61
ABG Interpretation ยยยยยยยยยย ยยยยยยยยยยยย

Cp 50 10-18 2 blood gas and acid base balance

  • Upload
    a-c

  • View
    332

  • Download
    0

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: Cp 50 10-18 2  blood gas and acid base balance

ABG Interpretation

ยิ่��งศั�กดิ์� ศั�ภนิ�ตยิ่านินิท์�

Page 2: Cp 50 10-18 2  blood gas and acid base balance

Case 1FiO2 0.21pH 7.21PaCO2 64BE 2PaO2 48SpO2 80

• Acute respiratory acidosis with moderate hypoxemia

Page 3: Cp 50 10-18 2  blood gas and acid base balance

Normal composition of clean, dry air near sea level

Nitrogen 78.084Oxygen 20.9476Argon 0.934Carbon dioxide 0.0314Neon 0.001818Helium 0.000524Krypton 0.000114Xenon 0.000087Hydrogen 0.00005Methane 0.0002Nitrous oxide 0.00005

Page 4: Cp 50 10-18 2  blood gas and acid base balance

Dalton’s Law of Partial Pressure

GAS PARTIAL PRESSURE = % GAS CONC x 7.13 mmHg

Page 5: Cp 50 10-18 2  blood gas and acid base balance

ABG DATApH 7.40 ( 7.35 - 7.45 )H+ 40 nM/LPaO2 97 ( 90- 100 ) torrPaCO2 40 ( 35 - 45 ) torrActual HCO324 ( 22 - 26 ) mEq/LBase excess +/- 2 mEq/LHb 15 gm%O2 sat 95-100%O2 content 15-23%

Page 6: Cp 50 10-18 2  blood gas and acid base balance

IMPLICATIONS OF ABG

• LUNG FUNCTION• OXYGENATION, VENTILATION, ACID BASE

STATUS• EARLY DIAGNOSIS OF ARF• DIAGNOSIS OF SECONDARY POLYCYTHEMIA

DUE TO PULMONARY DISEASE• HEART AND CIRCULATORY FUNCTION• KIDNEY FUNCTION• METABOLISM• THE USE OF SOME MEDICATIONS• QUALIFY PATIENTS FOR HOME OXYGEN USE• DETECT EXPOSURE TO CARBON MONOXIDE

AND OTHER CHEMICALS

Page 7: Cp 50 10-18 2  blood gas and acid base balance

TECHNIQUES

SITES: radial, brachial, femoral arteries.

Allen’s testVOLUME: 1 mL

Page 8: Cp 50 10-18 2  blood gas and acid base balance
Page 9: Cp 50 10-18 2  blood gas and acid base balance

ERRORS• PLASTIC SYRINGE• AIR MIXTURE • OVER HEPARINIZATION (acid)• VENOUS SAMPLE • PAIN• DELAY OR UNCOOL SPECIMEN• ERROR OF GAS ANALYSER

Page 10: Cp 50 10-18 2  blood gas and acid base balance

PaCO2

• 80% plasma NaHCO3

• 10% carboxy Hb + 2% carbamino comp

• 8% dissolved in plasma

Page 11: Cp 50 10-18 2  blood gas and acid base balance
Page 12: Cp 50 10-18 2  blood gas and acid base balance

EXCRETORY RATE OF CO2 = VA x Pa CO2

Pa CO2 = 1 / VA

VA = ( VT - VD ) x fINTERPRETATION OF PaCO2

PaCO2 > 45 mmHg = alveolar hypoventilation = resp acidosis

PaCO2 < 35 mmHg = alveolar hyperventilation = resp alkalosis

Page 13: Cp 50 10-18 2  blood gas and acid base balance
Page 14: Cp 50 10-18 2  blood gas and acid base balance
Page 15: Cp 50 10-18 2  blood gas and acid base balance
Page 16: Cp 50 10-18 2  blood gas and acid base balance
Page 17: Cp 50 10-18 2  blood gas and acid base balance

PaO2

Interpretation> 100 mmHg hyperoxemia90-100 normal60-80 mild

hypoxemia40-60 moderate

hypoxemia< 40 severe hypoxemia

Page 18: Cp 50 10-18 2  blood gas and acid base balance

Oxygenation and external respiration

Causes of hypoxemia

Low FIO2

HypoventilationDiffusion defectVentilation perfusion mismatchDead space and shuntingVenous admixture

Page 19: Cp 50 10-18 2  blood gas and acid base balance

Oxygen transport and internal respiration

Arterial oxygen contentVolume of dissolved oxygen

+Volume of combined oxygen with

hemoglobin-------------------------------------

Total oxygen content--------------------------------------

Page 20: Cp 50 10-18 2  blood gas and acid base balance

volume of dissolved O2 = PaO2 x CsO2 = 0.3 vol%O2

volume of combined O2 = Hb x SaO2 x 1.34 = 19.7vol%

CaO2 = dissolved O2 + combined O2 = 20 vol%

CaO2 - CvO2 = 20 - 15.2 = 4.8 vol%

O2 consumption = Q x C(a - v) O2 = 250 mL O2/min

total O2 transport = cardiac output x CaO2 = 1000mLO2/min

Page 21: Cp 50 10-18 2  blood gas and acid base balance

Oxygenation ratio (PaO2/%FiO2)

Pulmonary status O2 ratio

normal 4.0 - 5.0moderate pulmonary dysfunction

2.0 - 3.9substantial pulmonary dysfunction

< 2.0

Page 22: Cp 50 10-18 2  blood gas and acid base balance

pHHenderson’s equation

Kc = [H] [HCO3] / [H2CO3]

Hasselbalch’s equation pH = pKc + log [HCO3] /

[H2CO3]

pH = pKc + log [HCO3 / dissolve CO2]

pH = 6.1 + log 24 / 1.2 pH = 7.4

Page 23: Cp 50 10-18 2  blood gas and acid base balance

Determination of primary problem

pH> 7.4 Alkalosis is primary;

acidosis is compensatory< 7.4 Acidosis is primary;

alkalosis is compensatory

Page 24: Cp 50 10-18 2  blood gas and acid base balance

Severity of generalized acid-base disturbances

pH Degree of impairment

< 7.20 severe acidemia 7.20-7.29 moderate acidemia 7.30-7.34 mild acidemia 7.35-7.45 normal pH 7.46-7.50 mild alkalemia 7.51-7.55 moderate alkalemia > 7.55 severe alkalemia

Page 25: Cp 50 10-18 2  blood gas and acid base balance

Calculated bicarbonate• Actual bicarbonate• It is a calculated value based on the

Henderson-Hasselbalch equation.• Henderson’s equation

Kc = [H] [HCO3] / [H2CO3]

Hasselbalch’s equation pH = pKc + log [HCO3] / [H2CO3]

pH = pKc + log [HCO3 / dissolve CO2]

pH = 6.1 + log 24 / 1.2 pH = 7.4

Page 26: Cp 50 10-18 2  blood gas and acid base balance

Base excess of blood

BE = Observed BB - normal BB

Page 27: Cp 50 10-18 2  blood gas and acid base balance
Page 28: Cp 50 10-18 2  blood gas and acid base balance
Page 29: Cp 50 10-18 2  blood gas and acid base balance
Page 30: Cp 50 10-18 2  blood gas and acid base balance
Page 31: Cp 50 10-18 2  blood gas and acid base balance

Classification of laboratory metabolic acid-base compensationClassification BE

HCO3

normal metabolic component 0 +/-2 24+/-2

metabolic acidosis < - 2< 22

metabolic alkalosis > + 2 > 26

Page 32: Cp 50 10-18 2  blood gas and acid base balance

Stepwise approach to diagnosing acid-base disorders

• Step1: Acidemic or alkalemic?• Step2: Is the primary disturbance

respiratory or metabolic?• Step3: For a respiratory disturbance,

determine whether it is acute or chronic.

• Step4: For a metabolic acidosis, determine whether an anion gap is present.

• Step5: Determine whether other metabolic disturbances coexist with an anion gap acidosis.

• Step6: Assess the normal compensation by the respiratory system for a metabolic disturbance.

Page 33: Cp 50 10-18 2  blood gas and acid base balance

Step1: Acidemic or Alkalemic?

Normal arterial blood pH = 7.40 +/- 0.05

Acidemic: pH < 7.35Alkalemic: pH > 7.45

Page 34: Cp 50 10-18 2  blood gas and acid base balance

Step2: Is the primary disturbance respiratory or metabolic?

A respiratory disturbance alters the arterial PaCO2 (normal value 40, range 38-42). Go to step 3.

A metabolic disturbance alters the serum HCO3 (normal value 24, range 22-26)

• If HCO3 < 22, metabolic acidosis is present. Go to step 4.

• If HCO3 > 26, metabolic alkalosis is present, is respiratory compensation adequate? Go to step 6.

Page 35: Cp 50 10-18 2  blood gas and acid base balance

Step3: For a respiratory disturbance, determine whether it is acute or chronic.

• Ac resp acid: pH decrease = 0.08*(PaCO2-40)/10

• Ch resp acid: pH decrease = 0.03*(PaCO2-40)/10

• Ac resp alka: pH increase = 0.08*(40 - PaCO2)/10

• Ch resp alka: pH increase = 0.017*(40 - PaCO2)/10

Page 36: Cp 50 10-18 2  blood gas and acid base balance

Step4: For a metabolic acidosis, determine whether an anion gap is

present.

• Anion gap = Na - (Cl + HCO3)

• Anion gap metabolic acidosis, anion gap > 12

• Normal or non anion gap acidosis, anion gap </= 12

Page 37: Cp 50 10-18 2  blood gas and acid base balance

Anion gap reflects the unmeasured anion and cation.

Unmeasured Anions

Proteins, mostly albumin 15 mEq/L

Organic acids 5 mEq/LPhosphates 2 mEq/LSulfates 1 mEq/LTotal: 23 mEq/L

Measured AnionsChloride 104 mEq/LBicarbonate 24 mEq/LTotal: 128 mEq/L

Unmeasured Cations

Calcium 5 mEq/LPotassium 4.5 mEq/LMagnesium 1.5 mEq/LTotal: 11 mEq/L

Measured CationsSodium 140 mEq/LTotal: 140 mEq/L

Page 38: Cp 50 10-18 2  blood gas and acid base balance
Page 39: Cp 50 10-18 2  blood gas and acid base balance
Page 40: Cp 50 10-18 2  blood gas and acid base balance
Page 41: Cp 50 10-18 2  blood gas and acid base balance

Step5: Determine whether other metabolic disturbances coexist with an anion gap

acidosis.

Corrected HCO3 = measured HCO3

+ (anion gap - 12)

If the corrected HCO3 varies significantly above or below 24, then a mixed or more complex metabolic disturbance exists.

To be more specific, if the corrected HCO3 is greater than 24, a metabolic alkalosis coexists. If the corrected HCO3 is less than 24 then a non anion gap acidosis coexists.

Page 42: Cp 50 10-18 2  blood gas and acid base balance
Page 43: Cp 50 10-18 2  blood gas and acid base balance
Page 44: Cp 50 10-18 2  blood gas and acid base balance
Page 45: Cp 50 10-18 2  blood gas and acid base balance
Page 46: Cp 50 10-18 2  blood gas and acid base balance

Step6: Assess the normal compensation by the respiratory system for a metabolic disturbance.

Winter’s FormulaExpected PaCO2 = (1.5*HCO3) +(8+/-2)

Winter’s Formula does not predict the resp response to a metabolic alkalosis.

Two general rules• a pt will increase PaCO2 above 40 but not greater

than 50-55 to compensate for a metabolic alkalosis.• a pt will be alkalemic if the PaCO2 is elevated to

compensate for a met alk ( If the patient is acidemic,PH < 7.38, then an additional resp acid is present).

Page 47: Cp 50 10-18 2  blood gas and acid base balance
Page 48: Cp 50 10-18 2  blood gas and acid base balance
Page 49: Cp 50 10-18 2  blood gas and acid base balance
Page 50: Cp 50 10-18 2  blood gas and acid base balance
Page 51: Cp 50 10-18 2  blood gas and acid base balance
Page 52: Cp 50 10-18 2  blood gas and acid base balance
Page 53: Cp 50 10-18 2  blood gas and acid base balance

Steps in evaluation and classification of acid-base

compensation• Evaluate for the presence of

compensation.• Determine the probable primary

problem.• Classify the degree of

compensation.

Page 54: Cp 50 10-18 2  blood gas and acid base balance

Alerts to mixed acid-base disturbances

• If respiratory and metabolic parameters change proportionately, pH remains unchanged.

• Both parameters are altered in fashion that changes the pH in the same direction.

• Fails to compensate in the expected manner for a primary disorder after sufficient time has elapse.

• A metabolic alkalosis is accompanied by an increase in the anion gap.

• Absent of compensation.• Long standing pulmonary or renal disease.• Excessive compensation.• Respiratory assistance.• Settings conducive to mixed disturbances.• Triple disorders may also be encountered.

Page 55: Cp 50 10-18 2  blood gas and acid base balance

Case 2FiO2 0.21pH 7.22PaCO2 25HCO3 10PaO2 96SaO2 95creatinine 11 mg/dL• Simple metabolic acidosis with normoxemia

Page 56: Cp 50 10-18 2  blood gas and acid base balance

Case 4FiO2 0.21pH 7.35PaCO2 22HCO3 12PaO2 41SaO2 75

• Mixed respiratory alkalosis and metabolic acidosis.

Page 57: Cp 50 10-18 2  blood gas and acid base balance

Case 5FiO2 0.21pH 7.10PaCO2 95BE - 5HCO3 29PaO2 60SpO2 78%

• Partially compensated respiratory acidosis.

Page 58: Cp 50 10-18 2  blood gas and acid base balance

Case 6FiO2 0.21pH 7.53PaCO2 49HCO3 39PaO2 92SaO2 98

• Partially compensated metabolic alkalosis with normoxemia.

Page 59: Cp 50 10-18 2  blood gas and acid base balance

Case 7FiO2 0.21pH 7.58PaCO2 31HCO3 28PaO2 65SaO2 96

• Combined respiratory alkalosis and metabolic alkalosis with mild hypoxemia.

Page 60: Cp 50 10-18 2  blood gas and acid base balance

Case 9FiO2 0.21pH 7.04PaCO2 15BE -22PaO2 125SaO2 95

• Partially compensated metabolic acidosis with hyperoxemia.

Page 61: Cp 50 10-18 2  blood gas and acid base balance

Case 10FiO2 0.21pH 7.25PaCO2 80HCO3 34PaO2 39SaO2 52

• Partially compensated respiratory acidosis with severe hypoxemia.