz  SD),  and  participants  (N=20)  indicated  the  presence  of  difficult-­‐to-­‐detect  intensity  changes.  An  oscillator  model  was  used  to  estimate  the  degree  to  which  each  target  tone  was  expected  based  on  the  timing  of  preceding  tones.  Time-­‐frequency  analyses  quantified  the  degree  to  which  the  amplitude  of  pre-­‐target  neural  oscillations  predicted  behavioral  performance.  Behaviorally,  intensity  changes  were  better  detected  when  their  occurrence  was  more  predictable  based  on  the  preceding  temporal  structure.  With  respect  to  neural  oscillations,  we  observed  interactive  effects  of  pre-­‐target  neural  amplitude  at  three  distinct  frequencies  on  perception.  First,  amplitude  of  the  2-­‐Hz  neural  oscillation  differentially  predicted  target-­‐detection  performance  –  expected  targets  were  best  detected  when  2-­‐Hz  neural  amplitude  was  high,  whereas  unexpected  

Page 119: Complete program including all scientific contributions (21 MB, PDF)

  106  

targets  were  best  detected  when  amplitude  was  low.  Second,  we  observed  modulations  of  target-­‐detection  performance  by  alpha-­‐frequency  amplitude  (~8  Hz  and  ~13  Hz,  respectively),  which,  third,  depended  on  low-­‐frequency  (2  Hz)  amplitude.  In  detail,  hit  rates  increased  linearly  with  increasing  8-­‐Hz  amplitude,  but  this  effect  was  strongest  when  2-­‐Hz  amplitude  took  on  intermediate  values.  Hit  rates  were  further  increased  for  either  low  or  high  13-­‐Hz  alpha  amplitude,  but  this  quadratic  trend  was  strongest  for  low  and  high,  but  not  intermediate,  2-­‐Hz  amplitude  values.  The  current  results  show  that,  in  temporally-­‐variable  contexts,  auditory  perception  depends  on  complex  interactions  of  neural  amplitude  fluctuations  that  might  reflect  an  unstable  neural  state  between  “rhythmic”  and  “continuous”  processing  modes.    ID:  232    

Familiarity  with  a  vocal  category  revealed  through  the  expression  of  a  synaptic  plasticity  gene  in  auditory  cortex  Tamara  N.  Ivanova,  Robert  C.  Liu  Emory  University  Atlanta,  United  States  of  America  [email protected]  The  molecular  mechanisms  of  plasticity  in  the  adult  auditory  cortex  have  been  gaining  attention,  especially  given  electrophysiological  evidence  that  neural  plasticity  there  helps  support  auditory  learning  and  long-­‐term  memories.  One  molecule  of  interest  is  the  synaptic  plasticity  effector  immediate  early  gene,  Arc/Arg3.1,  which  plays  a  key  role  in  memory  consolidation.  Arc  mRNA  expression  acts  as  a  proxy  for  neurons  that  are  likely  to  undergo  plasticity  after  a  sensory  experience.  Playing  back  sounds  induces  Arc  in  auditory  cortex,  and  that  expression  is  reportedly  necessary  for  auditory  learning  and  plasticity  (Carpenter-­‐Hyland  et  al,  2011,  SfN  912.09).  The  cellular  compartmental  expression  of  Arc  in  core  auditory  cortex  actually  correlates  with  a  sound’s  familiarity  (Ivanova  et  al,  2011,  Neuroscience  181:117-­‐126).  Specifically,  prior  exposure  to  a  neutral  sound  induces  a  higher  proportion  of  neurons  with  Arc  expressed  only  in  the  cytoplasmic  compartment  immediately  after  re-­‐exposure  to  that  sound,  compared  to  when  the  sound  is  novel.  This  has  led  to  the  hypothesis  that  sound-­‐induced  Arc  cytoplasmic  

expression  in  auditory  cortex  provides  a  molecular  biomarker  of  a  sound’s  familiarity.  We  now  test  this  hypothesis  in  the  natural  context  of  learning  a  vocal  category’s  behavioral  significance.  We  utilize  an  ultrasonic  communication  system  between  mouse  pups  and  their  mothers.  Mothers  prefer  to  approach  these  calls,  unlike  pup-­‐naïve  virgins.  The  calls  elicit  a  pattern  of  cytoplasmic  compartmental  expression  in  core  auditory  cortex  indicative  of  the  calls  being  more  familiar  to  mothers  than  naïve  virgins.  However,  if  Arc  expression  indeed  provides  a  biomarker  for  sound  familiarity,  then  even  virgin  animals  given  extended  experience  with  vocalizing  pups  should  exhibit  enhanced  cytoplasmic  expression  in  core  auditory  cortex.  Experiments  in  such  “co-­‐caring”  females  now  reveal  that  these  animals  indeed  show  increased  expression  of  Arc  mRNA  within  the  cytoplasmic-­‐only  compartment  after  hearing  natural  pup  calls.  The  proportion  of  expressing  neurons  matches  that  of  mothers,  and  is  significantly  higher  than  that  of  naïve  virgins.  These  data  therefore  support  the  hypothesis  that  Arc  provides  a  molecular  trace  of  a  previously-­‐heard  sound  category’s  familiarity.    ID:  233    

Grey  matter  morphometry  and  cortical  thickness  alteration  in  the  auditory  cortex:  Differences  associated  with  normal  variations  of  hearing  acuity  Fahad  Alhazmi,  Vanessa  Sluming  University  of  Liverpool,  United  Kingdom  [email protected]  Once  any  sense  is  altered,  the  brain’s  structure  and  function  is  reorganised  in  order  to  adapt  to  this  sensory  change.  Hearing  loss  is  considered  as  one  of  the  most  widespread  sensory  loss  in  the  healthy  aging  population  that  is  associated  with  age.  Normal  age  related  hearing  loss  is  likely  to  impact  on  brain  structure  and  function,  but  this  has  not  received  the  same  attention  (as  deafness  or  other  types  of  hearing  impairment,  such  as  tinnitus)  in  the  currently  available  scientific  literature.  Therefore,  it  is  important  to  identify  the  brain  structure  and  function  differences  between  normal  hearers  and  hearing  loss  people  in  an  early  stage.  The  aim  of  this  study  was  to  investigate  the  effect  of  normal  variations  of  

Page 120: Complete program including all scientific contributions (21 MB, PDF)

  107  

hearing  acuity  that  is  associated  with  age  on  grey  matter  morphometry  and  cortical  thickness  in  the  auditory  cortex  of  normal  healthy  adults.  This  study  of  41  adults  (mean  age  45  (SD  11)  Yrs)  was  recruited  to  take  part  of  the  study.  Routine  hearing  test  was  performed  to  measure  participants’  hearing  levels.  Participants  were  divided  into  two  age-­‐match  groups:  normal  hearing  and  hearing  loss.  T1-­‐weighted  MRI  structure  images  were  acquired  in  order  to  investigate  brain  structure.  Total  grey  matter  volume  and  cortical  thickness  alterations  were  investigated  in  order  to  identify  the  correlation  between  brain  structure  changes  and  normal  variation  of  hearing  acuity.  Also,  Voxel-­‐based  Morphometry  analysis  was  applied  in  order  to  investigate  the  differences  between  two  groups.  Significant  grey  matter  volume  reduction  was  found  in  primary  and  secondary  auditory  cortex,  primary  somatosensory  cortex  and  right  thalamus  in  mild  hearing  loss  participants  compared  to  normal  hearers.  Total  mean  cortical  thickness  was  found  negatively  correlated  with  age  and  hearing  levels.  A  significant  cortical  thickness  reduction  was  found  in  left  primary  auditory  cortex  in  older  and  mild  hearing  loss  participants.  However,  no  significant  difference  was  found  in  right  primary  auditory  cortex  between  participants.  Our  results  suggest  the  specific  role  of  normal  age-­‐related  hearing  loss  to  shrink  grey  matter  tissue  and  alter  cortical  thickness  in  certain  brain  regions.  Understanding  the  causal  relationship  between  these  grey  matter  and  cortical  thickness  changes  and  mild  hearing  loss  will  be  an  important  next  step  in  understanding  hearing  loss  in  early  stage.      ID:  234    

Plastic  effects  of  combined  electric  stimulation  of  auditory  nerve  and  vagus  nerve  in  primary  auditory  cortex  Armin  Wiegner,  Martin  Kempe,  Maike  Vollmer  University  Hospital  Wuerzburg,  Germany  [email protected]  The  success  and  limitations  of  a  cochlear  implant  (CI)  depend  on  the  central  auditory  system’s  ability  to  adequately  process  the  (reduced)  spectral/temporal  features  of  electric  stimuli  delivered  to  the  cochlea.  Clinical  studies  show  that  auditory  experience  

can  improve  speech  perception  in  CI  users  indicating  learning-­‐induced  plasticity  in  central  auditory  processing.  In  hearing  animals,  electric  stimulation  of  the  vagus  nerve  (VNS)  combined  with  acoustic  stimulation  generated  highly  specific  and  long-­‐lasting  plasticity  in  both  spectral  and  temporal  processing  in  primary  auditory  cortex  (AI;  Engineer  et  al.  2011,  Shetake  et  al.  2012).  Here  we  tested  the  effects  of  combined  CI  and  VNS  stimulation  (CI/VNS)  in  the  deaf  auditory  system.  We  hypothesized  that  CI/VNS  would  generate  an  expanded  tonotopic  representation  and  improved  neuronal  temporal  processing  in  AI.  Adult  gerbils  were  bilaterally  deafened  and  unilaterally  implanted  with  multichannel  CIs  (MedEl,  Austria).  One  experimental  group  (‘CI-­‐only’)  received  single-­‐channel  chronic  electric  stimulation  of  the  cochlea  (ICES;  2.5  h/d,  20  d),  a  second  group  (‘CI/VNS’)  received  additional  VNS.  In  control  animals,  only  one  ear  was  acutely  deafened  and  implanted.  This  allowed  comparisons  between  electric  and  acoustic  response  properties  in  the  same  cortical  neurons  as  well  as  assignment  of  acoustic  characteristic  frequencies  to  the  site  of  ICES.  In  physiological  experiments,  AI  multiunit  responses  to  ICES  at  different  electrode  configurations  were  recorded  to  construct  tonotopic  maps.  Pulse  trains  of  increasing  rates  were  used  to  estimate  temporal  processing  in  AI  neurons.  In  control  animals  the  tonotopic  pattern  of  electric  activation  in  AI  corresponded  to  the  intracochlear  site  of  ICES.  Both  chronically  stimulated  groups  (‘CI-­‐only’  and  ‘CI/VNS’)  maintained  a  tonotopic  representation  of  ICES.  In  contrast  to  our  hypothesis,  our  preliminary  analysis  did  not  show  clear  evidence  of  spatial  overrepresentation  of  the  chronically  stimulated  electrode  pair  in  either  experimental  group.  However,  analysis  is  continuing  to  definitively  confirm  or  reject  whether  the  addition  of  VNS  to  ICES  can  alter  the  overall  pattern  of  AI  activation.    

Page 121: Complete program including all scientific contributions (21 MB, PDF)

  108  

ID:  235    

Supervised  parcellation  of  the  macaque  auditory  cortex  from  resting-­‐state  fMRI  Eren  Gultepe1,  Jason  P.  Gallivan2,  R.  Matthew  Hutchison1,3,  Stefan  Everling1,  Ingrid  S.  Johnsrude1,2  1University  of  Western  Ontario,  London,  Canada;  2Queen's  University  Kingston,  Canada;  3Harvard  University,  United  States  of  America  [email protected]  In  humans  and  other  animals,  resting-­‐state  fMRI  (rs-­‐fMRI)  is  now  a  standard  technique  used  to  measure  spontaneous  patterns  of  functional  connectivity  in  the  brain.  Spatial  correlations  of  low-­‐frequency  BOLD  oscillations  are  used  to  characterize  broad-­‐scale  neural  networks  and  to  reveal  functionally  distinct  brain  regions  [1].  But  do  parcellations  based  on  rs-­‐fMRI  data  correspond  to  those  based  on  anatomical  (e.g.,  cytoarchitectonic)  parcellations?  In  macaques,  anatomical  parcellation  according  to  cytoarchitectonic  criteria  is  well  established  [2,3],  and  so  a  comparison  of  anatomical  and  rs-­‐fMRI  parcellation  can  be  performed.  Here,  we  determine  whether  macaque  rs-­‐fMRI  data  can  be  used  to  discriminate  the  cytoarchitectonic  regions  of  the  auditory  koniocortex  (AK;  both  medial  and  lateral  regions  combined)  from  the  lateral  belt  area  (PaAL).  Rs-­‐fMRI  data  were  collected  on  a  7T  MRI  system  from  10  macaque  monkeys  (7  M.  fascicularis;  3  M.  mulatta)  anesthetized  with  1%  isoflurane.  Registration  to  the  MNI  macaque  atlas  [4]  (including  both  macaque  species),  standard  rs-­‐fMRI  preprocessing  [5],  and  principal-­‐component  analysis  for  dimension  reduction  were  performed  on  the  data.  Training  and  testing  with  independent  rs-­‐fMRI  runs,  a  random-­‐forests  classifier  revealed  statistically  significant  discrimination  of  the  BOLD  signal  from  voxels  within  the  AK  and  PaAL  regions  (t(9)=3.40,  p<0.05,  one-­‐sample  t-­‐test).  This  confirms  that  rs-­‐fMRI  signals  contain  information  related  to  anatomical  structure.  Further,  the  successful  delineation  of  known  auditory  boundaries  indicates  that  supervised  parcellation  methods  applied  to  non-­‐invasive  rs-­‐fMRI  data,  guided  by  high  resolution  anatomical  data,  could  be  used  to  optimize  the  application  of  unsupervised  parcellation  techniques,  such  as  clustering,  to  rs-­‐fMRI  data:  these  methods  may  be  of  great  use  for  the  

anatomo-­‐functional  parcellation  of  human  cortex  of  humans,  even  when  cytoarchitectonic  or  other  anatomical  parcellation  data  are  not  available.    References  1.  Beckmann  M,  Johansen-­‐Berg  H,  Rushworth  MFS.  J  Neurosci.  2009;29:1175–1190.  2.  Hackett  TA,  Preuss  TM,  Kaas  JH.  J  Comp  Neurol.  2001;441:197–222.  3.  Paxinos  G,  Huang  XF,  Petrides  M,  Toga  AW.  The  Rhesus  Monkey  Brain  in  Stereotaxic  Coordinates.  San  Diego,  CA:  Academic  Press;  2009.  4.  Frey  S,  Pandya  DN,  Chakravarty  MM,  Bailey  L,  Petrides  M,  Collins  DL.  NeuroImage.  2011;55:1435–42.  5.  Murphy  K,  Birn  RM,  Bandettini  PA.  Neuroimage.  2013;80:349-­‐59.    ID:  236    

Functional  organization  of  speech  perception  in  the  human  superior  temporal  gyrus  Liberty  S.  Hamilton,  Edward  F.  Chang  University  of  California  San  Francisco,  United  States  of  America  [email protected]  Human  speech  perception  requires  the  transformation  of  low-­‐level  acoustic  features  to  higher-­‐level  linguistic  representations.  How  the  brain  performs  this  acoustic  to  phonemic  translation  is  poorly  understood,  especially  since  there  are  no  invariant  acoustic  features  that  determine  any  particular  phoneme.  To  understand  speech,  the  human  brain  must  therefore  perform  a  complex  categorization  task  of  speech  sounds  within  a  highly  multidimensional  space  encompassing  phonetic  features,  such  as  manner  and  place  of  articulation,  and  acoustic  features  including  formant  frequencies,  voice  onset  time,  and  spectrotemporal  modulations.  The  posterior  superior  temporal  gyrus  (PSTG)  has  been  strongly  implicated  in  this  process.  Still,  the  functional  organization  of  acoustic  and  phonetic  features  in  the  PSTG  remains  unclear.  Here,  we  used  256-­‐channel  high-­‐density  electrocorticography  (ECoG)  to  record  activity  directly  from  the  surface  of  the  brain  in  patients  with  medically  intractable  epilepsy  while  they  listened  passively  to  natural,  continuous  human  speech.  Data  was  obtained  from  11  subjects  with  left  hemisphere  ECoG  grids  and  6  subjects  with  right  hemisphere  grids.  To  describe  the  selectivity  of  each  electrode  to  specific  acoustic  features,  we  fit  linear  and  nonlinear  spectrotemporal  receptive  

Page 122: Complete program including all scientific contributions (21 MB, PDF)

  109  

field  (STRF)  models  to  the  LFP  signal,  bandpassed  in  the  high  gamma  range  (70-­‐150  Hz).  These  STRFs  predicted  neural  responses  to  held  out  data  with  relatively  high  accuracy,  with  correlations  up  to  r  =  0.7  (average  correlation  r  =  0.34  ±  0.01  for  left  hemisphere  sites,  r  =  0.32  ±  0.01  for  right).  STRF  performance  was  generally  higher  for  posterior  compared  to  anterior  STG  sites.  We  found  that  electrodes  in  both  hemispheres  were  selective  for  combinations  of  simple  and  complex  spectrotemporal  features,  and  that  this  acoustic  selectivity  correlated  with  selectivity  for  higher  order  phonetic  features  such  as  manner  of  articulation.  Spatially,  we  find  evidence  of  rudimentary  organization  for  spectrotemporal  and  phonetic  features.  Uncovering  the  functional  organization  and  feature  maps  in  the  auditory  cortex  has  important  implications  for  sensory  coding,  since  it  is  thought  that  map  representation  of  external  features  may  underlie  efficient  coding  and  permit  effective  sensory  discrimination.  Using  high  spatial  and  temporal  resolution  recordings,  we  are  able  to  describe  the  organization  of  speech  sounds  in  the  human  auditory  cortex  at  an  unprecedented  level  of  detail.      ID:  237    

Maturation  of  intrinsic  properties  of  pyramidal  cells  and  fast-­‐spiking  interneurons  in  the  auditory  cortex  of  mice  Andreas  Abraham1,  Marlen  Dierich1,2,  Hartmut  Niekisch1,3,  Florian  Hetsch1,4  1University  of  Potsdam,  Germany;  2Philipps  University  of  Marburg,  Germany;  3Leibniz  Institute  for  Neurobiology  Magdeburg,  Germany;  4Max  Delbrueck  Center  for  Molecular  Medicine  Berlin,  Germany  andreas.abraham@uni-­‐potsdam.de  Cortical  responses  to  auditory  input  change  dramatically  during  development,  and  these  processes  seem  to  be  connected  to  the  maturation  of  excitatory  pyramidal  neurons  and  inhibitory  interneurons.  In  the  auditory  cortex,  GABAergic  interneurons  play  a  pivotal  role  in  information  processing  by  providing  feed-­‐forward  and  feedback  inhibition  onto  pyramidal  neurons.  Such  inhibitory  processes  can  be  effective  in  noise  suppression,  mediate  

selection  among  competing  inputs,  and  possibly  even  implement  complex  computations.  Despite  of  their  important  role  in  cortical  processing,  information  about  the  intrinsic  properties  and  the  maturation  of  auditory  cortical  interneurons  is  limited.  This  study  examined  neurons  in  the  auditory  cortex  of  mice  in  terms  of  maturational  processes.  Since  mice  possess  adult-­‐like  hearing  abilities  approximately  18-­‐20  days  after  birth,  we  compared  intrinsic  voltage  and  current  properties  in  “premature”  (postnatal  day,  PND  14-­‐20)  and  “mature”  (PND  21-­‐42)  fast-­‐spiking  (FS)  interneurons  and  regular-­‐spiking  (RS)  pyramidal  neurons  with  the  whole-­‐cell  patch  clamp  technique.  We  show  pronounced  maturation  in  RS  but  not  in  FS  neurons.  Current-­‐clamp  analysis  revealed  significantly  smaller  amplitudes  for  action  potentials  (AP)  but  protracted  AP-­‐width  and  afterhyperpolarisation,  higher  input  resistance,  as  well  as  more  pronounced  sag  and  total  voltage  in  “premature”  compared  to  “mature”  RS  neurons.  Voltage-­‐clamp  analysis  revealed  two  time-­‐  and  voltage  dependent  hyperpolarization-­‐activated  currents,  the  fast  inward  rectifying  potassium  current  (Kir)  and  the  more  slowly  hyperpolarization-­‐activated  cation  current  (IH),  consisting  of  a  fast  (IH-­‐fast)  and  slow  (IH-­‐slow)  component.  Compared  to  “mature”  RS  neurons,  “premature”  cells  exhibited  significantly  smaller  Kir  and  total  current  (Kir+IH)  and  smaller  densities  for  Kir,  IH  and  total  current,  but  faster  time  constants  for  IH-­‐fast,  and  higher  input  resistance.  In  FS  neurons  only  the  density  for  IH-­‐slow  was  smaller  in  “premature”  compared  to  “mature”  cells.  In  conclusion,  the  age-­‐related  differences  of  intrinsic  parameters  between  “premature”  and  “mature”  RS  neurons  in  the  auditory  cortex  may  to  some  extend  governed  by  different  expression  of  inwardly  rectifying  conductances  (mediated  by  the  Kir  channel  and  the  hyperpolarization-­‐activated  cyclic  nucleotide-­‐gated  (HCN)  channel).    

Page 123: Complete program including all scientific contributions (21 MB, PDF)

  110  

ID:  238    

EEG  and  MEG  brain  activity  during  audio-­‐visual  paired  associate  learning  Jarmo  Hämäläinen  University  of  Jyväskylä,  Finland  [email protected]  Most  training  studies  utilize  a  pre-­‐  and  post-­‐measurement  scheme  where  changes  in  brain  activity  are  measured  even  weeks  apart.  Useful  as  those  measurement  schemes  have  been  they  do  not  provide  detailed  information  of  the  learning  process  itself.  The  goal  of  the  current  study  was  to  examine  the  changes  in  brain  processes  during  learning  of  audio-­‐visual  associations  in  adults.  In  two  separate  studies,  data  was  collected  using  128-­‐channel  EEG  system  and  306-­‐channel  MEG  system.  EEG  data  showed  increasing  positive  response  at  parietal  electrodes  around  400  ms  during  the  learning  task.  MEG  data  also  showed  changes  in  brain  activity  after  400  ms  particularly  at  the  superior  temporal  areas  but  also  at  parietal  areas.  The  results  suggest  that  audio-­‐visual  association  learning  can  be  studied  within  one  training  session.  The  next  phases  of  the  study  will  examine  how  these  changes  are  related  to  behavioral  learning  outcomes  in  different  tasks  and  to  grapheme-­‐phoneme  learning  in  children.      ID:  239    

Musical  entrainment  directly  recorded  in  the  depth  of  the  human  temporal  and  frontal  cortex  Sylvie  Nozaradan1,3,  Jacques  Jonas1,2,  Jean-­‐Pierre  Vignal2,  Louis  Maillard2,  Bruno  Rossion1,  André  Mouraux1  1Université  catholique  de  Louvain,  Belgium;  2Neurology,  CHU  Nancy,  France;  3BRAMS,  Canada  [email protected]  Beat  and  meter  refers  to  the  spontaneous  perception  of  periodicities  while  listening  to  music  (e.g.,  perceiving  a  waltz  as  a  three-­‐beats  meter)  and  usually  entrains  to  move  the  body  at  beat  frequency.  How  the  brain  computes  perception  and  body  synchronization  to  this  periodicity  from  complex  auditory  rhythms  that  are  not  necessarily  periodic  in  reality  remains  unknown.  Here,  by  taking  advantage  of  the  high  temporal  and  spatial  resolution  obtained  with  depth-­‐electrodes  implanted  for  the  evaluation  of  intractable  epilepsy,  we  

provide  first  evidence  that  listening  to  rhythms  generating  a  spontaneous  beat  and  meter  perception  induces  neural  entrainment  at  beat  and  meter  frequencies  in  both  auditory  areas  and  movement-­‐related  areas  of  the  human  brain.  Depth  recordings  were  performed  in  four  patients  with  electrodes  implanted  in  the  superior  temporal  gyrus  as  well  as  in  the  premotor  cortex  and  the  supplementary  motor  area.  At  electrode  contacts  located  in  the  primary  and  secondary  auditory  cortex,  steady-­‐state  evoked  potentials  (SS-­‐EPs)  were  elicited  at  frequencies  corresponding  to  the  rhythm  envelope.  As  compared  to  non  beat-­‐  or  meter-­‐related  frequencies,  the  amplitude  of  the  SS-­‐EPs  obtained  at  beat  and  meter  frequencies  were  selectively  enhanced,  even  though  the  acoustic  energy  of  the  eliciting  sounds  was  not  necessarily  predominant  at  these  frequencies.  This  indicates  that  beat  and  meter  perception  modulates  the  processing  of  incoming  auditory  input  already  at  the  level  of  the  primary  auditory  cortex,  probably  through  a  top-­‐down  mechanism  of  dynamic  attending.  Electrode  contacts  located  in  the  premotor  cortex  and  the  supplementary  motor  area  showed  an  even  stronger  entrainment,  selective  for  the  frequency  of  the  beat.  This  selective  neural  entrainment  to  the  beat  in  movement-­‐related  brain  areas  when  listening  to  musical  rhythms  could  explain  how  music  entrains  spontaneous  body  movements  at  beat  frequency.  Also,  it  provides  crucial  insight  on  the  neural  mechanisms  underlying  the  shaping  of  perception  by  covert  movement.  Taken  together,  this  first  intracerebral  investigation  of  the  neural  response  to  musical  rhythms  across  human  brain  areas  highlights  how  the  interactions  between  sensory  and  motor  areas  may  contribute  to  the  emergence  of  perceptual  objects  within  the  human  brain.    

Page 124: Complete program including all scientific contributions (21 MB, PDF)

  111  

ID:  240    

Streaming  music  in  the  brain:  Development  of  an  objective  auditory  stream  segregation  task  with  polyphonic  music  Niels  R.  Disbergen1,2,  Giancarlo  Valente1,2,  Merle-­‐Marie  Ahrens3,4,  Elia  Formisano1,2,  Robert  J.  Zatorre5,6  1Maastricht  University,  The  Netherlands;  2Maastricht  Brain  Imaging  Center,  The  Netherlands;  3University  of  Glasgow,  United  Kingdom;  4Institut  des  Neurosciences  de  La  Timone,  CNRS  &  Université  Aix-­‐Marseille,  France;  5Cognitive  Neuroscience  Unit,  Montreal  Neurological  Institute,  McGill  University,  Canada;  6International  Laboratories  for  Brain,  Music  and  Sound  (BRAMS),  Université  de  Montréal  &  McGill  University,  Canada  [email protected]  To  investigate  modulation  of  auditory  streams  by  bottom-­‐up  and  top-­‐down  processes  in  natural  scenes,  we  developed  a  psychophysical  paradigm  providing  control  over  a  participant’s  locus  of  attention  as  well  as  timbre  distance  between  scene  elements.  While  listening  to  synthesized  polyphonic  counterpoint  music  consisting  of  two  voices  (Bassoon  and  Cello),  participants  detected  patterns  of  four  triplets  (i.e.  temporal  modulations),  located  either  within  one  musical  voice,  across  the  voices,  or  not  present.  Music  pieces  were  composed  in  close  collaboration  with  a  composer  and  controlled  for,  among  others,  pitch  distance,  tempo,  and  temporal  modulations.  Triplets  were  melodically  integrated  into  the  second  half  of  each  excerpt.  Polyphonic  music  was  employed  since  one  can  attend  to  the  aggregate  as  well  as  to  the  individual  voices  within  the  same  stimulus.  To  vary  locus  of  attention,  participants  attended  to  one  of  the  instruments  or  the  aggregate  and  indicated  (post-­‐stimulus)  whether  the  pattern  was  present  in  the  attended  instrument(s);  several  catch  trials  were  included.  Listeners  attended  to  the  same  instrument(s)  during  a  block  of  trials,  and  before  each  block  were  instructed  which  instrument(s)  to  attend.  To  modulate  bottom-­‐up  stimulus  contributions  we  changed  instrumental  timbre  distance  by  morphing  melodies  across  instruments  using  STRAIGHT  vocoder  (Kawahara  et  al.)  in  Matlab.  Time  frequency  landmarks  were  created  on  each  original  melody  (time:  middle  each  note;  

frequency:  note's  f0)  and  put  in  correspondence  during  logarithmic  interpolation  of  f0,  spectral  density,  and  aperiodicity  across  instrumental  timbres.  Psychophysical  testing  showed  that  non-­‐musicians  (N  =  7)  were  capable  of  reliably  switching  attention  and  detect  triplet  patterns.  Mean  task  (A-­‐prime)  performance  was  0.96  +/-­‐  0.02  (mean  +/-­‐  sd),  no  significant  differences  were  found  (two-­‐sample  t-­‐test,  two-­‐tailed)  between  different  triplet  options:  across  voices  (0.94  +/-­‐  0.07)  versus  upper  voice  (0.96  +/-­‐  0.04;  t(12)=-­‐0.715,  p=0.488),  across  voices  versus  lower  voice  (0.96  +/-­‐  0.03;  t(12)=-­‐1.014,  p=0.331),  upper  voice  versus  lower  voice  (t(12)=-­‐0.425,  p=0.679).  Additional  testing  indicated  participants  were  able  to  perceive  timbre  differences  and  perceptual  ratings  matched  physical  morphing  distance.  In  conclusion,  results  so  far  suggest  our  experimental  paradigm  enables  studying  stream  segregation  in  a  natural  listening  context  for  further  psychophysical  and  functional  neuroimaging  experiments.      ID:  241    

Single  neuron  and  population  coding  of  natural  sounds  in  the  mouse  auditory  cortex  Amos  Shalev,  Yishai  Elyada,  Israel  Nelken,  Adi  Mizrahi  Hebrew  University  of  Jerusalem,  Israel  [email protected]  Early  in  the  auditory  hierarchy,  circuits  are  organized  and  highly  specialized  for  detecting  basic  sound  features.  It  is  assumed  that  as  information  ascends  along  the  auditory  pathway,  more  complex  features  of  sounds  are  encoded.  For  example,  the  primary  auditory  cortex  (A1)  has  been  proposed  to  code  complex  features  of  the  soundscape.  However,  the  underlying  coding  principles  and  their  mechanisms  are  still  poorly  understood.  Our  work  focuses  on  understanding  coding  principles  of  cortical  neurons  and  circuits  to  natural  sounds  with  special  emphasis  on  vocalizations  using  the  mouse  as  a  model.  To  study  how  A1  neurons  code  vocalizations,  we  first  recorded  a  library  of  pup  vocalization  from  Balb/C  mice.  Pup  vocalizations  are  several  seconds  long  and  contain  numerous  syllables  with  varying  inter-­‐stimulus  intervals.  In  

Page 125: Complete program including all scientific contributions (21 MB, PDF)

  112  

addition,  syllables  have  complex  features  like  harmonics,  amplitude  modulations  (AM),  and  frequency  modulations  (FM).  To  describe  how  cortical  neurons  encode  these  vocalizations  we  recorded  the  spiking  activity  of  single  neurons  in  A1  to  pure  tones  and  vocalizations  using  blind  loose  patch  recordings.We  found  that  neurons  in  A1  responded  with  highly  heterogeneous  patterns  of  activation  to  pup  vocalizations.  Interestingly,  we  detected  clear  preference  for  specific  and  sometimes  unique  syllables  in  the  sentence.  Neuronal  response  parameters  like  basic  frequency  and  amplitude  tuning  could  not  explain  the  syllable  preference  leading  us  to  hypothesize  that  other  mechanisms  are  responsible  for  neuronal  response  profiles.  We  are  currently  testing  how  stimulus  properties  such  as  time  and  context,  and  neuronal  properties  such  as  inhibition  and  synaptic  depletion,  could  better  explain  the  complexity  of  neuronal  response  profiles.  In  addition,  we  used  GCamp6  to  collect  in-­‐vivo  two-­‐photon  calcium  responses  from  large  populations  of  neurons  in  single  mice  (up  to  300  neurons/mouse)  to  describe  how  the  population  level  encodes  natural  sounds  in  A1.    ID:  242    

Attention  on  tonotopy:  Task-­‐  and  stimulus-­‐driven  audio-­‐frequency  representations  in  human  supratemporal  cortex  Lars  Riecke,  Judith  Peters,  Giancarlo  Valente,  Valentin  G.  Kemper,  Elia  Formisano,  Bettina  Sorger  Maastricht  University,  The  Netherlands  [email protected]  This  study  investigates  whether  acoustic  stimuli  and  selective  auditory  attention  share  a  common  frequency  representation  in  the  human  auditory  cortex.  In  the  “bottom-­‐up”  experiment,  the  frequency  of  the  auditory  stimulus  was  varied:  three  different  frequency  bands  (bandwidth:  seven  semitones,  center  frequencies  separated  by  1.9  octaves)  were  presented  separately  and  15  normally-­‐hearing,  pre-­‐trained  listeners  performed  a  pitch  identification  task  on  them.  In  the  “top-­‐down”  experiment,  the  frequency  that  the  listeners  were  attending  to  was  varied:  the  same  three  bands  were  now  presented  simultaneously  and  the  listeners  performed  a  gap  detection  task  

requiring  them  to  attend  to  a  specific  band  cued  by  a  visual  letter.  The  experiments  were  conducted  while  3-­‐T  functional  magnetic  resonance  images  of  temporal  cortex  were  collected  after  each  auditory  stimulus  presentation.  Listeners  performed  both  tasks  with  high  accuracy  (98%  and  89%  in  bottom-­‐up  and  top-­‐down  experiment,  respectively).  FMRI  data  from  both  experiments  were  combined  in  the  analysis,  focusing  on  subject-­‐specific  frequency  representations  within  a  primary  region  (bilateral  PAC)  and  a  non-­‐primary  region  (bilateral  supratemporal  cortex  excluding  PAC,  STC-­‐)  defined  manually  from  macro-­‐anatomical  landmarks  on  individual  cortical  surface  reconstructions.  A  linear  classifier  was  trained  to  discriminate  the  blood  oxygenation  level-­‐dependent  (BOLD)  response  patterns  obtained  in  the  different  frequency  conditions  of  the  bottom-­‐up  experiment  (30  trials  per  condition).  The  classifier  was  then  used  to  decode  the  listener’s  focus  of  frequency-­‐selective  attention  from  the  BOLD  response  patterns  in  the  top-­‐down  experiment  (36  trials  per  condition).  Random-­‐effects  statistical  group  analysis  revealed  that  pattern  classification  accuracy  was  above  chance  (33.33%)  in  both  PAC  (36.50%,  p<0.0093)  and  STC‒  (35.20%,  p<0.001).  These  preliminary  results  suggest  that  distributed  response  patterns  in  PAC  and  non-­‐PAC  convey  information  on  both  acoustic  and  attended  frequency.  They  may  provide  novel  insights  into  the  interplay  of  bottom-­‐up  and  top-­‐down  cortical  mechanisms  for  frequency-­‐selective  listening.      ID:  243    

Cortical  activation  and  connectivity  in  congenital  auditory  deprivation  Peter  Hubka1,  Jochen  Tillein2,3,  Andrej  Kral1  1Institute  of  Audioneurotechnology  &  Department  of  Experimental  Otology,  ENT  Clinic,  Hannover  Medical  School,  Germany;  2Department  of  Otorhinolaryngology,  Goethe-­‐University  Frankfurt  am  Main,  Germany;  3MedEl  Starnberg,  Germany  hubka.peter@mh-­‐hannover.de  Congenital  sensory  deprivation  leads  to  substantial  perceptional  deficits  after  a  peripheral  reactivation  of  deprived  afferent  pathways  in  adulthood.  Despite  these  deficits,  peripheral  electrical  stimulation  of  auditory  

Page 126: Complete program including all scientific contributions (21 MB, PDF)

  113  

nerve  is  still  able  to  reliably  activate  the  primary  auditory  cortex.  Further  spread  of  activation  to  non-­‐primary  auditory  fields  has  not  been  studied  yet.  The  present  study  is  aimed  on  the  functional  analysis  of  the  simultaneously  recorded  activation  of  the  primary  auditory  cortex  (A1)  and  the  posterior  auditory  field  (PAF)  evoked  by  electrical  stimulation  using  cochlear  implants  in  normally  hearing  and  congenitally  deaf  cats  (CDC).  Multiunit  activities  from  six  congenitally  deaf  cats  (CDC)  and  five  hearing  controls  were  recorded  simultaneously  in  A1  and  PAF  by  means  of  16  channel  microelectrode  arrays  (Neuronexus  probes).  All  animals  were  electrically  stimulated;  mono-­‐  and  binaural  responses  were  evoked  by  pulse  trains  (500Hz,  3  pulses)  at  intensities  of  0-­‐10  dB  above  response  thresholds.  Effective  connectivity  between  the  simultaneously  recorded  positions  in  the  fields  A1  and  PAF  was  computed  using  transfer  entropy  approach.  Activation  of  both  studied  cortical  fields,  A1  and  PAF,  was  found  in  all  adult  congenitally  deaf  cats.  The  main  difference  was  the  significantly  shorter  duration  and  hence  significantly  lower  level  of  summed  activation  of  the  cortex.  The  effective  connectivity  between  responding  positions  in  the  A1  and  PAF  was  substantially  lower  in  CDC  when  compared  to  control  group.  Furthermore,  connectivity  analysis  of  the  responses  within  A1  has  revealed  functional  separation  of  supragranular  and  infragranular  layers  in  CDC,  whereas  supra-­‐  and  infragranual  layers  constitute  one  interconnected  functional  unit  in  the  normally  hearing  animals.  These  results  demonstrate  preserved  broad  activation  of  cortical  structures  evoked  by  peripheral  stimulation  of  deprived  auditory  pathways  in  adult  CDC.  Cortical  activation  was,  however,  weakly  functionally  coupled  through  intracortical  connections,  that  crucially  affects  the  ability  of  cortical  network  to  detect  and  integrate  incoming  information.    Supported  by  Deutsche  Forschungsgemeinschaft  (KR  3370/1-­‐3).    

ID:  244    

Neurophysiological  markers  of  perceptual  learning  in  awake  and  sleeping  humans  Thomas  Andrillon1,2,  Daniel  Pressnitzer1,  Trevor  Agus1,3,  Damien  Léger4,  Sid  Kouider1  1École  Normale  Supérieure;  2Université  Pierre  et  Marie  Curie;  3Sonic  Arts  Research  Centre,  School  of  Creative  Arts,  Queen's  University  Belfast;  4Centre  du  Sommeil  et  de  la  Vigilance,  Hôtel-­‐Dieu  de  Paris,  France  [email protected]  During  noise  repetition-­‐detection  tasks,  participants  have  to  discriminate  between  sequences  of  continuously  running  white  noise  and  sequences  made  of  repeated  fragments  of  the  same,  frozen,  noise.  Dramatic  increases  in  performance  has  been  evidenced  when  one  particular  repeated  fragment  recurs  across  the  experiment,  revealing  fast  perceptual  learning  of  complex  arbitrary  patterns  in  the  acoustic  environment.  A  previous  MEG  study  suggests  that  increased  inter-­‐trial  phase  coherence  is  associated  with  learning,  but  the  underlying  neural  mechanism  remains  to  be  further  specified.  Notably,  the  role  of  attention  in  such  learning  has  yet  to  be  evaluated.  In  our  study,  we  adapted  this  paradigm  and  recorded  EEG  in  human  participants  as  they  detected  white  noise  repetitions.  In  a  first  part,  participants  (N=13)  had  to  discriminate  between  1.5  s  of  continuously  running  noise  (condition  “Ns”)  and  1.5  s  of  0.5  s  noise  fragment  repeated  3  times.  Among  these  repeated  fragments,  some  appeared  only  once  during  a  block  (“RNs”)  and  some  recurred  across  a  block  (reference  noises,  “RefRNs”).  In  a  second  part,  repeated  fragments  were  reduced  to  0.2  s  (every  0.5  s,  4  repetitions)  to  restrain  the  time-­‐window  in  which  the  repetition-­‐detection  is  possible.  At  the  behavioural  level,  our  study  replicates  previous  studies  by  showing  increased  sensitivity  to  reference-­‐noises  (i.e.,  performance  for  RefRNs  was  statistically  higher  than  for  RNs).  At  the  neurophysiological  levels,  repetitions  were  associated  with  an  increase  in  both  power  and  phase  coherence  below  4  Hz,  more-­‐so  for  RefRNs  than  RNs.  Performance  was  correlated  with  the  strength  of  these  cortical  markers.  We  then  adapted  our  paradigm  to  a  night-­‐study  (N=20  subjects)  to  test  whether  noise  repetition-­‐detection  could  be  automated  and  

Page 127: Complete program including all scientific contributions (21 MB, PDF)

  114  

pursued  during  sleep.  For  each  vigilance  stage  (rapid  eye-­‐movements  (REM)  sleep,  non-­‐REM  sleep  and  wakefulness)  participants  listened  to  different  sets  of  RefRNs,  which  were  then  re-­‐tested  in  the  morning.  First,  EEG  recordings  revealed  evidence  of  repetition-­‐detection  even  in  sleep  (increase  in  phase  coherence  <4Hz)  indicating  that  repetition-­‐detection  is  possible  in  the  absence  of  awareness.  Second,  performance  at  re-­‐test  suggested  learning  effects  for  reference-­‐noises  heard  during  wake  and  REM  sleep  but  a  negative  effect  for  reference-­‐noises  heard  during  non-­‐REM  sleep,  which  could  be  link  to  the  neuromodulatory  changes  associated  to  these  different  states.      ID:  246    

Visual–auditory  interactions  in  ferret  auditory  cortex:  The  effect  of  temporal  coherence  Huriye  Atilgan,  Stephen  Town,  Katherine  Wood,  Jennifer  K.  Bizley  University  College  London,  United  Kingdom  [email protected]  Human  listeners  performing  a  selective  auditory  attention  task  are  better  at  reporting  brief  deviants  in  a  target  stream  when  it  was  accompanied  by  a  coherently  modulated  visual  stimulus  than  when  the  visual  stimulus  was  modulated  coherently  with  the  distractor  stream  (Maddox  et  al.,  in  prep).  In  this  study,  we  use  the  same  stimuli  to  explore  whether  the  coherence  between  temporally  modulated  auditory  and  visual  stimuli  can  influence  neuronal  activity  in  auditory  cortex.  Auditory  stimuli  were  continuous  vowels  which  were  amplitude  modulated  with  a  <7Hz  noisy  carrier  envelope.  Embedded  within  the  vowel  were  brief  (200ms)  timbre  deviants.  Two  vowels  (/u/  and  /a/)  were  generated,  with  different  fundamental  frequencies,  and  modulated  with  independent  envelopes.  These  were  then  presented  either  separately  or  concurrently  accompanied  by  a  luminance-­‐modulated  visual  stimulus  whose  envelope  either  matched  that  of  one  of  the  auditory  streams  or  was  independently  modulated.  Recordings  were  made  simultaneously  in  auditory  and  visual  cortex  in  anesthetised  ferrets,  and  in  the  auditory  cortex  of  chronically  implanted,  

passively  listening  ferrets.  We  explored  whether  spiking  responses  were  modulated  in  response  to  changes  in  the  auditory  modulation  envelope  or  changes  in  timbre,  and  whether  the  coherence  of  the  visual  stimulus  influenced  these  factors.  We  performed  a  3-­‐way  ANOVA  on  spike  counts  binned  with  20  ms  resolution.  The  3  stimulus  parameters  (auditory  envelope  phase,  visual  envelope  phase  and  timbre)  served  as  factors.  To  quantify  the  relative  strength  with  which  one  of  the  three  stimulus  dimensions  influenced  neural  firing  we  calculated  the  proportion  of  variance  explained  by  each.  A  neuron  was  said  to  be  sensitive  to  a  given  parameter  if  it  explained  a  significant  amount  of  the  response  variance  and  the  variance  explained  was  >5%  of  the  total.  We  recorded  735  driven  units  in  anesthetised  auditory  cortex.  26%  were  sensitive  to  the  phase  of  the  auditory  envelope  and  34%  encoded  changes  in  timbre.  19%  were  sensitive  to  the  phase  of  the  visual  stimulus.  Preliminary  analysis  of  the  awake  data  (35  units)  showed  a  similar  pattern  of  results,  with  25%  of  units  being  sensitive  to  the  phase  of  the  visual  stimulus.  We  are  currently  exploring  neural  responses  to  two  concurrently  presented  streams  to  determine  whether  temporally  coherent  visual  stimuli  can  influence  the  way  in  which  competing  sources  are  represented  in  auditory  cortex.      ID:  248    

PV  neurons  in  auditory  cortex  show  stimulus-­‐specific  adaptation  and  may  enhance  deviance  detection  Tohar  Sion  Yarden1,  Ido  Maor1,  Johannes  Niediek1,2,  Ashlan  Reid3,  Sang  Geol  Koh3,  Adi  Mizrahi1,  Israel  Nelken1  1Hebrew  University  of  Jerusalem,  Israel;  2University  of  Bonn,  Germany;  3Cold  Spring  Harbor  Laboratory,  United  States  of  America  [email protected]  Neurons  in  primary  auditory  cortex  exhibit  stimulus-­‐specific  adaptation  (SSA),  which  is  the  decrease  in  responses  to  a  common  stimulus  that  does  not  generalize  fully  to  other,  rare  stimuli.  Interestingly,  the  responses  to  the  rare  stimulus  within  this  context  are  larger  than  expected  based  on  its  rarity,  giving  rise  to  true  deviance  detection.  Here  we  use  in  vivo  two-­‐

Page 128: Complete program including all scientific contributions (21 MB, PDF)

  115  

photon  targeted  loose-­‐patch  recordings  in  mice  to  investigate  the  role  of  inhibition  in  shaping  cortical  SSA.  We  show  that  parvalbumin-­‐positive  (PV)  neurons,  which  form  the  major  inhibitory  population  in  the  cortex,  exhibit  SSA  but  that  this  SSA  is  not  associated  with  true  deviance  detection.  We  argue  that  the  difference  between  the  excitatory  and  inhibitory  neurons  can  actually  enhance  deviance  detection  in  the  excitatory  population.  Using  extracellular  recordings  and  optogenetic  inactivation  of  PV  neurons,  we  found  that  the  SSA  in  PV  neurons  acts  to  weaken  the  SSA  in  the  excitatory  population.  We  propose  that  SSA  is  initially  generated  in  auditory  cortex  to  a  large  extent  by  excitatory  interactions,  with  possible  contribution  of  other  inhibitory  populations.  The  lack  of  true  deviance  detection  in  PV  neurons  may  indicate  that  they  are  dominated  by  feed-­‐forward  input.  Our  finding  of  stronger  SSA  when  the  cortex  is  released  from  inhibition  by  PV  neurons  suggests  that  true  deviance  detection  is  under  active  control,  and  can  be  modulated  by  behavioral  states,  possibly  by  modifying  levels  of  neuromodulation.      ID:  249    

Co-­‐modulation  as  a  means  of  enhancing  signal  detection  and  object  formation  in  mouse  primary  auditory  cortex  Joseph  A.  Sollini,  Alexander  Morris,  Paul  Chadderton  Imperial  College  London,  United  Kingdom  [email protected]  In  the  auditory  world,  salient  signals  commonly  occur  within  complex  fluctuating  soundscapes.  A  key  function  of  the  auditory  system  is  to  appropriately  group  and  segregate  temporally  and  spectrally  overlapping  signals  into  perceptually  distinct  objects.  The  auditory  system  is  excellent  at  grouping  signals  into  separate  objects  and  can  do  so  using  a  small  number  of  cues  (Bregman,  1994),  but  the  neural  mechanisms  that  underlie  these  processes  are  poorly  understood.  One  phenomenon  that  uses  such  grouping  processes  is  co-­‐modulation  masking  release  (CMR,  Hall  et  al.,  1984;  Verhey  et  al.,  2012),  whereby  coherent  amplitude  modulation  of  sound  across  many  frequencies  (e.g.  a  broadband  sound)  increases  the  detectability  

of  a  concurrent  signal  (e.g.  a  pure  tone).  Here  we  investigated  the  influence  of  such  cues  on  the  activity  of  neuronal  populations  in  primary  auditory  cortex  (A1)  during  the  simultaneous  presentation  of  two  sounds:  1)  a  long  duration  modulated  sound  (varying  in  bandwidth  and  duration)  and  2)  brief  tone  pips.  Evoked  activity  was  recorded  using  multi-­‐site  extracellular  recordings,  and  whole  cell  patch  clamp  recordings  in  A1  of  anaesthetised  mice  (NMRI,  5-­‐10  weeks).  Firing  rate  distributions  were  bootstrapped  to  elucidate  significant  stimulus-­‐evoked  changes  (p<0.05).  Increasing  the  bandwidth  of  the  first  signal  enhanced  the  evoked  response  to  the  second  signal  at  low  signal-­‐to-­‐noise  ratios,  equivalent  to  reducing  detection  threshold  in  traditional  CMR.  Additionally,  when  the  onset  of  the  first  signal  preceded  the  onset  of  second  by  >500ms,  evoked  responses  to  the  pure  tone  signal  were  further  enhanced.  Two  classes  of  evoked  response  were  observed  following  tone  presentation:  (i)  increased  firing  at  tone  onset,  or  (ii)  increased  firing  at  the  offset  of  both  signals.  These  response  classes  were  mediated  by  distinct  non-­‐overlapping  neuronal  subpopulations  (PCA  on  stimulus-­‐evoked  PSTHs  and  agglomerative  clustering).  Overall,  increasing  the  duration  and  bandwidth  of  the  first  signal  reduced  thresholds  of  pure  tones  by  ~15dB,  demonstrating  that  both  ongoing  temporal  coherence  across  frequency  bands,  and  recent  stimulus  history,  influence  the  detection  and  segregation  of  auditory  signals.  Thus,  when  using  cues  of  object  formation,  A1  is  able  to  encode  both  signals  as  separately  represented  objects,  even  at  low  signal  levels.  This  mechanism  could  be  used  in  the  selective  perception  of  low  level  signals  in  noisy  environments.    ID:  250    

Genetic  trapping  of  neuronal  activity  in  the  mouse  auditory  cortex  Gen-­‐ichi  Tasaka1,  Amos  Shalev1,  Luo  Liqun2,  Adi  Mizrahi1  1Hebrew  University  of  Jerusalem,  Israel;  2Stanford  University,  United  States  of  America  [email protected]  Dissecting  how  neural  circuits  are  functionally  organized  to  encode  natural  sounds  and  drive  behavior  is  still  a  major  challenge  in  audition.  

Page 129: Complete program including all scientific contributions (21 MB, PDF)

  116  

One  central  brain  region  thought  to  encode  natural  stimuli  is  the  primary  auditory  cortex  (A1),  but  little  is  known  about  how  its  underlying  circuitry  accomplishes  this  task.  Neurons  in  mouse  A1  show  highly  heterogeneous  response  profiles  to  simple  sounds,  let  alone  to  natural  sounds.  In  fact,  it  is  difficult  to  predict  how  single  cortical  neurons  respond  to  natural  sound  from  their  response  profile  to  pure  tones.  Here,  we  set  out  to  test  a  new  method  to  access  neurons  in  the  auditory  cortex  based  on  their  functional  activity.  Specifically,  we  tested  the  potential  of  a  recently  published  method  called  Targeted  Recombination  in  Active  Populations  (TRAP)  (Guenthner  et  al.,  Neuron,  2013).  TRAP  uses  mouse  genetics  in  combination  with  viral  technology  to  enable  permanent  genetic  access  to  neurons  that  are  transiently  activate.  TRAP  utilizes  the  regulation  of  the  immediately  early  gene  c-­‐Fos  to  transcribe  CreER  transiently  when  neurons  are  activated.  When  this  mouse  is  crossed  to  a  floxed-­‐reporter  mouse  and  injected  with  tamoxifen,  neurons  that  express  c-­‐Fos  during  the  tamoxifen  active  period  undergo  irreversible  Cre/LoxP-­‐dependent  recombination,  and  therefore  are  permanently  marked  by  the  transgene  of  the  reporter.  TRAP  will  potentially  enable  us  to  record,  manipulate,  and  trace  connections  of  neuronal  populations  defined  functionally  by  their  stimulus-­‐response  properties.  Here,  we  report  our  progress  on  optimizing  the  parameters  of  this  strategy  by  combining  TRAP  with  in  vivo  physiology  and  a  novel  reporter  mouse  (utilizing  tTA2  as  a  handle  for  further  manipulations).  First,  we  calibrated  the  genetic  system  to  achieve  very  low  non-­‐specific  labeling  under  basal  condition  (i.e.  when  no  sound  stimulation  was  used  for  trapping).  Then,  we  trapped  neurons  by  stimulating  with  pure  tones  (6,  12  and  24  kHz)  or  natural  sounds  (wriggling  calls).  Our  results  show  clear  increases  in  the  number  of  trapped  neurons  when  sounds  are  played,  particularly  in  the  24kHz  stimulus  and  natural  sounds  experiments.  In  order  to  verify  whether  labeled  neurons  are  truly  more  responsive  to  their  presented  sound  stimuli  than  non-­‐labeled  neuron,  we  are  currently  performing  two-­‐photon  targeted  patch  of  the  labeled  neurons.  This  approach  will  rigorously  evaluate  the  

functional  specificity  of  TRAP  and  will  be  used  as  a  bench  mark  for  future  experiments.    ID:  251    

Cortical  plasticity  following  perceptual  learning  Ido  Maor,  Adi  Mizrahi  Hebrew  University  of  Jerusalem,  Israel  [email protected]  Perceptual  learning  is  a  cognitive  phenomenon  whereby  perceptual  capabilities  improve  with  training.  The  neural  substrate  of  perceptual  learning  is  not  well  understood  but  probably  involves  multiple  brain  regions,  one  of  which  is  the  neocortex.  Our  work  aims  to  understand  how  auditory  information  is  learned  by  the  animal  and  how  it  is  encoded  in  the  primary  auditory  cortex  (A1).  Our  animal  model  is  the  mouse  and  we  focus  on  studying  how  different  subpopulations  of  neurons  in  A1  (e.g.  inhibitory  vs.  excitatory  neurons),  encode  auditory  stimuli  following  learning.  First,  to  study  perceptual  learning  in  mice,  we  developed  a  fully  automated  assay  in  a  learning  chamber  that  we  named  “the  Educage”.  The  Educage  is  designed  to  train  groups  of  mice  (up  to  6  mice  simultaneously)  on  a  two-­‐tone  ’go  no-­‐go’  discrimination  task.  Once  the  procedure  is  learned,  task  difficulty  is  gradually  increased  by  decreasing  the  difference  between  the  two  tones.  Using  this  procedure,  mice  learned  and  became  experts  in  the  task  rapidly.  Furthermore,  perceptual  limits  were  reached  within  several  thousands  of  trials  (taking  roughly  14  days  in  the  Educage).  Second,  to  study  the  physiological  correlates  of  learning  in  A1,  we  used  in  vivo  two  photon  targeted  patch  clamp  (loose  patch)  to  asses  basic  response  properties  of  inhibitory  and  excitatory  neurons  of  layer  2/3.  As  inhibitory  neurons,  we  targeted  Parvalbumin  positive  (PV+)  interneurons,  the  largest  inhibitory  subpopulation  of  the  cortex.  We  used  transgenic  mice  expressing  TdTomato  in  PV  neurons  and  used  unlabeled  neurons  as  controls  (PV−).  We  compared  the  frequency  receptive  fields  and  other  response  properties  (e.g.  response  latency,  spontaneous  and  evoked  firing  rate)  of  PV+  and  PV−  neurons  in  A1  of  expert  and  naïve  mice.  Our  preliminary  analysis  shows  novel  changes  in  the  response  profiles  of  layer  2/3  neurons  induced  by  learning.  Specifically,  learning  induced  changes  

Page 130: Complete program including all scientific contributions (21 MB, PDF)

  117  

in  tuning  properties  (shifts  toward  learned  frequencies)  as  well  as  changes  in  response  properties  of  PV+  neurons  (decrease  latency  and  increased  evoked  firing).  Our  data  reveals  that  specific  modifications  in  inhibitory  circuits  within  layer  2/3  of  A1  may  contribute  to  auditory  perceptual  learning.    ID:  252    

Behavioral  and  electrophysiological  assessment  of  amplitude  modulation  depth  detection  in  the  environmental  noise-­‐exposed  rat  Florian  Occelli,  Jean-­‐Marc  Edeline,  Boris  Gourevitch  UMR  CNRS  8195,  France  jean-­‐marc.edeline@u-­‐psud.fr  It  is  well  known  that  noise-­‐induced  hearing  loss  as  well  as  aging  impair  hearing  performance  and  in  particular  speech  intelligibility  related  to  temporal  envelope  processing.  The  ability  to  follow  the  temporal  envelope  has  been  classically  studied  in  humans  through  the  psychophysical  temporal  modulation  transfer  function  measured  as  the  minimal  modulation  depth  detectable  for  several  frequencies  of  modulations.  Modulation  depth  quantifies  how  much  the  carrier  amplitude  varies  between  0  and  1,  with  0%  being  the  unmodulated  noise,  and  100%  being  a  carrier  varying  between  0  and  1.  With  such  a  function,  it  is  possible  to  examine  in  human  the  effects  of  intensity  resolution  (modulation  depth)  and  temporal  resolution  independently  (Strickland  and  Viemeister,  1997).  Recently,  it  has  been  shown  that  long-­‐term  exposure  to  non-­‐traumatic  environmental  noise  (<85dB),  may  have  effects  on  spectral  and  temporal  cortical  processing  in  the  auditory  cortex  (Norena  et  al,  2006;  Zhou  et  al,  2012;  Zheng,  2012).  Effects  of  such  exposure  on  modulation  depth  processing  remain  widely  unknown  whereas  a  reduced  intensity  resolution,  i.e.  a  reduction  of  the  dynamic  range  of  auditory  neurons,  may  account  for  potential  intelligibility  issues  in  general.  In  this  study,  we  designed  a  behavioral  task  involving  detection  of  amplitude  modulation  depth  and  we  recorded  multiunit  and  LFP  in  the  rat  auditory  cortex  in  response  to  amplitude  modulated  white  noise.  Rats  were  exposed  to  3  to  12  months  of  structured  (industrial)  non  traumatic  noise  at  80  dB  SPL.  

Our  results  indicate  that  behavioral  effects  of  long-­‐term  environmental  noise  exposure  are  mostly  visible  during  the  first  three  months  of  exposure  and  that  neurometric  curves  for  amplitude  modulation  depth  detection  do  not  necessarily  fit  to  psychometric  curves.      ID:  253    

Auditory  motion  processing  relies  on  specific  mechanisms  Colline  Poirier,  Simon  Baumann,  Olivier  Joly,  David  Hunter,  Fabien  Balezeau,  Li  Sun,  Adrian  Rees,  Christopher  Petkov,  Alexander  Thiele,  Timothy  Griffiths  Newcastle  University,  United  Kingdom  [email protected]  The  nature  of  the  mechanisms  underlying  auditory  motion  perception  has  been  debated  for  more  than  30  years.  The  ‘snapshot  hypothesis’  postulates  that  motion  is  inferred  from  snapshots  of  object  successive  positions,  without  direct  appreciation  of  velocity.  According  to  this  hypothesis,  auditory  motion  perception  is  based  on  the  same  mechanisms  as  those  involved  in  the  localization  of  static  sound  sources.  The  alternative  hypothesis,  usually  referred  as  the  ‘motion  detector  hypothesis’  or  ‘velocity  detector  hypothesis’,  considers  that  motion  perception  is  based  on  specific  mechanisms.  To  disentangle  these  two  hypotheses,  we  measured  the  fMRI  BOLD  response  to  auditory  motion  and  various  control  stimuli  in  the  whole  auditory  cortex  of  awake  macaques.  Virtual-­‐acoustic  space  stimuli  were  created  for  fMRI  by  recording  the  pressure  waveform  within  the  ear  canals  of  each  individual  during  the  presentation  of  sinusoidally  amplitude  modulated  broadband  noise  coming  from  different  spatial  locations  in  azimuth  (-­‐80  to  +80  degrees).  Motion  stimuli  were  sounds  virtually  moving  within  each  hemispace,  back  and  forth  between  the  positions  0  and  80  degrees.  Control  stimuli  were  stationary  sounds  coming  from  one  single  location  (0,  40  or  80  degrees)  and  spectro-­‐temporal  controls  generated  by  taking  the  mean  of  the  waveforms  of  a  motion  stimulus  at  each  ear,  and  presenting  the  stimulus  diotically.  Activations  were  localized  on  the  superior  temporal  plane  thanks  to  tonotopy  experiments.  We  found  that  the  posterior  auditory  cortex,  including  A1  and  the  

Page 131: Complete program including all scientific contributions (21 MB, PDF)

  118  

surrounding  caudal  belt  and  parabelt,  is  involved  in  auditory  motion  analysis.  The  linear  combination  of  static  spatial  mechanisms,  spectro-­‐temporal  processes  and  their  interaction  was  able  to  fully  explain  motion-­‐induced  activation  in  most  parts  of  the  auditory  cortex,  including  A1.  However,  in  circumscribed  regions  of  the  posterior  belt  and  parabelt  cortex,  part  of  the  signal  was  left  unexplained.  We  show  that  the  remaining  part  of  the  signal  in  these  regions  cannot  be  explained  by  adaptation  mechanisms  and  is  due  to  a  motion-­‐specific  process.  These  results  provide  the  first  demonstration  that  auditory  motion  is  not  simply  deduced  from  spatial  location  changes  but  relies  on  specific  mechanisms.      ID:  254    

Microsaccades  indicate  fast  sound  identification  and  categorization  Andreas  Widmann1,  Ralf  Engbert2,  Erich  Schröger1  1University  of  Leipzig,  Germany;  2University  of  Potsdam,  Germany  widmann@uni-­‐leipzig.de  The  mental  chronometry  of  the  human  brain’s  processing  of  sounds  to  be  categorized  as  targets  has  intensively  been  studied  in  cognitive  neuroscience.  According  to  current  theories,  a  series  of  successive  stages  consisting  of  the  registration,  identification,  and  categorization  of  the  sound  has  to  be  completed  before  participants  are  able  to  report  the  sound  as  being  a  target  by  button  press  after  about  300-­‐500  ms.  Here  we  use  miniature  eye  movements  as  a  tool  to  study  the  categorization  of  a  sound  as  a  target  showing  that  this  categorization  is  completed  already  after  80-­‐100  ms.  During  visual  fixation,  the  rate  of  microsaccades,  the  fastest  components  of  miniature  eye  movements,  is  transiently  modulated  after  auditory  stimulation.  In  two  experiments,  we  measured  microsaccade  rates  in  an  auditory  three-­‐tone  oddball  paradigm  (including  rare  non-­‐target  sounds)  and  observed  a  difference  in  the  microsaccade  rates  between  targets  and  non-­‐targets  as  early  as  142  ms  after  sound  onset.  This  finding  was  replicated  in  a  third  experiment  with  directed  saccades  measured  in  a  paradigm  in  which  tones  had  to  be  matched  to  score-­‐like  visual  symbols.  

Considering  the  delays  introduced  by  (motor)  signal  transmission  and  data  analysis  constraints,  the  brain  must  have  differentiated  target  from  non-­‐target  sounds  as  fast  as  80-­‐100  ms  after  sound  onset  in  both  paradigms.  We  suggest  that  predictive  information  processing  for  expected  input  makes  higher  cognitive  attributes  such  as  a  sound’s  identity  and  category  available  already  during  early  sensory  processing.  The  measurement  of  eye-­‐movements  is  thus  a  promising  approach  to  investigate  hearing.      ID:  255    

A  new  and  fast  characterization  of  multiple  encoding  properties  of  auditory  neurons  Boris  Gourévitch,  Florian  Occelli,  Quentin  Gaucher,  Yonane  Aushana,  Jean-­‐Marc  Edeline  CNPS,  UMR8195  CNRS,  Université  Paris-­‐Sud,  France  [email protected]  The  functional  properties  of  auditory  cortex  neurons  are  most  often  investigated  separately,  through  spectrotemporal  receptive  fields  for  the  frequency  tuning  and  the  use  of  frequency  sweeps  sounds  for  selectivity  to  velocity  and  direction.  In  fact,  auditory  neurons  are  sensitive  to  a  multidimensional  space  of  acoustic  parameters  where  spectral,  temporal  and  spatial  dimensions  interact.  We  designed  a  multi-­‐parameter  stimulus,  the  Random  Double  Sweep  (RDS),  composed  of  two  uncorrelated  random  sweeps,  which  gives  an  easy,  fast  and  simultaneous  access  to  frequency  tuning  as  well  as  FM  sweep  direction  and  velocity  selectivity,  frequency  interactions  and  temporal  properties  of  neurons.  Reverse  correlation  techniques  applied  to  recordings  from  the  primary  auditory  cortex  of  guinea  pigs  and  rats  in  response  to  RDS  stimulation  revealed  the  variety  of  temporal  dynamics  of  acoustic  patterns  evoking  an  enhanced  or  suppressed  firing  rate.  Group  results  on  these  two  species  revealed  less  frequent  suppression  areas  in  frequency  tuning  STRFs,  the  absence  of  downward  sweep  selectivity,  and  lower  phase  locking  abilities  in  the  auditory  cortex  of  rats  compared  to  guinea  pigs.    

Page 132: Complete program including all scientific contributions (21 MB, PDF)

  119  

ID:  256    

Effect  of  the  efferent  effect  on  cochlear  gain  and  the  cortical  response  Ifat  Yasin,  Ziomarie  Jimenez,  Vit  Drga  University  College  London,  United  Kingdom  [email protected]  Behavioural  and  non-­‐human  physiological  evidence  suggests  that  the  amount  of  gain  applied  to  the  basilar  membrane  may  change  during  the  course  of  acoustic  stimulation  due  to  efferent  activation  of  the  cochlea  (Liberman,  1996).  A  psychoacoustical  method  which  can  be  used  to  infer  human  cochlear  response  is  the  Fixed  Duration  Masking  Curve  (FDMC)  (Yasin  et  al.,  2013,  2014).  This  method  can  be  used  to  estimate  the  effect  of  efferent  activation  on  human  cochlear  gain  and  compression  by  presentation  of  a  precursor  sound  prior  to  presentation  of  the  FDMC  masker-­‐signal  stimulus.  The  FDMC  technique  ensures  that  the  effect  of  the  precursor  on  gain  can  be  measured  independently  of  any  masking  effects  by  the  precursor,  which  has  been  a  confound  in  previous  behavioural  studies.  The  present  study  investigated  the  effect  of  an  ipsilateral  and  contralateral  precursor  on  estimates  of  cochlear  gain  and  compression  (psychoacoustics)  and  on  the  cortical  response  (electroencephalography;  EEG).  In  the  psychoacoustical  component  of  the  study,  FDMCs  for  a  signal  frequency  of  3  kHz  were  obtained  from  twelve  listeners  with  and  without  an  ipsilateral  or  contralateral  3-­‐kHz  precursor.  The  precursor  had  a  total  duration  of  160  ms  and  was  presented  at  a  level  of  75  dB  SPL  with  the  silent  interval  between  precursor  and  masker  fixed  at  300  ms  (these  parameters  were  chosen  such  that  the  efferent  effect  would  be  observable  using  either  an  ipsilateral  or  contralateral  precursor  and  mode  of  recording  (subjective  response  or  cortical  EEG).  For  the  EEG  component  of  the  study  a  three-­‐electrode  array  was  used  to  measure  the  N1-­‐P2  response  at  electrode  Fz.  For  the  EEG  recording,  the  maskers  were  presented  after  an  ipsilateral  or  contralateral  precursor  with  the  same  masker  and  precursor  parameters  used  in  the  psychoacoustical  study.  Preliminary  analyses  show  that  there  is  a  greater  efferent  effect  with  an  ipsilateral  compared  to  a  contralateral  precursor  in  both  

the  psychoacoustical  and  EEG  component  of  the  study.  Overall  there  is  a  correspondence  between  the  psychoacoustical  and  cortical  EEG  results  for  the  size  of  gain  reduction  achieved  with  an  ipsilateral  precursor.  Efferent  effects  of  cochlear  gain  reduction  can  be  observed  in  reduction  of  the  N1-­‐P2  potential  at  the  cortical  level.      ID:  257    

Changes  in  resting-­‐state  oscillatory  power  in  anaesthetised  guinea  pigs  with  behaviourally-­‐tested  tinnitus  following  unilateral  noise  trauma  Victoria  Kowalkowski1,2,  Ben  Coomber1,  Mark  N.  Wallace1,  Katrin  Krumbholz1  1MRC  Institute  of  Hearing  Research  Nottingham,  United  Kingdom;  2University  of  Nottingham,  United  Kingdom  [email protected]  Chronic  tinnitus  affects  around  10%  of  the  population,  can  be  highly  bothersome,  and  is  often  associated  with  noise  trauma  or  hearing  loss.  Two  theories  for  how  the  tinnitus  percept  is  generated  are  the  ‘thalamo-­‐cortical  dysrhythmia’  and  ‘cortical-­‐reorganisation’  models.  In  the  former,  deafferentation  as  a  result  of  noise  exposure  leads  to  a  slowing  of  spontaneous  oscillatory  activity  between  auditory  thalamus  and  cortex,  as  well  as  increased  spontaneous  high-­‐frequency  activity  in  the  auditory  cortex  thought  to  underlie  the  tinnitus  percept.  The  latter  model  posits  that  tinnitus  arises  as  a  result  of  inhomogeneous  hearing  loss,  which  deprives  some  areas  of  the  hearing  range  of  input,  but  leaves  others  intact,  creating  an  imbalance  of  inhibitory  and  excitatory  inputs  to  the  intact  areas  that  leads  to  spontaneous  hyperactivity  and  thus  tinnitus.  In  this  study,  we  measured  spontaneous  oscillatory  activity  from  the  auditory  cortical  surface  of  12  anaesthetised  guinea  pigs.  6  animals  were  unexposed  controls,  and  6  were  unilaterally  exposed  to  loud  noise  to  induce  tinnitus  and  then  allowed  to  recover  for  8-­‐10  weeks.  The  presence  of  tinnitus  was  tested  with  pre-­‐pulse  inhibition  of  the  Preyer  startle  reflex,  and  ABR  measurements  were  used  to  show  that  the  exposed  animal’s  hearing  thresholds  had  recovered  to  within  20  dB  of  their  baseline.  Consistent  with  the  ‘thalamo-­‐cortical  

Page 133: Complete program including all scientific contributions (21 MB, PDF)

  120  

dysrhythmia’  model,  differences  in  the  frequency  composition  of  spontaneous  activity  were  observed  between  groups,  with  a  relative  increase  in  mid-­‐frequency  activity  in  the  exposed  animals.  More  strikingly,  there  was  a  highly  significant  group-­‐by-­‐hemisphere  interaction,  in  that  noise  exposure  lead  to  a  reduction  in  spontaneous  activity  in  the  contralateral  hemisphere,  and  an  increase  in  the  ipsilateral  hemisphere.  This  effect  accords  with  the  ‘cortical  reorganisation’  model,  because  the  contralateral  hemisphere  receives  predominant  input  from  the  exposed  ear,  whereas  the  ipsilateral  hemisphere  receives  predominant  input  from  the  intact  ear.  Future  work  aims  to  investigate  changes  in  resting-­‐state  activity  in  humans  with  tinnitus  and  hearing  loss  using  electroencephalography.      ID:  258    

Activation  patterns  in  non-­‐primary  auditory  cortex  using  complex  acoustic  stimuli  and  high  field  fMRI  Amee  J.  Hall1,  Stephen  G.  Lomber1,2,3  1University  of  Western  Ontario,  London,  Canada;  2Robarts  Research  Institute,  Canada;  3Brain  and  Mind  Institute,  Canada  [email protected]  There  is  an  abundance  of  anatomical  and  electrophysiological  investigations  of  the  auditory  cortex  of  the  cat.  The  anatomical  connections  of  all  acoustically  responsive  cortical  areas  have  been  published  in  detail.  However,  electrophysiological  investigations  of  many  of  these  connections  remain  a  mystery  in  large  part  because  of  the  location  of  areas  ventral  to  primary  auditory  cortex  (A1).  Less  invasive  techniques  such  as  functional  magnetic  resonance  imaging  (fMRI)  provide  a  way  to  investigate  these  kinds  of  areas.  Using  fMRI,  pure  tones  have  been  used  to  demarcate  core  auditory  cortex  from  other  surrounding  areas  in  cats.  In  the  present  investigation  ten,  more  complex,  auditory  stimuli  were  used  to  investigate  neuronal  responses  beyond  core  auditory  cortex  in  five  adult  cats.  Four,  one  octave,  narrow  band  noise  (NBN)  stimuli  centered  at  1kHz,  10kHz,  17kHz,  or  20kHz;  two  sweep  stimuli,  one  ascending  and  the  other  descending,  spanning  0.1kHz  to  32kHz;  two  conspecific  vocalizations;  and  two  harmonic  

stimuli  with  a  fundamental  frequency  at  1kHz  or  0.75kHz.  Overall,  all  stimuli  resulted  in  activation  in  primary  auditory  cortex.  However,  for  each  stimulus,  the  largest  activations  occurred  outside  of  A1.  Activations  in  response  to  NBN  stimuli  are  largely  located  along  the  posterior  ectosylvian  sulcus  (pes)  and  a  tonotopic  pattern  can  be  identified.  The  location  and  tonotopy  observed  indicate  that  activations  were  within  the  posterior  auditory  field.  Activations  in  response  to  sweeps  were  also  largely  contained  within  the  pes,  but  were  more  ventral  to  those  generated  by  NBN  stimuli,  corresponding  to  the  ventral  posterior  auditory  field  or  ventral  auditory  field.  Vocalization  stimuli  generated  activations  along  the  middle  ectosylvian  gyrus,  ventral  to  A1,  corresponding  to  the  second  auditory  and  temporal  areas.  Three  of  the  animals  also  had  activations  along  the  anterior  ectosylvian  sulcus,  anterior  to  A1  corresponding  the  auditory  field  of  the  anterior  ectosylvian  sulcus.  Similar  activations  were  observed  using  the  harmonics  stimuli.  Taken  together,  these  results  suggest  that  the  more  complex  an  acoustic  stimulus,  the  more  ventral  the  activation  will  occur  in  auditory  cortex.      ID:  259    

Prolonged  low-­‐level  manipulation  of  parvalbumin-­‐positive  interneuron  activity  alters  neural  dynamics  in  awake  auditory  cortex  K.  Jannis  Hildebrandt1,  Pedro  J.  Gonçalves2,  Maneesh  Sahani2,  Jennifer  F.  Linden2  1Cluster  of  Excellence  "Hearing4all",  Department  for  Neuroscience  University  of  Oldenburg,  Germany;  2University  College  London,  United  Kingdom  jannis.hildebrandt@uni-­‐oldenburg.de  Alterations  of  cortical  inhibition  have  been  proposed  to  play  a  crucial  role  in  modulation  of  cortical  activity  during  attention  or  learning.  The  effects  of  alterations  in  the  activity  of  different  functional  groups  of  interneurons  have  recently  become  accessible  to  investigation  through  the  use  of  optogenetic  tools.  Typically,  a  specific  class  of  interneurons  is  excited  or  inhibited  during  application  of  light  to  the  cortical  tissue.  One  limitation  of  such  experiments  is  that  the  timing  of  optogenetic  stimulation  relative  to  sensory  

Page 134: Complete program including all scientific contributions (21 MB, PDF)

  121  

stimulation  becomes  an  important  factor,  and  the  pattern  of  supra-­‐threshold  activation  of  inhibitory  neurons  may  not  be  physiologically  accurate.  Here,  we  circumvent  these  limitations  by  using  stable  step-­‐function  opsin  (SSFO),  an  ion  channel  that  can  be  rendered  continuously  active  with  a  short  pulse  of  light  at  one  wavelength,  and  later  switched  off  with  a  pulse  of  light  at  another  wavelength.  We  expressed  SSFO  in  parvalbumin-­‐positive  (PV+)  interneurons  in  the  primary  auditory  cortex  of  mice,  and  recorded  both  local  field  potentials  (LFP)  and  spiking  responses  to  tone  pips  of  varying  frequency  in  awake  animals.  By  using  SSFO,  we  were  able  to  examine  the  effects  of  prolonged  low-­‐level  (likely  sub-­‐threshold)  activation  of  PV+  cells  on  cortical  network  dynamics.  Surprisingly,  we  found  that  in  the  majority  of  recordings,  prolonged  low-­‐level  activation  of  PV+  inhibition  with  SSFO  enhanced  rather  than  reduced  cortical  spiking  evoked  by  tone  pips,  and  had  either  no  or  only  small  effects  on  tuning  of  spiking  responses.  Moreover,  while  changes  in  the  amplitude  and  tuning  of  tone-­‐evoked  spiking  varied  between  recording  sites,  we  observed  consistent  effects  of  SSFO  activation  on  power  in  different  frequency  bands  of  the  LFP,  during  both  silence  and  sound  presentations.  Specifically,  SSFO  activation  increased  power  in  the  low-­‐frequency  range  of  the  LFP  (<50Hz)  and  decreased  power  in  the  high-­‐frequency  range  (50-­‐150Hz,  high  gamma).  These  effects  were  even  more  pronounced  during  sound  presentation,  particularly  in  the  high-­‐gamma  band:  while  50-­‐150Hz  LFP  power  increased  during  tone  presentations  in  the  control  condition,  LFP  power  in  the  same  band  following  SSFO  activation  was  decreased  during  sound  stimulation  relative  to  silence.  In  summary,  our  experiments  show  that  prolonged  low-­‐level  activation  of  PV+  cells  with  SSFO  causes  profound  changes  in  the  power  spectrum  of  the  LFP  in  awake  auditory  cortex,  especially  in  the  50-­‐150Hz  high-­‐gamma  range.  This  finding  is  especially  interesting  because  high-­‐gamma  activity  has  been  linked  to  perceptual  awareness  and  attentional  modulation  of  cortical  activity.  Our  results  therefore  support  a  role  for  PV+  interneurons  in  these  processes.

ID:  260    

Long-­‐lasting  and  spatially  restricted  plasticity  in  adult  inferior  colliculus  following  exposure  to  a  behaviourally  relevant  tone  for  several  days  Hugo  Cruces1,2,  Livia  de  Hoz1  1Max  Planck  Institute  for  Experimental  Medicine  Goettingen,  Germany;  2International  Max  Planck  Research  School  for  Neurosciences,  Germany  [email protected]  To  test  whether  auditory  experience  alone  affects  the  processing  of  auditory  information  at  the  sub-­‐cortical  level,  we  investigated  the  plastic  changes  elicited  in  the  inferior  colliculus  (IC)  of  mice  that  were  exposed  to  an  unconditioned  but  behaviorally  relevant  tone  for  several  days.  C57BL/6J  5-­‐6  weeks  old  females  were  kept  in  an  Audiobox  (TSE),  where  continuous  monitoring  of  individual  mouse  behavior  is  possible,  by  means  of  a  transponder  inserted  into  each  mouse.  Water  was  available  in  a  specialized  corner  after  a  nose-­‐poke.  Visits  to  the  corner  were  accompanied  by  the  presentation  of  a  fixed  tone.  We  recorded  IC  neuronal  activity  acutely  in  mice  that  had  been  exposed  to  this  tone  in  every  visit  for  at  least  1  and  up  to  11  days.  The  control  group  was  kept  in  a  separate  Audiobox  and  did  not  hear  any  tone  during  visits  to  the  corner.  We  characterized  auditory  responses  along  the  tonotopic  axis  of  the  IC  in  these  two  groups.  We  found  that  the  group  that  had  heard  a  tone  during  each  corner  visit,  even  for  as  long  as  11  days,  showed  an  increase  in  evoked  multiunit  activity.  This  increase  was  largest  in  an  area  between  250  and  450  micrometers  in  depth  independently  of  the  frequency  used  during  the  exposure  (8  or  16kHz).  Inactivating  the  auditory  cortex  with  muscimol  during  acute  recordings  led  to  a  small  increase  in  the  magnitude  of  the  responses  that  was  equal  in  both  groups.  We  also  observed  a  clear  and  spatially  spread  shift  in  best  frequency  towards  higher  frequencies.  This  shift  was  larger  when  16  kHz  was  the  exposure  frequency.  Sound  exposure  alone  induces  sustained  changes  in  adult  IC.  The  changes  take  the  shape  of  an  increase  in  response  magnitude  and  shift  in  BF  in  a  specific  IC  area,  probably  the  dorsal  central  nucleus.  The  expression  of  this  change  is  independent  of  cortical  activity.  

Page 135: Complete program including all scientific contributions (21 MB, PDF)

  122  

This  change  might  contribute  to  the  formation  of  a  neural  substrate  for  auditory  expectations.    ID:  261    Stimulus  specific  adaptation  and  deviance  detection  in  inferior  colliculus  and  auditory  cortex  Leila  Khouri,  Bshara  Awwad,  Itai  Hershenhoren,  Israel  Nelken  Hebrew  University  of  Jerusalem,  Israel  [email protected]  Stimulus  specific  adaptation  (SSA)  is  the  reduction  in  the  neuronal  response  to  a  repeated  sound  that  is  not,  or  only  partially,  generalized  to  a  rare  sound.  SSA  thus  differentiates  rare  from  common  sounds  and  potentially  represents  sensitivity  to  sound  statistics  in  the  neuronal  response.  Along  the  nonlemniscal  pathway,  SSA  is  found  as  early  as  the  inferior  colliculus  (IC),  however  along  the  lemniscal  pathway,  SSA  first  appears  to  a  substantial  degree  in  primary  auditory  cortex  (A1)  at  slow  presentation  rates.  A  possible  mechanism  for  SSA  to  tone  frequency  is  adaptation  of  narrowly  tuned  inputs  that  are  integrated  by  a  single  output  neuron.  We  compared  the  responses  predicted  by  this  model  to  responses  recorded  extracellularly  from  the  IC,  and  intracellularly  and  extracellularly  from  auditory  cortex,  of  halothane  anesthetized  rats.  The  feed  forward  model  predicts  responses  to  the  rare  tone  (deviant)  to  be  smaller  than  responses  to  the  same  tone  occuring  with  equal  probability  among  many  other  tones  (deviant  among  many  standards).  Furthermore,  the  model  cannot  generate  SSA  to  broadband  sounds  that  on  average  activate  all  channels  to  an  equal  extend.  In  IC  the  measured  responses  fulfill  to  a  large  degree  the  predictions  of  the  feed-­‐forward  model;  responses  to  deviants  in  oddball  sequences  are  smaller  than  responses  to  deviants  among  many  standards,  and  wideband  stimuli  do  not  evoke  SSA.  In  contrast,  in  auditory  cortex,  the  predictions  of  the  feedforward  model  fail;  responses  to  deviants  tend  to  be  larger  than  predicted,  and  are  essentially  equivalent  to  responses  to  deviants  among  many  standards.  Furthermore,  there  is  a  highly  significant  SSA  to  broadband  stimuli  in  A1.  Thus,  there  seem  to  be  different  mechanisms  underlying  SSA  in  IC  and  in  A1.  

While  SSA  in  IC  is  compatible  with  feedforward  adaptation  and  does  not  emphasize  rarity,  A1  neurons  do  not  conform  to  adaptation  in  narrow  frequency  channels  and  in  particular  seem  to  amplify  the  responses  to  the  rare  sound,  whether  it  is  a  pure  tone  or  a  broadband  stimulus.        ID:  262    

The  role  of  sensitvity  to  temporal  regularity  in  auditory  scene  analysis  Lucie  Aman,  Lefkothea  Andreou,  Maria  Chait  University  College  London,  United  Kingdom  [email protected]  The  notion  that  sensitivity  to  temporal  regularity  plays  a  pivotal  role  in  auditory  scene  analysis  has  recently  garnered  considerable  attention.  Nevertheless,  evidence  supporting  a  primary  role  for  temporal  regularity  is  based  on  experiments  employing  simple  stimuli  consisting  of  one,  or  two,  concurrent  sound  sequences.  Whether  the  role  of  sensitivity  to  temporal  regularity  in  mediating  auditory  scene  analysis  is  robust  to  more  complex  listening  environments  is  unknown.  The  present  study  investigates  sensitivity  to  TR  in  the  context  of  a  change  detection  task,  employing  complex  acoustic  scenes  comprised  of  up  to  14  concurrent  auditory  objects.  Sequences  of  sounds  produced  by  each  object  were  either  temporally  regular  (REG)  or  irregular  (RAND).  We  studied  both  simple  instances  of  temporal  regularity  (isochronous  sequences)  as  well  as  patterns  consisting  of  complex  regular  rhythms.  Listeners  had  to  detect  occasional  changes  (appearances  or  disappearances  of  an  object)  within  these  ‘soundscapes’.  Listeners’  performance  depended  on  the  temporal  regularity  of  both  the  changing  object  and  the  scene  context  (other  objects  in  the  scene)  such  that  RAND  contexts  were  associated  with  slower  response  times  and  substantially  reduced  detection  performance.  Therefore,  even  in  complex  scenes,  sensitivity  temporal  regularity  is  critical  to  our  ability  to  analyse  and  detect  changes  in  a  dynamic  soundscape.  Importantly,  the  data  reveal  that  listeners  are  able  to  automatically  acquire  the  temporal  patterning  associated  with  at  least  14  concurrently  presented  auditory  objects.

Page 136: Complete program including all scientific contributions (21 MB, PDF)

  123  

ID:  263    

Mapping  tonotopy  in  the  deprived  primary  auditory  cortex  Tomasz  Wolak1,  Katarzyna  Joanna  Ciesla1,  Monika  Lewandowska1,  Mateusz  Rusiniak1,  Agnieszka  Pluta1,  Skarzynski  Piotr2,  Lorens  Artur1,  Skarzynski  Henryk1  1Institute  of  Physiology  and  Pathology  of  Hearing  Warsaw,  Poland;  2The  Institute  of  Sensory  Organs  Katjetany,  Poland  [email protected]  FMRI  has  been  the  preferred  technique  to  explore  tonotopic  organization  in  the  primary  auditory  cortex  (PAC)  in  healthy  individuals  [1]  Clinical  populations,  however,  have  been  rather  neglected.  In  the  present  study  an  adapted  study  paradigm  by  [2]  has  been  employed  to  investigate  neuroplastic  changes  in  PAC  in  patients  with  partial  deafness  (profound  high-­‐frequency  hearing  impairment)  and  chronic  subjective  tinnitus.  20  patients  with  bilateral  symmetrical  partial  deafness  (12F,8M,  35  years±4mths)  and  20  (14M,  6F,  41  years±7mths)  with  tinnitus  and  normal  hearing  participated  in  an  auditory  fMRI  experiment.  A  matched  healthy  group  served  as  control.  Two-­‐and  three-­‐tone  stimuli  with  0.4,0.8,1.6,3.2,  and  6.4Hz  central  frequencies  were  presented  binaurally  via  MRI-­‐headphones  at  80dB  SPL(C).  In  tinnitus  patients  the  specific  frequency  of  tinnitus  was  also  used.  There  were  8  presentations  of  each  sequence  type  and  silence  in  a  single  run  (3  runs  in  total).  All  sounds  were  presented  in  silent  gaps  between  2s  data  acquisition  periods.  The  studies  were  performed  on  a  Siemens  3T  MAGNETOM  Trio  scanner  and  the  imaging  parameters  were:  TR=10s,TE=30ms,31  slices,voxel  size  2x2x2mm.  SPM12b  and  FreeSurfer  software  were  applied  to  investigate  brain  responses.  Individual  and  group  SPM  t-­‐maps,  as  well  as  brain  flat-­‐maps  were  produced.  All  patients  performed  tests  assessing  their  psychological  performance  and  life  quality.  In  healthy  individuals,  the  fMRI  paradigm  revealed  consistent  V-­‐shape  high-­‐low-­‐high  frequency  gradients  across  the  Heschl  gyri.  Patients  showed  deprivation-­‐related  cortical  re-­‐organization  and  were  divided  into  sub-­‐groups  reflecting  their  audiological  profiles  and  brain  response  patterns.  There  were  no  macrospcopic  changes  in  the  tonotopic  

organization  in  the  tinnitus  group.  Behaviourally,  both  patient  groups  demonstrated  slightly  elevated  depressive  symptoms  and  less  active  coping  strategies.  *  Before  the  conference  further  advanced  methodological  approaches  will  be  applied  to  the  data.  The  auditory  fMRI  method,  despite  certain  limitations,  proves  a  useful  tool  to  study  auditory  plasticity.  Neuroimaging  findings  can  potentially  improve  therapeutic  interventions  in  clinical  populations.    [1]Saez,  M.  et  al  (2014).Tonotopic  mapping  of  human  auditory  cortex,Hearing  Research,307,42-­‐52.[2]Humphries,  C.  et  al.(2010).Tonotopic  organization  of  the  human  auditory  cortex,  Neuroimage,50(3),1202-­‐1211.    Supported  by  grants:  2011/03/D/NZ4/02431  and  2012/05/N/NZ4/02202.      ID:  264    

Spatial  sensitivity  of  vocalization  responses  in  the  auditory  cortex  of  marmosets  Yunyan  Wang,  Chia-­‐Jung  Chang,  XIaoqin  Wang  Johns  Hopkins  University  Baltimore,  United  States  of  America  [email protected]  Neural  selectivity  to  conspecific  vocalizations  requires  integration  of  multiple  stimulus  features  such  as  frequency,  amplitude  and  frequency  modulations  over  time.  Neurons  in  the  auditory  cortex  across  mammalian  species  generally  show  some  degree  of  spatial  selectivity.  It  is  not  yet  clear  how  sound  location  affects  neural  selectivity  to  vocalizations.  We  studied  spatial  sensitivity  of  vocalization  responses  in  the  auditory  cortex  of  the  awake  marmoset  (Callithrix  jacchus),  a  highly  vocal  New  World  primate.  In  these  experiments,  we  systematically  tested  each  single-­‐unit  with  various  vocalizations  presented  from  32  locations  distributed  throughout  the  animal’s  front  and  rear  auditory  space,  both  below  and  above  the  horizontal  plane.  Preliminary  data  indicate  that  the  spatial  sensitivity  of  vocalization  responses  is  generally  consistent  with  that  measured  using  broadband  sounds.  Nevertheless,  there  is  a  mild  degree  of  stimulus-­‐dependent  variation  that  is  likely  due  to  tuning  characteristics  to  spectral  and  temporal  features  in  vocalizations.  These  data  suggest  that  spatial  selectivity  is  an  

Page 137: Complete program including all scientific contributions (21 MB, PDF)

  124  

essential  property  of  auditory  cortical  neurons  that  modulates  neural  selectivity  across  different  types  of  stimuli,  including  vocalizations.  Furthermore,  in  a  subset  of  neurons,  the  sustained  portion  of  the  response  to  vocalizations  was  more  selective  to  location  than  the  onset  response.  This  finding  is  in  agreement  with  the  notion  that  stimulus  preference  information  is  carried  in  the  sustained  response  of  cortical  neurons.      ID:  265    

Towards  optogenetic  cochlea  implants  Marcus  Jeschke1,  Victor  H  Hernandez1,2,3,  Anna  Gehrt1,  Zhizi  Jing1,  Gerhard  Hoch1,  Daniel  Keppeler1,  Christian  Goßler4,  Ulrich  T  Schwarz4,5,  Patrick  Ruther5,  Michael  Schwaerzle5,  Roland  Hessler6,  Tim  Salditt2,  Livia  de  Hoz7,  Nicola  Strenzke1,  Tobias  Moser1  1University  of  Goettingen  Medical  Center,  Germany;  2University  of  Goettingen,  Germany;  3University  of  Guanajuato,  Mexico;  4Fraunhofer  Institute  for  Applied  Solid  State  Physics  Freiburg,  Germany;  5University  of  Freiburg,  Germany;  6Austria  and  MED-­‐EL  Germany,  Germany;  7Max  Planck  Institute  for  Experimental  Medicine  Goettingen,  Germany  [email protected]­‐goettingen.de  Cochlear  implants  are  by  far  the  most  successful  neuroprostheses  implanted  in  over  300,000  people  worldwide  and  enable  open  speech  comprehension  in  a  majority  of  users.  However,  they  suffer  from  low  frequency  resolution  due  to  wide  current  spread  from  stimulation  contacts,  which  limits  the  number  of  independently  usable  channels  (less  than  a  dozen  usually)  and  compromises  speech  understanding  in  noise,  music  appreciation  or  prosody  understanding.  To  ameliorate  these  drawbacks  we  are  pursuing  optogenetic  cochlear  implants  in  which  spiral  ganglion  neurons  are  genetically  modified  to  spike  upon  light  stimulation.  Optical  stimulation  can  be  spatially  confined  and  thus  promises  lower  spread  of  excitation  in  the  cochlea.  Accordingly,  the  increased  number  of  independent  stimulation  channels  is  expected  to  enhance  frequency  resolution  and  intensity  coding.  We  investigated  optogenetic  cochlea  stimulation  employing  various  transgenic  rodent  models  as  well  as  virus-­‐mediated  expression  of  channelrhodopsin  variants  in  spiral  ganglion  neurons.  Blue  light  stimulation  

of  the  spiral  ganglion  via  single-­‐channel  µLEDs  or  fiber-­‐coupled  lasers  activated  the  auditory  pathway,  as  demonstrated  by  recordings  of  neuronal  population  responses  and  single  neurons  along  the  auditory  pathway.  Auditory  brainstem  response  thresholds  were  found  to  be  around  1  mW/mm²  -­‐  similar  to  thresholds  for  cortical  neuron  stimulation.  Expression  of  CatCh,  a  channelrhodopsin  variant  with  higher  light  sensitivity,  reduced  the  amount  of  light  required  for  responses  and  allowed  reliable  neuronal  spiking  for  stimulation  up  to  at  least  60  Hz.  The  cochlear  spread  of  excitation  was  probed  using  multielectrode  recordings  from  the  inferior  colliculus  of  transgenic  channelrhodopsin2  mice.  Current  source  density  based  response  maps  were  compared  between  optical,  acoustic  and  electrical  stimulation  and  indicated  better  frequency  resolution  of  optical  stimulation  versus  monopolar  electrical  stimulation.  Towards  multichannel  optical  implants  we,  in  collaboration  with  semiconductor  experts,  have  implanted  rodent  cochleae  with  flexible  µLED  arrays  accommodating  approximately  100  µLEDs  per  1  cm.  Ongoing  experiments  to  further  characterize  optogenetic  stimulation  of  the  cochlea  will  be  presented  and  discussed.  Taken  together,  our  experiments  demonstrate  the  feasibility  of  optogenetic  cochlea  stimulation  to  activate  the  auditory  pathway  and  lay  the  groundwork  for  future  applications  in  auditory  research  and  prosthetics.      ID:  266    

My  actions  are  louder  than  yours:  Enhanced  activity  in  auditory  cortex  to  self-­‐generated  sounds  Daniel  Reznik,  Yael  Henkin,  Noa  Schadel,  Roy  Mukamel  Tel-­‐Aviv  University,  Israel  [email protected]  A  pure  sensory  system  is  expected  to  respond  in  an  identical  manner  to  stimuli  with  identical  physical  attributes.  Research  over  the  last  several  years  has  demonstrated  that  performing  actions  with  auditory  consequences  modulates  the  response  in  auditory  cortex  to  otherwise  identical  stimuli  passively  heard.  Such  modulation  has  been  suggested  to  occur  through  a  corollary  discharge  sent  from  the  motor  cortex  during  

Page 138: Complete program including all scientific contributions (21 MB, PDF)

  125  

voluntary  actions.  The  relationship  between  the  effector  used  to  generate  the  sound,  type  of  modulation  and  changes  in  perceptual  sensitivity  are  currently  unclear.  In  the  current  study,  we  recorded  whole-­‐brain  functional  magnetic  resonance  imaging  signals  from  healthy  subjects  and  demonstrate  bilateral  enhancement  in  the  auditory  cortex  (superior  temporal  gyrus)  to  self-­‐generated  versus  externally  generated  sounds.  Furthermore,  we  find  that  this  enhancement  is  stronger  when  the  sound-­‐producing  hand  is  contralateral  to  the  auditory  cortex.  At  the  behavioral  level,  binaural  hearing  thresholds  are  lower  for  self-­‐generated  sounds  and  monaural  thresholds  are  lower  for  sounds  triggered  by  the  hand  ipsilateral  to  the  stimulated  ear.  Together  with  functional  connectivity  analysis,  our  results  suggest  that  a  corollary  discharge  sent  from  active  motor  cortex  enhances  activity  in  auditory  cortex  and  increases  perceptual  sensitivity  in  a  lateralized  manner.      ID:  267    

The  representational  geometry  of  natural-­‐sound  categories  in  the  auditory  cortex  Bruno  Lucio  Giordano1,  David  Fleming1,  Pascal  Belin1,2,3  1University  of  Glasgow,  United  Kingdom;  2Université  de  Montréal,  Canada;  3Institut  des  Neurosciences  de  La  Timone,  CNRS  &Université  Aix-­‐Marseille,  France  [email protected]  FMRI  studies  of  natural  sounds  consistently  revealed  patches  of  the  auditory  cortex  activated  preferentially  by  specific  sound  categories  (e.g.,  human  voices).  Sound-­‐category  encoding  was  observed  also  in  spatial  fMRI  patterns  (e.g.,  human  action,  Giordano  et  al.,  2013),  and  appeared  to  rely  on  a  CATEGORY  DETECTOR  representational  geometry  characterized  by:  a  high  pattern  similarity  within  the  target  category  (e.g.,  action);  a  low  similarity  within  the  non-­‐target  category  (e.g.  non-­‐action);  a  low  between-­‐category  similarity.  This  geometry  is  different  than  the  CATEGORY  DISCRIMINATOR,  characterized  by  a  high  pattern  similarity  within  both  the  target  and  non-­‐target  categories.  We  investigated:  [1]  whether  category  detectors  also  represent  human  

vocalizations;  [2]  the  relationship  between  pattern  and  activation  category  encoding;  [3]  the  relationship  between  category  detectors  and  the  pattern  encoding  of  within-­‐category  structure.  METHODS.  We  carried  out  an  event-­‐related  fMRI  study  of  vocal  and  action  sounds  (5  participants;  3  sessions  each).  The  stimulus  set  was  rich  in  within-­‐category  structure  (e.g.,  speech  vs.  affective  vs.  physiological  vocalizations;  liquid  vs.  solid  vs.  aerodynamic  action  sounds).  A  whole-­‐brain  searchlight  (6  mm)  analysis  assessed  the  encoding  of  category  structure  in  activation  (within-­‐searchlight  average  BOLD)  and  fMRI-­‐pattern  similarity  (within-­‐searchlight  patterns  correlation).  Single-­‐subject  inference  relied  on  the  permutation  of  the  1st-­‐level  GLM  (shuffling  of  stimulus  labels  at  single-­‐trial  level).  RESULTS.  [1]  All  participants  revealed  a  category-­‐detector  geometry  for  both  vocalizations  (bilateral  AC  extending  to  aSTG)  and  action  sounds  (posterior  AC  from  PT  to  pSTG),  and  weaker  evidence  for  a  discriminator  geometry  in  smaller  posterior  AC  regions.  [2]  Significant  activation  contrasts  emerged  in  the  same  patches  characterized  by  a  detector  geometry  in  5  and  3  of  the  participants  for  vocal  and  action  sounds,  respectively.  [3]  For  vocalizations,  within-­‐category  structure  (speech  vs.  affective  vs.  physiological)  was  encoded  in  the  same  regions  that  implemented  the  vocal-­‐category  detector.  CONCLUSIONS.  Spatial  fMRI  patterns  in  the  AC  appear  to  encode  natural-­‐sound  categories  based,  predominantly,  on  a  detector  geometry.  Auditory-­‐category  detectors  also  appear  to  be  lawfully  associated  with  activation  differences,  and,  for  vocal  sounds,  to  be  implemented  in  the  same  regions  devoted  to  the  encoding  of  within-­‐category  structure.      ID:  268    

Adaptation  to  changing  variance  of  harmonic  stimuli  in  the  ferret  auditory  cortex  Astrid  Klinge-­‐Strahl,  Ben  Willmore,  Andrew  J.  King  University  of  Oxford,  United  Kingdom  astrid.klinge-­‐[email protected]  Neurons  at  higher  levels  of  the  auditory  system  have  been  found  to  respond  to  stimuli  in  a  context-­‐dependent  manner  (e.g.  Malone  et  al.  

Page 139: Complete program including all scientific contributions (21 MB, PDF)

  126  

2002,  Kvale  &  Schreiner  2004).  Recent  studies  have  shown  that  short-­‐term  adaptations  occur  to  stimulus  statistics  (Dahmen  et  al.  2010)  or  stimulus  contrast  (Rabinowitz  et  al.  2011).  Dahmen  et  al.  (2010)  investigated  how  auditory  spatial  processing  adapts  to  stimulus  statistics  and  showed  that  neurons  adjusted  their  response  to  match  a  certain  ILD  distribution.  Rabinowitz  et  al.  (2011)  examined  how  changing  the  spectro-­‐temporal  contrast  of  a  set  of  stimuli  changed  neural  sensitivity  to  changes  in  these  stimuli.  Short-­‐term  adaptation  and  recovery  from  adaptation  have  also  been  shown  in  a  study  by  Kvale  and  Schreiner  (2004).  Here,  we  investigate  whether  neuronal  short-­‐term  adaptation  processes  also  exist  for  dynamic  changes  in  harmonic  complex  stimuli.  We  presented  sequences  of  dynamic  random  chords  (DRCs)  to  auditory  cortex  neurons  in  anaesthetised  ferrets.  The  DRCs  were  comprised  of  a  stack  of  integer  multiples  of  a  fundamental  frequency  which  was  overlayed  with  a  random  frequency  jitter  for  each  harmonic  component.  The  amount  of  frequency  jitter  was  switched  after  an  adaptation  period  from  low  to  high  or  vice  versa.  Based  on  previous  findings  one  might  expect  that  the  neurons  would  adjust  their  responses  to  the  current  background  in  order  to  be  able  to  respond  adequately  to  possible  target  sounds.  We  presented  the  vowels  /u/  and  /Epsilon/  at  different  temporal  positions  after  a  switch  in  the  variance  of  the  background  DRC.  First,  a  change  in  the  variance  of  the  background  DRC  should  be  reflected  in  a  change  in  the  response  to  this  stimulus.  Second,  the  time  period  an  auditory  cortex  neuron  needs  to  adapt  to  the  changed  variance  in  the  background  stimulus  should  be  reflected  in  differences  in  the  response  of  the  neuron  to  the  vowels  for  the  different  positions  of  the  vowel  after  the  switch  in  background  variance.  Initial  data  suggests  that  the  vowel  response  to  either  /u/  or  /Epsilon/  is  altered  depending  on  the  background  they  were  presented  in.  Two  different  response  types  were  observed:  the  response  to  the  vowel  was  either  increased  or  decreased  after  a  switch  in  the  background  variance  compared  to  a  control  condition  of  no  switch.  Furthermore,  results  suggest  an  influence  of  the  vowel  position  after  a  switch  in  

background  variance  on  the  neuronal  responses.      ID:  269    

Neural  interaction  between  auditory  spatial  information  and  field-­‐of-­‐view  Akiko  Callan,  Ando  Hiroshi  National  Institute  of  Information  and  Communications  Technology  Tokyo,  Japan  [email protected]  Both  audition  and  vision  provide  important  cues  for  motion  perception  and  we  integrate  those  cues  in  everyday  life.  Although  audition  has  a  smaller  effect  on  motion  perception  than  vision,  it  has  been  known  that  moving  sounds  can  facilitate  visual  motion  perception.  A  previous  study  suggested  the  involvement  of  the  superior  temporal  gyrus  (STG),  supramarginal  gyrus  (SMG),  and  superior  parietal  lobule  in  integrating  audiovisual  motion  cues  because  those  areas  were  activated  for  coherent  audiovisual  motion.  In  this  fMRI  study,  we  further  investigated  how  auditory  and  visual  cues  are  integrated  in  motion  perception.  Our  specific  interest  was  to  find  out  whether  significance  of  auditory  spatial  information  changes  with  different  field-­‐of-­‐view  (FOV)  of  visual  stimuli.  We  predicted  that  auditory  spatial  cues  are  more  important  for  smaller  FOV  and  are  also  more  important  when  less  spatial  information  is  provided  by  visual  stimuli.  In  this  fMRI  study,  we  used  videos  and  corresponding  moving  sounds  as  stimuli.  We  used  three  types  of  auditory  stimuli  (high  spatial  cue:  head-­‐related  transfer  function  (HRTF)  sound,  low  spatial  cue:  mono  sound,  and  no  spatial  cue:  no-­‐sound)  and  four  sizes  of  FOV  (100°  x  56°,  67°  x  38°,  33°  x  19°,  and  17°  x  10°).  In  order  to  create  different  sizes  of  FOV,  we  either  shrunk  or  cropped  original  (100°  x  56°)  videos.  The  shrink  stimuli  contain  all  information  presented  in  the  original  videos  but  the  crop  stimuli  have  less  information  than  the  original  videos.  During  fMRI  experiments,  participants  were  asked  to  rate  the  convincingness  of  perceived  self-­‐motion  (vection)  in  a  0-­‐10  scale.  Behavioral  data  showed  significant  main  effects  for  the  sound  type  and  the  FOV  and  a  significant  interaction  between  the  sound  type  and  the  FOV.  Overall  analysis  of  fMRI  data  

Page 140: Complete program including all scientific contributions (21 MB, PDF)

  127  

showed  a  significant  difference  between  the  HRTF  and  mono  conditions  in  the  left  planum  temporale.  To  find  out  whether  significance  of  auditory  spatial  information  changes  with  different  FOV,  we  performed  a  HRTF  >  mono  contrast  for  each  condition  and  found  a  significant  difference  in  the  left  SMG  only  for  the  shrink  17°  x  10°  FOV  condition.  Considering  the  involvement  of  the  SMG  in  integration  of  the  audiovisual  motion  cues,  the  result  indicated  that  high  audio  spatial  information  was  integrated  with  visual  information  more  than  low  audio  spatial  information  for  the  small  FOV  and  supported  the  hypothesis  that  auditory  spatial  cues  are  more  important  for  smaller  FOV.  In  contrast,  our  results  did  not  support  the  hypothesis  that  auditory  cues  are  more  important  when  less  spatial  information  is  provided  by  visual  stimuli.  In  this  study,  auditory  cues  facilitated  motion  perception  when  FOV  was  small  by  supplementing  visual  information  but  not  by  replacing  missing  visual  information.      ID:  276    

The  time  constants  of  an  auditory  context  effect  Claire  G  Prelofi1,  Shihab  A  Shamma1,2  1Ecole  Normale  Superieure,  Paris,  France;  2University  of  Maryland,  College  Park,  United  States  of  America  [email protected]  A  signal  may  correspond  to  several  possible  interpretations  of  the  world.  In  order  to  deal  with  this  ambiguity,  perceptual  systems  use  recent  history  to  make  the  best  possible  prediction.  Since  the  temporal  dynamics  of  these  effects  constrain  the  possible  neural  mechanism  that  underlie  them,  in  the  present  work  we  characterized  the  time  constants  of  an  auditory  context  effect.  Stimuli  were  octave-­‐related  tone  complexes  known  as  Shepard  tones,  containing  several  octaves  of  a  base  frequency  (e.g.  100  Hz,  200  Hz,  400  Hz)  with  a  fixed  Gaussian  envelop  centered  on  1040Hz.  When  two  tones  are  presented  a  half-­‐octave  apart  (a  tritone),  the  direction  of  the  pitch  shift  is  ambiguous;  as  it  may  be  heard  as  an  up  or  down  step  (Shepard,  1964).  However,  this  ambiguous  direction  can  be  strongly  biased  by  

the  auditory  context  consisting  of  a  sequence  of  Shepard  tones  presented  before  the  tritone.  Expt  1  focused  on  the  establishment  of  the  bias.  A  single  context  tone  varying  between  5ms  to  320ms  was  presented  before  the  ambiguous  tritone.  The  results  revealed  that  the  bias  is  significantly  different  from  chance  for  a  context  as  short  as  20ms.  Expt  2  explored  the  decay  of  the  bias.  We  presented  a  strong  context  sequence  (five  tones  of  0.125s  each)  followed  by  a  silent  gap  ranging  between  0.5s  to  64s.  The  results  show  that  the  context  effect  can  be  maintained  for  over  32s  of  silence.  Our  findings  reveal  that  this  context  effect  shows  remarkable  insensitivity  to  temporal  parameters:  the  bias  is  present  at  short  and  long  time-­‐scales.  In  Expts  1  and  2,  the  bias  measure  used  was  the  up/down  response  of  the  listener.  Since  a  perceptually  weak  bias  could  still  influence  this  response  reliably,  we  sought  additional  measures  of  how  the  degree  of  perceived  ambiguity  varies  with  parameters  previously  shown  to  introduce  a  bias  in  listeners’  responses.  In  Expt  3  reaction  times  were  used  as  a  signature  of  the  perceived  ambiguity  of  the  tritone.  The  context  strength  is  varied  through  the  length  of  one  context  tone  (as  in  experiment  1)  and  response  times  are  measured  when  answering  to  the  direction  shift  of  the  ambiguous  tritone.  Preliminary  results  suggest  that  the  response  times  correlate  with  the  strength  of  the  bias.  Namely  it  is  shorter  when  the  context  is  long  and  induce  a  strong  bias  and  longer  when  the  context  is  short  and  induce  a  weaker  bias  (240ms  difference).  Current  research  are  aiming  to  replicate  this  effect  in  a  design  which  does  not  vary  a  time  parameter.  Overall  results  revealed  remarkable  time  constants.  The  context  effect  is  established  extremely  rapidly  and  yet  can  be  maintained  for  a  long  period  of  time.  Such  a  broad  time  range  suggest  that  the  mechanisms  responsible  may  be  distributed  at  different  stages  in  the  auditory  pathway.  Moreover,  the  time  responses  so  far  indicate  that  a  weak  context  can  disclose  a  perceived  ambiguity.    

Page 141: Complete program including all scientific contributions (21 MB, PDF)

  128  

ID:  278    

Lateralization  of  the  primary  auditory  cortex,  in  patients  with  unilateral  tinnitus  Naghmeh  Ghazaleh1,  Wietske  Van  der  Zwaag1,  Melissa  Saenz3  1École  Polytechnique  Fédérale  de  Lausanne,  Switzerland;  3Lausanne  University  Hospital,  Switzerland  [email protected]  Tinnitus,  the  chronic  perception  of  ringing  or  other  phantom  sounds,  is  typically  associated  with  hearing  loss.  The  reduction  of  auditory  input  that  conveys  to  auditory  cortex  leads  to  the  changes  in  the  balance  of  excitatory  and  inhibitory  activation  of  the  corresponding  neurons  in  this  area  and  is  possibly  the  cause  of  tinnitus.  From  the  other  hand  a  recent  study  (Gordon  et  al.  Beain  2013)  has  shown  that  bilateral  input  protects  the  cortex  from  unilaterally  driven  reorganization.  Based  on  this  finding  we  could  expect  that  in  patient  with  unilateral  hearing  loss  and  tinnitus  the  input  from  unimpaired  ear  has  not  been  transfered  sufficiently  to  the  bilateral  hemisphere  and  this  loss  of  input  has  resulted  in  reorganization  in  neuronal  activity  of  the  auditory  cortex.  To  test  this  hypothesis  we  compare  the  amplitude  of  the  neuronal  activity  bold  response  of  the  auditory  cortex  in  the  ipsilateral  and  contralateral  hemisphere  to  the  hearing  ear  in  response  to  different  frequency  tones.  Ten  tinnitus  patients  with  chronic  unilateral  hearing  loss  and  tinnitus  and  age-­‐matched  normal  controls  (ages  26-­‐49)  were  tested.  (Patients  had  chronic  subjective  non-­‐pulsatile  tinnitus  associated  with  moderate  to  severe  unilateral  sensorineural  hearing  loss  in  one  ear  only  with  at  least  PTA>40dB  on  three  consecutive  frequencies  between  1  and  4  KHz;  tinnitus  duration  <  6  months).  The  recruitment  of  patients  with  unilateral  hearing  loss  allowed  unimpaired  sound  delivery  via  the  unimpaired  ear,  bypassing  any  abnormal  responsiveness  at  the  peripheral  level.  Our  high-­‐resolution  functional  MRI  at  7  Tesla  (1.5  mm  isotropic  voxels)  (Da  Costa  et  al.  J  Neurosci  2011)  provides  us  fine  scale  tonotopic  maps  in  controls  and  tinnitus  patients  and  using  that  we  are  able  to  compare  the  amplitude  of  the  neural  activity  in  the  auditory  cortex  of  the  unilateral  and  ipsilateral  

hemisphere  to  the  hearing  ear  for  each  group  of  different  frequency  responding  neurons.  Our  first  finding  shows  that  the  activity  difference  in  tinnitus  patient  is  higher  than  the  activity  difference  in  controls.  In  more  detail  the  activity  amplitude  in  the  contralateral  hemisphere  to  the  hearing  ear  in  tinnitus  patient  is  much  higher  than  the  activity  amplitude  in  ipsilateral  hemisphere,  in  comparison  to  controls.  This  result  suggests  that  the  auditory  pathway  in  tinnitus  patients  is  less  capable  to  convey  the  sound  bilaterally  and  it  could  be  a  probable  cause  of  their  tinnitus.      ID:  279    

Macaque  brain  areas  related  to  auditory-­‐motor  circuits  show  increased  response  to  sounds  with  regular  vs.  irregular  beat  Simon  Baumann,  Manon  Grube,  Timothy  D.  Griffiths  Newcastle  University,  United  Kingdom  [email protected]  fMRI  data  in  humans  has  identified  a  network  of  interacting  auditory  and  motor  areas  including  premotor  cortex  (PMC),  posterior  auditory  cortex  and  basal  ganglia  supporting  speech1  and  instrumental  music  playing2.  Perception  of  rhythmic  auditory  stimuli  has  shown  to  be  sufficient  to  drive  the  components  of  this  network  and  increase  interaction  in  the  network  in  musicians  and  non-­‐musicians  even  in  absence  of  an  obvious  perception-­‐action  link3,  4.  While  tracing  studies  in  macaque  monkeys  have  demonstrated  connections  between  premotor  cortex  and  posterior  auditory  areas5  and  macaques  have  been  trained  to  keep  a  pace  of  a  regular  auditory  beat,  it  is  not  clear  whether  rhythmic  stimuli  have  the  same  capacity  in  non-­‐human  primates  to  drive  an  auditory-­‐motor  network6.  Here  we  conducted  a  pilot  study  to  test  with  fMRI  whether  auditory  stimuli  with  a  rhythmic  or  regular  beat  have  the  capacity  to  drive  a  potential  network  of  the  mentioned  auditory  and  motor  areas  in  non-­‐human  primates  despite  not  featuring  a  capacity  for  speech.  We  presented  short,  ramped  beats  of  broad  band  noise  at  about  3  Hz  to  the  animals  during  a  visual  fixation  task.  The  sound  presentation  was  divided  in  two  randomised  conditions.  In  the  first  condition,  the  beats  were  presented  at  

Page 142: Complete program including all scientific contributions (21 MB, PDF)

  129  

strictly  regular  intervals.  In  the  second  condition,  the  interstimulus-­‐interval  (ISI)  was  randomised  between  0-­‐30%  to  create  an  irregular  sequence  of  beats.  We  identified  significant  responses  to  the  beats  compared  to  silence  in  auditory  core  and  belt  areas,  but  also  in  the  premotor  cortex  and  the  cerebellum.  Additionally,  we  identified  significant  responses  to  the  regular  beats  in  the  area  Tpt  and  the  basal  ganglia.  A  comparison  of  the  response  to  regular  vs  irregular  beats  showed  significant  responses  in  posterior  auditory  areas  (caudal  belt,  Tpt),  PMC,  basal  ganglia,  cerebellum.  A  contrast  of  irregular  vs.  regular  beats  was  significant  in  the  medial  auditory  belt,  the  superior  temporal  sulcus  and  the  dorsal  prefrontal  cortex.  The  data  suggest  that  similar  to  humans,  non-­‐human  primates  show  activity  beyond  the  auditory  system  in  motor  related  areas  in  response  to  passive  stimulation  with  trains  of  short  beats.  These  responses  are  stronger  in  PMC  and  posterior  auditory  areas  for  regular  versus  irregular  beats,  with  additional  foci  of  regular  stimulus  preference  in  basal  ganglia  and  cerebellum.  Most  of  the  identified  areas  have  previously  been  shown  to  be  part  of  and  interacting  auditory-­‐motor  network  responding  to  rhythmic  stimuli  in  humans.  This  suggest  that  similar  sensory-­‐motor  mechanisms  are  implicated  in  the  processing  of  rhythmic  sounds  in  non-­‐human  primates.  Behavioural  work  to  support  this  notion  is  currently  pursued.    1.  Hickock  et  al.,  2003.  J  Cogn  Neurosci  2.  Baumann  et  al.,  2007.  Brain  Res  3.  Chen  et  al.,  2008.  Cereb  Cortex  4.  Grahn  &  Rowe,  2009.  J  Neuroscience  5.  Petrides  &  Pandya,  2006.  J  Comp  Neurol  6.  Merchant  et  al.,  2011.  Proc  Natl  Acad  Sci  USA      ID:  280    

Temporal  processing  in  dyslexia:  Neural  phase  locking  of  oscillatory  rhythms  in  auditory  cortex  Astrid  De  Vos,  Robert  Luke,  Jolijn  Vanderauwera,  Pol  Ghesquière,  Jan  Wouters  KU  Leuven  –  University  of  Leuven,  Belgium  [email protected]  Developmental  dyslexia  refers  to  a  hereditary  neurological  disorder  characterized  by  severe  difficulties  in  reading  and  spelling  despite  normal  intelligence,  education  and  intense  

remedial  effort.  Depending  on  the  used  criteria,  dyslexia  is  thought  to  affect  between  5  and  10%  of  the  population.  Although  it  is  widely  agreed  that  the  majority  of  dyslexic  individuals  show  difficulties  in  one  or  several  aspects  of  phonological  processing,  the  underlying  cause  of  these  phonological  problems  remains  debated.  The  current  study  aims  to  investigate  whether  a  fundamental  deficit  in  phase  locking  of  neural  oscillations  to  temporal  information  in  speech  could  underlie  the  phonological  processing  problems  found  in  children  and  adults  with  dyslexia.  Auditory  steady-­‐state  responses  (ASSRs)  were  recorded  in  a  group  of  normal-­‐reading  and  dyslexic  adolescents.  Five  modulation  rates  were  chosen  to  examine  phase  locking  of  neural  oscillations  over  a  broad  frequency  range:  4  Hz  (theta  rhythm),  10  Hz  (alpha  rhythm),  20  Hz  (beta  rhythm),  40  Hz  (low  gamma  rhythm)  and  80  Hz  (high  gamma  rhythm).  We  were  specifically  interested  in  ASSRs  to  low  modulation  rates,  because  these  modulations  are  believed  to  correspond  to  the  rate  at  which  important  phonological  segments  (e.g.  syllables  and  phonemes)  occur  in  speech.  Stimuli  were  presented  in  three  modalities:  monaural  to  the  left  ear,  monaural  to  the  right  ear  and  bilateral  to  both  ears.  Responses  were  recorded  with  a  high-­‐density  64-­‐electrode  array  mounted  in  head  caps.  Source  analysis  was  performed  using  CLARA  (Classical  LORETA  Analysis  Recursively  Applied)  and  generic  MRI  based  head  models.  Anatomical  brain  images  were  also  collected  with  MR  scans,  including  T1-­‐weighted  as  well  as  T2-­‐weighted  images,  to  allow  for  the  construction  of  realistic  individual  head  models.  Results  at  sensor  level  show  differences  in  auditory  temporal  processing  between  normal  and  dyslexic  readers  at  10  Hz  modulation  rates.  Detailed  results  at  neural  source  level  will  be  presented  at  the  conference.  This  study  is  the  first  to  apply  source  localization  methods  on  ASSR  data  in  dyslexia.  We  hope  that  this  approach  will  deliver  unique  insights  on  which  neural  aspects  of  auditory  processing  affect  the  formation  of  phonological  representations  in  dyslexia.    

Page 143: Complete program including all scientific contributions (21 MB, PDF)

  130  

ID:  281    

Task  effects  on  binaural-­‐cue  representation  in  human  auditory  cortex  George  Christopher  Stecker,  Nathan  C  Higgins,  Teemu  Rinne  Vanderbilt  University  Medical  Center,  United  States  of  America  [email protected]  The  binaural  configuration  of  an  auditory  stimulus  represents  one  of  the  fundamental  dimensions,  along  with  frequency  and  intensity,  which  modulate  human  perception  and  the  neural  response  to  sounds.  Consistent  with  electrophysiological  measurements  in  animal  models,  AC  activity  measured  with  BOLD  fMRI  in  human  listeners  is  sensitive  to  the  binaural  features  of  sounds.  In  this  presentation,  we  describe  a  series  of  studies  measuring  that  sensitivity  for  two  types  of  binaural  cues:  interaural  level  differences  (ILD)  and  interaural  time  differences  (ITD),  across  a  range  of  behavioral  contexts  including  spatial  auditory  (binaural  discrimination),  non-­‐spatial  auditory  (pitch  discrimination)  and  non-­‐auditory  (visual  brightness  discrimination).  Consistent  with  past  results  (a)  binaural-­‐cue  sensitivity  was  mainly  confined  to  posterior  AC  regions,  and  (b)  attention-­‐related  modulations  were  strongest  in  the  adjacent  posterolateral  superior  temporal  gyrus  and  inferior  parietal  lobule.  In  addition,  the  results  demonstrate  differences  in  the  processing  of  ITD  and  ILD  in  the  auditory  system,  in  that  ITD  sensitivity  was  (c)  restricted  to  a  smaller  subregion  of  posterior  AC  areas  sensitive  to  ILD,  (d)  represented  bilaterally  in  the  right  AC,  and  (e)  especially  dependent  on  the  behavioral  task.  In  combination  with  previous  work  on  the  encoding  of  stimulus  features  in  spatially  synthesized  sounds  and  during  different  discrimination  and  memory  tasks,  these  results  support  a  central  role  for  AC  processing  in  the  active  integration  of  spatial  cues  to  support  the  global  and  object-­‐related  perception  of  auditory  space.    

ID:  282    

Phase  locking  of  theta,  beta  and  gamma  oscillations  in  the  aging  auditory  system  Tine  Goossens,  Charlotte  Vercammen,  Jan  Wouters,  Astrid  van  Wieringen  KU  Leuven  –  University  of  Leuven,  Department  of  Neurosciences,  Research  Group  Experimental  ORL,  Leuven,  Belgium  [email protected]  With  advancing  age,  people  experience  greater  difficulty  following  conversations  in  noisy  environments.  Besides  peripheral  hearing  and  cognition,  temporal  processing  of  low-­‐frequent  modulations  in  the  speech  envelope  plays  a  key  role  in  speech  intelligibility.  Temporal  processing  is  established  by  phase  locked  activity  of  spontaneous  neural  oscillations  in  the  central  auditory  system.  The  close  correspondence  between  theta  (4  –  8  Hz)  and  beta  (13  –  30  Hz)  oscillations  and  critical  speech  units  (syllables  and  phonemes)  urges  on  investigating  the  phase  locking  capability  of  these  oscillations  across  the  lifespan.  However,  aging  studies  have  mainly  focused  on  phase  locking  of  gamma  oscillations  (>  30  Hz).  By  means  of  auditory  steady-­‐state  response  (ASSR)  strengths  to  4,  20,  40  and  80  Hz  amplitude  modulations,  we  investigate  the  phase  locking  capability  of  theta,  beta  and  gamma  oscillations  in  young,  middle-­‐aged,  and  elderly  subjects.  To  prevent  differences  in  peripheral  hearing  and  cognition  from  confounding  the  results,  all  subjects  have  normal  audiometric  thresholds  (≤  25  dB  HL,  125  Hz  –  4  kHz)  and  are  screened  for  cognitive  impairments  (score  ≥  26/30  on  the  Montreal  Cognitive  Assessment).  In  line  with  previous  studies,  we  find  decreasing  80  Hz  ASSRs  and  stable  40  Hz  ASSRs  with  advancing  age.  No  age-­‐related  differences  are  observed  for  20  Hz  ASSRs.  Interestingly,  4  Hz  ASSRs  are  increased  in  the  elderly  subjects.  This  indicates  increased  phase  locking  of  theta  oscillations  in  the  aging  auditory  system  which  is  a  novel  finding  up  to  now.    

Page 144: Complete program including all scientific contributions (21 MB, PDF)

  131  

ID:  285    

Conjugating  time  and  frequency:  Lessons  on  hemispheric  specialization  for  speech  and  music  as  learned  from  mustached  bats  Stuart  Dante  Washington,  Robert  Rudnitsky,  John  S.  Tillinghast  Georgetown  University  Medical  Center,  United  States  of  America  [email protected]  Evidence  suggests  that  the  degree  of  left  hemispheric  specialization  in  the  auditory  cortex  (AC)  for  processing  social  calls,  such  as  human  speech  sounds,  is  dictated  by  acoustic  structure  and  not  semantics.  Specifically,  the  relatively  greater  precision  with  which  the  left  AC  processes  time-­‐critical  (temporal)  information  enables  it  to  detect  the  rapid  frequency  modulations  (FMs)  that  comprise  social  calls,  which  are  analogous  to  formant-­‐transitions  in  speech.  The  right  AC,  on  the  other  hand,  has  greater  precision  at  processing  frequency-­‐related  (spectral)  information  that  enables  it  to  track  prosodic  variation  and  pitch.  Elements  of  this  Asymmetric  Sampling  of  Time  have  been  identified  not  only  in  human  AC  but  also  in  the  Doppler-­‐shifted  constant  frequency  processing  (DSCF)  subregion  of  mustached  bat  AC.  Here,  we  use  published  observations  and  theorems  to  suggest  how  an  idealized  version  of  the  classic  left  hemispheric  specialization  for  speech  processing,  characteristic  of  human  AC,  evolved  in  the  DSCF  area.  We  review  how  DSCF  neurons  use  the  tonal  component  of  the  returning,  Doppler-­‐shifted,  second  harmonic  of  the  echolocation  signal  in  this  species  (echo-­‐CF2)  to  calculate  the  relative  velocities  of  targets,  including  prey.  Precise  velocity  calculations  based  on  the  echo-­‐CF2  are  thus  ethologically  advantageous  to  the  mustached  bat  but  can  only  be  achieved  by  refined  frequency  discrimination.  The  Acoustic  Uncertainty  Principle  dictates  that  refining  frequency  discrimination  comes  at  the  expense  of  temporal  precision,  and  refined  temporal  precision  is  necessary  for  detecting  and  processing  rapid  FMs  in  social  calls  of  this  species.  Thus  environmental  pressures  and  physical  limitations  forced  right  hemispheric  DSCF  neurons  to  develop  greater  spectral  precision,  enabling  them  to  precisely  track  target  velocity  and  other  frequency  variations  

but  restricting  their  ability  to  detect  and  process  short,  rapid  FMs.  Left  hemispheric  DSCF  neurons,  on  the  other  hand,  developed  greater  temporal  precision  and  can  thus  process  the  short,  rapid  FMs  used  in  social  calls  but  perform  frequency  discrimination  relatively  poorly.  We  acknowledge  and  address  discrepancies  related  to  sex  differences.  If  orientation  sounds  shape  left  hemispheric  specialization  of  social  calls,  it  would  be  further  evidence  that  this  asymmetry  is  driven  by  acoustic  structure  and  not  semantic  content.  Left  hemispheric  specialization  for  social  calls  and  rapid  FMs  in  mustached  bats,  far  from  being  a  simple  scientific  anomaly,  could  help  unravel  fundamental  phonological  mysteries  related  to  hemispheric  differences  in  speech  processing.      ID:  289    

Statistical  learning  of  recurring  sound  patterns  encodes  auditory  objects  in  songbird  forebrain  David  Sage  Vicario,  Kai  Lu  Rutgers  University,  United  States  of  America  [email protected]  Auditory  neurophysiology  has  demonstrated  how  basic  acoustic  features  are  mapped  in  the  brain,  but  it  is  still  not  clear  how  multiple  sound  components  are  integrated  over  time  and  recognized  as  an  object.  We  investigated  the  role  of  statistical  learning  in  encoding  the  sequential  features  of  complex  sounds  by  recording  neuronal  responses  bilaterally  in  the  auditory  forebrain  of  awake  songbirds  that  were  passively  exposed  to  long  sound  streams.  These  streams  contained  sequential  regularities,  and  were  similar  to  streams  used  in  human  infants  to  demonstrate  statistical  learning  for  speech  sounds.  For  both  stimulus  patterns  with  contiguous  transitions  and  with  non-­‐adjacent  elements,  single  and  multi-­‐unit  responses  reflected  neuronal  discrimination  of  the  familiar  patterns  from  novel  patterns.  In  addition,  discrimination  of  non-­‐adjacent  patterns  was  stronger  in  the  right  hemisphere  than  in  the  left  and  may  reflect  an  effect  of  top-­‐down  modulation  that  is  lateralized.  Responses  to  recurring  patterns  showed  stimulus-­‐specific  adaptation,  a  sparsening  of  neural  activity  that  may  contribute  to  encoding  invariants  in  the  sound  stream  and  that  

Page 145: Complete program including all scientific contributions (21 MB, PDF)

  132  

appears  to  increase  coding  efficiency  for  the  familiar  stimuli  across  the  population  of  neurons  recorded.  Since  auditory  information  about  the  world  must  be  received  serially  over  time,  recognition  of  complex  auditory  objects  may  depend  on  this  type  of  mnemonic  process  to  create  and  differentiate  representations  of  recently  heard  sounds.      ID:  290    

Oxytocin  receptors  in  left  auditory  cortex  enable  learned  social  behavior  Bianca  Marlin,  Mariela  Mitre,  James  A.  D’amour,  Moses  V.  Chao,  Robert  C.  Froemke  New  York  University  School  of  Medicine,  United  States  of  America  [email protected]  Oxytocin  (OT)  is  a  hypothalamic  peptide  that  regulates  social  behavior  such  as  maternal  care  and  parent-­‐infant  bonding.  It  remains  unclear  when,  where  or  how  OT  receptor  activation  interacts  with  experience  to  control  social  cognition.  Here  we  show  how  OT  enables  naive  virgin  female  mice  learn  to  retrieve  isolated,  vocalizing  pups.  We  first  performed  behavioral  experiments  to  determine  spatiotemporal  requirements  of  OT  signaling  for  learned  pup  retrieval.  Virgins  were  co-­‐housed  with  mothers  and  pups,  and  retrieval  of  isolated  pups  tested  at  regular  intervals  (every  1-­‐6  hours  for  3-­‐7  days).  Within  18  hours  20/36  OT-­‐injected  animals  learned  to  retrieve  (vs.  5/25  control  mice).  OT  infusion  into  left  but  not  right  auditory  cortex,  or  optogenetic  activation  of  OT  neurons  also  accelerated  learning  in  a  similar  manner.  With  the  Chao  lab  we  found  that  OT  receptors  are  preferentially  expressed  

in  left  auditory  cortex  (Mitre  et  al.,  SFN  abstracts  2014).  We  made  in  vivo  whole-­‐cell  recordings  from  left  or  right  auditory  cortex  of  anesthetized  naive  virgins,  dams,  and  experienced  virgins.  Excitatory  and  inhibitory  currents  and  spiking  responses  recorded  from  left  cortex  in  trained  virgins  and  dams  were  more  robust  and  correlated  than  in  naive  virgins.  Naive  mice  had  imbalanced  excitation  and  inhibition  for  pup  calls,  reminiscent  of  poor  inhibitory  co-­‐tuning  observed  in  young  animals  (Dorrn  et  al.  Nature  2010).  We  asked  if  pairing  pup  calls  with  OT  could  modify  neural  responses,  increasing  their  robustness  and  trial-­‐to-­‐trial  reliability.  We  made  multiple  whole-­‐cell  recordings  from  the  same  animal  to  examine  responses  over  hours  (Froemke  et  al.  Nature  2007).  After  measuring  baseline  synaptic  or  spiking  responses,  a  given  call  was  repetitively  paired  with  either  endogenous  (optogenetic  stimulation)  or  exogenously  applied  OT.  First,  OT  reduced  evoked  inhibitory  responses  within  seconds  of  pairing.  Over  minutes,  excitatory  responses  were  strengthened  after  pairing,  leading  to  an  increase  in  call-­‐evoked  spikes.  Finally,  inhibitory  responses  increased  over  hours,  improving  excitatory-­‐inhibitory  balance  to  enforce  temporal  precision  of  spike  timing  while  preserving  enhanced  responses  to  pup  calls.  These  findings  suggest  that  OT,  paired  with  pup  calls,  can  modify  cortical  circuits  to  enable  or  improve  learned  social  behavior.  Furthermore,  OT-­‐dependent  plasticity  and  receptor  expression  provides  a  biological  basis  for  lateralization  of  vocal  processing  in  left  auditory  cortex.    

 

Page 146: Complete program including all scientific contributions (21 MB, PDF)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Author  index    

 

 

Page 147: Complete program including all scientific contributions (21 MB, PDF)
Page 148: Complete program including all scientific contributions (21 MB, PDF)

  133  

Author  index    Only  attending  authors  and  coauthors.  Numbers  correspond  to  ID  numbers  of  contributions  [P  =  Poster,  S  =  Session;  SOP  =  Short  oral  presentation,  T  =  Talk]  

 Abraham,  Andreas  237[P]  Adenis,  Victor  144[P]  Aggelopoulos,  Nikolaos  220[P]  Alhazmi,  Fahad  Hassan  233[P]  Altmann,  Christian  Friedrich  177[P]  Andreeva,  Elena  154[P]  Andrillon,  Thomas  244[P]  Angenstein,  Nicole  113[P]  Arsenault,  Jessica  167[P/SOP  I]  Astikainen,  Piia  163[P],  160[P]  Atilgan,  Huriye  246[P],  153[P],  190[P],  215[P]  Attaheri,  Adam  212[P],  147[P]  Awwad,  Bshara  128[P],  261[P]    Baltus,  Alina  149[P]  Banks,  Matthew  I.  171[P]  Bao,  Shaowen  306[T/S6/2]  Barascud,  Nicolas  198[P]  Barone,  Pascal  292[T/S5/1]  Basura,  Gregory  Joseph  109[P]  Baumann,  Simon  279[P],  253[P]  Beitel,  Ralph  Eugene  187[P]  Belin,  Pascal  150[P],  164[P],  166[P],  202[P],  214[P]  Bendixen,  Alexandra  201[T/S3/3]  Bendor,  Daniel  110[P]  Besle,  Julien  218[P]  Bieszczad,  Kasia  Maria  247[T/S6/1]

Bizley,  Jennifer  153[P],  190[P],  215[P],  246[P]  Böckmann-­‐Barthel,  Martin  123[P]  Bonte,  Milene  141[P]  Brandmeyer,  Alex  139[P]  Brechmann,  André  113[P],  123[P],  302[T/S6/1]  Bremen,  Peter  105[P]  Brosch,  Michael  220[P],  223[P]  Budinger,  Eike  120[T/S5/1],  122[P],  124[P]  Butler,  Blake  Edward  133[P],  121[P]    Callan,  Akiko  269[P]  Cambiaghi,  Marco  136[P]  Carrasco,  Andres  211[P]  Chait,  Maria  262[P],  180[P/SOP  II],  198[P],  225[P]  Chang,  Edward  296[T/S2/3],  236[P]  Ciesla,  Katarzyna  Joanna  263[P]  Conway,  Bevil  R.  172[P]  Cooke,  James  191[P]  Crosse,  Michael  Jeremiah  229[P]    Da  Costa,  Sandra  112[P]  David,  Stephen  V.  303[T/S6/2]  de  Boer,  Jessica  184[P],  199[P]  de  Hoz,  Livia  260[P]  De  Vos,  Astrid  280[P]  Deike,  Susann  123[P]  Di  Liberto,  Giovanni  227[P]  

Page 149: Complete program including all scientific contributions (21 MB, PDF)

  134  

Disbergen,  Niels  Robert  240[P]    Edeline,  Jean-­‐Marc  252[P],  142[P],  144[P],  255[P]  Eggermont,  Jos  Jan  108[T/S4]  Elie,  Julie  E.  216[T/S1/2],  219[P]  Elyada,  Yishai  M.  241[P]    Finkl,  Theresa  127[P]  Firzlaff,  Uwe  102[P],  291[T/S1/1]  Flanagan,  Sheila  Anne  205[P]  Fleming,  David  202[P]  Formisano,  Elia  174[T/S6/3],  141[P],  240[P],  242[P]  Froemke,  Robert  103[T/S6/2],  290[P]  Fukushima,  Makoto  151[P]    Gander,  Phillip  Evan  156[P],  189[P]  Gaucher,  Quentin  144[P]  Gentner,  Timothy  272[T/S6/1]  Ghazaleh,  Naghmeh  278[P]  Giordano,  Bruno  Lucio  267[P],  164[P],  166[P],  202[P]  Giroud,  Nathalie  224[P]  Gold,  Joshua  Rodney  222[P]  Goossens,  Tine  282[P]  Gourévitch,  Boris  255[P],  252[P]  Griffiths,  Timothy  David  189[P],  305[T/S4],  279[P]    Hall,  Amee  J.  258[P],  133[P]  Hämäläinen,  Jarmo  238[P],  140[P],  160[P]  Hamilton,  Liberty  236[P]  Happel,  Max  116[P],  130[P],  210[P]  He,  Jufang  288[T/S5/2]

Hechavarria,  Julio  129[P]  Heil,  Peter  123[P],  195[P],  223[P]  Henry,  Molly  J.  192[P],  231[P]  Henschke,  Julia  U.  124[P]  Herrmann,  Björn  231[P]  Herrmann,  Christoph  149[P]  Hildebrandt,  K.  Jannis  259[P]  Hitsuyu,  Rie  185[P]  Homma,  Natsumi  210[P]  Howard,  Matthew  Andrew  117[P],  156[P],  189[P],  228[P]  Huang,  Ying  223[P]  Hubka,  Peter  243[P]  Huetz,  Chloé  142[P],  144[P]    Iyengar,  Soumya  176[P]    Jäger,  Katharina  114[P]  Jeschke,  Marcus  265[P]  Johnsrude,  Ingrid  Suzanne  235[P]  Jones,  Gareth  Paul  215[P],  153[P]    Khouri,  Leila  261[P]  King,  Andrew  John  304[T/S6/2],  125[P/SOP  I],  188[P],  191[P],  210[P],  222[P],  268[P]  Klinge-­‐Strahl,  Astrid  268[P]  Klump,  Georg  M.  284[T/S1/1],  123[P]  Knyazeva,  Stanislava  220[P]  Koehler,  Seth  D.  203[P]  Kok,  Melanie  Ann  104[P],  121[P]  Kompus,  Kristiina  206[P]  König,  Reinhard  195[P],  223[P]

Page 150: Complete program including all scientific contributions (21 MB, PDF)

  135  

Kössl,  Manfred  132[T/S1/1],  111[P],  114[P],  129[P],  145[P]  Kotz,  Sonja  A.  277[T/S2/1],  164[P]  Kraus,  Nina  275[T/S4]  Kreitewolf,  Jens  208[P]  Krumbholz,  Katrin  197[P],  184[P],  199[P]  Kurkela,  Jari  160[P]    Lalor,  Edmund  229[P]  Langers,  Dave  196[P]  Lanting,  Cris  178[P]  Latinus,  Marianne  138[P],  150[P]  Lee,  Sze  Chim  148[P]  Leppänen,  Paavo  H.T.  140[P]  Lewald,  Jörg  107[P]  Liu,  Robert  C.  232[P/SOP  II]  Lohvansuu,  Kaisa  140[P]  Lomber,  Stephen  104[P],  121[P],  133[P],  155[P],  211[P],  258[P]    Love,  Scott  A.  150[P]    Maor,  Ido  251[P],  248[P]  Marlin,  Bianca  290[P]  Massoudi,  Roohollah  157[P]  Matusz,  Pawel  J.  165[P]  May,  Patrick  J.C.  209[T/S3/1]  Mehta,  Anahita  193[P]  Merchant,  Hugo  298[T/S2/2]  Meredith,  M.  Alex  270[T/S5/1],  211[P]  Molloy,  Katharine  225[P]  Mowery,  Todd  Michael  169[P/SOP  I]  Mukamel,  Roy  266[P]

Murray,  Micah  M.  283[T/S5/2],  165[P]    Nelken,  Israel  273[T/S3/1],  119[P],  128[P],  241[P],  248[P],  261[P]  Niekisch,  Hartmut  130[P],  237[P]  Nodal,  Fernando  188[P],  210[P],  222[P],  304[T/S6/2]  Noesselt,  Toemme  271[T/S5/2]  Nolden,  Sophie  230[P]  Norman-­‐Haignere,  Samuel  Victor  126[P/SOP  II],  172[P]  Nourski,  Kirill  V.  117[P]  Novak,  Ondrej  213[P]  Nozaradan,  Sylvie  239[P/SOP  I]    Occelli,  Florian  255[P]  Ohl,  Frank  W.  302[T/S6/1],  116[P],  130[P]  Okamoto,  Hidehiko  134[P]  Osmanski,  Michael  Scott  170[P]  O'Sullivan,  James  226[P],  227[P]    Palmer,  Alan  R.  179[P/SOP  I]  Panniello,  Mariangela  125[P/SOP  I]  Pantev,  Christo  274[T/S6/3],  134[P]  Paquette,  Sebastien  214[P]  Perrodin,  Catherine  221[P]  Petkov,  Christopher  I.  147[P],  308[T/S1/2],  162[P],  221[P],  253[P]  Poeppel,  David  301[T/S3/3]  Poirier,  Colline  253[P]  Polterovich,  Ana  119[P],  128[P]  Power,  Alan  182[P]    Rajendran,  Vani  Gurusamy  183[P]  Rauschecker,  Josef  299[T/S1/2]

Page 151: Complete program including all scientific contributions (21 MB, PDF)

  136  

Rhone,  Ariane  Elizabeth  228[P],  117[P]  Riecke,  Lars  242[P]  Rinne,  Teemu  162[P],  281[P]  Roberts,  Larry  Evan  115[P]    Saldeitis,  Katja  122[P]  Salminen,  Nelli  135[P]  Salvia,  Emilie  164[P]  Sandmann,  Pascale  168[P],  217[P]  Schaefer,  Markus  111[P]  Scheich,  Henning  122[P],  124[P]  Schelinski,  Stefanie  152[P]  Schierholz,  Irina  217[P]  Schneider,  David  M  287[T/S2/2]  Schnupp,  Jan  W.H.  181[P],  183[P],  191[P]  Schreiner,  Christoph  295[T/S3/2]  Schröger,  Erich  297[T/S2/1],  131[P],  254[P]  Scott,  Brian  Hayward  194[P]  Selezneva,  Elena  220[P]  Shalev,  Amos  241[P],  250[P]  Shamma,  Shihab  A.  276[P]  Sharma,  Anu  286[T/S4]  Shiramatsu,  Tomoyo  Isoguchi  175[P],  159[P],  185[P]  Slater,  Heather  162[P]  Sohoglu,  Ediz  180[P/SOP  II]  Sollini,  Joseph  A.  249[P]  Song,  Wen-­‐Jie  158[P]  Stecker,  George  Christopher  281[P]  Steinschneider,  Mitchell  300[T/S3/2],  117[P]

Stolzberg,  Daniel  121[P],  104[P]  Stropahl,  Maren  168[P]    Takahashi,  Hirokazu  159[P],  175[P],  185[P]  Tasaka,  Gen-­‐ichi  250[P]  Tavano,  Alessandro  173[P]  Teki,  Sundeep  161[P]  Town,  Stephen  Michael  190[P],  153[P],  215[P],  246[P]  Treille,  Avril  186[P/SOP  II]    Vater,  Marianne  145[P],  132[T/S1/1]  Vavatzanidis,  Niki  Katerina  146[P]  Vicario,  David  Sage  289[P]  Vollmer,  Maike  187[P],  234[P]  von  der  Behrens,  Wolfger  154[P]  von  Kriegstein,  Katharina  152[P],  208[P]    Wagner,  Luise  118[P]  Walker,  Kerry  Marie  May  125[P/SOP  I]  Wang,  Yunyan  264[P]  Wang,  Xiaoqin  293[T/S2/3],  170[P],  203[P],  264[P]  Washington,  Stuart  Dante  285[P]  Weise,  Annekathrin  131[P]  Widmann,  Andreas  254[P]  Wiegner,  Armin  234[P]  Wiegrebe,  Lutz  291[T/S1/1]  Willmore,  Ben  200[P],  183[P],  191[P],  268[P]  Winkler,  István  294[T/S3/3]  Wong,  Carmen  155[P]  Wood,  Katherine  Charlotte  153[P],  190[P],  215[P],  246[P]

Page 152: Complete program including all scientific contributions (21 MB, PDF)

  137  

Woolnough,  Oscar  199[P]  Wyss,  Christine  204[P]    Yarden,  Tohar  Sion  248[P]  Yaron,  Amit  119[P],  128[P]  Yasin,  Ifat  256[P],  193[P]  Yuan,  Kexin  106[P/SOP  II]

Zador,  Anthony  207[T/S2/2]  Zatorre,  Robert  307[T/S6/3],  197[P],  240[P]  Zelenka,  Ondrej  213[P]  Zhang,  Jingting  166[P]  Zoefel,  Benedikt  137[P]  

Page 153: Complete program including all scientific contributions (21 MB, PDF)

  138  

 

Page 154: Complete program including all scientific contributions (21 MB, PDF)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

List  of  participants    

 

 

Page 155: Complete program including all scientific contributions (21 MB, PDF)
Page 156: Complete program including all scientific contributions (21 MB, PDF)

  139  

List  of  participants  

 Abraham,  Andreas,  Dr.  University  of  Potsdam  Zoology  /  Neurobiology  Karl-­‐Liebknecht-­‐Str.  24-­‐25,  Building  26  14476  Potsdam  /  Germany  andreas.abraham@uni-­‐potsdam.de    Adenis,  Victor,  Mr.  Centre  de  Neurosciences  Paris-­‐Sud  (UMR8195  CNRS)  Bat.  440-­‐447  Université  Paris-­‐Sud  91405  Osay  /  France  victor.adenis@u-­‐psud.fr    Aggelopoulos,  Nikolaos,  Dr.  Leibniz  Institute  for  Neurobiology  Special  Lab  Primate  Neurobiology  Brenneckestr.  6  39118  Magdeburg  /  Germany  nikolaos.aggelopoulos@lin-­‐magdeburg.de    Alhazmi,Fahad  Hassan,  Mr.  University  of  Liverpool  MARIARC  Pembroke  Place    L69  3GB  Liverpool  /  United  Kingdom  [email protected]    Altman,  Christian  Friedrich,  Dr.  Kyoto  University,  Graduate  School  of  Medicine  /  Human  Brain  Research  Center  54  Shogoin  Kawaracho  606-­‐8507  Kyoto  /  Japan  [email protected]    Andreeva,  Elena,  Ms.  University  of  Zurich  Institute  of  Neuroinformatics  Winterthurerstrasse  190  8057  Zurich  /  Switzerland  [email protected]    Andrillon,  Thomas,  Mr.  École  Normale  Supérieure  Department  of  Cognitive  Studies  /  LSCP  ENS  29  rue  d'Ulm  75005  Paris  /  France  [email protected]  

Angenstein,  Nicole,  Dr.  Leibniz  Institute  for  Neurobiology  Special  Lab  Non-­‐invasive  Brain  Imaging  Brenneckstr.  6  39118  Magdeburg  /  Germany  nicole.angenstein@lin-­‐magdeburg.de    Arsenault,  Jessica,  Ms.  University  of  Toronto  Psychology,  Rotman  Research  Institute  3560  Bathurst  St.  M6A2E1  Toronto,  ON  /  Canada  [email protected]    Astikainen,  Piia,  Ph.D.  University  of  Jyväskylä  Department  of  Psychology,  PO  Box  35  40014  Jyväskylä  /  Finland  [email protected]    Atilgan,  Huriye,  Ms.  University  College  London  Ear  Institute  332  Grays  Inn  Road  WC1X  8EE  London  /  United  Kingdom  [email protected]    Attaheri,  Adam,  Mr.  Newcastle  University  Institute  of  Neuroscience  Henry  Wellcome  Building  for  Neuroecology  Framlington  Place  NE2  4HH  Newcastle-­‐Upon-­‐Tyne  /  United  Kingdom  [email protected]    Awwad,  Bshara,  Mr.  Hebrew  Univesity  of  Jerusalem  Neurobiology  Baal  shem  tov  16  3353205  Haifa  /  Israel  [email protected]    Baltus,  Alina,  Ms.  University  of  Oldenburg  Department  of  Psychology  Drögen-­‐Hasen-­‐Weg  5A  26129  Oldenburg    /  Germany  alina.baltus@uni-­‐oldenburg.de    Banks,  Matthew  I.,  Ph.D.  University  of  Wisconsin  Anesthesiology  1300  University  Avenue,  Room  4605  53706  Madison,  WI  /  United  States  of  America  [email protected]

Page 157: Complete program including all scientific contributions (21 MB, PDF)

  140  

Bao,  Shaowen,  Prof.  University  of  California-­‐Berkeley  Helen  Wills  Neuroscience  Institute,  210X  Barker  Hall  94720-­‐3202  Berkeley,  CA  /  United  States  of  America  [email protected]    Barascud,  Nicolas,  Mr.  University  College  London  Ear  Institute  332  Gray's  Inn  Road  WC1X  8EE  London  /  United  Kingdom  [email protected]    Barone,  Pascal,  Dr.  CNRS  Brain  &  Cognition  UMR  5549  Pavillon  Baudot,  CHU  Purpan  BP  25202  31052  Toulouse  /  France  [email protected]­‐tlse.fr    Basura,  Gregory  Joseph,  Dr.  University  of  Michigan  Otolaryngology  /  Head  and  Neck  Surgery  2357  Earl  Shaffer  Ct  48105  Ann  Arbor  ,  MI  /  United  States  of  America  [email protected]    Baumann,  Simon,  Dr.  Newcastle  University  Institute  of  Neuroscience  Framlington  Place  NE2  4HH  Newcastle  upon  Tyne  /  United  Kingdom  [email protected]    Beitel,  Ralph  Eugene,  Ph.D.  University  of  California  San  Francisco  133  Cortland  Avenue  94110  San  Francisco,  CA  /  United  States  of  America  [email protected]    Belin,  Pascal,  Prof.  Glasgow  University  58  Hillhead  Street  G12  8QB  Glasgow  /  United  Kingdom  [email protected]    Bendixen,  Alexandra,  Prof.  Carl  von  Ossietzky  University  of  Oldenburg  Department  of  Psychology  Küpkersweg  74  26129  Oldenburg    /  Germany  alexandra.bendixen@uni-­‐oldenburg.de    Bendor,  Daniel,  Ph.D.  University  College  London    Experimental  Psychology  26  Bedford  Way  WC1H  0AP  London  /  United  Kingdom  [email protected]  

 Benner,  Jan,  Mr.    University  Hospital  Heidelberg  Dept.  of  Neurology  Im  Neuenheimer  Feld  400  69120  Heidelberg  /  Germany  [email protected]    Besle,  Julien,  Ph.D.  Medical  Research  Council  Institute  of  Hearing  Research  University  Park  NG72RD  Nottingham  /  United  Kingdom  [email protected]    Bieszczad,  Kasia  Maria,  Ph.D.  University  of  California  Irvine  Neurobiology  and  Behavior  Center  for  the  Neurobiology  of  Learning  and  Memory  201  Qureshey  Laboratory,  CNLM  92697-­‐3800  Irvine,  CA  /  United  States  of  America  [email protected]    Bizley,  Jennifer,  Ph.D.  University  College  London  Ear  Institute  332  Grays  Inn  Road  WC1X  8EE  London  /  United  Kingdom  [email protected]    Böckmann-­‐Barthel,  Martin,  Dr.  Otto  von  Guericke  University  Magdeburg  Experimental  Audiology  Leipziger  Str.  44  39120  Magdeburg  /  Germany  [email protected]      Bonte,  Milene,  Dr.  Maastricht  University  Faculty  of  Psychology  and  Neuroscience  Cognitive  Neuroscience  P.O.  box  616  6200  MD,  Maastricht  /  Netherlands  [email protected]    Boubenec,  Yves,  Mr.  Institut  d'études  cognitives  Ecole  Normale  Supérieure  /  IEC  /  LSP  29  rue  d'Ulm  75005  Paris  /  France  [email protected]  

Page 158: Complete program including all scientific contributions (21 MB, PDF)

  141  

Brandmeyer,  Alex;  Ph.D.  Max  Planck  Institute  for  Human  Cognitive  and  Brain  Sciences  Auditory  Cognition  group  Stephanstr.  1a  04103  Leipzig  /  Germany  [email protected]      Brechmann;  André;  Dr.  Leibniz  Institute  for  Neurobiology  Special  Lab  Non-­‐Invasive  Brain  Imaging  Brenneckestr.  6  39118  Magdeburg  /  Germany  brechmann@lin-­‐magdeburg.de    Bremen  Peter,  Dr.  Donders  Institute  Nijmegen  Biophysics  Heyendaalseweg  135  6525  AJ  Nijmegen  /  Netherlands  [email protected]    Brosch,  Michael,  Dr.  Leibniz  Institute  for  Neurobiology  Special  Lab  Primate  Neurobiology  Brenneckestr.  6  39118  Magdeburg  /  Germany  brosch@ifn-­‐magdeburg.de    Budinger,  Eike,  Dr.  Leibniz  Institute  for  Neurobiology  Systems  Physiology  of  Learning  Brenneckestr.  6  D-­‐39118  Magdeburg  /  Germany  budinger@lin-­‐magdeburg.de    Butler,  Blake  Edward,  Dr.  University  of  Western  Ontario  Physiology  and  Pharmacology  1151  Richmond  St  N.  N6A5C2  London,  ON  /  Canada  [email protected]    Callan,  Akiko,  Ms.  National  Institute  of  Information  and  Communications  Technology  Center  for  Information  and  Neural  Networks  University  1-­‐4  Yamadaoka,  Suita  565-­‐0871  Osaka  /  Japan  [email protected]    Cambiaghi,  Marco,  Ph.D.  Universita'  degli  Studi  di  Torino  Neuroscience  C.so  Raffaello,  30  10125  Turin  /  Italy  [email protected]

Carrasco,  Andres,  Ph.D.  University  of  Western  Ontario  Physiology  and  Pharmacology  1151  Richmond  St  N.  N6A  5C2  London,  ON  /  Canada  [email protected]      Chait,  Maria,  Ph.D.  University  College  London  Ear  Institute  332  Gray's  Inn  Rd  WC1X  8EE  London  /  United  Kingdom  [email protected]    Chang,  Edward,  Dr.  University  of  California,  San  Francisco  28  Ronada  94611  Piedmont,  CA  /  United  States  of  America  [email protected]    Ciesla,  Katarzyna  Joanna,  Ms.  Institute  of  Physiology  and  Pathology  of  Hearing  Bioimaging  Research  Center  Mochnackiego  10  02-­‐042  Warsaw  /  Poland  [email protected]    Clemo,  H.  Ruth,  Ph.D.  Virginia  Commonwealth  University  School  of  Medicine  1101  E.  Marshall  Street,  Sanger  Hall  Rm  12-­‐007  23298-­‐0709  Richmond,  VA  /  United  States  of  America  [email protected]    Cohen,  Yale  Eric,  Dr.  University  of  Pennsylvania  Otorhinolaryngology  Dept.  Otorhinolaryngology  3400  Spruce  St  -­‐  5  Ravdin  19104  Philadelphia,  PA  /  United  States  of  America  [email protected]    Conway,  Bevil  R.,  Mr.  Wellesley  College  Neuroscience  106  Central  Street  02481  Wellesley,  MA  /  United  States  of  America  [email protected]    Cooke,  James,  Mr.  Oxford  University  Worcester  College  Walton  Street  OX1  2HB  Oxford  /  United  Kingdom  [email protected]  

Page 159: Complete program including all scientific contributions (21 MB, PDF)

  142  

Crosse,  Michael  Jeremiah,  Mr.  Trinity  College  Dublin  Centre  for  Bioengineering  TCBE  Trinity  Biomedical  Sciences  Institute  152–160  Pearse  Street  2  Dublin  /  Ireland  [email protected]    Da  Costa,  Sandra,  Ph.D.  University  Hospital  Lausanne  Department  of  Clinical  Neurosciences  Avenue  Pierre-­‐Decker  5  1011  Lausanne  /  Switzerland  Sandra.Borges-­‐Da-­‐[email protected]    David,  Stephen  V,  Ph.D.  Oregon  Health  and  Science  University  Oregon  Hearing  Research  Center  3181  SW  Sam  Jackson  Park  Rd,  MC  L335A  97239  Portland,  OR  /  United  States  of  America  [email protected]    de  Boer,  Jessica,  Dr.  MRC  Institute  of  Hearing  Research  Science  Road,  University  Park  NG7  2RD  Nottingham  /  United  Kingdom  [email protected]    de  Hoz,  Livia,  Dr.  Max  Planck  Institute  for  Experimental  Medicine  Neurogenetics  Hermann-­‐Rein  Str.  3  37075  Goettingen  /  Germany  [email protected]    De  Vos,  Astrid,  Ms.  KU  Leuven  Neurosciences  Herestraat  49,  box  721  3000  Leuven  /  Belgium  [email protected]    Deike,  Susann,  Dr.  Leibniz  Institute  for  Neurobiology  Special  Lab  Non-­‐invasive  Brain  Imaging  Brenneckestr.6  39118  Magdeburg  /  Germany  sdeike@lin-­‐magdeburg.de    Di  Liberto,  Giovanni,  Mr.  Trinity  College  Dublin  Dunard  Avenue  7    Dublin  /  Ireland  [email protected]  

Disbergen,  Niels  Robert,  Mr.  Maastricht  University  Cognitive  Neuroscience  Oxfordlaan  55  6229EV  Maastricht  /  Netherlands  [email protected]    Duszyk,  Anna,  Ms.  Leibniz  Institute  for  Neurobiology  Special  Lab  Non-­‐Invasive  Brain  Imaging  Brenneckestraße  6  39118  Magdeburg  /  Germany  [email protected]    Edeline,  Jean-­‐Marc,  Dr.  UMR  CNRS  8195,  Centre  de  Neurosciences  Paris-­‐Sud  91405  Orsay  /  France  jean-­‐marc.edeline@u-­‐psud.fr    Eggermont,  Jos  Jan,  Ph.D.  University  of  Calgary  Psychology  2500  University  Drive  NW  T2N  1N4  Calgary,  AB  /  Canada  [email protected]    Elie,  Julie  E,  Ph.D.  University  of  California  Berkeley  Psychology  &  Helen  Wills  Neuroscience  Institute  3210  Tolman  94100  Berkeley  ,CA  /  United  States  of  America  [email protected]    Elyada,  Yishai  M.,  Ph.D.  Hebrew  University  Neurobiology  /  Silberman  building  2224  Givat  Ram  Campus    91904  Jerusalem  /  Israel  [email protected]    Finkl,  Theresa,  Ms.  Sächsisches  Cochlear  Implant  Centrum  Universitätsklinikum  Dresden  Fetscherstr.  74,  Haus  11  01307  Dresden  /  Germany  theresa.finkl@uniklinikum-­‐dresden.de    Firzlaff,  Uwe,  Dr.  Technische  Universität  München  Lehrstuhl  für  Zoologie  Liesel-­‐Beckmann-­‐Strasse  4  85350  Freising  /  Germany  [email protected]    

Page 160: Complete program including all scientific contributions (21 MB, PDF)

  143  

Flanagan,  Sheila  Anne,  Dr.  University  of  Cambridge  Department  of  Psychology  Downing  Street  CB2  3EB  Cambridge  /  United  Kingdom  [email protected]    Fleming,  David,  Mr.  University  of  Glasgow  Flat  B,  271  Kelvindale  Road  G120QU  Glasgow  /  United  Kingdom  [email protected]    Formisano,  Elia,  Prof.  Maastricht  University  Department  of  Cognitive  Neuroscience,  P.O.  Box  616  6200MD  Maastricht  /  Netherlands  [email protected]    Friedrich,  Björn,  Mr.  Leibniz  Institute  for  Neurobiology  Systems  Physiology  of  Learning  Brenneckestr.  6  39118  Magdeburg  /  Germany  bjoern.friedrich@lin-­‐magdeburg.de    Fritz,  Jonathan,  Ph.D.  University  of  Maryland  Center  for  Auditory  and  Acoustic  Research  Institute  for  Systems  Research  Neural  Systems  Lab,  ISR,  ECE,  Room  2202,  A.V.  Williams  Building  20742  College  Park,  MD  /  United  States  of  America  [email protected]    Froemke,  Robert,  Dr.  New  York  University  School  of  Medicine  Skirball  Institute,  Department  of  Otolaryngology  540  First  Avenue,  Skirball  5-­‐9  10016  New  York,  NY  /  United  States  of  America  [email protected]    Fukushima,  Makoto,  Ph.D.  National  Institutes  of  Health  Laboratory  of  Neuropsychology,  NIMH  49  Convent  Drive,  Building  49,  Room  1B80  20892  Bethesda,  MD,  United  States  of  America  [email protected]    Gaese,  Bernhard,  Dr.  Goethe  University  Frankfurt  Inst.  Cell  Biology  and  Neuroscience  Max-­‐von-­‐Laue-­‐Str.  13  60439  Frankfurt  am  Main  /  Germany  [email protected]­‐frankfurt.de  

Gander,  Phillip  Evan,  Ph.D.  University  of  Iowa  Department  of  Neurosurgery,  1800  JPP  200  Hawkins  Drive  52242  Iowa  City,  IA  /  United  States  of  America  phillip-­‐[email protected]    Gandras,  Katharina,  Ms.  Carl  von  Ossietzky  University  Oldenburg  Department  of  Psychology  Ammerländer  Heerstraße  114-­‐118  26129  Oldenburg  /  Germany  katharina.gandras@uni-­‐oldenburg.de    Gracia-­‐Lazaro,  Haydee,  Ms.  Leibniz  Institute  for  Neurobiology  OvGU  Magdeburg  Fermersleber  Weg  45E  W402  39112  Magdeburg  /  Germany  Haydee.Garcia-­‐Lazaro@lin-­‐magdeburg.de    Gaucher,  Quentin,  Mr.  CNPS  UMR  8195  Université  Paris-­‐Sud,  Bat  446  91405  Orsay  /  France  quentin.gaucher@u-­‐psud.fr    Gentner,  Timothy,  Prof.  UC  San  Diego  Psycholgoy  9500  Gilman  Dr.,  MC  0109  92093  La  Jolla,  CA  /  United  States  of  America  [email protected]    Ghazaleh,  Naghmeh,  Ms.  École  Polytechnique  Fédérale  de  Lausanne  (EPFL)  Avenue  du  Grey  78  1018  Lausanne  /  Switzerland  [email protected]    Giordano,  Bruno  Lucio,  Ph.D.  University  of  Glasgow  Institute  of  Neuroscience  and  Psychology  58  Hillhead  Street  G12  8QB  Glasgow  /  United  Kingdom  [email protected]    Giroud,  Nathalie,  Ms.  University  of  Zurich  Neuroplasticity  and  Learning  in  Normal  Aging  Andreasstrasse  15,  Box  2  8050  Zurich  /  Switzerland  [email protected]  

Page 161: Complete program including all scientific contributions (21 MB, PDF)

  144  

Gold,  Joshua  Rodney,  Mr.  University  of  Oxford  Physiology,  Anatomy,  and  Genetics  Merton  College  Merton  Street  OX1  4JD  Oxford  /  United  Kingdom  [email protected]    Golubeva,  Yulia,  Ms.  Tomatis  Center  Moscow,  children  Zeleny  3a  /  11  bld  1  111141  Moscow  /  Russia  [email protected]    Goossens,  Tine,  Ms.  KU  Leuven  Neurosciences  Herestraat  49  -­‐  box  721  3000  Leuven  /  Belgium  [email protected]    Górska,  Urszula,  Ms.  Jagiellonian  University  Psychophysiology  Laboratory  al.  Mickiewicza  3  31-­‐120  Kraków  /  Poland  [email protected]    Gourévitch,  Boris,  Mr.  CNPS  Lab,  UMR8195  CNRS  Université  Paris-­‐Sud  Bâtiments  440-­‐447  91405  Orsay  /  France  [email protected]      Griffiths,  Timothy  David,  Prof.  Newcastle  University  Institute  of  Neuroscience  Medical  School    Framlington  Place    NE2  4HH  Newcastle  upon  Tyne  /  United  Kingdom  [email protected]    Grigutsch,  Maren,  Ms.  Max  Planck  Institute  for  Human  Cognitive  and  Brain  Sciences  Neuropsychology  Stephanstr.  1a  04103  Leipzig  /  Germany  [email protected]    Güntensperger,  Dominik,  Mr.  University  of  Zurich  Bruggerstrasse  139  5400  Baden  /  Switzerland  [email protected]    

Hackett,  Troy  A.,  Dr.  Vanderbilt  University  Hearing  and  Speech  Sciences  465  21st  Avenue  South  37064  Nashville,  TN  /  United  States  of  America  [email protected]    Hajizadeh,  Aida,  Ms.  Leibniz  Institute  for  Neurobiology  Special  Lab  Non-­‐invasive  Brain  Imaging  Brenneckestraße  6    39118  Magdeburg  /  Germany  aida.hajizadeh@lin-­‐magdeburg.de      Hall,  Amee  J,  Ms.  University  of  Western  Ontario  Anatomy  and  Cell  Biology  548  Platts  Ln  #23  N6G3H2,  London,  ON  /  Canada  [email protected]    Hämäläinen,  Jarmo,  Dr.  University  of  Jyväskylä  Psychology  Ylistönmäentie  33,  P.O.Box  35  40014  Jyväskylä  /  Finland  [email protected]    Hamilton,  Liberty,  Dr.  University  of  California,  San  Francisco  Neurological  Surgery  675  Nelson  Rising  Lane  94158  San  Francisco,  CA  /  United  States  of  America  [email protected]    Happel,  Max,  Ph.D.  Leibniz  Institute  for  Neurobiology  Systems  Physiology  of  Learning  Brenneckestr.  6  39118  Magdeburg  /  Germany  mhappel@lin-­‐magdeburg.de    He,  Jufang,  Prof.  City  University  of  Hong  Kong  Biomedical  Sciences  Tat  Chee  Avenue    Kowloon,  Hong  Kong  [email protected]    Hechavarria,  Julio,  Mr.  Goethe  University,  Frankfurt  am  Main  Institut  für  Zellbiologie  und  Neurowissenschaft  Max-­‐von-­‐Laue-­‐Str.  13    60438  Frankfurt  am  Main  /  Germany  [email protected]­‐frankfurt.de  

Page 162: Complete program including all scientific contributions (21 MB, PDF)

  145  

Heil,  Peter,  Dr.  Leibniz  Institute  for  Neurobiology  Magdeburg  Systems  Physiology  of  Learning  Brenneckestraße  6  39118  Magdeburg  /  Germany  peter.heil@lin-­‐magdeburg.de    Henry,  Molly  J.,  Dr.  Max  Planck  Institute  for  Human  Cognitive  and  Brain  Sciences  Max  Planck  Research  Group  "Auditory  Cognition"  Stephanstrasse  1a  04103  Leipzig  /  Germany  [email protected]    Henschke,  Julia  U.,  Ms.  Leibniz  Institute  for  Neurobiology  Systems  Physiology  of  Learning  Brenneckestraße  6  D-­‐39118  Magdeburg  /  Germany  Julia.henschke@lin-­‐magdeburg.de      Herrmann,  Björn,  Ph.D.  Max  Planck  Institute  for  Human  Cognitive  and  Brain  Sciences    Stephanstrasse  1a  04107  Leipzig  /  Germany  [email protected]    Herrmann,  Christoph,  Prof.  Oldenburg  University  Experimental  Psychology  Ammerländer  Heerstr.  114-­‐118  26111  Oldenburg  /  Germany  christoph.herrmann@uni-­‐oldenburg.de    Hessel,  Horst,  Dr.  Cochlear  Deutschland  GmbH  &  Co.  KG  Karl  Wiechert  Allee  76  A  30625  Hannover  /  Germany  [email protected]    Hildebrandt,  K.  Jannis,  Prof.  Carl  von  Ossietzky  University  Oldenburg  Department  for  Neuroscience  Carl  von  Ossietzky  Str.  9-­‐11  26129  Oldenburg  /  Germany  jannis.hildebrandt@uni-­‐oldenburg.de    Hitsuyu,  Rie,  Ms.  Research  Center  for  Advanced  Science  and  Technology  The  University  of  Tokyo  4-­‐6-­‐1,  Komaba,  Meguro-­‐ku  153-­‐8904  Tokyo  /  Japan  [email protected]­‐tokyo.ac.jp

Homma,  Natsumi,  Ms.  University  of  Oxford  Physiology,  Anatomy  and  Genetics    Merton  College  Merton  Street  OX1  4JD  Oxford  /  United  Kingdom  [email protected]    Howard,  Matthew  Andrew,  Dr.  University  of  Iowa  Hospitals  and  Neurosurgery  200  Hawkins  Drive,  1823  JPP  52242  Iowa  City,  IA,  United  States  of  America  matthew-­‐[email protected]    Huang,  Ying,  Dr.  Leibniz  Institute  for  Neurobiology  Special  Lab.  primate  Neurobiology    Brenneckestraße  6  39118  Magdeburg  /  Germany  Ying.Huang@lin-­‐magdeburg.de    Hubka,  Peter,  Ph.D.  Hanover  Medical  School  Institute  of  Audioneurotechnology    Feodor-­‐Lynen-­‐Str.  35  30625  Hannover  /  Germany  hubka.peter@mh-­‐hannover.de    Huetz,  Chloé,  Dr.  UMR  CNRS  8195  Centre  de  Neurosciences  Paris  Sud  Batiment  446  Université  Paris  Sud  91405  Orsay  /  France  chloe.huetz@u-­‐psud.fr    Irvine,  Dexter  Robert,  Prof.  Monash  University  and  Bionics  Institute  School  of  Psychological  Sciences    Monash  University  3800  Clayton,  VIC  /  Australia  [email protected]    Iyengar,  Soumya,  Dr.  National  Brain  Research  Centre,  Manesar,  Systems  Neuroscience  Nainwal  Mode    NH-­‐8  Haryana    122050  Gurgaon  /India  [email protected]    Jäger,  Katharina,  Ms.  Goethe  University  Frankfurt  Max-­‐von-­‐Laue-­‐Str.  13  60438  Frankfurt  am  Main  /  Germany  [email protected]­‐frankfurt.de  

Page 163: Complete program including all scientific contributions (21 MB, PDF)

  146  

Jeschke,  Marcus,  Dr.  University  of  Göttingen  Medical  Center  InnerEarLab,  Dept.  of  Otolaryngology  Robert-­‐Koch-­‐Str.  40  37075  Goettingen  /  Germany  [email protected]­‐goettingen.de    Johnsrude,  Ingrid  Suzanne,  Dr.  University  of  Western  Ontario  Psychology  /  School  of  Communication  Sciences  and  Disorders  Brain  and  Mind  Institute,  Natural  Sciences  Centre  N6A  5B7  London,  ON  /  Canada  [email protected]      Jones,  Gareth  Paul,  Dr.  UCL  Ear  Institute  332  Grays  Inn  Road  WC1X  8EE  London  /  United  Kingdom  [email protected]    Kashirina,  Svetlana,  Ms.  Tomatis  Center  Moscow,  children  Zeleny  3a/11  bld  1  111141  Moscow  /  Russia  [email protected]    Kasper,  Johannes,  Mr.  Universität  Frankfurt  Schleswiger  Straße  6  60435  Frankfurt  /  Germany  [email protected]    Kell,  Christian,  Dr.  Goethe  University  Department  of  Neurology    Schleusenweg  2-­‐16  60528  Frankfurt  /  Germany  [email protected]­‐frankfurt.de    Khouri,  Leila,  Ph.D.  Hebrew  University  of  Jerusalem  Department  of  Neurobiology  Nelken  Lab  91904  Jerusalem  /  Israel  [email protected]    King,  Andrew  John,  Prof.  University  of  Oxford  Physiology,  Anatomy  and  Genetics  Sherrington  Building  Parks  Road  OX1  3PT  Oxford  /  United  Kingdom  [email protected]  

Klinge-­‐Strahl,  Astrid,  Dr.  University  of  Oxford  Department  of  Physiology  Anatomy  &  Genetics  Parks  Road  OX1  3PT  Oxford  /  United  Kingdom  astrid.klinge-­‐[email protected]    Klump,  Georg  M.,  Prof.  Cluster  of  Excellence  "Hearing4all"  Oldenburg  University,  School  of  Medicine  and  Health  Sciences  Animal  Physiology  and  Behavior  Group  Dept.  of  Neuroscience  AG  Zoophysiologie  und  Verhalten  Dept.  für  Neurowissenschaften  Universität  Oldenburg,  Fakultät  6  26111  Oldenburg  /  Germany  georg.klump@uni-­‐oldenburg.de    Knyazeva,  Stanislava,  Ms.  Leibniz  Institute  für  Neurobiology  Special  Lab  Primate  Neurobiology  Brenneckestr,  6  39118  Magdeburg  /  Germany  Stanislava.Knyazeva@lin-­‐magdeburg.de    Koehler,  Seth  D,  Ph.D.  Johns  Hopkins  University  Biomedical  Engineering  438  Old  Trail  Road  21212  /  Baltimore,  MD  /  United  States  of  America  [email protected]    Kok,  Melanie  Ann,  Ms.  University  of  Western  Ontario  Schulich  School  of  Medicine  and  Dentistry  697  Sevilla  Park  Place  N5Y  4H9  London,  ON  /  Canada  [email protected]    Kolodziej,  Angela,  Dr.  Leibniz  Institute  for  Neurobiology  Systems  Physiology  of  Learning  Brenneckestraße  6  39118  Magdeburg  /  Germany  angela.kolodziej@lin-­‐magdeburg.de    Kompus,  Kristiina,  Ph.D.  University  of  Bergen  Jonas  Lies  vei  91  5009  Bergen  /  Norway  [email protected]  

Page 164: Complete program including all scientific contributions (21 MB, PDF)

  147  

König,  Reinhard,  Dr.  Leibniz  Institute  for  Neurobiology  Special  Lab  Non-­‐invasive  Brain  Imaging  Brenneckestraße  6  39118  Magdeburg  /  Germany  rkoenig@lin-­‐magdeburg.de    Kordowski,  Paweł    Marian,  Mr.  Leibniz  Institute  for  Neurobiology  Special  Lab  Non-­‐Invasive  Brain  Imaging  Brenneckestr.  6  39118  Magdeburg  /  Germany  Pawel.Kordowski@lin-­‐magdeburg.de    Kössl,  Manfred,  Prof.  University  of  Frankfurt  Cell  Biology  &  Neuroscience  Max-­‐von-­‐Laue-­‐Str.13  60439  Frankfurt  /  Germany  [email protected]­‐frankfurt.de    Kotz,  Sonja  A,  Prof.  School  of  Psychological  Sciences  University  of  Manchester  Cognitive  Neuroscience  and  Experimental  Psychology  Zochonis  Building,  Brunswick  Street  M13  9PL  Manchester  /  United  Kingdom  [email protected]    Kowalkowski,  Victoria,  Ms.  Medical  Research  Council  Institute  of  Hearing  Research  MRC  Institute  of  Hearing  Research  University  Park  NG7  2RD  Nottingham  /  United  Kingdom  [email protected]    Kraus,  Nina,  Ph.D.  Northwestern  University  Communication  Sciences  Frances  Searle  Bldg  2240  Campus  Drive  60208  Evanston,  IL  /  United  States  of  America  [email protected]    Kreitewolf,  Jens,  Mr.  Max  Planck  Institute  for  Human  Cognitive  and  Brain  Sciences  Department  of  Neuropsychology  Stephanstr.  1a  04103  Leipzig  /  Germany  [email protected]  

Krumbholz,  Katrin,  Ph.D.  MRC  Institute  of  Hearing  Research  University  Park  NG7  2RD  Nottingham  /  United  Kingdom  [email protected]    Kurkela,  Jari,  Mr.  University  of  Jyväskylä  Department  of  Psychology  Taitoniekantie  9  A  3030  40740  Jyväskylä  /  Finland  [email protected]    Lalor,  Edmund,  Dr.  Trinity  College  Dublin  Trinity  College  Dublin  2  Dublin  /  Ireland  [email protected]    Langers,  Dave,  Ph.D.  University  of  Nottingham  NIHR  Nottingham  Hearing  Biomedical  Research  Unit  Ropewalk  House  113  The  Ropewalk  NG1  5DU  Nottingham  /  United  Kingdom  [email protected]    Lanting,  Cris,  Dr.  University  Medical  Center  Groningen  Department  of  of  Otorhinolaryngology  P.O.  Box  30.001  9700RB  Groningen  /  Netherlands  [email protected]    Latinus,  Marianne,  Ph.D.  CNRS  Institut  de  Neuroscience  de  la  Timone  27  Bd  Jean  Moulin  13385  Marseille  /  France  marianne.latinus@univ-­‐amu.fr    Lee,  Sze  Chim,  Mr.  Tübingen  Hearing  Research  Centre    Department  of  Otolaryngology  Head  and  Neck  Surgery  Elfriede-­‐Aulhorn-­‐Strasse  5  72076  Tübingen  /  Germany  [email protected]    Leppänen,  Paavo  H.T.,  Prof.  University  of  Jyväskylä  Department  of  Psychology  Ylistönmäentie  33  P.O.Box  35  40014  Jyväskylä  /  Finland  [email protected]    

Page 165: Complete program including all scientific contributions (21 MB, PDF)

  148  

Lewald,  Jörg,  Dr.  Ruhr  University  Bochum  Cognitive  Psychology  Universitätsstr.  150  44780  Bochum  /  Germany  [email protected]    Lippert,  Michael  Thomas,  Dr.  Leibniz  Institute  for  Neurobiology  Systems  Physiology  of  Learning    Brenneckestr.  6  39118  Magdeburg  /  Germany  mlippert@lin-­‐magdeburg.de    Liu,  Robert  C.,  Prof.  Emory  University  Biology  1510  Clifton  Rd  NE  Rollins  Research  Center  Rm  2006  30322  Atlanta,  GA  /  United  States  of  America  [email protected]    Lohvansuu,  Kaisa,  Ms.  University  of  Jyväskylä  Department  of  Psychology  P.O.  Box  35  FI-­‐40014  University  of  Jyväskylä  /  Finland  [email protected]    Lomber,  Stephen,  Prof.  University  of  Western  Ontario  Brain  and  Mind  Institute  1151  Richmond  Street  North,  SSC  9232  N6A  5C2  London,  ON  /  Canada  [email protected]    Love,  Scott  A.,  Dr.  Institut  de  Neurosciences  de  la  Timone  Campus  Santé  Timone  27  Bd  Jean  Moulin  13005  Marseille  /  France  [email protected]    Malone,  Brian,  Dr.  UCSF  Otolaryngology  and  Head  and  Neck  Surgery  148  Locksley  Avenue,  Apt.1  94122  San  Francisco,  CA  /  United  States  of  America  [email protected]      Maor,  Ido,  Mr.  The  Hebrew  University  of  Jerusalem  Department  of  Neurobiology  90666  Kibbutz  Kalia  /  Israel  [email protected]  

Marlin,  Bianca,  Ms.  New  York  University  School  of  Medicine  New  York  University  540  1st  Ave,  Skirball  5-­‐9  10006  New  York,  NY  /  United  States  of  America  [email protected]    Massoudi,  Roohollah,  Dr.  Radboud  University  Donders  institute  for  brain,  cognition  and  behavior  Biophysics,  room  HG.00825  Heyendaalseweg  135  6525AJ  Nijmegen  /  Netherlands  [email protected]    Matusz,  Pawel  J.,  Ph.D.  Centre  Hospitalier  Universitaire  Vaudois  (CHUV)    University  of  Lausanne  Clinical  Neurosciences  Avenue  de  France,  Studio  36  1004  Lausanne  /  Switzerland  [email protected]    May,  Patrick  J.  C.,  Dr.  Aalto  University  P.O.  Box  12200  FI-­‐00076  AALTO  /  Finland  [email protected]    Mehta,  Anahita,  Ms.  University  College  London  Ear  Institute  332,  Grays  Inn  Road  WC1X  8EE  London  /  United  Kingdom  [email protected]    Merchant,  Hugo,  Prof.  Instituto  de  Neurobiologia  National  University  of  Mexico  Cognitive  Neurobiology  Boulevard  Juriquilla  No.  3001    Instituto  de  Neurobiología,  UNAM  campus  Juriquilla    76230  Queretaro  /  Mexico  [email protected]    Meredith,  M.  Alex,  Prof.  Virginia  Commonwealth  University  School  of  Medicine  Anatomy  and  Neurobiology  1101  E.  Marshall  Street  Sanger  Hall  Rm  12-­‐067  23298-­‐0709  Richmond,  VA  /  United  States  of  America  [email protected]  

Page 166: Complete program including all scientific contributions (21 MB, PDF)

  149  

Michalski,  Nicolas,  Dr.  Institut  Pasteur  Neuroscience  25  rue  du  Dr.  Roux  75015  Paris  /  France  [email protected]    Mintel,  Josephine  Therse,  Ms.  InnerEarLab  Hals-­‐Nasen-­‐Ohrenheilkunde  Universitätsmedizin  Goettingen  48  Weender  Straße  37075  Göttingen  /  Germany  [email protected]­‐goettingen.de    Molloy,  Katharine,  Ms.  University  College  London  Institute  of  Cognitive  Neuroscience  26  Bedford  Way  WC1H  0DS  London  /  United  Kingdom  [email protected]    Mowery  Todd  Michael,  Ph.D.  New  York  University  Carnegy  Mellon  University  4  Washington  Place,  rm  809  10003  New  York,  NY  /  United  States  of  America  [email protected]    Mukamel,  Roy,  Ph.D.  Tel-­‐Aviv  University  School  of  Psychological  Sciences  &  Sagol  School  of  Neuroscience  69978  Tel-­‐Aviv,  Israel  [email protected]    Murray,  Micah  M.,  Prof.  University  Hospital  and  University  of  Lausanne  Department  of  Clinical  Neuroscience  and  Department  of  Radiology  CHUV  Radiology,  CIBM  BH08.078  Rue  du  Bugnon  46  1011  Lausanne  /  Switzerland  [email protected]    Mylius,  Judith,  Ms.  Leibniz  Institute  for  Neurobiology  Special  Lab  Primate  Neurobiology  Brenneckestraße  6  39118  Magdeburg  /  Germany  Judith.Mylius@lin-­‐magdeburg.de    Nelken,  Israel,  Prof.  Hebrew  University  Edmond  J.  Safra  Campus  Institute  of  Life  Sciences  91904  Jerusalem  /  Israel  [email protected]

Niekisch,  Hartmut,  Mr.  Leibniz  Institute  for  Neurobiology  Systems  Physiology  of  Learning  and  Memory  Brenneckestraße  6  39118  Magdeburg  /  Germany  Hartmut.Niekisch@lin-­‐magdeburg.de    Nodal,  Fernando,  Dr.  Oxford  University  Physiology,  Anatomy  and  Genetics  Parks  Road  OX1  3PT  Oxford  /  United  Kingdom  [email protected]    Noesselt,  Toemme,  Prof.  Otto-­‐von-­‐Guericke  University  Magdeburg  Psychology  Universitaetsplatz  1  39104  Magdeburg  /  Germany  [email protected]    Nolden,  Sophie,  Ms.  University  of  Montreal  Department  of  Psychology  6-­‐4417  rue  de  la  Roche  H2J  3J2  Montreal,  QC  /  Canada  [email protected]    Norman-­‐Haignere,  Samuel  Victor,  Mr.  MIT  Brain  and  Cognitive  Sciences  52  Plymouth  St,  Apt  2  02141  Cambridge,  MA  /  United  States  of  America  [email protected]    Nourski,  Kirill  V.,  Dr.  The  University  of  Iowa  Neurosurgery  200  Hawkins  Dr.  1815  JCP  52242  Iowa  City,  IA  /  United  States  of  America  kirill-­‐[email protected]    Novak,  Ondrej,  Mr.  Institute  of  Experimental  Medicine  AS  CR  Auditory  Neuroscience  Videnska  1083  14220  Prague  /  Czech  Republic  [email protected]    Nozaradan,  Sylvie,  Ph.D.  UCL  Institute  of  Neuroscience  (Ions)  53  Mounier  avenue  1200  Brussels,  Belgium  [email protected]  

Page 167: Complete program including all scientific contributions (21 MB, PDF)

  150  

Occelli,  Florian,  Mr.  CNRS,Centre  de  Neurosciences  Paris  Sud  (UMR8195  CNRS)  bât  440-­‐447  Université  Paris  Sud  91405  Orsay  /  France  florian.occelli@u-­‐psud.fr    Oeztan,  Zeynep,  Ms.  Leibniz  Institute  for  Neurobiology  Special  Lab  Non-­‐invasive  Brain  Imaging  Brenneckestr.  6  39118  Magdeburg  /  Germany  zoeztan@lin-­‐magdeburg.de    Ohl,  Frank  W.,  Prof.  Leibniz  Institute  for  Neurobiology  Systems  Physiology  of  Learning  Brenneckestr.  6  D-­‐39118  Magdeburg  /  Germany  frank.ohl@lin-­‐magdeburg.de    Okamoto,  Hidehiko,  Dr.  National  Institute  for  Physiological  Sciences  Department  of  Integrative  Physiology  38  Nishigo-­‐Naka,  Myodaiji  4448585  Okazaki  /  Japan  [email protected]    Ortiz,  Michael,  Mr.  Max  Planck  Institute  for  Biological  Cybernetics  Physiology  of  Cognitive  Processes  Spemannstraße  38  72076  Tuebingen  /  Germany  [email protected]    Osmanski,  Michael  Scott,  Dr.  Johns  Hopkins  University,  Biomedical  Engineering  412  Traylor  Building  720  Rutland  Avenue  21205  Baltimore,  MD  /  United  States  of  America  [email protected]    O'Sullivan,  James,  Mr.  Trinity  College  Dublin  Trinity  Center  for  Bioengineering  Trinity  College  Dublin  2  Dublin  /  Ireland  [email protected]    Palmer,  Alan  R,  Prof.  MRC  Insititute  of  Hearing  Research  Science  Road  University  Park  NG7  2RD  Nottingham,  United  Kingdom  [email protected]  

Panniello,  Mariangela,  Ms.  University  of  Oxford  Physiology,  Anatomy  and  Genetics  Lincoln  College  Turl  Street  OX1  3DR  OXFORD  /  United  Kingdom  [email protected]    Pantev,  Christo,  Prof.  Institute  for  Biomagnetism  and  Biosignalanalysis  Malmedyweg  15  48149  Münster  /  Germany  pantev@uni-­‐muenster.de      Paquette,  Sebastien,  Mr.  University  of  Montreal  Psychology  5582-­‐16  Gatineau  H3T1X7  Montreal,  QC  /  Canada  [email protected]    Perrodin,  Catherine,  Ms.  Max  Planck  Institute  for  Biological  Cybernetics  Physiology  of  Cognitive  Processes  Spemannstrasse  38  72076  Tuebingen  /  Germany  [email protected]    Petkov,  Christopher  I,  Dr.  Newcastle  University  Institute  of  Neuroscience  Framlington  Place  Newcastle  University  Medical  School  NE2  4HH  Newcastle  upon  Tyne  /  United  Kingdom  [email protected]    Poeppel,  David,  Prof.  New  York  University  Department  of  Psychology  6  Washington  Place  10003  New  York,  NY  /  United  States  of  America  [email protected]    Poirier,  Colline,  Dr.  Newcastle  University  Institute  of  Neuroscience  Framlington  Place    NE2  4HH  Newcastle-­‐upon-­‐Tyne  /  United  Kingdom  [email protected]    Polterovich,  Ana,  Ms.  Hebrew  University  of  Jerusalem  Neurobiology  28  Ben  Yosef  st.  69125  Tel  Aviv  /  Israel  [email protected]  

Page 168: Complete program including all scientific contributions (21 MB, PDF)

  151  

Power,  Alan,  Dr.  University  of  Cambridge  Psychology  Downing  Street  CB2  3EB  Cambridge  /  United  Kingdom  [email protected]    Rajendran,  Vani  Gurusamy,  Ms.  University  of  Oxford  116  Charles  Street  OX4  3AT  Oxford  /  United  Kingdom  [email protected]    Rauschecker,  Josef,  Prof.  Georgetown  University  Neuroscience  Georgetown  University  medical  Center  3970  Reservoir  rd,  NW  20057  Washington,  DC  /  United  States  of  America  [email protected]    Reiche,  Martin,  Mr.  Carl  von  Ossietzky  University  of  Oldenburg  Department  of  Psychology  Küpkersweg  74  D-­‐26129  Oldenburg  /  Germany  martin.reiche@uni-­‐oldenburg.de    Renart,  Alfonso,  Mr.  Champalimaud  Foundation  Champalimaud  Neuroscience  Programme  Champalimaud  Centre  for  the  Unknown  Avenida  Brasilia  s/n  1400-­‐030  Lisbon  /  Portugal  [email protected]      Rhone,  Ariane  Elizabeth,  Ph.D.  The  University  of  Iowa  Neurosurgery  1825  JPP  52242  Iowa  City,  IA  /  United  States  of  America  ariane-­‐[email protected]      Riecke,  Lars,  Ph.D.  Maastricht  University  Oxfordlaan  55  6200MD  Maastricht  /  Netherlands  [email protected]      Rinne,  Teemu,  Ph.D.  University  of  Helsinki  Institute  of  Behavioural  Sciences  PO  Box  8  00014  University  of  Helsinki  /  Finland  [email protected]  

Roberts,  Larry  Evan,  Dr.  McMaster  University  Psychology  Neuroscience  and  Behaviour  1280  Main  Street  West  L8S  4K1  Hamilton,  ON  /  Canada  [email protected]    Rufener,  Katharina,  Ms.  University  of  Zurich  Neuropsychology  UFSP  Dynamik  Gesunden  Alterns  Andreasstrasse  15  /  Box  2  8050  Zurich  /  Switzerland  [email protected]      Saldeitis,  Katja,  Ms.  Leibniz  Institute  for  Neurobiology  Systems  Physiology  of  Learning  Brenneckestr.  6  39118  Magdeburg  /  Germany  katja.saldeitis@lin-­‐magdeburg.de      Salminen,  Nelli,  Dr.  Aalto  University  P.O.  Box  12200  FI-­‐00076  Aalto,  Finland  [email protected]    Salvia,  Emilie,  Dr.  University  of  Glasgow  Institute  of  Neuroscience  and  Psychology  58  Hillhead  Street  G12  8QB  Glasgow  /  United  Kingdom  [email protected]    Sandmann,  Pascale,  Ph.D.  Hannover  Medical  School  Department  of  Neurology  Feodor-­‐Lynen-­‐Str.  27  30625  Hannover,  Germany  sandmann.pascale@mh-­‐hannover.de    Sanfacon,  Anne,  Ms.  Independent  rue  d'Oultremont,  79  1040  Brussels  /  Belgium  [email protected]    Schaefer,  Markus,  Mr.  Goethe-­‐Universität  Frankfurt  am  Main  Institut  für  Zellbiologie  &  Neurowissenschaft  Max-­‐von-­‐Laue-­‐Str.  13  60439  Frankfurt  am  Main  /  Germany  [email protected]  

Page 169: Complete program including all scientific contributions (21 MB, PDF)

  152  

Scheich,  Henning,  Prof.  Leibniz  Institute  for  Neurobiology  Lifelong  Learning  Brenneckestr.  6  D-­‐39118    Magdeburg  /  Germany  henning.scheich@lin-­‐magdeburg.de    Schelinski,  Stefanie,  Ms.  Max  Planck  Institute  for  Human  Cognitive  and  Brain  Sciences  Max  Planck  Research  Group  "Neural  mechanisms  of  human  communication"  Stephanstrasse  1A  04103  Leipzig  /  Germany  [email protected]    Schierholz,  Irina,  Ms.  Hannover  Medical  School  Department  of  Neurology  Feodor-­‐Lynen-­‐Straße  27  30625  Hannover  /  Germany  Schierholz.Irina@mh-­‐hannover.de      Schneider,  Peter,  Dr.  University  of  Heidelberg  Dept.  of  Neurology,  INF  400  69120  Heidelberg  /  Germany  [email protected]    Schneider,  David  M,  Ph.D.  Duke  University  Department  of  Neurobiology  301C  Bryan  Research  Building  412  Research  Dr.  27710  Durham,  NC  /  United  States  of  America  [email protected]    Schnupp,  Jan  W.H.,  Prof.  University  of  Oxford  Physiology  Sherrignton  Bldg  OX1  3PT  Oxford  /  United  Kingdom  [email protected]    Schreiner,  Christoph,  Prof.  University  California  at  San  Francisco  Otolaryngology  675  Nelson  Rising  Lane,  Room  514C  94143-­‐0444  San  Francisco  ,  CA  /  United  States  of  America  [email protected]    Schröger,  Erich,  Prof.  University  of  Leipzig  Institute  for  Psychology  Neumarkt  9-­‐19    04109  Leipzig  /  Germany  schroger@uni-­‐leipzig.de

Scott,  Brian  Hayward,  Dr.  National  Institute  for  Mental  Health  Laboratory  of  Neuropsychology  49  Convent  Drive  Room  1B80  20892  Bethesda,  MD  /  United  States  of  America  [email protected]    Selezneva,  Elena,  Dr.  Leibniz  Institute  for  Neurobiology  Primate  Neurobiology  Brenneckestr.  6  39118  Magdeburg  /  Germany  Elena.Selezneva@lin-­‐magdeburg.de    Shalev,  Amos,  Mr.  Hebrew  University  Neurobiology  Yehuda  Halevi  125,  apt  13  6527525  Tel  Aviv  /  Israel  [email protected]    Shamma,  Shihab  A,  Dr.  Ecole  Normale  Superieure    Department  of  Cognitive  Studies  29  rue  d'ulm  75005  Paris  /  France  [email protected]    Sharma,  Anu,  Prof.  University  of  Colorado  at  Boulder  2501  Kittredge  Loop  Drive  SLHS  80309  Boulder,  CO  /  United  States  of  America  [email protected]    Shiramatsu,  Tomoyo  Isoguchi,  Ph.D.  The  University  of  Tokyo  Research  Center  for  Advanced  Science  and  Technology  Building  3-­‐South,  360  4-­‐6-­‐1,  Komaba,  Meguro-­‐ku  153-­‐8904  Tokyo  /  Japan  [email protected]­‐tokyo.ac.jp      Slater,  Heather,  Ms.  Newcastle  University  Institute  of  Neuroscience  NE2  4HH  Newcastle  Upon  Tyne  /  United  Kingdom  [email protected]      Sohoglu,  Ediz,  Dr.  University  College  London  332  Gray's  Inn  Road  WC1X  8EE  London  /  United  Kingdom  [email protected]  

Page 170: Complete program including all scientific contributions (21 MB, PDF)

  153  

Sollini,  Joseph  A,  Dr.  Imperial  College  London  Bioengineering  South  Kensington  Campus  SW166SR  London  /  United  Kingdom  [email protected]    Song,  Wen-­‐Jie,  Prof.  Kumamoto  University  Sensory  and  Cognitive  Physiology  Honjyo,  Chuo  Ku  860-­‐8556  Kumamoto  /  Japan  song@kumamoto-­‐u.ac.jp    Spustek,  Tomasz,  Mr.  Leibniz  Institute  for  Neurobiology  Special  Lab  Non-­‐invasive  Brain  Imaging  Brenneckestraße  6  39118  Magdeburg  /  Germany  [email protected]    Stadler,  Jörg,  Dr.  Leibniz  Institute  for  Neurobiology  Special  Lab  Non-­‐invasive  Brain  Imaging  Brenneckestr.  6  39118  Magdeburg  /  Germany  Stadler@lin-­‐magdeburg.de      Stecker,  George  Christopher,  Prof.  Vanderbilt  University  Medical  Center  Hearing  and  Speech  Sciences  1215  21st  Ave  South,  Room  8310  37232  Nashville,  TN  /  United  States  of  America  [email protected]    Steinschneider,  Mitchell,  Dr.  Albert  Einstein  College  of  Medicine  Department  of  Neurology  1300  Morris  Park  Avenue  Kennedy  Center  322  10461  Bronx,  NY  /United  States  of  America  [email protected]    Stolzberg,  Daniel,  Ph.D.  University  of  Western  Ontario  Psychology  339  Ambleside  Dr.  N6G4Y2  London,  ON  /  Canada  [email protected]    Stropahl,  Maren,  Ms.  Carl  von  Ossietzky  University  Oldenburg  Psychology  Moltkestraße  7  26122  Oldenburg  /  Germany  maren.stropahl@uni-­‐oldenburg.de    

Takagaki,  Kentaroh,  Dr.  Leibniz  Institute  for  Neurobiology  Magdeburg  Systems  Physiology  of  Learning  Brenneckestr.  6  39118  Magdeburg  /  Germany  kentaroh.takagaki@lin-­‐magdeburg.de    Takahashi,  Hirokazu,  Ph.D.  The  University  of  Tokyo  Research  Center  for  Advanced  Science  and  Technology  4-­‐6-­‐1  Komaba,  Meguro-­‐ku  153-­‐8904,  Tokyo,  Japan  [email protected]­‐tokyo.ac.jp    Tasaka,  Gen-­‐ichi,  Ph.D.  The  Hebrew  University  of  Jerusalem  Department  of  Neurobiology  The  Edmond  and  Lily  Safra  Center  for  Brain  Science  (ELSC),  Room  3-­‐223  Givat  Ram  Campus  91904  Jerusalem  /  Israel  [email protected]    Tavano,  Alessandro,  Ph.D.  University  of  Leipzig  Institute  of  Psychology  Neumarkt  9-­‐19  04109  Leipzig  /  Germany  tavano@uni-­‐leipzig.de    Teki,  Sundeep,  Dr.  University  College  London    Wellcome  Trust  Centre  for  Neuroimaging  12  Queen  Square  WC1N  3BG  London  /  United  Kingdom  [email protected]    Thomassen,  Sabine,  Ms.  University  of  Oldenburg  Department  of  Psychology  Küpkersweg  74  26129  Oldenburg  /  Germany  sabine.thomassen@uni-­‐oldenburg.de    Town,  Stephen  Michael,  Ph.D.  University  College  London    Ear  Institute  332  Gray's  Inn  Road  WC1X  8EE  London  /  United  Kingdom  [email protected]    Treille,  Avril,  Ms.  GIPSA-­‐lab  11  rue  des  Mathématiques  38402  St  Martin  d'Hères  /  France  Avril.Treille@gipsa-­‐lab.grenoble-­‐inp.fr  

Page 171: Complete program including all scientific contributions (21 MB, PDF)

  154  

Vander  Ghinst,  Marc,  Dr.  Hôpital  Erasme  -­‐  Université  Libre  de  Bruxelles  ENT  57  avenue  du  Pérou  1000  Bruxelles,  Belgium  [email protected]    Vater,  Marianne,  Prof.  Universität  Potsdam  Institut  für  Biochemie  und  Biologie,  Allgemeine  Zoologie  Karl  Liebknecht  Str.  26  14476  Potsdam  /  Germany  vater@uni-­‐potsdam.de    Vavatzanidis,  Niki  Katerina,  Ms.  Saxonian  Cochlear  Implant  Center  Uniklinikum  Dresden  Fetscherstr.  74  01307  Dresden  /  Germany  niki.vavatzanidis@uniklinikum-­‐dresden.de    Vicario,  David  Sage,  Prof.  Rutgers  University  Psychology  760  West  End  Ave  #16C  10025  New  York,  NY  /  United  States  of  America  [email protected]    Vilain,  Coriandre,  Dr.  GIPSA-­‐Lab  Speech&Cognition  1280  Av  Centrale    38400  St  Martin  d'Hères  /  France  coriandre.vilain@gipsa-­‐lab.fr    Vollmer,  Maike,  Dr.  University  Hospital  Wuerzburg,  Comprehensive  Hearing  Center  Otolaryngology  Josef-­‐Schneider-­‐Strasse  11  97080  Wuerzburg  /  Germany  [email protected]    von  der  Behrens,  Wolfger,  Dr.  University  of  Zurich  and  ETH  Zurich  Institute  of  Neuroinformatics  Winterthurerstrasse  190  8057  Zurich  /  Switzerland  [email protected]    von  Kriegstein,  Katharina,  Prof.  Max  Planck  Institute  for  Human  Cognitive  and  Brain  Sciences  and  Humboldt  University  Berlin  Stephanstrasse  1A  04103  Leipzig  /  Germany  [email protected]

Wagner,  Luise,  Ms.  Uniklinikum  Halle  (Saale)  HNO  Ernst-­‐Grube-­‐Straße  40  06120  Halle  (Saale)  /  Germany  luise.wagner@uk-­‐halle.de      Walker,  Kerry  Marie  May,  Dr.  University  of  Oxford  Physiology,  Anatomy  &  Genetics  Sherrington  Building  Parks  Road  OX1  3PT  Oxford  /  United  Kingdom  [email protected]    Wang,  Yunyan,  Ph.D.  Johns  Hopkins  University  Biomedical  Engineering  Traylor  412  720  Rutland  Ave  21205  Baltimore,  MD  /  United  States  of  America  [email protected]    Wang,  Xiaoqin,  Prof.  Johns  Hopkins  University  Department  of  Biomedical  Engineering  720  Rutland  Avenue  Traylor  410  21205  Baltimore,  MD  /  United  States  of  America  [email protected]    Wanger,  Tim,  Dr.  Leibniz  Institute  for  Neurobiology  Brenneckestr.  6  39118  Magdeburg  /  Germany  tim.wanger@lin-­‐magdeburg.de    Washington,  Stuart  Dante,  Ph.D.  Georgetown  University  Medical  Center  Neurology  2122  Massachusetts  Ave.,  N.W.  20008  Washington,  DC  /  United  States  of  America  [email protected]    Weise,  Annekathrin,  Dr.  Universität  Leipzig  Institut  für  Psychologie  Neumarkt  9-­‐19  04109  Leipzig  /  Germany  akweise@uni-­‐leipzig.de    Widmann,  Andreas,  Mr.  University  of  Leipzig  Cognitive  and  Biological  Psychology  Neumarkt  9-­‐19  04109  Leipzig  /  Germany  widmann@uni-­‐leipzig.de

Page 172: Complete program including all scientific contributions (21 MB, PDF)

  155  

Wiegner  ,  Armin,  Mr.  University  Hospital  Würzburg  Comprehensive  Hearing  Center  Josef-­‐Schneider-­‐Str.  11,  B2  97080  Würzburg  /  Germany  [email protected]      Wiegrebe,  Lutz,  Prof.  Division  of  Neurobiology  Biologie  II  Grosshaderner  Str.  2  82152  Martinsried  /  Germany  [email protected]      Willmore,  Ben,  Dr.  University  of  Oxford  Physiology  Anatomy  &  Genetics  Sherrington  Building  Parks  Road  OX1  3PT  Oxford  /  United  Kingdom  [email protected]      Winkler,  István,  Prof.  Institute  of  Cognitive  Neuroscience  and  Psychology  Research  Centre  for  Natural  Sciences  Hungarian  Academy  of  Sciences  Cognitive  Neuroscience  II  Magyar  Tudósok  krt.  2  H-­‐1117  Budapest  /  Hungary  [email protected]    Wong,  Carmen,  Ms.  The  University  of  Western  Ontario  Graduate  Program  in  Neuroscience  1151  Richmond  St  N  N6A5C2  London,  ON  /  Canada  [email protected]    Wood,  Katherine  Charlotte,  Ms.  UCL  The  Ear  Institute  332  Grays  Inn  Road  WC1X  8EE  London  /  United  Kingdom  [email protected]    Woolnough,  Oscar,  Mr.  MRC  Institute  of  Hearing  Research  Science  Road,  University  Park  NG7  2RD  Nottingham  /  United  Kingdom  [email protected]  

Wyss,  Christine,  Ms.  University  Hospital  of  Psychiatry  Zurich  Department  of  Psychiatry,  Psychotherapy  and  Psychosomatics  Militärstrasse  8  Postfach  1930  8021  Zurich  /  Switzerland  [email protected]    Yarden,  Tohar  Sion,  Mr.  Hebrew  University  of  Jerusalem  Edmond  and  Lily  Safra  Center  for  Brain  Sciences  Silberman  Institue  of  Life  Sciences,  Edmond  Safra  Campus,  Givat  Ram  Department  of  Neurobiology  91904  Jerusalem  /  Israel  [email protected]    Yaron,  Amit,  Mr.  Hebrew  university  Neurobiology  66a  Herzl  blvd.  9614122  Jerusalem  /  Israel  [email protected]    Yasin,  Ifat,  Dr.  University  College  London  332  Grays  Inn  Road  WC1X  8EE  London  /  United  Kingdom  [email protected]      Yuan,  Kexin,  Ph.D.  Tsinghua  University  Biomedical  Engineering  School  of  Medicine,  Room  B218  100084  Beijing  /  China  [email protected]    Zador,  Anthony,  Prof.  Cold  Spring  Harbor  Laboratory  Neuroscience  One  Bungtown  Road  11724  Cold  Spring  Harbor,  NY  /  United  States  of  America  [email protected]    Zatorre,  Robert,  Prof.  McGill  University  Montreal  Neurological  Institute  3801  University  St  H3A2B4  Montreal,  QC  /  Canada  [email protected]  

Page 173: Complete program including all scientific contributions (21 MB, PDF)

  156  

Zelenka,  Ondrej,  Mr.  Institute  of  Experimental  Medicine  AS  CR  Auditory  Neuroscience  Videnska  1083  14220  Prague  /  Czech  Republic  [email protected]    Zhang,  Jingting,  Dr.  University  of  Glasgow  Institute  of  Neuroscience  and  Psychology  58  Hillhead  Street  G12  8QB  Glasgow  /  United  Kingdom  [email protected]  

Zoefel,  Benedikt,  Mr.  Centre  de  Recherche  Cerveau  et  Cognition  (CerCo),  CNRS  Pavillon  Baudot  CHU  Purpan  31052  Toulouse  /  France  [email protected]­‐tlse.fr

   

Page 174: Complete program including all scientific contributions (21 MB, PDF)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sponsors  

Acknowledgements    

 

 

Page 175: Complete program including all scientific contributions (21 MB, PDF)

 

 

 

Page 176: Complete program including all scientific contributions (21 MB, PDF)

  157  

List  of  sponsors  

 

We  would  like  to  thank  all  our  sponsors  for  their  collaboration  and  financial  support.  

 

Scientific  and  Research  Institutions  

 

Deutsche  Forschungsgemeinschaft  

   Leibniz-­‐Institut  für  Neurobiologie  

Office  of  Naval  Research  Global  

   Center  for  Behavioral  Brain  Sciences  

 

Companies  

 

Philips  Healthcare  

   MicroBrightField  Europe  

   Thomas  Recording  

   IAC  Acoustics  

   Carl  Zeiss  Jena  

   Springer  Science+Business  Media  

   Tucker-­‐Davis  Technologies  

 

Bürgschaftsbank  Sachsen-­‐Anhalt  GmbH  /  Mittelständische  Beteiligungsgesellschaft  Sachsen-­‐Anhalt  mbH  

   MR-­‐CONFON  

   Optoacoustics  

   Cambridge  Research  Systems  

   MES  Forschungssysteme  

 

Page 177: Complete program including all scientific contributions (21 MB, PDF)

  158  

Acknowledgements  

 

The  Organizing  Committee  is  deeply  indebted  to  the  host  of  this  conference,  the  Leibniz  Institute  for  Neurobiology  (LIN),  Magdeburg.  

Special  thanks  go  to  our  sponsors  for  their  financial,  technical,  and  logistic  assistance  (see  list  of  sponsors  on  the  preceding  page).    

Technical  assistance  has  been  provided  by  Reinhard  Blumenstein,  Andreas  Fügner,  and  Marco  Dombach  (all  from  LIN).  The  internet  presentation  of  the  meeting  has  been  developed  by  Corona  Labs  and  was  maintained  by  Torsten  Stöter  and  Eike  Budinger  (both  LIN).  The  registration  software  was  provided  by  Harald  Weinreich  (conftool).  

The  diverse  jobs  coming  up  in  the  organization  and  coordination  of  the  conference  office  have  been  taken  care  of  by  a  lot  of  helping  hands.  Particular  thanks  go  to  Carola  Kolouschek  who  headed  the  conference  organization.  We  would  like  to  thank  Sarah  Bresch,  Monika  Dobrowolny,  Anja  Gürke,  Julia  Henschke,  Ines  Kaiser,  Kathrin  Ohl,  and  Janet  Stallmann  (all  LIN).  

We  are  also  very  grateful  to  Julia  Henschke  (LIN)  for  her  support  and  assistance  during  the  preparation  of  these  proceedings.  

Many  thanks  go  to  Daniela  Wiechert,  on  behalf  of  the  whole  team  of  the  “Herrenkrug  Parkhotel”,  for  the  collaboration  and  the  hospitality.  

Finally,  we  would  like  to  thank  all  participants,  for  coming  to  Magdeburg  to  join  the  conference  and  contribute  to  its  sessions,  thus  filling  the  scientific  as  well  as  the  social  events  with  life.  

 

Magdeburg,  September  2014  

 

Page 178: Complete program including all scientific contributions (21 MB, PDF)

Notes  

 

Page 179: Complete program including all scientific contributions (21 MB, PDF)

 

 

Page 180: Complete program including all scientific contributions (21 MB, PDF)