11
COMPOSITES FACT SHEET

Composites Fact sheet 2 - AviationFacts.euaviationfacts.eu/.../Composites_Fact_sheet.pdfComposites!Factsheet! 6!! aircraft. doesn’t detect delamination.!10! Thermography The! thermography!

  • Upload
    vuhanh

  • View
    220

  • Download
    3

Embed Size (px)

Citation preview

 

   

 

COMPOSITES FACT SHEET

 

 Composites  Fact  sheet  

1    

Introduction  to  Composites  Composites   are   lighter,   stronger   and   have   more   design   shape   freedom  than   aluminium.1   These   advantages   are   reasons   why   aircraft  manufacturers   use  more   composite  materials   in   their   aircraft   nowadays.    Composites   increase   the  design   shape   freedom.  For  example,   the  Boeing  787  Dreamliner  weight  consists  of  50%  composite  materials2  and   is  more  aerodynamic   than   previous   models   due   to   more   design   flexibility   of  composites   in   comparison   with   metals.   Low   weight   and   better  aerodynamics  contribute   to  20  –  30%   less   fuel   consumption   than   today’s  similarly   sized   aircraft.2   However   composite   material   has   a   few  disadvantages   as   well.     Composites   are   susceptible   to   different   kinds   of  damage   than  metal   structures   such   as  micro-­‐cracking   and  delamination.3  Conventional   damage   detection   methods   are   not   optimized   to   detect  these   kind   of   damages.   That   is   why   additional   structural   weight   is  necessary   to   provide   safety   at   all   times.4   Furthermore,   damage  assessments   of   composites   (Figure   1)     take   more   time   nowadays   than  traditional  metal  structures  (Example  1)  due  to  the  lack  of  routine  with  the  repair  of  these  large  structures.  

 

 

   Example  1:  WILLEMSTAD,  September  25th,  2014  A  Boeing  787  Dreamliner   from  Arkefly  was   involved   in  an   incident  with  a  ground  vehicle.  The  aircraft  was  hit  by  a  high-­‐loader,  which  was  supplying    the   aircraft   at   the   time.   Due   to   a   thorough   assessment   by   Arkefly   in  cooperation  with   Boeing   the   passengers  were   delayed   for   almost   a   day.  After  inspection  it  turned  out  the  aircraft  was  not  damaged  by  the  ground  vehicle  and  Arkefly  received  approval    to  fly  to  Amsterdam.        

Figure  1:  A  Boeing  787  Dreamliner  from  Arkefly  

 Composites  Fact  sheet  

2    

Properties  of  composites  A  composite  material   can  be  described  as  a  combination  of   two  or  more  materials  having  a  recognizable  interface  between  them.5  In  this  fact  sheet  the   focus  will   be  on   the   fibre-­‐reinforced   composites  used   in   the  aviation  industry.  This  is  a  combination  of  fibres  and  a  matrix  (polymer  resin).  The  two  materials  work   together   to   combine   the   individual  properties,  which  results   in   a   lighter   or   stronger   structure   in   comparison   with   traditional  metal   structures.   It   is  possible   to  create  a   large  part  of  an  aircraft  out  of  one  piece  composite.  (Figure  2)  

       Figure  2:  Front  section  of  Boeing  787  Dreamliner  

In  the  introduction  it  was  stated  that  50%  of  the  total  weight  of  the  Boeing  787   Dreamliner   consists   of   composite   materials   (Figure   3).     Carbon  composites   are   used   more   frequently   because   of   their   other   good  properties  in  comparison  with  metals.  Not  only  the  low  weight  to  strength  ratio   is   an   advantage   of   composite   materials,   but   fatigue   and   corrosion  resistance   are   important   as   well.     The   fatigue   and   corrosion   resistance  results  in  less  maintenance  than  metal  structured  aircraft.1  

 

With   the   design   freedom   of   composites   it   is   possible   to   improve   the  aerodynamics  of  an  aircraft  resulting  in  higher  fuel  efficiency.  Furthermore  it  is  possible  to  increase  the  humidity  in  the  cabin  since  composite  is  not  as  sensitive   for   corrosion   and   fatigue   as   aluminium,   resulting   in   a   more  comfortable  flight  for  the  passengers.2    (Table  2)  

Advantages   Disadvantages  Good  strength  to  weight  ratio   Expensive  production  Corrosion  resistance   Labor  intensive  repair  procedures  Fatigue  resistance   Labor  intensive    damage  inspection  

methods  Excellent  machining/  shaping  capability    to  increase  aerodynamics  and  save  fuel  

 

Possibility  to  increase  humidity  in  pressurized  cabin  

 

Less  maintenance    Table  2:  Advantages  and  disadvantages  of  composites  in  aviation  

Figure  3:  Different  materials  used  in  the  Boeing  787  Dreamliner  

 Composites  Fact  sheet  

3    

Different  sources  of  damage  Nowadays  the  production  of  composites  is  rather  expensive  in  comparison  with  metals.  However,  mass  production  will  probably  decrease  the  price  in  the  future.  The  biggest  disadvantage  at  the  moment  is  the  labor  intensive  damage   inspection  methods.  This  can  be  damage  from  foreign  objects  or  imperfections  in  the  composite  material.  Damage  of  composite  materials  is  different   than  damage   in  metals   such  as  aluminium.    After  an  analysis  of  the   types   sources   of   these   damages,   the   different   kinds   of   inspection  methods  will  be  described.  If  the  damage  sources  are  not  clear  it  can  result  in   unknown   damaged   parts   and,   in   a  worst   case   scenario,   can   lead   to   a  total   failure   of   the   aircraft   structure.   The  most   frequent   sources   can   be  divided   into   the   following   categories:   impact   in-­‐flight,   foreign   object  damage  (FOD)  and  damage  caused  by  ground  handling  equipment.  6  

Impact in-flight                                      The   impact   in-­‐flight   damage   occurs   when   the   aircraft   is   in   movement.    These   impacts  can  be  a   lightning  strike  or  a  bird  strike.  The  detection    of  these   impacts   is   better  with   a  metal   aircraft   structure   than   a   composite  structure.  With  a  bird  strike   the  damage   is  hard  to  see  on  the  composite  surface   while   a   metal   surface   shows   a   dent   in   case   of   a   bird   strike;   a  composite  structure,  on  the  other  hand,    will  return  to  its  original  shape.    

 

 

 

 

 

 

A  lightning  strike  on  a  composite  surface  is  approximately  1,000  times  less  conductive   than  on  a  metal   surface6.  The  energy  of   the   lightning  strike   is  restricted   to   a   smaller   area   which     results   in   a   larger   damage   area            (Figure  4).  An  aircraft  surface  made  of  a  metal  does  not  have  to  be  better  in   case   of   a   bird   strike,   however   the   damage   is   harder   to   see   with   a  composite  structure.    

Foreign object damage                    Foreign   object   damage   (FOD)   is   also   a   frequent   damage   source   in   the  current  aviation  industry.  A  FOD  is  damage  caused  by  an  object  that  is  not  part   of   the   flying   aircraft.   These   items   can   be   small   rocks,   screws,   tools,  debris  etc.    (Example  2)  

Example  2:  CHARLES  DE  GAULLE,  July  25,  2000  When  the  Concorde  almost  reached  its  take-­‐off  speed  the  aircraft  struck  a  thin  metal  strip  on  the  runway.  This  strip  had  fallen  from  the  underside  of  a   DC-­‐10   that   had   departed   a   couple  minutes   earlier,   causing   one   of   the  Concorde’s   tires   to   burst.   A   large   piece   of   the   tire   struck   the   aircraft  resulting   in   a   shockwave   that   caused   a   fuel   tank   to   leak.  When   a   spark  ignited   this   fuel  both  engines  stopped   functioning,  causing   the  aircraft   to  eventually    crash.  

Ground handling damage                                The   National   Aerospace   Laboratory   (NLR)   in   the   Netherlands   has  investigated  the  amount  of  ground  handling  incidents  in  2008.  They  found  out  that  1  out  of  every  5000  flights  has  had  a  ground  handling  accident.7  This   means   that   61%   of   all   incidents   occurring   to   aircraft   happen   in  combination  with  ground  handling.    A  lot  of  ground  handling  equipment  is  needed   to   service  a  wide-­‐body  aircraft   (Figure  5).   The  damage   can  differ  from   a   small   paint   scratch   to   severe   damage.   However   (especially   with  

Figure  4:  Damage  of  composite  from  a  lightning  strike  

 Composites  Fact  sheet  

4    

composite  materials)  it  is  sometimes  not  visible  on  the  outside  how  severe  the  damage  is  on  the  inside.  This  makes  it  very  important  that  an  incident  is  always  reported.    

 

Types  of  damage  Impacts   on   a   composite   aircraft   structure   can   result   in   severe   damage.  Some  damages  (such  as  cracks)  are  the  same  as  metal  aircraft  structures.  However  composites  have  one  kind  of  damage  that  is  significantly  different  in   comparison   with   metals.   This   damage   is   called   delamination.   With  delamination  the  layers  of  composite  separate  from  each  other.  (Figure  6)  Hereby  the  structure  is  seriously  weakened.  Barely  Visible  Impact  Damage  (BVID)   is  another  version  of  delamination  because   this   type  of  damage   is  barely   visible   from   the   outside.   Therefore   inspection  methods   had   to   be  created  to  detect  delamination.8  

   

Delamination  

Figure  5:  Ground  handling    operations  

Figure  6:  Cross  sectional  view  of  composite  plate  with  a  delamination  

 Composites  Fact  sheet  

5    

Damage  detection  methods  A  visual  inspection  is  often  used  as  a  damage  detection  method.  However,  to   detect   impact   damage   that   is   barely   visible   to   the   human   eye   other  detection   methods   have   been   developed.   The   following   three   non-­‐destructive   inspection   (NDI)  methods  are  portable  and  practical   in  use   in  the   aviation   industry:   visual   inspection,   ultrasonic   pulse   echo   inspection  and  a  tap  test  inspection.  For  a  more  thorough  investigation,  radiography,    thermography   and   shearography   are  used.  A   relative  new  NDI   technique  currently  under  development  is  ultrasonic  verification  (USV).  

Visual inspection A  visual  inspection  is  used  first  when  inspecting  the  surface  of  an  aircraft.  With   a   visual   inspection   it   is   possible   to   detect   paint   scratches   and  wrinkles.  Also  discoloration  can  be  detected.  Discoloration  can  be  caused  due  to  a  lightning  strike.  For  internal  damage  of  a  composite  material  more  sophisticated  NDI  techniques  are  needed.    

Ultrasonic pulse echo inspection A  device  which   is  often  used  for  damage  detection  in  composite  aircraft  structures  is   a   “Ramp   Damage   Checker”   (RDC)  (Figure  7).  This  NDI  technique  is  based  on  ultrasonic   pulse   echo.   In   an   undamaged  composite   plate   an   ultrasonic   sound  wave   will   travel   through   the   material  until   it   reaches   an   air   boundary.   In  normal   conditions   this   air   boundary   will  be   the   inside   surface   of   the   composite.  When   there   is   a   delamination   of   the  structure,   the   echo   will   come   from   the  delamination   instead   of   the   inside  

surface   of   the   composite.   The   difference   in   echo   time   between   an  undamaged  and  a  damaged  composite  surface  is  used  to  identify   internal  damage   which   cannot   be   detected   with   a   visual   inspection.   A   RDC   is  reliable  for  detecting  internal  damage,  however  this   inspection  method  is  only  usable  for  small  areas.9  

Tap test inspection For  the  tap  test  a  special  hand-­‐held  device  is  used.  This  device  consists  of  a  hammer  with  an  accelerometer  built  into  the  tip.  This  device  measures  the  contact   time  of   the  hammer   tip  with   a   composite   surface   (Figure  8).   If   a  composite  material   is   damaged,   the   contact   time  of   the  hammer   tip  will  increase   due   to   lower   contact  stiffness.   A   tap   test   is   usable   to  detect   impact   damages   on   small  surfaces.   For   larger   areas   or  delamination   this   device   is   not  well  suited.8    

Radiography X-­‐ray   is   a   synonym   for   radiography.   With   this  inspection   method   low   energy   x-­‐rays   pass  through  the  composite  material.  A  sensitive  film  for  x-­‐rays  is  placed  under  the  material.  This  film  allows  the  inspector  to  analyze  discolorations  of  the   film.   (Figure   9)     This   inspection   method   is  not   favorable   to   detect   delamination,   however  it   can   be   used   to   detect   flaws   in   the   material  such  as  a  crushed  core  or  to  detect  water  in  the  core   cells.   Because   x-­‐rays   are   unhealthy   for   a  human  body   it   is   impractical   to  use  around  the  

Figure  8:  Tap  test  inspection  

Figure  7:  Ramp  Damage  Checker  Figure  9:  X-­‐ray  radiograph  

 Composites  Fact  sheet  

6    

aircraft. 10  

Thermography The   thermography   inspection   method   uses   an   external   heat   source   to  detect  damage  in  a  composite  plate  (Figure  10).   Infrared  radiation  causes  the   test   plate   to   heat   up.   Because   of   the   low   thermal   conductivity   and  therefore  a  low  heat  flow  through  composites  the  heat  distribution  pattern  is   useable   for   damage   detection.   Thermography   is   good   to   detect  water  accumulation  in  composite  sandwich  panels  of  larger  aircraft  surfaces.  It  is  almost  impossible  to  detect  delamination  with  this  NDI  technique.11  

Shearography Shearography   is   an   optical   method   to   detect   damaged   composites        (Figure   11).   This   method   was   created   to   eliminate   the   sensitivity   of  external   vibrations.     There   is   a   reference   made   of   the   composite   plate  without   any   load   on   it.   Shearography   allows   the   tested   plate   to   be   a  reference   by   shifting   or   “shearing”   the   image,   creating   a   double   image.    After  creating   this   first  double   image  a  small   load   is  provided  on  the  test  plate.   Software   compares   the   image   before   and   after   the   provided   load.  The  comparison  enables   impact  damage  detection.  However   this  method  

doesn’t   detect   delamination.   Shearography   has   some   possibilities   in  

detecting  damage  in  honeycomb  sandwich  composite  structures.12  

Ultrasonic verification  This  damage  detection  method  uses  ultrasonic  sound.  An  ultrasonic  pulse  is   transmitted   into   the   composite   material   (Figure   12).   The   echo   of   this  pulse   is  compared  with  a  reference  measurement  from  the  same  plate   in  undamaged   state.   By   using   the   fidelity   of   these   two  measurements   it   is  possible  to  conclude  if  the  plate  is  damaged  or  not.13  This  method  makes  it  possible   to   detect   damage   in   large   areas   with   few   sensors.   However  environmental  conditions  such  as  temperature  have  a  big  influence  on  the  fidelity.14   USV   detection   requires   further   development   before   it   can   be  used  in  aviation.  

 

 

 

Figure  10:  Thermography  

Figure  11:  Shearography  

 Composites  Fact  sheet  

7    

 

 

 

Research  for  the  future  The  conventional  NDI  techniques  are  not  developed  enough  to  remove  the  additional  structural  weight   for  composite  materials.4  However,   there  are  some   opportunities   for   the   current   NDI   techniques.   USV   is   developing  rapidly  for  example.  With  this  method  it  is  possible  to  detect  imperfections  ranging  from  small  cracks  to  delamination.   If   the  reliability  of  USV  can  be  increased  it  could  be  integrated  in  the  composite  structure  to  supply  real-­‐time  data   to   the   computers  on  board.  USV   is   the  only  damage  detection  method  that  has  the  opportunity  to  detect  damage  during  flight.  Structural  health   monitoring   (SHM)   is   a   different   name   for   integrated   real-­‐time  damage  detection;  this  system  can  be  compared  to  the  autonomic  nervous  system  of  a  human  body  (Figure  13).  With  SHM  it  is  possible  to  remove  the  human  factor  of  inspection,  thereby  improving  safety.15  Furthermore,  it   is  possible   to   have   only  maintenance  when   the   SHM   system   indicates   that  maintenance   is   necessary;   scheduled   maintenance   would   no   longer   be  necessary.16   The   most   important   advantage   is   the   removal   of   the  additional   structural   weight   of   composites.   This   will   result   in   lower   fuel  usage  and  decreased  environmental  impact  of  the  aircraft.  

   

Figure  12:  Ultrasonic  verification  of  composite  (experimental  setup)  

Figure  13:  Structural  health  monitoring  

 Composites  Fact  sheet  

8    

References  1. Niu,   M.   C.   Y.   (1992).   Composite   Airframe   Structures   -­‐   Practical  

Design   Information   and   Data   (3rd   Edition).   AD   Adaso/Adastra  Engineering  LLC.  

2. Boeing   (2014).   About   the   787   Family.   Retrieved   from:  http://www.boeing.com/boeing/commercial/787family/background.page?  

3. A.   Nairn,   J.   (2000).  Matrix  Microcracking   in   Composites.   Salt   Lake  City:  University  of  Utah.  

4. Davids,   B.   (2012).   Integrated   composite   damage   detection.   Delft:  Delft  University  of  Technology.  

5. Messler,   R.W.,  Messler,   R.W.   Jr.   (2011).   The   Essence   of  Materials  for  Engineer.  London:  Jones  &  Bartlett  Learning  International.  

6. Nieruch,   K.   D.   (2012).   Operational   inspection   methods   of   fibre  composite  airframe  structures  used  for  maintenance.  PhD  thesis.  

7. Balk,   A.D.   (2008).  Safety   of   ground  handling.  Marknesse:  National  Aerospace  Laboratory  NLR.    

8. Heida,   J.H.,   Platenkamp,  D.J.   (2011).  Evaluation  of   non-­‐destructive  inspection  methods  for  composite  aerospace  structures.  Marknesse:  National  Aerospace  Laboratory  NLR.  

9. Olympus.  Aircraft  Composite  Inspection  with  35RDC  Ramp  Damage  Checker.  Retrieved  from:  http://www.olympus-­‐ims.com/en/applications/aircraft-­‐composite-­‐inspection-­‐35rdc-­‐ramp-­‐damage-­‐checker/  

10. FEDERAL  AVIATION  ADMINISTRATION  (2012).  Aviation  Maintenance  Technician  Handbook  –  Airframe.  Advanced  Composite  Material,  7,  1-­‐58  

11. Bagavathiappan,  S.,  Lahiri,  B.  B.,  Saravanan,  T.,  Philip,  J.,  Jayakumar  T.  (2013).  Infrared  thermography  for  condition  monitoring.  Infrared  Physics  &  Technology,  60,  35-­‐55.  

12. De   Angelisa,   G.,   Meob   M.,   Almondb   D.P.,   Pickeringb,   S.G.,  Angionib,S.L.   (2012).   A   new   technique   to   detect   defect   size   and  depth   in   composite   structures   using   digital   shearography   and  unconstrained  optimization.  NDT  &  E  International,  45  (1),  91–96  

13. Pelt,  M.,  de  Boer,  R.J.,  Schoemaker,  C.,  Sprik,  R.   (2014).  Ultrasonic  verification   of   composite   structures.   Amsterdam:   Amsterdam  University  of  Applied  Sciences.  

14. Jongerden,   S.,   Soltani,   P.   (2013)  Ultrasonic   verification:   Detecting  barely  visible  impact  damage  on  composite  structures.  Amsterdam:  Amsterdam  University  of  Applied  Sciences.  

15. Speckmann,  H.,  Roesner,  H.  (2006).  Structural  health  monitoring:  A  contribution  to  the  intelligent  aircraft  structure.  Seattle:  ECNDT.  

16. Heida,   J.   (2009).   Structural   Health  Monitoring   (SHM).   Marknesse:  National  Aerospace  Laboratory  NLR.  

   

 Composites  Fact  sheet  

9    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dutch  summary  Composieten   zijn   lichter,   sterker   en   geven  meer   vrijheid   in   het   ontwerp  van  het  vliegtuig  dan  aluminium.1  Dit  zijn  een  aantal  primaire  redenen  dat  vliegtuigfabrikanten  meer  composieten  in  vliegtuigen  gaan  gebruiken.  Het  gewicht   van   de   Boeing   787   Dreamliner   bestaat   bijvoorbeeld   voor   50  procent   uit   composieten,   wat   bijdraagt   aan   20-­‐30%   brandstofbesparing  door   een   lager   gewicht   en   betere   aerodynamica   van   het   vliegtuig   in  vergelijking   met   even   grote   vliegtuigen   gemaakt   van   voornamelijk  aluminium.2    

Composieten   hebben   echter   vergeleken   met   metalen   andere   soorten  schade,  zoals  kleine  barstjes  en  delaminatie.3  Hedendaagse  methodes  om  schade  bij  composieten  te  vinden  zijn  niet  adequaat  om  kleine  barstjes  en  delaminatie   te   detecteren.   Daarom   is   het   nodig   om   extra   structureel  gewicht  aan  onderdelen  van  composiet  toe  te  voegen  om  de  veiligheid  ten  alle  tijden  te  waarborgen.4  Om  dit  extra  gewicht  te  elimineren  is  het  nodig  om   een   adequate   methode   te   hebben   om   schade   te   detecteren   bij  composieten.   Een   lichter   vliegtuig   zal   resulteren   in   minder  brandstofverbruik,  waarbij  de  impact  op  het  milieu  wordt  verminderd.    

De  detectiemethoden  van  schade  in  composieten  worden  op  dit  moment  snel   ontwikkeld.   “Ultrasonic   Verification”   (USV)   is   bijvoorbeeld   een  methode  waarmee  schade  wordt  gedetecteerd  met  behulp  van  ultrasone  geluidsgolven.   Als   de   betrouwbaarheid   van   deze   methode   kan   worden  verhoogd,   is   het   mogelijk   om   dit   te   integreren   in   het   vliegtuig.   Zo   kan  tijdens  het  vliegen  data  naar  de  computers  aan  boord  worden  verzonden.  Dit   wordt   ook   wel   “Structural   Health  Monitoring”   (SHM)   genoemd.  Met  SHM  is  het  mogelijk  om  de  menselijke  factor  van  het  schade  detecteren  te  elimineren  wat  zal  zorgen  voor  meer  veiligheid.15  

   

Image  references  1   https://www.flickr.com/photos/awilson154/15278513859/in/photolist-­‐    2   Nieruch,  K.  D.  (2012).  Operational  inspection  methods  of  fibre  composite  

airframe  structures  used  for  maintenance.  PhD  thesis.  Page  28    3   Hale,  J.  (2008).  Boeing  787  from  the  ground  up.  Aeromagazine,  04  (06).    4   Nieruch,  K.  D.  (2012).  Operational  inspection  methods  of  fibre  composite  

airframe  structures  used  for  maintenance.  PhD  thesis.  Page  39    5     Nieruch,  K.  D.  (2012).  Operational  inspection  methods  of  fibre  composite  

airframe  structures  used  for  maintenance.  PhD  thesis.  Page  42    6   Ee,  S.  (2014).  Schematic  view  of  a  delamination  in  composite.  Created  by  the  

author    7   Ee,  S.  (2014).  Ramp  Damage  Checker.  Photographed  by  the  author    8   http://www.jrtech.co.uk/web/images/stories/QA/wp632amxy300x159.jpg    9   Thornton,  J.  (2004).  Enhanced  radiography  for  aircraft  materials  and  

components.  Engineering  Failure  Analysis,  11(2),  207-­‐220.    10   http://www.infratec.eu/uploads/tx_templavoila/Thermography-­‐Aerospace-­‐

Industry-­‐Insulation-­‐failure.gif    11   http://opticalengineering.spiedigitallibrary.org/data/Journals/OPTICE/  

926773/OE_52_10_101902_f001.png    12   Pelt,  M.,  de  Boer,  R.J.,  Schoemaker,  C.,  Sprik,  R.  (2014).  Ultrasonic  

verification  of  composite  structures.  Amsterdam:  Amsterdam  University  of  Applied  Sciences.  Page  3  

 13   Heida,  J.  (2009).  Structural  Health  Monitoring  (SHM).  Marknesse:  National  

Aerospace  Laboratory  NLR.  Page  7    

 Composites  Fact  sheet  

10    

 

This  is  a  Luchtvaartfeiten.nl  /  AviationFacts.eu  publication.    Author:  Sam  van  Ee  Editorial  staff:  R.J.  de  Boer  PhD  Msc,  G.  Boosten  MSc  &  G.J.S.  Vlaming  MSc    Copying  texts  is  allowed.  Please  cite:  ‘Luchtvaartfeiten.nl  (2015),  Composites  Fact  sheet,    www.luchtvaartfeiten.nl’    Luchtvaartfeiten.nl  is  an  initiative  by  the  Aviation  Academy  at  the  Amsterdam  University  of  Applied  Sciences  (HvA).  Students  and  teachers  share  knowledge  with  politicians  and  the  general  public  to  ensure  discussions  are  based  on  facts.      December  2014  Revised  February  2015