108
Marcelo MENEZES MORATO Olivier SENAME Luc DUGARD Design of a Real-Time LPV MPC Scheme for Semi-Active Suspension Control of a Full Vehicle Réunion régulière GT MOSAR, Strasbourg 22 May, 2017

Design of a Real-Time LPV MPC - ONERA › mosar › sites › w3.onera.fr.mosar › files › 201705… · RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 6/37 Not-So-Rich

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Marcelo MENEZES MORATO Olivier SENAME

    Luc DUGARD

    Design of a Real-Time LPV MPC Scheme for Semi-Active Suspension Control of a Full Vehicle

    Réunion régulière GT MOSAR, Strasbourg 22 May, 2017

  • Marcelo MENEZES MORATOOlivier SENAME

    Luc DUGARD

    Design of a Real-Time LPV MPC Scheme for Semi-Active Suspension Control of a Full Vehicle

    Réunion régulière GT MOSAR, Strasbourg 22 May, 2017

  • Research’s Framework• Master Project: UFSC & ENSE3

    • PERSYVAL LPV4FTC Project

    • Internship at gipsa-lab

    • Goal: Development of Linear Parameter Varying Approaches as

    Advanced Control Techniques for Vehicle Suspension Systems

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 1/37

  • Outline• Introduction & Motivation

    • Problem Statement & Objectives

    • System Model & Constraints

    • Observer Design + Experimental Validation

    • Optimal Solution

    • Sub-Optimal Practical Solution

    • Conclusions

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 2/37

  • Outline• Introduction & Motivation

    • Problem Statement & Objectives

    • System Model & Constraints

    • Observer Design + Experimental Validation

    • Optimal Solution

    • Sub-Optimal Practical Solution

    • Conclusions

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 2/37

  • Introduction & Motivation

    Modern Cars: More Safety and More Comfort!

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 3/37

  • Introduction & Motivation

    Modern Cars: More Safety and More Comfort!• Controlled Suspensions: Improve Comfort + Handling

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 3/37

  • Introduction & Motivation

    Modern Cars: More Safety and More Comfort!• Controlled Suspensions: Improve Comfort + Handling

    • Semi-Active Suspension Systems

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 3/37

  • Introduction & Motivation

    Modern Cars: More Safety and More Comfort!• Controlled Suspensions: Improve Comfort + Handling

    • Semi-Active Suspension Systems

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 3/37

  • Introduction & Motivation

    Modern Cars: More Safety and More Comfort!• Controlled Suspensions: Improve Comfort + Handling

    • Semi-Active Suspension Systems

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 3/37

  • Introduction & Motivation

    Modern Cars: More Safety and More Comfort!• Controlled Suspensions: Improve Comfort + Handling

    • Semi-Active Suspension Systems

    Semi-Active Suspension System• High performances achieved

    • Moderate Costs

    • Problem: Dissipativity Constraints

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 3/37

  • Introduction & Motivation

    Semi-Active Suspension System• High performances achieved

    • Moderate Costs

    • Problem: Dissipativity Constraints

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 4/37

  • • Introduction & Motivation

    • Problem Statement & Objectives

    • System Model & Constraints

    • Observer Design + Experimental Validation

    • Optimal Solution

    • Sub-Optimal Practical Solution

    • Conclusions

    Outline

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 5/37

  • Problem Statement & ObjectivesControl of Semi-Active Suspension Systems

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 6/37

  • Problem Statement & ObjectivesControl of Semi-Active Suspension Systems

    Throughout Literature:

    - Skyhook, Groundhook Control:

    - Clipped Strategies (LQ, H∞):

    - ADD, Mixed SH-ADD:

    - LPV/H∞ Approaches:

    [Karnopp, D. (1974)]

    [Tseng, H.E. (1994)], [Sammier, D. (2003)]

    [Savaresi, S.M. (2005), (2007)]

    [Poussot-Vassal, C. (2008)], [Do, A.L. (2010)], [Nguyen, M. Q. 2015]

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 6/37

  • Problem Statement & ObjectivesControl of Semi-Active Suspension Systems

    How to handle dissipativity constraints of dampers?

    Throughout Literature:

    - Skyhook, Groundhook Control:

    - Clipped Strategies (LQ, H∞):

    - ADD, Mixed SH-ADD:

    - LPV/H∞ Approaches:

    [Karnopp, D. (1974)]

    [Tseng, H.E. (1994)], [Sammier, D. (2003)]

    [Savaresi, S.M. (2005), (2007)]

    [Poussot-Vassal, C. (2008)], [Do, A.L. (2010)], [Nguyen, M. Q. 2015]

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 6/37

  • Control of Semi-Active Suspension Systems

    How to handle dissipativity constraints of dampers?

    Natural approach (process + constraints) —> Model Predictive Control (MPC)

    Problem Statement & Objectives

    Throughout Literature:

    - Skyhook, Groundhook Control:

    - Clipped Strategies (LQ, H∞):

    - ADD, Mixed SH-ADD:

    - LPV/H∞ Approaches:

    [Karnopp, D. (1974)]

    [Tseng, H.E. (1994)], [Sammier, D. (2003)]

    [Savaresi, S.M. (2005), (2007)]

    [Poussot-Vassal, C. (2008)], [Do, A.L. (2010)], [Nguyen, M. Q. 2015]

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 6/37

  • Control of Semi-Active Suspension Systems

    How to handle dissipativity constraints of dampers?

    Natural approach (process + constraints) —> Model Predictive Control (MPC)

    Not-So-Rich Literature: - Considering Quarter-Car Models:

    - Clipped Analytical MPC:

    - MPC for Full Car, Road Preview

    - MPC for Full Car, Computational Time Issues

    Problem Statement & Objectives

    Throughout Literature:

    - Skyhook, Groundhook Control:

    - Clipped Strategies (LQ, H∞):

    - ADD, Mixed SH-ADD:

    - LPV/H∞ Approaches:

    [Karnopp, D. (1974)]

    [Tseng, H.E. (1994)], [Sammier, D. (2003)]

    [Savaresi, S.M. (2005), (2007)]

    [Poussot-Vassal, C. (2008)], [Do, A.L. (2010)], [Nguyen, M. Q. 2015]

    [Canale, M. (2006)]

    [Giorgetti, N. (2006)]

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 6/37

    [Sawodny, O. (2014)]

    [Nguyen, M. Q. (2016)

  • Control of Semi-Active Suspension Systems

    How to handle dissipativity constraints of dampers?

    Natural approach (process + constraints) —> Model Predictive Control (MPC)

    Problem Statement & Objectives

    Throughout Literature:

    - Skyhook, Groundhook Control:

    - Clipped Strategies (LQ, H∞):

    - ADD, Mixed SH-ADD:

    - LPV/H∞ Approaches:

    [Karnopp, D. (1974)]

    [Tseng, H.E. (1994)], [Sammier, D. (2003)]

    [Savaresi, S.M. (2005), (2007)]

    [Poussot-Vassal, C. (2008)], [Do, A.L. (2010)], [Nguyen, M. Q. 2015]

    [Canale, M. (2006)],

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 6/37

    Not-So-Rich Literature: - Considering Quarter-Car Models:

    - Clipped Analytical MPC:

    - MPC for Full Car, Road Preview

    - MPC for Full Car, Computational Time Issues

    [Canale, M. (2006)],

    [Giorgetti, N. (2006)]

    [Sawodny, O. (2014)

    [

    Limited Sampling Period for Real-Time Applications

    —> 5 ms

  • Problem Statement & Objectives

    Control Objectives:

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 7/37

  • Control Objectives:

    Problem Statement & Objectives

    • Use a Full Car 7-DOF Vehicle Model

    • Take into account the Dissipativity Constraints of all 4 Semi-Active Dampers

    • Compute MPC Law in less then 5 ms !

    • Prediction of States and Road Disturbances ? —> Extended Observer

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 7/37

  • Control Objectives:

    Problem Statement & Objectives

    • Use a Full Car 7-DOF Vehicle Model

    • Take into account the Dissipativity Constraints of all 4 Semi-Active Dampers

    • Compute MPC Law in less then 5 ms !

    • Prediction of States and Road Disturbances ? —> Extended Observer

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 7/37

  • Control Objectives:

    Problem Statement & Objectives

    • Use a Full Car 7-DOF Vehicle Model

    • Take into account the Dissipativity Constraints of all 4 Semi-Active Dampers

    • Compute MPC control law in less then 5 ms !

    • Prediction of States and Road Disturbances ? —> Extended Observer

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 7/37

  • Control Objectives:

    Problem Statement & Objectives

    • Use a Full Car 7-DOF Vehicle Model

    • Take into account the Dissipativity Constraints of all 4 Semi-Active Dampers

    • Compute MPC control law in less then 5 ms !

    • Prediction of States and Road Disturbances ? —> Extended Observer

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 7/37

  • • Introduction & Motivation

    • Problem Statement & Objectives

    • System Model & Constraints

    • Observer Design + Experimental Validation

    • Optimal Solution

    • Sub-Optimal Practical Solution

    • Conclusions

    Outline

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 8/37

  • System Model & ConstraintsFull Vertical Suspension System Model

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 9/37

  • System Model & ConstraintsFull Vertical Suspension System Model

    Dynamical Equations of Motion

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 9/37

  • System Model & ConstraintsFull Vertical Suspension System Model

    Dynamical Equations of Motion

    Tire’s Forces

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 9/37

  • System Model & ConstraintsFull Vertical Suspension System Model

    Dynamical Equations of Motion

    Tire’s Forces

    Semi-Active Suspension Forces

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 9/37

  • System Model & ConstraintsFull Vertical Suspension System Model

    Dynamical Equations of Motion

    Linearization on Small Angles

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 9/37

  • System Model & ConstraintsDamper Dissipativity Constraints

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 10/37

  • System Model & ConstraintsDamper Dissipativity Constraints

    Fdij = cij(·).żdefij

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 10/37

  • System Model & ConstraintsDamper Dissipativity Constraints

    Fdij = cij(·).żdefij

    0 cij cij(·) cij

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 10/37

  • System Model & ConstraintsDamper Dissipativity Constraints

    Fdij = cij(·).żdefij

    Fdij = cnomij .żdefij +�cij .żdefij| {z }

    uij

    0 cij cij(·) cij

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 10/37

  • System Model & ConstraintsDamper Dissipativity Constraints

    Fdij = cij(·).żdefij

    Fdij = cnomij .żdefij +�cij .żdefij| {z }

    uij

    0 cij cij(·) cij

    �cij �cij �cij

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 10/37

  • State-Space Representation

    System Model & Constraints

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 11/37

  • State-Space Representation

    System Model & ConstraintsTs = 5 ms

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 11/37

  • • Introduction & Motivation

    • Problem Statement & Objectives

    • System Model & Constraints

    • Observer Design + Experimental Validation

    • Optimal Solution

    • Sub-Optimal Practical Solution

    • Conclusions

    Outline

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 12/37

  • • MPC —> Need for State and Disturbance Knowledge

    • Future Disturbance Estimation —> Enhance CL Performance

    • Extended H2 Observer

    • Trade-Off: Convergence Speed vs Noise Attenuation

    Observer Design + Experimental Validation

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 13/37

  • • MPC —> Need for State and Disturbance Knowledge

    • Future Disturbance Estimation —> Enhance CL Performance

    • Extended H2 Observer

    • Trade-Off: Convergence Speed vs Noise Attenuation

    Observer Design + Experimental Validation

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 13/37

    [Sawodny, O. (2014)]Disturbance Preview:

  • • MPC —> Need for State and Disturbance Knowledge

    • Future Disturbance Estimation —> Enhance CL Performance

    • Extended H2 Observer

    • Trade-Off: Convergence Speed vs Noise Attenuation

    Observer Design + Experimental Validation

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 13/37

    Disturbance Model

    [Sawodny, O. (2014)]Disturbance Preview:

  • • MPC —> Need for State and Disturbance Knowledge

    • Future Disturbance Estimation —> Enhance CL Performance

    • Extended H2 Observer

    • Trade-Off: Convergence Speed vs Noise Attenuation

    Observer Design + Experimental Validation

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 13/37

    [Sawodny, O. (2014)]Disturbance Preview:

    Disturbance Model

  • • MPC —> Need for State and Disturbance Knowledge

    • Future Disturbance Estimation —> Enhance CL Performance

    • Extended H2 Observer

    • Trade-Off: Convergence Speed vs Noise Attenuation

    Observer Design + Experimental Validation

    Pole Placement

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 13/37

    [Sawodny, O. (2014)]Disturbance Preview:

    Disturbance Model

  • Observer Design + Experimental Validation

    H2 Extended Observer Design

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 14/37

  • Observer Design + Experimental Validation

    H2 Extended Observer Design

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 15/37

  • Observer Design + Experimental Validation

    H2 Extended Observer Design

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 15/37

  • Observer Design + Experimental Validation

    H2 Extended Observer Design

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 15/37

  • Observer Design + Experimental Validation

    H2 Extended Observer Design• Problem Definition:

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 16/37

  • Observer Design + Experimental Validation

    H2 Extended Observer Design• Problem Definition:

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 16/37

    H2 Norm —> Impulse to Energy Gain! Noise —> Estimation Error

  • Observer Design + Experimental Validation

    H2 Extended Observer Design• Problem Solution:

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 17/37

  • Observer Design + Experimental Validation

    H2 Extended Observer Design• Problem Solution: Pole Placement

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 17/37

  • Observer Design + Experimental ValidationExperimental Test-bench:

    INOVE Soben-Car

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 18/37

    The INOVE Project and Vehicle Test-bench

  • Observer Design + Experimental ValidationExperimental Test-bench:

    INOVE Soben-Car

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 18/37

    The INOVE Project and Vehicle Test-bench

  • Observer Design + Experimental Validation Validation Results: Road Estimation

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 19/37

  • Observer Design + Experimental Validation

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 20/37

    Validation Results: Roll & Pitch Angles

  • Observer Design + Experimental Validation Validation Results: Roll & Pitch Angles

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 20/37

    0 2 4 6 8 10 12 14 16 18 20−0.05

    0

    0.05

    0.1

    0.15

    Time (s)

    Dis

    plac

    emen

    t (m

    )

    zs(t)Estimated zs(t)

    2.5 3 3.5 4 4.5

    −0.02

    0

    0.02

    0.04

    Time (s)

    Angl

    e (ra

    d)

    θ (t)Estimated θ (t)

    4.5 5 5.5 6 6.5 7 7.5 8 8.5−0.02

    −0.01

    0

    0.01

    0.02

    Time (s)

    Angl

    e (ra

    d)

    φ (t)Estimated φ (t)

    0 2 4 6 8 10 12 14 16 18 20−2

    −1

    0

    1

    Time (s)

    Spee

    d (m

    /s)

    \dot{z_s} (t)Estimated \dot{z_s} (t)

    0 2 4 6 8 10 12 14 16 18 20−0.05

    0

    0.05

    0.1

    0.15

    Time (s)

    Dis

    plac

    emen

    t (m

    )

    zs(t)Estimated zs(t)

    2.5 3 3.5 4 4.5

    −0.02

    0

    0.02

    0.04

    Time (s)

    Angl

    e (ra

    d)

    θ (t)Estimated θ (t)

    12 12.5 13 13.5 14 14.5

    −0.01

    0

    0.01

    Time (s)

    Angl

    e (ra

    d)

    φ (t)Estimated φ (t)

    0 2 4 6 8 10 12 14 16 18 20−2

    −1

    0

    1

    Time (s)

    Spee

    d (m

    /s)

    \dot{z_s} (t)Estimated \dot{z_s} (t)

  • • Introduction & Motivation

    • Problem Statement & Objectives

    • System Model & Constraints

    • Observer Design + Experimental Validation

    • Optimal Solution

    • Sub-Optimal Practical Solution

    • Conclusions

    Outline

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 21/37

  • Optimal Solution

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 22/37

  • Optimal Solution Proposed Optimal MPC Design

    • MPC —> Optimization of Performance Indexes

    • Cost Function

    • Computational Time Constraints —> Faster Approaches

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 23/37

  • Optimal Solution Proposed Optimal MPC Design

    • MPC —> Optimization of Performance Indexes

    • Cost Function

    • Computational Time Constraints —> Faster Approaches

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 23/37

  • Optimal Solution Proposed Optimal MPC Design

    • MPC —> Optimization of Performance Indexes

    • Cost Function

    • Computational Time Constraints —> Faster Approaches

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 23/37

    + Chassis Displacement

  • Optimal Solution Proposed Optimal MPC Design

    • MPC —> Optimization of Performance Indexes

    • Cost Function

    • Computational Time Constraints —> Faster Approaches

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 23/37

  • Optimal Solution Proposed Optimal MPC Design

    • MPC —> Optimization of Performance Indexes

    • Cost Function

    • Computational Time Constraints —> Faster Approaches

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 23/37

    Tc >> TsComputationalTime

  • Optimal Solution Proposed Optimal MPC Design

    • MPC —> Optimization of Performance Indexes

    • Cost Function

    • Computational Time Constraints —> Faster Approaches

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 23/37

    Tc >> TsComputationalTime

    [Nguyen, M. Q. (2016)]

  • • Introduction & Motivation

    • Problem Statement & Objectives

    • System Model & Constraints

    • Observer Design + Experimental Validation

    • Optimal Solution

    • Sub-Optimal Practical Solution

    • Conclusions

    Outline

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 24/37

  • Sub-Optimal Pratical Solution

    • LPV Representation

    • New Control Inputs

    • Linear Constraints

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 25/37

  • • LPV Representation

    • New Control Inputs

    • Linear Constraints

    Sub-Optimal Pratical Solution

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 25/37

    Fdij = cnomij .żdefij +�cij .żdefij| {z }

    uij

  • • LPV Representation

    • New Control Inputs

    • Linear Constraints

    Sub-Optimal Pratical Solution

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 25/37

    Fdij = cnomij .żdefij +�cij .żdefij| {z }

    uij

    Control

  • • LPV Representation

    • New Control Inputs

    • Linear Constraints

    Sub-Optimal Pratical Solution

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 25/37

    Fdij = cnomij .żdefij +�cij .żdefij| {z }

    uij

    Control SchedulingParameter

  • • LPV Representation

    • New Control Inputs

    • Linear Constraints

    Sub-Optimal Pratical Solution

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 25/37

    Fdij = cnomij .żdefij +�cij .żdefij| {z }

    uij

    Control Inputs

  • • LPV Representation

    • New Control Inputs

    • Linear Constraints

    Sub-Optimal Pratical Solution

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 25/37

    Fdij = cnomij .żdefij +�cij .żdefij| {z }

    uij

    Control Inputs

    TsX

    Full

    :=

    ⇢x[k + 1] = Ad.x[k] + B1d.w[k] + B2d(⇢).�c[k]y[k] = Cd.x[k] + D1d.w[k] + D2d(⇢).�c[k]

  • • LPV Representation

    • New Control Inputs

    • Linear Constraints

    Sub-Optimal Pratical Solution

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 25/37

    Fdij = cnomij .żdefij +�cij .żdefij| {z }

    uij

    Control Inputs

    TsX

    Full

    :=

    ⇢x[k + 1] = Ad.x[k] + B1d.w[k] + B2d(⇢).�c[k]y[k] = Cd.x[k] + D1d.w[k] + D2d(⇢).�c[k]

    �Affine on p

  • • LPV Representation

    • New Control Inputs

    • Linear Constraints

    Sub-Optimal Pratical Solution

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 25/37

    TsX

    Full

    :=

    ⇢x[k + 1] = Ad.x[k] + B1d.w[k] + B2d(⇢).�c[k]y[k] = Cd.x[k] + D1d.w[k] + D2d(⇢).�c[k]

    �c �c[k] �cx x[k] x

  • • LPV Representation

    • New Control Inputs

    • Linear Constraints

    Sub-Optimal Pratical Solution

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 25/37

    TsX

    Full

    :=

    ⇢x[k + 1] = Ad.x[k] + B1d.w[k] + B2d(⇢).�c[k]y[k] = Cd.x[k] + D1d.w[k] + D2d(⇢).�c[k]

    �c �c[k] �cx x[k] x

    [Nguyen, M. Q. (2016)]Mixed Integer Constraints

  • RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 26/37

    Sub-Optimal Pratical Solution

    - The FMPC Method, Proposed by [Boyd, 2008]

    Computation of LPV MPC Law

    - LPV Matrices fixed through prediction horizon

  • Sub-Optimal Pratical Solution

    - The FMPC Method, Proposed by [Boyd, 2008]- LPV Matrices fixed through prediction horizon

    Computation of LPV MPC Law

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 26/37

  • Sub-Optimal Pratical Solution

    - The FMPC Method, Proposed by [Boyd, 2008]- LPV Matrices fixed through prediction horizon

    Computation of LPV MPC Law

    - LPV —> fixed at instant k

    - Primal-Barrier Interior-Point Method

    - Infeasible Start Newton Method

    - Warm Start Techniques

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 26/37

  • Sub-Optimal Pratical Solution

    - The FMPC Method, Proposed by [Boyd, 2008]- LPV Matrices fixed through prediction horizon

    Computation of LPV MPC Law

    - LPV —> fixed at instant k

    - Primal-Barrier Interior-Point Method

    - Infeasible Start Newton Method

    - Warm Start Techniques

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 26/37

    Approximate J,Primal-Barrier Term

    instead of linear inequality constraints

  • Sub-Optimal Pratical Solution

    - The FMPC Method, Proposed by [Boyd, 2008]- LPV Matrices fixed through prediction horizon

    Computation of LPV MPC Law

    - LPV —> fixed at instant k

    - Primal-Barrier Interior-Point Method

    - Infeasible Start Newton Method

    - Warm Start Techniques

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 26/37

    Solving the approximate QPwith infeasible

    StartNewton Method,

    use of dual variables,

    primal and dual residual search

  • Sub-Optimal Pratical Solution

    - The FMPC Method, Proposed by [Boyd, 2008]- LPV Matrices fixed through prediction horizon

    Computation of LPV MPC Law

    - LPV —> fixed at instant k

    - Primal-Barrier Interior-Point Method

    - Infeasible Start Newton Method

    - Warm Start Techniques

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 26/37

    Last array of control steps U shifted (z-1)

    as start for nextcomputation

  • Objective:Control all 4 Semi-Active ER Dampers

    Provide Suitable Trade-Off Handling vs Comfort Performances Abide to all Dissipativity Constraints

    Computational Time < 5 ms

    Sub-Optimal Pratical Solution Simulation Results:

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 27/37

  • Objective:Control all 4 Semi-Active ER Dampers

    Provide Suitable Trade-Off Handling vs Comfort Performances Abide to all Dissipativity Constraints

    Computational Time < 5 ms

    Simulation Scenario:Straight Road, Constant Speed

    Frontal and Lateral Bumps Comparison with Analytical Clipped MPC, [Giorgetti, N. (2006)]

    Sub-Optimal Pratical Solution Simulation Results:

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 27/37

  • Objective:Control all 4 Semi-Active ER Dampers

    Provide Suitable Trade-Off Handling vs Comfort Performances Abide to all Dissipativity Constraints

    Computational Time < 5 ms

    Simulation Scenario:Straight Road, Constant Speed

    Frontal and Lateral Bumps Comparison with Analytical Clipped MPC, [Giorgetti, N. (2006)]

    Sub-Optimal Pratical Solution Simulation Results:

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 27/37

    Nc = Np = 10

  • Sub-Optimal Pratical Solution Simulation Results: Computation of Control Law

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 28/37

  • Sub-Optimal Pratical Solution Simulation Results: Road Profile + Estimation

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 29/37

  • Sub-Optimal Pratical Solution Simulation Results: Road Profile + Estimation

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 29/37

    Bump on all WheelsExcite Chassis Acceleration

  • Sub-Optimal Pratical Solution Simulation Results: Road Profile + Estimation

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 29/37

    Bump only on Left sideExcite Roll Motion

  • Sub-Optimal Pratical Solution

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 30/37

    Simulation Results: Chassis Displacement

  • Sub-Optimal Pratical Solution Simulation Results: Chassis Acceleration

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 31/37

  • Sub-Optimal Pratical Solution Simulation Results: Chassis Acceleration

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 31/37

  • Sub-Optimal Pratical Solution

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 31/37

    Simulation Results: Roll Angle

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 32/37

  • Sub-Optimal Pratical Solution

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 31/37

    Simulation Results: Roll Angle

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 32/37

    AMPC —> Clipping ActionNo guarantees of CL Performances

  • −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

    −30

    −20

    −10

    0

    10

    20

    30

    Suspension Deflection Speed (m/s)

    Susp

    ensi

    on F

    orce

    (N)

    Force vs. Susp. Deflection Speed at Rear Right Corner

    MaximalMinimalAMPCFMPC

    Sub-Optimal Pratical Solution Simulation Results: Semi-Active Damper Force

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 33/37

  • −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

    −30

    −20

    −10

    0

    10

    20

    30

    Suspension Deflection Speed (m/s)

    Susp

    ensi

    on F

    orce

    (N)

    Force vs. Susp. Deflection Speed at Rear Right Corner

    MaximalMinimalAMPCFMPC

    Sub-Optimal Pratical Solution Simulation Results: Semi-Active Damper Force

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 33/37

    AchievableControlled

    Damper ForceSet

  • Sub-Optimal Pratical Solution Simulation Results: Semi-Active Damper Force

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 33/37

    −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

    −30

    −20

    −10

    0

    10

    20

    30

    Suspension Deflection Speed (m/s)

    Susp

    ensi

    on F

    orce

    (N)

    Force vs. Susp. Deflection Speed at Rear Right Corner

    MaximalMinimalAMPCFMPC

  • Sub-Optimal Pratical Solution Simulation Results: Semi-Active Damper Force

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 33/37

    −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

    −30

    −20

    −10

    0

    10

    20

    30

    Suspension Deflection Speed (m/s)

    Susp

    ensi

    on F

    orce

    (N)

    Force vs. Susp. Deflection Speed at Rear Right Corner

    MaximalMinimalAMPCFMPC AMPC —> ADD

  • −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

    −30

    −20

    −10

    0

    10

    20

    30

    Suspension Deflection Speed (m/s)

    Susp

    ensi

    on F

    orce

    (N)

    Force vs. Susp. Deflection Speed at Rear Right Corner

    MaximalMinimalAMPCFMPC

    Sub-Optimal Pratical Solution Simulation Results: Semi-Active Damper Force

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 33/37

  • −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

    −30

    −20

    −10

    0

    10

    20

    30

    Suspension Deflection Speed (m/s)

    Susp

    ensi

    on F

    orce

    (N)

    Force vs. Susp. Deflection Speed at Rear Right Corner

    MaximalMinimalAMPCFMPC

    Sub-Optimal Pratical Solution Simulation Results: Semi-Active Damper Force

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 33/37

    FMPC —> Wide Range of Force

  • • Introduction & Motivation

    • Problem Statement & Objectives

    • System Model & Constraints

    • Observer Design + Experimental Validation

    • Optimal Solution

    • Sub-Optimal Practical Solution

    • Conclusions

    Outline

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 34/37

  • • LPV FMPC Technique —> Efficient Results!

    • Time Constraints Respected + Good Trade-Off Handling vs Comfort

    • AMPC —> Two State Control (Max Min)

    • FMPC —> Wide Use of Damper Force

    • Dissipativity Constraints of Dampers are Respected!

    • Full 7-DOF Vehicle Semi-Active Suspension Control

    • Good for Practical Implementation!

    Conclusions

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 35/37

  • • LPV FMPC Technique —> Efficient Results!

    • Time Constraints Respected + Good Trade-Off Handling vs Comfort

    • AMPC —> Two State Control (Max Min)

    • FMPC —> Wide Use of Damper Force

    • Dissipativity Constraints of Dampers are Respected!

    • Full 7-DOF Vehicle Semi-Active Suspension Control

    • Good for Practical Implementation!

    Conclusions

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 35/37

  • • LPV FMPC Technique —> Efficient Results!

    • Time Constraints Respected + Good Trade-Off Handling vs Comfort

    • AMPC —> Two State Control (Max Min)

    • FMPC —> Wide Use of Damper Force

    • Dissipativity Constraints of Dampers are Respected!

    • Full 7-DOF Vehicle Semi-Active Suspension Control

    • Good for Practical Implementation!

    Conclusions

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 35/37

  • • LPV FMPC Technique —> Efficient Results!

    • Time Constraints Respected + Good Trade-Off Handling vs Comfort

    • AMPC —> Two State Control (Max Min)

    • FMPC —> Wide Use of Damper Force

    • Dissipativity Constraints of Dampers are Respected!

    • Full 7-DOF Vehicle Semi-Active Suspension Control

    • Good for Practical Implementation!

    Conclusions

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 35/37

  • • LPV FMPC Technique —> Efficient Results!

    • Time Constraints Respected + Good Trade-Off Handling vs Comfort

    • AMPC —> Two State Control (Max Min)

    • FMPC —> Wide Use of Damper Force

    • Dissipativity Constraints of Dampers are Respected!

    • Full 7-DOF Vehicle Semi-Active Suspension Control

    • Good for Practical Implementation!

    Conclusions

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 35/37

  • • LPV FMPC Technique —> Efficient Results!

    • Time Constraints Respected + Good Trade-Off Handling vs Comfort

    • AMPC —> Two State Control (Max Min)

    • FMPC —> Wide Use of Damper Force

    • Dissipativity Constraints of Dampers are Respected!

    • Full 7-DOF Vehicle Semi-Active Suspension Control

    • Suitable for Practical Implementation!

    Conclusions

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 35/37

  • • Application to real vehicle Test-Bench

    • Compare with [Nguyen, M. Q. (2016)]

    • Couple FMPC and Mixed-Integer Programming Techniques ?

    Conclusions

    Future Work

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 36/37

  • Merci!!!

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 37/37

  • Questions ?

    RT MPC Semi-Active Full Veh. - Marcelo MENEZES MORATO - 37/37