DC_DC_1_PE_AU_06_11_08

Embed Size (px)

Citation preview

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    1/42

    Voltage regulator (VR) provides:

    nearly constant dc output voltage that is essentially independent of the

    input voltage

    output load current

    temperature

    Chapter 5 (P#166)

    DC-DC Converters

    Input DC Constant output ?

    DC VoltageConstant OR

    Variable (Dynamic)

    Load

    Constant

    OR

    Variable Voltage

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    2/42

    DC Voltage

    Regulator

    Series Shunt Step-

    Down

    Linear Switching

    Step-up Up & Down

    (Negative)

    Chopper

    s

    + Positive - Negative

    Dual

    BuckBoost

    Buck-boost

    Regulated

    Power Supply

    -Low Efficiency (Disadvantage)

    -Low Noise (Advantage)

    -High Efficiency (Advantage)

    -High Noise (Disadvantage)

    In Power Electronics

    We discuss only

    Switching Power

    supplies

    In Power Electronics

    Why not Linear PS?

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    3/42

    SMPS

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    4/42

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    5/42

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    6/42

    5.2(Page 166) PRINCIPLE OF STEP-DOWN OPERATION

    VDC RloadVload

    Iload+

    VDC

    t

    VDC

    t

    Vload

    VAV

    Figure 5.1

    offon

    DConAV

    tt

    V.tV

    T

    V.tV

    DCon

    AV

    T

    ON Off

    DCon

    AV VT

    tV K = Duty Cycle

    )......(

    k

    R

    RkV

    V

    I

    V)cetansisReInput(R load

    loadDC

    DC

    load

    DCi 45

    BJT

    MOSFET

    IGBT

    Ri

    DCAV VkV

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    7/42

    Figure 5-3(page 171) DC Converter with RL - Load

    VDC

    t

    t

    Vload

    Figure 3-40

    RL

    Vload

    Iload

    VDC+

    SCR

    v1(t)D1

    Free-wheelingdiode

    Makes current

    flow during tofftON=? T

    ON Off

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    8/42

    1. Constant-frequency Operation (PWM) Page 168 (Self)

    2. Variable-frequency Operation (FM) Page 168 (Self)

    Which of the above method preferable ? Why?

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    9/42

    The duty cycle k can be generated by comparing a dc reference

    signal vcrwith a saw-tooth carrier signal vr

    Vg

    0

    Vr

    0

    V

    Vcr

    vrVcr

    T

    kT T

    t

    t

    +5V

    0

    0

    VcrVcr

    T

    kT T

    t

    t

    )9.5....(tT

    Vvr

    r kTVv

    crcr kt

    T

    VVr

    cr M

    VVk

    r

    cr

    M = Modulation index

    Vr= Maximum valueof saw tooth wave

    vr= Instantaneous Value of

    saw tooth wavettanConsV

    V

    VV cr

    r

    ino

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    10/42

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    11/42

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    12/42

    http://upload.wikimedia.org/wikipedia/commons/1/1f/PWM_3L.gif
  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    13/42

    Section 5.3 to 5.7 (Page 171 to 185)

    Will Refer When Required

    NOW START

    Section 5.8(Page 186)

    Switching Mode Power Supply

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    14/42

    DC to DC: CHOPPER [Switching Mode Power Supply] (SMPS)

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    15/42

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    16/42

    V

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    17/42

    PRINCIPLE OF STEP-DOWN OPERATION

    VDC RloadVload

    Iload+

    VDC

    t

    VDC

    t

    Vload

    VAV

    BJTMOSFETIGBT

    Ri

    VDC

    t

    VDC

    t

    t

    Vload

    t

    Vload

    Figure 3-40

    RL

    Vload

    Iload

    VDC

    +

    SCR

    v1(t)D1

    Figure 3-40

    RL

    Vload

    Iload

    VDC

    +

    SCR

    v1(t)D1

    T

    ON Off

    T

    ON Off

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    18/42

    5.8 (Page#186) Switching-Mode Regulators

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    19/42

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    20/42

    BUCK

    BOOST

    BUCK-BOOST

    This circuit is

    different form

    the circuit givenin the book (Fig

    5.18). Find the

    difference, why

    this difference?

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    21/42

    5.8.1 (Page#186) Buck Regulator (Step Down)

    Figure 5.15 (Similar); Elements of switching-mode regulators - Buck (Step Down)

    l i

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    22/42

    1. A buck converter is supplied from a 50V battery

    source. Given L=400uH, C=100uF, R=20 Ohm,f=20KHz and D=0.4.Calculate: (a) output voltage(b) maximum and minimum inductor current, (c)output voltage ripple.

    2. Design a buck converter such that the outputvoltage is 28V when the input is 48V. The load is8Ohm. Design the converter such that it will be in

    continuous current mode. The output voltageripple must not be more than 0.5%. Specify thefrequency and the values of each component.Suggest the power switch also.

    Please Do it - Practice the following Problems

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    23/42

    Variable

    PWM

    Linear Mode

    Vin

    Vout

    Switching Mode

    Vin

    Vout

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    24/42

    Variable

    PWM

    Square Voltage

    (Ripples)

    Variable

    PWM

    Variable

    PWM

    LPF(C)

    Required to

    remove DC

    ripples

    LPF (LC)

    Required to

    remove DC

    ripplesL Remove?

    C Remove?

    5.8 (page#186) SMPS - Step Down (Buck) Regulator

    Do we

    Need PWM

    in Linear

    Power

    Regulators

    WHY?

    Do we

    Need LPFin Linear

    Power

    Regulators

    WHY?

    Fig 5 16 SMPS Step

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    25/42

    LPFVariable

    PWMFree Wheeling:

    Diode required to

    pass energy trapped

    in L&C during tOFF

    Do we need Free

    Wheeling Diode in

    Linear Power

    Regulators WHY?

    CONTROL CIRCUIT

    Fig 5.16 SMPS - Step

    Down (Buck) Regulator

    Vin

    Vout ON ON

    T=1/f

    OFF

    Continuous I and Discontinuous I in DC DC Converters

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    26/42

    Continuous IL and Discontinuous IL in DC-DC Converters

    Continuous Inductance Current (IL)

    ON

    OFF

    ON

    OFF

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    27/42

    FIGURE 5 16 Buck regulator with continuous i

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    28/42

    Control

    vc

    eL

    iL,ILis,Is

    ic,Icio,Ia

    IGBT

    io,Iaic,Ic

    is=iL

    ON

    Mode 1

    io,Iaic,Ic

    IL

    OFF

    Mode 2

    FIGURE 5.16 Buck regulator with continuous iL

    Mode 1-When transistor

    is switched ON at t=0.

    The current flows

    through L, C & load

    Mode 2-When transistor is

    switched OFF at t=t1. Thecurrent flows through

    Diode, C & loadt

    ONMode

    OFF

    ModeON

    t=0 t=t1

    osL VVv oL Vv 0

    i I

    i I

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    29/42

    ),.....(I

    I

    V

    V

    T

    tkCycleDuty

    )o(a

    s

    s

    oon 49485

    ).....()VV(V

    VLIT

    fttperiodSwitching

    asa

    s

    s

    5051

    21

    ).....(LfV

    )VV(VIcurrentripplepeaktoPeak

    s

    asa 515

    ).....(C

    TIVvoltageripplepeaktoPeak

    c535

    8

    io,Iaic,Ic

    is=iL

    ON

    Mode 1

    io,Iaic,Ic

    is=iL

    ON

    Mode 1

    Control

    vc

    eL

    iL,ILis,Is

    ic,Icio,Ia

    Control

    vc

    eL

    iL,ILis,Is

    ic,Icio,Ia

    io,Iaic,Ic

    IL

    OFF

    Mode 2

    io,Iaic,Ic

    IL

    OFF

    Mode 2Equation required for Designing

    Buck Converter

    http://www hills2 u net com/electron/smps htm#buck

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    30/42

    http://www.hills2.u-net.com/electron/smps.htm#buck

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    31/42

    V

    t

    VL=eL

    Vs

    LVV

    dtdi osL

    ?dtdiL

    LV

    LV oo

    0

    kT T

    ONON OFF

    kT T

    dt

    diLe LL

    VLCurrent in the inductor

    will not change thedirection

    Voltage in the inductor

    will change the

    direction (polarity)

    osL VVv

    oV

    IL

    IL

    I1

    I2

    (1-k)T

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    32/42

    I

    t

    VL=eL

    Vs

    IC

    kT T

    ONON OFF

    kT T

    VC

    Current in the Capacitor

    changes its direction

    I1-I

    a

    I2-Ia

    (1-k)T

    Voltage in the capacitor

    will not change

    direction (polarity)

    Figure 5 16

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    33/42

    Figure 5.16

    io,Iaic

    ,Ic

    is=iL

    ON

    Mode 1

    io,Iaic

    ,Ic

    is=iL

    ON

    Mode 1

    io,Iaic,Ic

    IL

    OFF

    Mode 2

    io,Iaic,Ic

    IL

    OFF

    Mode 2

    Please Read S it hi R l t

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    34/42

    Its percent voltage ripple is 100%.

    The output voltage with such a high ripple content may be satisfactory forelectric heaters, light dimming circuits, etc., it is certainly not suitable for theoperation of amplifiers and other circuits requiring almost constant dcvoltage.

    The high voltage ripple can be controlled by placing a capacitor across theload.

    The capacitor is large enough so that its voltage does not have anynoticeable change during the time the switch is off.

    Somewhat better circuit can be developed by including an inductor, which is

    in series with the switch when the switch is on (closed), to limit the current inrush.

    However, this creates another problem. Since the current in the inductorcannot change suddenly, we have to provide at least one more switch, sucha freewheeling diode, to provide a path for the inductor current when the

    switch is off (open).

    Please Read- Switching Regulator

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    35/42

    Please Read Switching Regulator Basic Design Procedure

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    36/42

    oCalculate D to obtain required output voltage.

    o Select a particular switching frequency (f) and device

    preferably f>20KHz for negligible acoustic noise

    higher fs results in smaller L and C. But results in higher

    losses.

    Reduced efficiency, larger heat sink.

    Possible devices: MOSFET, IGBT and BJT. Low power

    MOSFET can reach MHz range.

    Please Read- Switching Regulator Basic Design Procedure

    Please Read Switching Regulator Basic Design Procedure

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    37/42

    oCalculate Lmin. Choose L>>10 LminoCalculate C for ripple factor requirement.

    Capacitor ratings:

    must withstand peak output voltage

    must carry required RMS current. Note RMS current fortriangular w/f is Ip/3, where Ip is the peak capacitor

    current given by iL/2.

    oWire size consideration:

    Normally rated in RMS. But iL is known as peak. RMS

    value for iL is given as:

    Please Read- Switching Regulator Basic Design Procedure

    SMPS - Step UP (Boost) Regulator

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    38/42

    Variable

    PWM

    inout VD

    V

    1

    1

    p ( ) g

    SMPSVoltage Inverter

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    39/42

    PWM

    g

    Configuration

    Buck-Boost

    little modified call Cuk

    in_out VD1

    D=V

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    40/42

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    41/42

  • 7/27/2019 DC_DC_1_PE_AU_06_11_08

    42/42