44
平成196 財団法人 電力中央研究所 電力中央研究所報告 研究報告:H 06018 雷撃による風車ブレードの破損様相と その保護手法の効果の基礎的検討

CRIEPI HO6018

Embed Size (px)

DESCRIPTION

Reporte

Citation preview

  • 19 6

    H06018

  • CRIEPI i

    1 2 3

    4

    Key WordsLightning Protection Wind Power Wind Turbine Lightning Stroke Winter Lightning

    Study on Lightning Outage Mechanism of Wind Turbine Blades and Evaluation of Lightning Protection Methods for Them

    by Shigeru Yokoyama, Atsushi Wada, Akira Asakawa and Takatoshi Shindo

    Abstract

    Lightning attachment experiments using 3 m blade samples were conducted to study the lightning damage and

    effectiveness of various types of protection techniques employed for wind turbine blades.

    Regarding non-conductive blade, creeping discharge occurred frequcntly in polluted condition, and sometimes penetrative

    destruction was also observed. In the case of horizontally arranged blades with a single-receptor and a down conductor,

    discharge frequently penetrated the blade. A vertically or obliquely arranged blade involved the risk of being damaged at edge

    of the blade since the discharge progressed on the surface of the blade to the receptor. The blade covered with conducting-cap

    at the top of the blade showed relatively high protection efficiency.

    From the experimental results, it is important to find the testing mcthods of lightning attachment in order to evaluate the

    actual performance of protective methods for wind turbines.

    (Electric Power Engineering Research Laboratory Rep.No.H06018) 19 3 30 *1 *2 *3 *4

  • CRIEPI ii

    100 kW

    2

    (1) 25

    (2)

    (3) 3 4

    (1)

    (2)

  • CRIEPI iii

    50()

    (a) (b) (c)

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    Blade Polluted blade Metallic pipe

    50%F

    OV

    (kV)

    ()

    4

    3

    50

    (k

    V)

  • CRIEPI iv

    1

    1

    2.1 1

    2.2 1

    2.3 2

    2

    3.1 2

    3.2 2

    3.3 50 4

    3.4 5

    3.5 5

    5

    4.1 6

    4.2 9

    12

    5.1 12

    5.2 12

    5.3 12

    5.4 13

    5.5 14

    5.6 16

    5.7 19

    5.8 20

    21

    6.1 21

    6.2 21

    6.3 21

    6.4 22

  • CRIEPI v

    6.5 22

    6.6 23

    25

    7.1 25

    7.2 25

    26

    8.1 26

    8.2 27

    8.3 28

    28

    10. 30

    11. 31

    12. 31

    33

  • CRIEPI 1

    ,,

    ,1996,1.4kW

    10 100 kW

    ,,

    1000kW

    ,

    100m ,

    ,

    ,

    ,,,

    ,,

    ,

    ,

    ,

    ,,,,

    ,

    ,

    ,

    ,,

    ,

    ,,

    ,

    ,,

    ,

    ,

    ,,

    ,,

    ,

    ,

    ,

    ,

    2.1

    IEC

    2.1 ,

    ,, 1

    100 48

    12,

    710,

    4351, 2032

    100

    19911998 1498 738 8.0

    19901998 2839 851 3.9

    19921998 428 86 5.8

    2.2

    NEDO

    34 35 ,

    ,, 11

    2 , 27

    8 3

    7 ,

    ,,

    ,

    2.1 (2)Table 2.1 Outage statistics of wind power

    station in European countries

  • CRIEPI 2

    2.3

    45,

    ,,

    1

    2

    3

    4,

    5

    6

    7

    8,

    9

    ,

    ,,

    12MV

    3.1

    ,

    ,

    ,

    ,

    ,,

    ss ,

    s s

    1.2/50s

    250/2500s

    4.1 80/2500s

    ,

    ,

    ,

    12MV 3.1

    ,

    3.2

    3.2

    3.2.1 ALPS

    3.3

    ALPS

    ,

    ND

    ,

    12 ,

    3.2.2 , ,,

    ,

    ,,

  • CRIEPI 3

    (a)

    (b)

    3.1 12MV

    Fig. 3.1 12MV Impulse voltage generator in Shiobara testing laboratory and generating circuits impulse voltage tests

    CT

    ,,

    ,

    3.2

    Fig.3.2 Impulse voltage waveforms

    3.3

    Fig.3.3 Arrangement of measuring instruments

    3.2.3 ALPS ALPS (Automatic Lightning Progressing

    Feature Observation System:

    ),

    ,1983

    (a) scc

    85

    (b)

  • CRIEPI 4

    3.4 ALPS

    Fig.3.4 Setup of the ALPS

    a (b) ALPS

    3.5 ALPS Fig.3.5 Example of discharge manner observed

    by the ALPS

    678

    ,

    0.1s

    6636 , 1

    ,,

    1616256 ,

    11

    ALPS 3.4

    ,ALPS 3.5

    ALPS 3.6

    ,

    ALPS , O/E

    3.6 ALPS

    Fig.3.6 Configuration of the ALPS

    , A/D,

    ,

    ALPS ,

    0

    100,15

    ,0.1s50s,

    32,765 ,s

    ,

    3.3 50 ,

    ,,50

    SOV50

    SOV

    50SOV

    50SOV

    1

    d(kV)

    ,

    d(kV),

    GPS

    GPS

    2

    1

    AC100V AC100V

    AC100V

  • CRIEPI 5

    ,

    n

    ,3040

    50 %SOV 9

    3.4

    ,,,

    ,3

    ,

    ,

    60

    ,

    ,

    ,

    ,

    ,

    ,20m

    40m ,

    ,

    ,

    ,

    10

    ,, 0

    45 90

    3.5

    ,,

    ,

    ,

    ,

    ,,

    ,,

    ,

    ,

    4.1

    10g/

    4.1.1, 4.1.2

    4.2 ,

    0.1mg/cm2

    ,

    ,,

    ,

    ,

    ,,

    ,

    ,,

    ,

    ,,

    ,

    ,

    ,

    ,

    ,

    (111213,),

    -

  • CRIEPI 6

    ,

    ,

    ,

    4.1 50

    75mmmm

    4.1.1

    2m

    50SOV

    4m

    4.1

    (a)

    (b)

    (c)

    4.2 50SOV

    50SOV 20

    4.1.2

    3m

    4.2 50SOV

    Fig.4.2 50% sparkover voltages (Lightning impulse voltage)

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    Positive Negative

    50%

    SOV

    (kV

    )

    PVC pipe Polluted PVC pipe Metallic pipe

    12 43 960mbar

    (a) (b) (c)

    (a) (b) (c)

    4.1

    Fig.4.1 Discharge on vinyl chloride pipeof 2 meter length

  • CRIEPI 7

    4.1 4.3

    4.4 50SOV

    10

    35m

    50SOV

    14

    ()

    16

    4.1.3

    4.1.2 2 50

    50

    1

    4.5

    ,

    38 30

    , 50

    ,WET

    10/l

    ,

    , 80s

    50

    V5020

    4.1

    Table 4.1 Discharge manner of various objects

    4.5

    Fig.4.5 Layout of experimental facilities

    0

    200

    400

    600

    800

    1000

    1200

    1400

    PVC pipe Polluted PVCpipe

    Metallic pipe

    50%

    SOV

    (kV)

    22.5 80 962mbar

    4.4 50%SOV

    Fig.4.4 Sparkover voltage (Switching impulse voltage)

    (a) (b) (c)

    (a) (b) (c)

    4.3

    Fig.4.3 Discharge on vinyl pipe of 2 meter length (Switching impulse voltage)

  • CRIEPI 8

    2

    4.6 50

    ,

    ,,

    (a)

    1)

    ,50

    ,

    50

    ,

    50

    2) ,

    ,50%

    ,

    3)

    50

    50

    (b)

    1)

    ,50

    ,,

    50

    2) ,

    ,50

    ,

    3)

    ,50

    50

    (c)

    50SOV

    ,50

    , 4.2

    ,DRY

    ,50

    ,

    ,

    ,,

    WET

    ,

    4.6 50% SOV

    Fig.4.6 50% SOV under various test conditions

  • CRIEPI 9

    4.2 :4 Tf80s

    Table 4.2 Discharge manner for various test conditions

    a)

    Gap m

    ()

    Dry 1 4 4 1 9

    Dry 2 12 0 2 14

    Dry 1 7 3 15 25 Wet 2 1 7 3 11

    Wet 3 3 5 2 10

    3 0 0 16 16

    b)

    Gap m

    ()

    Dry 1 14 1 3 18

    Dry 1 0 1 14 15

    Wet 1 0 0 16 16 Wet 2 0 0 13 13

    3 0 0 10 10

    ,,

    ,

    ,

    ,

    ,

    ,

    ,,

    4.2

    12m 3m

    ,

    FRP , 10mm

    4.2.1

    50SOV , 4m

    4.7

    3.5

    ,

    50SOV ,

    ,3m

    4.3

    4.7

    Fig.4.7 Arrangement of insulated-blade tests

  • CRIEPI 10

    28

    () 8

    14

    4.8

    ,

    4.9 ,,

    50SOV

    ,50SOV 10

    4.2.2

    ,

    ,

    4.4

    13

    ,

    4.10

    ,

    4.4

    Table 4.4 Test results for contaminated insulated-blade

    No.

    16 7

    812

    13 ()14, 15

    1625

    26 (2 )2729

    30 (3 )

    110 11

    1224

    4.3

    Table 4.3 Experimental result on discharge manners for contaminated insulated-blades

    (a) (b) (c)

    (a) (b) () (c) ()

    4.8

    Fig.4.8 Discharge manner on windmill blade(positive switching impulse voltage)

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    Clean blade Polluted blade Metallic pipe

    50%

    SOV

    (kV

    )

    22 82

    966 mbar

    4.9 50%SOV ()

    Fig.4.9 50% sparkover voltage (positive switching impulse voltage)

  • CRIEPI 11

    0.01C

    2 4.11 4.12

    1

    , 3m

    10 ,11

    4.13

    ,,

    ,

    4.144.15 , 4.8b,c

    ALPS 4.14

    ,131.8s

    5s

    ,

    (b)

    (c) a

    (d)

    4.10

    Fig.4.10 Penetration of discharge into inner cavity of contaminated insulated-blade

    4.11 2 Fig.4.11 Second penetration of discharge

    4.12 3 Fig.4.11 Third penetration

    of discharge

    a (b)

    4.13

    Fig.4.13 Damage in edge part of blade

  • CRIEPI 12

    5.1

    ,

    ,

    , 2

    ,

    ,

    ,

    25mm

    5.2

    , 12m

    , 4.2

    10mm FRP

    5.3 5.1 ,

    5.1 ,

    ,

    ,

    5.2

    131.6 [s] Still image 131.8131.7 131.9

    4.14 Fig.4.14 Discharge progressing manner of non-contaminated blade

    4.15 Fig.4.15 Discharge progressing manner of contaminated blade

    190.2 [s] Still image 190.4190.3 190.5

  • CRIEPI 13

    5.1 Table 5.1 Test result on discharge manner

    for vertically arranged blades

    5.4 45 ,

    5.3

    , 5.2

    5.2

    Table 5.2 Test results for obliquely arranged blades

    4m

    10

    ,

    2

    5.4, 5.5

    6

    3

    3

    9

    1

    10

    (a) (b) (c)

    5.2 ()

    Fig.5.2 Discharge manner and damage in tip part of blade

    5.1

    Fig.5.1 Vertical arrangement of blade

    5.3

    Fig.5.3 Oblique arrangement of blade

    10

    10

    10

    10

  • CRIEPI 14

    5.5

    4m

    5.6 , 5.3

    , 1

    ,FRP ,

    5.3 Table 5.3 Test results for horizontal arrangement I

    3

    20

    12

    1

    1

    16

    1

    (a) (b)

    5.4

    Fig.5.4 Discharge on receptor along surface of blade

    (a) (b)

    5.5

    Fig.5.5 Direct discharge on receptor

    5.6 Fig.5.6 Horizontal arrangement I

    Trailing edge upside-

  • CRIEPI 15

    5.7

    2

    ,

    ,,

    5.4 5.8

    ,5.55.9

    5.4 Table 5.4 Location of damage due to positive

    lightning impulse voltage

    No.

    1

    2

    3 No.2

    5.5 Table 5.5 Location of damage

    (positive lightning impulse voltage)

    No.

    1

    2

    3 No.2

    ()

    4

    5

    6

    7

    8 No.1

    9 No.2

    ()

    10

    11

    ()

    12

    5.7 ()

    Fig.5.7 Penetration of discharge into blade cavity (negative switching impulse voltage)

    Receptor

    5.8 Fig.5.8 Location of damage

    (positive lightning impulse voltage)

    5.9 ()Fig.5.9 Location of damage

    (positive switching impulse voltage)

  • CRIEPI 16

    5.10 No1

    , 5.11

    No

    5.10 ,

    , 5.11 ,,

    ,

    ,No11

    5.6

    ,

    5.12 , 5.6

    ,,

    ,,

    ,

    5.13

    4

    4

    1

    8

    4

    2

    10

    1

    (a) (b) (c)

    5.10 ( No.1)

    Fig.5.10 Penetration of blade insulation due to positive lightning impulse voltage (discharge No.1)

    (a) (b) ALPS 5.11

    ( No.3) Fig.5.11 Creeping discharge on inner surface

    in case of application of positive switching impulse voltage (discharge No.3)

    5.12 Fig.5.12 Horizontal arrangement

    -Leading edge upside-

    5.6 Table 5.6 Test results for horizontal arrangement

  • CRIEPI 17

    5.13

    Fig.5.13 Sectional plan of wind turbine blade

    5.7 () Table 5.7 Location of damage

    (positive lightning impulse voltage)

    No.

    1

    ()

    2

    3

    4

    ()

    5.8 () Table 5.8 Location of damage

    (positive switching impulse voltage)

    No.

    1

    2

    3

    4

    5.7 5.14a

    , 5.8 5.14b

    ,

    , 5.15

    (a)

    (b)

    5.14

    Fig.5.14 Location of damage

    , 5.16 , 5.17

    , 5.18

    5.17

    ,,

    ,,

    ,

  • CRIEPI 18

    5.19No1

    ,5.20ALPS

    5.19a

    ,

    5.208.8

    s

    ,,

    ,

    ,

    5.19 No.1

    Fig.5.19 Discharge manner and damage in case of application of positive lightning impulse voltage No.1

    5.15 ()

    Fig.5.15 Discharge on receptor (negative lightning impulse voltage)

    5.16 ()

    ()Fig.5.16

    Creeping discharge without damage (positive switching impulse voltage)

    5.17

    ( No.4) Fig.5.17

    Creeping discharge on inner surface (positive lightning impulse voltage No.4)

    5.18

    ( No.2) Fig.5.18

    Damage in top part of blade (positive switching impulse voltage No.2)

    a b (c)

  • CRIEPI 19

    5.7

    ,

    25mm

    100mm

    1m 5.21

    2 -

    ,

    4m ,

    5.9

    ,

    ,

    5.22

    ,

    8.4 [s]

    8.5 8.6

    8.7 8.8 8.9 9.0

    Still image

    6.20 No.1

    5.20 No.1

    Fig.5.20 Discharge progresing manner of positive lightning impulse voltage No.1

    (a) (b)

    (c)

    5.21 2

    Fig.5.21 Blades with large receptor and small receptor

  • CRIEPI 20

    5.9 ()

    Table 5.9 Test result of vertical arrangement (positive switching impulse voltage)

    5.8

    5.23

    1.6m

    5.10 , 5.24 5.25

    5.10 ()

    Table 5.10 Test results for horizontally shifted blade

    6

    10

    a b c (a) (b) (c) ()

    5.22

    Fig.5.22 Discharge manner on blades with small receptor and large receptor

    (a) (b)

    5.23 Fig.5.23 Horizontal shift of blade location

    (a) (b) 5.24 Fig.5.24 Discharge manner for blade

    with small receptor

    8

    2

    1

    1

    6

    1

  • CRIEPI 21

    -

    6.1

    ,

    ,

    GFRP - 26cm

    ,

    ,

    6.2

    4m, 3m ,

    20

    ,

    6.1

    6.3

    1.8m

    6.2

    , 6.1 , 6.3,

    6.4 1

    ,

    (a) (b) 5.25 ()

    Fig.5.25 Discharge manner for blade with large receptor

    (a) (b)

    6.1

    Fig.6.1 Discharge manner on aluminum-coating blade in top part

  • CRIEPI 22

    6.1

    () Table 6.1 Test result foe horizontally

    shifted arrangement

    18

    1

    1

    20

    6.4

    ,

    7m ,

    4

    ,,,,,

    6.5

    ,6.6

    6.5

    2m

    5

    6.7

    , 6.2

    6.8

    ,

    5

    ,

    (a) (b)

    6.2 Fig.6.2 Arrangement of horizontal shift

    (a) (b)

    6.3 Fig.6.3 Direct discharge on top part of blade

    (a) (b)

    6.4 )

    Fig.6.4 Penetration into inner cavity of blade

  • CRIEPI 23

    6.2 ()

    Table 6.2 Test result of discharge (Horizontal arrangement of electrode tip to top of aluminum-coating blade)

    4

    1

    5

    6.6

    ,

    , 26cm

    -

    6.9

    -

    ,

    (a) (b)

    6.5 Fig.6.5 Discharge onto aluminum-

    coating part of blade

    (a) (b)

    6.6 Fig.6.6 Penetration damage

    6.7 Fig.6.7 Horizontal arrangement of

    electrode tip to top of aluminum-coating blade

    a (a) (b) (c)

    6.8 Fig..6.8 Discharge manner in case of

    horizontal arrangement of electrode tip to top of aluminum-coating blade

  • CRIEPI 24

    6.3

    ,6.10

    6.10c

    ALPS 6.11

    ,

    ,

    2

    ,3

    6.12

    , ,

    (a) (b)

    6.9

    Fig.6.9 Test arrangement of cupper-coating blade

    6.3

    Table 6.3 Test result for cupper-coating blade

    15

    20

    7

    3

    10

    (a) (b) (c)

    6.10

    Fig.6.10 Discharge manner cupper-coating blade

    (a) (b) (c)

    6.12

    Fig.6.12 Damaged manner cupper-coating blade

    6.11 ALPS Fig.6.11 Discharge on blade with a branch observed by the ALPS

    129.2[s] 129.3 129.4 129.5

  • CRIEPI 25

    7.1

    ,

    ,

    ALPS

    ,

    7.1

    ,

    ,30kV2002

    ,2000:1

    7.2

    7.2

    ,

    ,

    ,

    12s

    , 40s

    7.3

    ,ALPS

    ALPS

    ,ALPS

    12.3,12.4s ,

    ALPS 12.014.0 2s

    7.1 Fig.7.1 Arrangement of measuring instruments

    for upper leader

    7.2

    Fig.7.2 Discharge photographs, voltage waveforms and current waveforms in flashover and non-flashover

    7.3 ALPS

    Fig.7.3 Simultaneous measurement of discharge manner using ALPS and current waveform

  • CRIEPI 26

    8 8.1 8.1.1 (1)

    ,,

    ,

    ,

    ,

    ,

    (2)

    ,

    ,

    ,

    ,

    8.1.2 (1) ,

    ,

    ,

    ,

    (2)

    8.1.3

    ,

    ,

    ,

    ,

    ,,

    ,

    ,

    ,

    11 8.1

    100m

    ,

    ,

  • CRIEPI 27

    60

    ,12

    (1)

    20kA30m60m

    (2), 6m

    ( 8.2)13

    8.2

    , 10s

    1415,

    ,

    (1)

    ,

    ,,

    ,

    ,

    ,

    8.1

    Fig.8.1 Horizontally progressing lightning discharge onto high building (adapted from Otowadenki corp. Lightning photograph contest )

    8.2 Tf=160s No.T36

    Fig.8.2 Leader progressing manner due to application of switching impulse voltage (Tf =160s), (CRIEPI Report No.T36)

  • CRIEPI 28

    (2) ,

    ,

    ,

    ,

    ,

    ,

    (3)

    ,5 ,

    ,

    ,

    8.3 8.3.1

    ,

    ,

    ,

    , 3 1

    ,

    ,

    (1) 4.2

    ,

    ,

    (2),

    ,,3

    ,

    ,

    8.3.2 5.5 5.6 FRP

    ,

    ,

    ,

    ,

    ,

    ,

    8.3.3

    ,

    ,,

    Trailing edge

    Leading edge

    ,

    2

    ,,

    ,

    20 ,

    Berger

  • CRIEPI 29

    ,,,

    ,

    ,

    ,

    1980

    ,

    161718

    ,

    , 1960 ,

    ,

    1980 ,

    ,,

    ,,

    ,,

    ,,

    ,

    ,

    ,

    ,

    ,,,

    ,

    ,

    ,

    ,

    ,

    ALPS

    ,

    ,

    ,,

    (1)

    ,

    ,

    19

    (2

    ALPS ,

    ,

    202122232425

    (3)

    ,

    ,,

    26

    ,

    ,

  • CRIEPI 30

    10

    JIS

    ,

    9

    3 27 53

    ,

    ,

    JIS

    A4201:2003 ,

    JIS A4201:1992

    ,

    ,

    ,,,

    ,

    27

    28

    IEC,TC88

    ,IEC

    TR61400-24 2002 729

    Technical Report ,

    , ,

    IEC

    ,International Standard ,

    ,

    IEC TC88 Report ,

    IEC ,

    ,

    ,

    (1)

    (2)

    (3)

    (4)

    (5)

    TR61400-24 ,

    ,IEC TC81

    IEC TR61400-24 ,

    (1)

    (2)

    (3)

    (4)

    (5)

    (6)

    (7)

    (8)

    (4) (5),

    ,

    ,

    ,

    IEC TR61400-24 ,

    IEC TC88 Project Team24(PT24)

    2006 3 ,IEC TR61400-24

    ,

    ,

    ,PT24

    ,

  • CRIEPI 31

    11

    , IEC

    TC81(),,2006

    1 IEC62305-2 Protection against

    lightning-Risk management

    (International Standard),

    30

    ,IEC TC81International

    Standard ,

    ,

    ,

    ,

    31,

    3 ,

    (1) ,

    ,

    (2)

    ,

    (3)

    IEC62305-2 31

    ,

    ,

    (1) ,

    (2) ,

    ,

    (3) ,

    ,

    ,

    (4) ,

    ,

    (5)

    ,

    ,

    (6) ,1

    ,

    (7) ,

    ,

    ,,

    12

    100kW

  • CRIEPI 32

    (1)

    cm

    (2)

    (3)

    ,

    ,

    ,,

    (1) ,

    (2)

    1000kW ,

    10

    ,

    ,

    ,

    (1) ,

    ,,

    ,

    (2) ,

    (1)

    2

    (2)

    2

    (3)

    ,

    (4)

    ,

  • CRIEPI 33

    (5)

    (6)

    (7)

    16 18

    (1) T.Sorensen, H.Brask, P.Grabau, K.Olsen

    and M.L.Olsen: Lightning damages to

    power generating wind turbines,

    ICLP-98, No. 9b.4(Birmingam,UK),1998

    (2) I.Cotton et al.: Lightning Protection

    for Wind Turbines ., ICLP-2000,

    No.9.13 (Rhodes , Greece), 2000

    (3)

    NEDO, 16

    2005 3

    (4)

    NEDO, 17

    2006 2

    (5)

    ,

    2003

    (6)

    Vol.109-B No.2 pp.81-87,

    1989-2

    (7) S.Yokoyama, K.Miyake, T.Suzuki and

    S.Kanao, Winter Lightning on Japan

    Sea Coast-Development of Measuring

    System on Ppogessing Feature of

    Lightning Discharge-,IEEE Trans,

    Vol.PWRD-5,No.3,pp1418-1425,1990-7

    (8)

    Vol.112-ANo.4pp.311-320

    1992-4

    (9)

    1983 3

    (10)

    ED-05-135(SP-05-73,HV-05-77)(2005

    11 )

    (11)

    ( 1)

    No.65,pp.29-30,2004

    (12)

    No.ED-05-54,HV-05-29,2005

    (13) T.Naka et al, Study on lightning

    protection methods for wind turbine

    blades,IEEJ Trans. on PE, Vol.125,

    No.10,pp.993-999,2005

    (14) OTOWA LIGHTNING PHOTO

    CONTEST(2006 )

    (15) H.R.Armstrong and E.R.Whitehead:

    Field and Analytical Studies of

    Transmission Line Shielding,IEEE

    Trans.PAS-87,No.1,pp 270-281(1968)

    (16)

  • CRIEPI 34

    T36, pp15-22(1995 8 )

    (17)

    ,

    ,T72,2003

    (18)

    1033 2005 9

    (19)

    ,

    ,T10,1989

    (20)

    -

    1989 1998 10

    -

    T58 (1999 6 )

    (21)

    -1989

    2002 -

    No.TO3024 (2004 3 )

    (22) A.Asakawa, A.Wada, S.Yokoyama,

    T.Shindo, H.Hyodo, K.Hachiya and

    M.Chihara, Lightning Striking Aspect

    for Wind Turbine in Winter Season-

    Development of Low Freguency Rogowski

    Coil and Observation Results at Nikaho

    Wind Park in Japan- IEEJ,ED-07-47

    (SD-07-23, HV07-47) (2007 2 )

    (23) ,,,,

    , 16

    ,pp.117-120(1994)

    (24) ,,,,

    ,Vol.23, No.4, pp.291-298(2003)

    (25) A.Wada, S.Yokoyama, Lightning

    Damages of Wind Turbine Blades in Winter

    in Japan-Lightning Observation on the

    Nikaho-Kogen Wind Farm-, Proc.of 27th

    Int.Cont.on Lightning Protection,

    Avinignon, France 9a.7 pp.947-952

    (2004)

    (26) The Committee of Lightning Protection

    Design, Lightning Database Working

    Group: Lightning Occurrence Data Ob-

    served with Lightning Location Systems

    of Electric tilities in Japan

    1992-2001Trans.IEEJ Japan Vol.124-B,

    pp1255-1261,2004

    (27)

    No.T69 (2002 2 )

    (28)

    T40(1995 12

    )

    (29) IEC TR61400-24:2002-7 Wind Turbine

    generator systems-Part24:Lightning

    protection

    (30) IEC62305-2 Protection against light-

    ning- Risk management(2006)

    (31) ,

    H060082007 7 )

  • 2-6-1

    046 (856) 2121 ( ) e-mail [email protected]

    1-6-1 03 (3201) 6601 ()

    1-1 03 3258 9380 ISBN:4-86216-544-3