157
Disaster Risk Management in the Transport Sector A Review of Concepts and International Case Studies June 2015 Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized

Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

Disaster Risk Management

in the Transport Sector

A Review of Concepts and International Case Studies

June 2015

Pub

lic D

iscl

osur

e A

utho

rized

Pub

lic D

iscl

osur

e A

utho

rized

Pub

lic D

iscl

osur

e A

utho

rized

Pub

lic D

iscl

osur

e A

utho

rized

wb350881
Typewritten Text
98202
Page 2: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  2

Acknowledgements This report was prepared by a World Bank team led by Ziad Nakat, Senior Transport Specialist, and was executed by a consulting team at IMC Worldwide including Raphaelle Moor, Mike Broadbent, Jonathan Essex, Steve Fitzmaurice, Mo Hamza, Kanaks Pakeer, Andre Steele, Tim Stiff, and John White. Photo credits Page 3 / USFWS Mountain Prairie available from Flickr under Creative Commons license

Page 4 / Angie Chung available from Flickr under Creative Commons license Page 11 / Hafiz Issadeen available from Flickr under Creative Commons license

Page 19 / Rick Scavetta, U.S. Army Africa from Flickr under Creative Commons license Page 23 / Chris Updegrave available from Flickr under Creative Commons license, February 9, 2008 Page 24 / Jay Baker at Reisterstown, Maryland Gov Pics available from Flickr under Creative Commons license Page 27 / MTA available under Creative Commons license, October 30, 2012

Page 28 / Joe Lewis available under Creative Commons license Page 31 / Andre Steele Page 38 / John Murphy available from Flickr under Creative Commons license Page 42 / Geof Sheppard available from Flickr under Creative Commons license, February 24, 2014

Page 53 / Martin Luff available from Flickr under Creative Commons license

Page 3: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  3

Glossary AASHTO American Association of State

Highway and Transportation Officials ADB Asian Development Bank APEC Asia-Pacific Economic Cooperation ATC Automatic Train Control BRR Badan Rehabilitasi dan Rekonstruksi CBA Cost-Benefit Analysis CCRIF Caribbean Catastrophe Risk Insurance

Facility CDB Caribbean Development Bank CRR Community Risk Register DBST Double-Bound Surface Treatment DFID Department for International

Development DOT Department of Transport DRM Disaster Risk Management DRMP Disaster Response Management Plan DWR Disaster Waste Recovery EIB European Investment Bank EIRR Economic internal rate of return EME2 Enrobé à Module Élevé 2 EPSRC Engineering and Physical Sciences

Research Council EU European Union FFSL Fortified for Safer Living FHWA Federal Highway Administration FMTAC First Mutual Transportation Assurance

Company FUTURENET Future Resilient Transport Systems GE General Electric GLA Greater London Authority GIS Graphical Information System HOV3+ High-occupancy vehicle (3 person) HRA Hot Rolled Asphalt IBHS Institute for Business and Home Safety ICT Information and communications

Technology IDF Intensity-Duration-Frequency INA Infrastructure Needs Assessment IPA International Performance Assessment IMC IMC Worldwide Ltd.

LEED Leadership in Energy and Environmental Design

LLFA Lead Local Flood Authorities LRF Local Resilience Forums MCA4 Multi-criteria analysis for climate Climate change MPO Metropolitan Planning Organisation MTA Metropolitan Transit Authority NARUC National Association of Regulatory

Utility Commissioners NHIA Natural Hazard Impact Assessment NFIP National Flood Insurance Program NGO Non-governmental organisation NHT Natural Hazards Team NJ New Jersey NPV Net Present Value NYCDOT New York City Department of

Transportation NYS New York State O&M Operations and Maintenance PIP Policies, Institutions and Processes PPP Public-private partnership RIA Regulatory Impact Assessment SADC Southern Africa Development

Community SARCOF Southern Africa Regional Climate

Outlook Forum SCIRT Stronger Christchurch Infrastructure

Rebuild Team SCTIB South Carolina Transportation

Infrastructure Bank SUDS Sustainable Urban Drainage System TA Technical Assistance TAM Transportation Asset Management TIGER Transportation Investment Generating

Economic Recovery TIP Transportation Improvement Program TTL Task Team Leader ToR Terms of Reference UK United Kingdom USA United States of America UNISDR The United Nations Office for Disaster

Risk Reduction VfM Value for Money WB World Bank

Page 4: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  4

Table of Contents Executive Summary 5 Part 1: Introduction 14 Part 2: Transport Infrastructure Systems 17 Part 3: Risk and Resilience 20 Part 4: Disaster Resilience and Risk Assessment in Transport Systems 26 Part 5: Pre-Disaster Risk Assessment and Management 33 Part 6: Emergency Response and Risk Reduction 53 Part 7: Post-Disaster Recovery and Reconstruction 61 Bibliography 68 Annex 77  

Page 5: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

Executive Summary

Background Natural hazards regularly impact the performance of

transport systems and their ability to provide safe,

reliable, efficient, and accessible means of transport

for all citizens, especially in emergency situations.

Despite the frequency of natural hazards, and the

threat of more extreme and variable weather as a

result of climate change, there is still no systematic

approach to addressing natural disasters in the

transport sector and there is little knowledge that has

been disseminated on this topic. This report offers a

framework for understanding the principles of

resilience in transport. It provides practical examples,

gathered from an extensive secondary literature

review and interviews, of the measures that transport

professional can implement in transport projects.

This report represents a first effort within a broader

activity to mainstream resilience in transport projects.

Follow up work will focus on i) producing a short and

practical road map for World Bank Task Team

Leaders and Transport professionals to guide actual

steps to mainstream resilience in transport projects,

and ii) creating more linkages between this work and

the broader ongoing work within the World Bank on

disaster risk management frameworks, and with

references to relevant external sources.

Approach for mainstreaming resilience Transport is a complex adaptive system with multiple

modes and assets at different stages of their lifecycle,

and upstream and downstream interdependencies

with other infrastructure systems, including water,

Information Communications and Technology (ICT),

energy, and the built environment. These manmade

assets interact in turn with the natural assets in their

environment. All these manmade and natural assets

and systems are delivered, maintained, operated, and

regulated by a range of agents and institutions. The

complex interactions between these different

physical, social, economic, and institutional elements

are often non-linear, chaotic, and unpredictable.

Unknown risks can also emerge over time and

cascade throughout the system. The following are guiding principles that should

inform the identification, planning and design of

transport projects by donors and the owners,

investors, and managers of transport infrastructure in

developing countries:

1. Shift from an “asset-based” approach,

which sees transport as a set of discrete assets,

to a “systems-based” approach, which looks at

the interactions between the technical, social,

economic, and organizational components of a

transport system over time. A common failure

characteristic that emerged from the case studies

reviewed was the failure of systems to be treated and

planned as systems, resulting in significant damage

to transport infrastructure. The case studies have

shown that critical infrastructure components had

different capabilities, redundancy was lacking, levels

of protection were incomplete or missing, the

responsibilities for infrastructure were weak and

divided, and there was a misplaced optimism in the

“robustness” of infrastructure to withstand all

hazards. When planning and designing resilient

infrastructure, the focus should not just be on the

artefact but also the people and processes,

governance structures, resources, and knowledge

that set and shape its resilience. The implication is

that the opportunities to introduce and mainstream

resilience in the transport sector begin upstream, with

the institutions, policies, regulations, processes, and

practices that determine where, how, and what

infrastructure is planned and designed. Rather than

talk about a “resilient bridge” we should talk about a

“resilient crossing” (RUSI conference 2014). Instead

of first looking at the transport asset and asking how

to make it resilient, the first questions to ask are: What

is the purpose of this project? Is it in the right place?

Is it at the right time? And what is the resilience of the

rest of the system within which it sits? A system is

only as strong as its weakest link; be this physical,

environmental, social, economic or institutional.

Page 6: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

Table 1: Risk versus resilience approaches (adapted from Park et al., 2012)

Risk management Resilience

Risk analysis calculates the probability that Resilience analysis improves the system’s

known hazards will have known impacts response to surprises and accepts uncertainty,

incomplete knowledge, and changing conditions

Bottom-up analysis assesses impact of hazards Top-down analysis assesses interdependencies

on components’ critical functionality and interactions at a system level

Assesses the impact at one point in time Includes a temporal dimension

Minimizes probabilities of failure Minimizes consequences of failure

Strategies include robustness, strengthening, Strategies involve adaption, innovation,

oversizing flexibility, learning, diversity, redundancy, safe failure

2. Operationalize the concept of resilience

and use this to complement risk analysis when

planning, appraising, designing, and evaluating

transport projects. Risk and resilience approaches

are complementary. Risk analysis looks at the impact

of an adverse event on the critical functionality of

specific components in a system whilst resilience

approaches look at the entire system’s behavior over

time, both before, during, and after a disaster.

Resilience analysis, unlike risk analysis, focuses on

improving the performance of a system in a wide

range of unexpected hazards, rather than only

reducing known risks. It focuses on minimizing the

consequences of failure and improving the ability of

the system to maintain functionality and recover

quickly after a known or unknown shock or stress.

Systems can exist with low risks and low resilience,

and these even may perform the same as systems

with high risks and high resilience (Linkov et al.,

2014). In developing countries, high-risk events (a

large earthquake or tsunami) dominate the attention

of donors but it is often low-risk events (small

landslides and localized flooding) that “bleed” the

system and have the greatest accumulative economic

impact.

3. Identify and engage with the many

stakeholders who own, manage, and influence the

resilience of transport systems before, during,

and after disasters. Vertical and horizontal

coordination, information sharing, and engagement

between all these stakeholders are needed to

mainstream resilience throughout the transport

sector. The stakeholders are diverse and could

include: Infrastructure owners, which may be private

or public; regulators; Investors and insurers; transport

and other infrastructure system operators;

government departments—transport, finance,

environment, agriculture and forestry, planning and

infrastructure, energy, ICT, water, home affairs

(emergency services, including police, ambulance,

fire rescue service, and the military); local authorities;

meteorological offices, climatologists and other

scientists; universities and research centers;

emergency responders; engineers; maintenance

crews; contractors and construction workers;

communities; and other international donors.

Page 7: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

Figure 1: Illustration on analytical framework for mainstreaming resilience in the transport sector.

Analytical Framework for Mainstreaming

Resilience in Transport Systems

Figure 1 represents an analytical framework to guide

thinking on resilience in the transport system. This

framework addresses the three key levels that need

to be addressed when identifying problems and

challenges in a transport system and identifying,

planning, designing, and evaluating transport

projects. The outer circle represents the temporal

dimension of resilience. These are the three key

stages of the Disaster Risk Management Cycle— pre-

disaster risk assessment and management,

emergency response and risk reduction, and post-

disaster recovery and reconstruction. The inner circle

shows the five domains where resilience needs to be

introduced—policies, institutions and processes;

expertise; financial arrangements, and incentives;

operations and maintenance; and technical planning

and design. The innermost circle has the nine

principles of resilience that should be introduced

across these domains and stages.

Whilst measures have been divided by the different

stages of a DRM cycle, any policies, processes, and

mechanisms to improve emergency response and

post-disaster reconstruction will need to be

considered and implemented ex ante, and not during

or after a disaster. The principles of resilience are

explained further in the main report.

Page 8: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

Table 2: Summary table of domains and resilience principles in the transport sector (Source: IMC

Worldwide)

DOMAINS RESILIENCE PRINCIPLES

Policies, Institutions, PIPs are the policies, institutions, processes, and regulations for embed- and Processes (PIPs) ding resilience into a country’s infrastructure systems and assigning

responsibility for risk management. PIPs need to embody and promote principles of good governance and encourage horizontal and vertical information flows throughout the system. Plans and processes should be flexible and encourage responsiveness and resourcefulness. Institutions should also have the capacity to learn from past failures, and processes and policies should be put in place to encourage this. PIPs can also encourage redundancy in the diversity of transport options and routes as well as redundancy in emergency operating processes and plans. Furthermore, PIPs

that encourage multi-modal and multi-agency coordination are necessary so that the principles of safe failure, robustness, and flexibility are taken into account in the technical planning and design of infrastructure systems.

Expertise The capacity of all agents—government officials, operators, engineers, emergency personnel, regulators and the community—needs to be devel- oped to institutionalize and mainstream resilient processes. Agents should be educated in the principles of good governance in infrastructure sys- tems and trained in how to collect, exchange, and use information. They should also be encouraged to be flexible to changing circumstances, showing responsiveness and resourcefulness in their ability to mobil- ize assets and resources as well as respond rapidly and effectively during an emergency.

Financial Adequate resources and incentives are needed to plan, design, and arrangements construct resilient transport infrastructure. Financial arrangements and incen-

and incentives tives need to be flexible, exhibit responsiveness, and embody the princi- ples of good governance.

Operations and Processes of operating, maintaining, inspecting, and monitoring transport Maintenance (O&M) assets are essential for ensuring the robustness of infrastructure. They are

also useful for collecting and storing information on infrastructure perfor-

mance, which provides the capacity to learn from past failures and to possibly detect early deteriorations. O&M processes should also encourage

responsiveness and resourcefulness, and emergency procedures defined so that agents can identify problems, establish priorities, and restore function

quickly after a failure.

Technical planning Technical planning and design measures are not add-ons and cannot be and design addressed in isolation from the other domains. By planning and designing for

safe failure, robustness, and flexibility it is possible to mitigate the vulner- ability and exposure to hazards, as well as minimize the severity of conse- quences when damage or failure occurs. The severity of consequences can also be minimized by providing for extra redundancy in the system as this will help emergency personnel access areas in a disaster and help the system

recover faster.

Page 9: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

Important Aspects of

Encouraging Resilience in

Transport Systems

Below are examples of the important aspects that

need to be considered across the domains and DRM

cycle to build resilience in transport systems.

Pre-Disaster Risk Assessment and Management • The principle that a system is only as strong as

its weakest link requires a central agency,

which can coordinate and mediate the

responsibilities across the system. The United

Kingdom, for example, has published a National

Infrastructure Plan every year since 2010 to set a

crosscutting and strategic approach to plan, fund,

finance, and deliver infrastructure. This holistic

approach has been furthered by the establishment

of bodies to coordinate between government,

industry, regulators, NGOs, emergency

responders, infrastructure owners, and operators,

such as UK’s Natural Hazards Team and New

Zealand’s Regional Engineering Lifeline groups.

New initiatives have also been launched to

conduct assessments of the UK’s critical

infrastructure assets. The UK’s Infrastructure

Research Initiatives Consortium, for example, has

developed a National Infrastructure Model

(NISMOD) for national assessment of

infrastructure performance, which has been

developed into an interactive “infrastructure

visualization dashboard.”

• The uncertainty and unpredictability of

hazards, as well as the large number of

interdependencies within a transport system,

requires a design approach that is sensitive to

the environment and the performance of the

whole network over time. Meyer (2008)

recommends adopting “systems perspective in

network-oriented design” and “risk-oriented

probabilistic design procedures” in order to allow a

more explicit trade-off between the cost

implications of a more robust design and the

resulting performance of the infrastructure. A level

of risk can then be determined that is acceptable

to society given the criticality of the asset and the

local conditions. This opens up more design

options, for example, choosing a less robust

design and designing instead for flexibility, safe

failure or redundancy. Another key consideration

in such design is defining the functional

requirements of the system. Design standards can

also be supplemented by performance-based

standards—which set the time it should take to

recover service—and therefore capture the

broader and more temporal dimensions of

resilience.

• The resilience of transport systems to natural

hazards has a determining influence on key

transport performance indicators, such as

reliability, safety, and cost effectiveness, and

should be specified as a key goal and objective

in transport planning. Hazard mitigation and

climate change adaptation should be integrated

within transport plans through the greater use of

hazard mapping tools and contextually

appropriate design approaches. Setting resilience

as a key transport objective also goes hand in

hand with an approach that seeks to understand

the role of the asset in the network and its

contribution to the economy and community. This

will necessarily entail a greater consideration of

the principles of redundancy, safe failure,

diversity, and flexibility in the development of

transport plans.

• Understanding who owns the asset and

defining the role of various parties in

mainstreaming resilience within the transport

system, and infrastructure as a whole, is a

critical part of DRM policy development.

Economic regulators have a role to play in

ensuring incentive and penalty reflect the real

costs from failures, though this may not be an

effective lever in less well-regulated countries.

Page 10: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

10 

The private sector is increasingly an owner and

operator of infrastructure in developing countries

and business continuity plans for private operators

are a useful instrument with which to mainstream

resilience. Local authorities are also another

important player. Due to the localized impact of

hazards on infrastructure, as a result of varying

micro-climates and exposure/ sensitivity, local

authorities must also be involved in assessing and

determining the resilience of local transport

systems. Those at the frontline operating,

responding, and witnessing the damage and

failure of transport infrastructure—emergency

responders, local communities, maintenance

crews—are a further invaluable source of

knowledge that should feed into policy

development and the planning and identification of

projects.

Data on natural hazards and the condition,

reliability, and performance of existing

infrastructure assets are vital for the

appropriate planning and design of

infrastructure. Information on natural hazards

and the development of hazard maps can be

sought through innovative means such as

crowdsourcing initiatives and arrangements for

open data sharing between key stakeholders.

The insurance industry, for example, has the

most comprehensive dataset on hazards and a

number of initiatives, including RMS’ partnership

with the United Nations Office for Disaster Risk

Reduction (UNISDR) and the World Bank, have

developed to provide governments with open

access to their data and catastrophe models.

Data on the performance of infrastructure and the

root causes of any damage/disruption/failure can

best be recorded through transport asset

management systems. This data is also a useful

tool for generating market pressure and

incentivizing behavior change amongst

infrastructure owners and operators. Given the

trans-boundary nature of most disasters, it is also

important that this data is shared between

countries; for example the Southern African

Regional Climate Outlook Forum continued to

exchange information amongst forecasters,

decision makers and climate information users

even when Mozambique and South Africa were

close to war in the 1980s.

• Innovative financial arrangements are needed

to incentivize resilience, which both requires

cross-sector coordination and, typically,

greater initial investment costs, though these

will be recouped over the lifecycle of the asset.

Infrastructure banks can encourage a more holistic

and strategic vision for infrastructure system.

Grants can also include resilient selection criteria,

such as the US TIGER Discretionary Grants, to

promote projects that minimize lifecycle cost and

improve resilience. Interdependencies, where the

actions of one agency have downstream impacts

on the resilience of transport infrastructure,

typically create a free-rider problem that can only

be addressed through greater budget

coordination. Japan, for example, has cost-sharing

mechanisms between public works organizations

and DRM organizations to share the cost of raising

the height of expressways, which can provide

useful evacuation routes.

• Project identification, preparation, and

appraisal standards are critical tools for

explicitly prioritizing, measuring, and building

in resilience at the project level. Appraisal

models should evaluate the costs of infrastructure

damage, failure, and service delays from

disasters, and this should be reflected in feasibility

reports and the planning and design options. The

scope of projects should also be expanded to

include the role of neighboring land-use practices

and upstream land management; practices that

are significantly more cost effective than raising

the height of a bridge, for example. Environmental

impact assessments are a particularly useful tool,

which can be expanded to include the impact of

disasters on infrastructure, as recommended by

the EU and implemented in Australia, Canada,

and the Netherlands.

• In order for new tools, design approaches, and

standards to be adopted and implemented

there needs to be a greater awareness

amongst all stakeholders of the need for

resilience and what it entails. The resilience of

transport infrastructure ultimately rests on the

availability of a good standard and broad spectrum

of expertise within government departments at the

regional, national, and local level, and within

transport project teams. The community can also,

where feasible, be trained to monitor and inspect

transport infrastructure and flag early warning

signs.

Page 11: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

11 

Loma Prieta earthquake damage on Bay Bridge, California, in 1989.

Emergency Response and Risk Reduction • The period immediately during and after a

disaster involves restoring critical lifeline

routes and regaining basic access and mobility

so that society can quickly resume a basic

level of functionality and transport

departments can begin examining how to

“build back better.” Transitional traffic measures

are introduced, rubble and debris are cleared from

any priority routes, and damaged infrastructure is

temporarily patched to prevent further damage.

This process is simpler for infrastructure that has

been designed for safe failure as the modes of

failure will have already been predicted and

designed in.

• Redundancy, diversity, flexibility, and

robustness are among the key principles of

resilience that must be considered in advance

in order to ensure an effective recovery phase.

Creating redundancy within the physical network

as well as within emergency operating systems

and critical infrastructure systems, such as

electricity, is critical, as is increasing the diversity

of transport modes and the flexibility of modes and

routes (e.g., adding capacity to modes and routes

and identifying emergency routes, critical nodes,

and alternatives). The robustness of priority lifeline

routes, assets

(including vehicles, fuel supplies, communications

equipment, repair facilities, ferry

vessels/terminals, and airport landings) and

emergency equipment (mobile pump units, fuel,

spare parts, materials, Bailey bridges, generators,

battery backup systems) is another aspect to

consider. Furthermore, in order for these assets

and equipment to be operational, critical personnel

must be available during an emergency and

contingency plans established to identify or

mobilize temporary staff. Finally, rapid response

demands immediate funding (index-based

catastrophe bonds, for example) and a greater

degree of budget flexibility. For example, funds

can be diverted from existing programs or

tendering processes shortened.

• One of the most critical resilience principles to

consider for an effective recovery is the

availability of relevant and timely information,

and the capacity to respond rapidly to this

information and mobilize the required assets

and resources. Horizontal and vertical

information networks should be established

between transport operators (e.g., inland railways

and roads linking to ports), agencies (e.g.,

between environment, weather, and transport

agencies, as well as ICT, energy, and transport),

and across jurisdictions. This requires the

development of good working relationships and

Page 12: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

12 

coordination processes, which can sometimes be

formalized into memorandums of understanding or

mutual aid arrangements. These information flows

must also exist between transport operators and

users, and plans should be developed for centers

to coordinate the disruption amongst operators

and disseminate travel information to transport

users. This enables the disruption to be managed

effectively and safely, as well as limits any further

damage to the infrastructure through the

introduction of transitional traffic measures.

• Transport operators, agencies, and

jurisdictions must coordinate not only to share

information before and during a disaster, but

also ensure that the assumptions upon which

their disaster contingency manuals are based

are accurate. Coordination should be ongoing and

contingency manuals and backup plans discussed

and reviewed on a regular basis in order to

facilitate an effective response. Communication

procedures between these agencies must also be

regularly reviewed to ensure that any problems

and inefficiencies are identified and exercises

planned with key staff to assess and strengthen

their capabilities.

A Maryland Emergency Management Agency press conference on Hurricane Sandy.

Post-Disaster Recovery and Reconstruction Successfully “building back better” after a

disaster requires a number of pre-disaster

arrangements to establish an enabling

environment for rapidly coordinating,

funding, assessing, contracting, and

rebuilding damaged infrastructure. A number

of challenges plague this period, and threaten to

re-establish or even create new vulnerabilities:

land tenure issues, poor data collection and

management, inadequate funding, conflicting

donor and country regulations, lack of

communication and coordination, fragile

construction markets, the absence of clear

policies and guidelines, and the need for speed,

compromising satisfactory fiduciary control and

accountability, as well as “building back better.”

Effective disaster response planning is seen with

Japan’s approach to governance structures,

financial arrangements, and emergency

procedures described in the report and annex,

which led to the rapid recovery of transport

operations after the 2011 Great East Japan

Earthquake. Embedding the principles of

responsiveness, good governance, and flexibility

through the development of pre-disaster

arrangements is a crucial first step to mitigating

these risks and developing a contextually

Page 13: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

13 

appropriate response.

Mechanisms for improving the coordination

between national and local governments,

infrastructure systems, transport operators,

and the private sector can be established and

considered pre-disaster. For example,

establishing framework agreements with the

private sector with agreed rates, roles, and

responsibilities, allows rapid mobilization and

effective risk sharing, which will save time, cost,

and resources. Systems can also be established

for cross-agency information sharing and data

storing, such as the establishment of a data

steward—a point of contact—at each agency for

sourcing data, and the distribution of pre-

established dataset guidelines for collecting data

post disaster. Data on the condition and

performance of the damaged infrastructure, both

before and after the disaster, is particularly

critical for post-disaster reconstruction and these

systems can be established in advance.

Financial tools can encourage pre-disaster

planning and a shift from a “like for like”

approach to reconstruction towards

“building back better.” Pre-agreed relief and

recovery measures, thresholds for funding, and

cost-sharing agreements can provide funds more

rapidly and be tied to conditions that can

therefore incentivize pre-disaster mitigation

strategies. Betterment funds, which have been

deployed in Queensland, can bridge the financial

gap between the cost of restoring infrastructure

to its pre-disaster standard and the cost of

enhancing infrastructure resilience. Disaster

insurance can offer a vehicle for mainstreaming

resilience by providing insurance for post-

disaster reconstruction on the condition that

there are demonstrable pre-disaster planning

initiatives to ensure effective use and

management of funds post disaster; a system

that has been adopted by the African Risk

Capacity insurance pool, for example.

By definition, the need for flexibility in the

post-disaster reconstruction period means

that not all guidelines and contracting

arrangements can be prescribed prior to a

disaster, but will also need to evolve through an

assessment of the scale of the damage and the

needs of the community. For example, after the

2011 earthquake in New Zealand the scale of the

damage and uncertainty around the scope of the

works prompted the formation of an alliance

arrangement between public and private

organizations. Alliance contracting can further

the collaborative approach between responders

by sharing risks and rewards measured against

pre-determined performance indicators. These

arrangements, along with the introduction of

greater flexibility in the design standards and

reconstruction guidelines, allowed private sector

responders to maximize value for money in

reconstruction and prioritize funding where there

was the greatest need. Nevertheless, the need

for flexibility can be instilled prior to a disaster

through greater capacity building and the

development of a strong organizational ethos

and a deep understanding of the principles of

resilience.

The capacity to learn, exercise, and review

within and across organizations, should

occur both during “normal” times and after a

disaster has occurred. Performance must be

monitored continually during reconstruction and

appropriate performance indicators selected to

capture the quality of this progress. The US’

Interagency Performance Evaluation Task Force

after Hurricane Katrina in 2005 is an example of

an effective approach to learning lessons on the

institutional economic, policy, financial, and

legislative lessons that led to the disaster

Page 14: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  14

1. Introduction

1.1 Background A significant body of research exists on the role of low-

carbon and sustainable transport in mitigating climate

change, however, there has been relatively little

information to date on what measures can be

implemented to mitigate the physical impacts of natural

hazards on transport infrastructure and minimize the

severity of the consequences when a disaster does

occur.

Roads, railways, airports, and ports are the back-bone

of the local and national economy. However, in the

event of natural hazards, these connections and links

are frequently severed. The cost of repairing or

reconstructing damaged infrastructure puts enormous

financial pressure on governments, which in developing

countries are already struggling with scarce resources

and poor capacity. It also has severe economic and

social impacts on the businesses and communities that

rely on this transport infrastructure in order to survive.

Furthermore, failure results in a number of immediate

fatalities and injuries, which can increase as emergency

responders are unable to reach affected communities

and the delivery of aid is delayed. The Haiti earthquake

in 2010 highlighted the vulnerability of a centralized

transport

system,

which is

reliant on

key

hubs that can easily be damaged. Damage to the airport

and key port affected the speed at which resources

could be brought to Haiti. Whilst other ports were

operational and less affected by the quake, they were

reliant on good transport links themselves.

1.2 Purpose

This report sets out the principles of resilience in

transport and examples of the practical measures that

can be included in projects to mainstream resilience

across multiple domains and across the Disaster Risk

Management (DRM) cycle. It also provides illustration of

how resilience can be included within projects through a

review of a number of case studies around the World.

EVIDENCE 1: Impact of natural hazards on transport infrastructure USA, Hurricane Sandy, 2012: The Metropolitan Transportation Authority estimates that Sandy caused USD 5 billion in losses: USD 4.75 billion in infrastructure damage and USD 246 million in lost revenue and increased operating costs (CNN, 2013).

Nepal, Kosi flooding, 2008: The Kosi flooding in 2008, which resulted from an embankment breach (the flow of water at the time was just 1/7th of the

Road damage after a dam breach at Havana Ponds in Rocky Mountain Arsenal National Wildlife Refuge.

Page 15: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  15

system design flow), caused damage to 79 percent of roads in Bihar, India, and immediately cut off Nepal’s East-West Highway interrupting the flow of goods and services in Nepal and affecting medical referrals to the main hospital at Dharan. It took a full year before the East-West Highway was fully restored and surfaced by the Nepal Department of Roads. Mozambique, flooding, 2000 and 2013: Flooding in 2000 caused USD 47 million worth of damage to the road system, with estimates for repair valued at USD 87.2 million (World Bank, 2000). Again in 2013, flooding at a similar scale caused an estimated USD 80 million worth of damage to paved roads and bridges (not including unpaved roads), with estimated costs for short-term repairs given at USD 52.30 million, whilst medium to long-term interventions were estimated to require USD 68.85 million (Aide Memoire 2013). Solomon Islands, earthquake and tsunami, 2007: Costs from the 2007 disaster in the Solomon Islands were estimated at USD 591.7 million, which represented around 90 percent of the 2006 recurrent government budget.

1.3 Methodology This study draws on a large body of knowledge from

both developed and developing countries, including a

review of reports on transport infrastructure resilience

from several developed (USA, UK, EU and Japan) and

developing countries. There are a number of evidence

boxes throughout the report to support the

recommendations with examples from countries around

the world.

An analysis of 26 case studies was conducted covering

both developed and developing countries. They are

examples of good practice and were drawn from already

documented case studies, interviews, and Worldwide

experience. They provide examples of transport

measures across the phases of pre-disaster risk

assessment and management, emergency response

and risk reduction and post-disaster recovery and

reconstruction. Each one reviews the issues related to

Policies, Institutions, and Processes (PIPs); Expertise;

Financial Arrangements and Incentives; Operations and

Maintenance (O&M); and Technical Planning and

Design and these are presented in color- coded boxes

for readability (see Annex).

A pragmatic methodology was employed in the selection

of these case studies given the shortage of documented

practices related to resilience in the transport sector.

Many derive from developed countries since they have

been driving innovative actions in this area, however,

this does not invalidate their relevance for developing

countries. The approaches embody key principles of

resilience, such as improved coordination and

knowledge sharing, which are also key components of

institutional strengthening and development projects.

1.4 Report Structure

Chapter 1 introduces the objective and scope of this

study, while Chapter 2 examines the properties of

transport infrastructure systems and how a disaster can

occur and propagate through these systems when a

natural hazard, big or small, occurs.

Chapter 3 explains and compares key terms and

concepts, including resilience, risk, and robustness.

These concepts are frequently used, but they have often

become umbrella terms, which encompass a multitude

of meanings. Opportunities to introduce innovative

approaches for increasing the resilience of infrastructure

can be missed if these concepts are uncritically used at

the project design stage. In the drive for cheap/quick

delivery these concepts also risk getting lost during the

implementation stage.

Chapter 4 presents a framework for assessing

resilience and risk to the transport sector from natural

hazards.

Chapter 5 provides examples of the range of actions

falling under the five key elements of the transportation

resilience framework: Policies, Institutions, and

Processes (PIPs); Expertise; Financial Arrangements

and Incentives; Operations and Maintenance (O&M);

and Technical Planning and Design. These will work to

encourage planning, design, construction, operations

and maintenance of resilient transport infrastructure, in

the pre-disaster phase.

Chapter 6 focuses on principles to apply during and

Page 16: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  16

immediately after a disaster, during the emergency

response phase. It additionally provides examples of the

actions that will encourage faster and more resilient

response and recovery in the transport sector during a

disaster. Many of the actions during emergency should

be well thought of and planned before the disaster, to be

properly deployed when it occurs.

Chapter 7 discusses the post-disaster and repair of

critical infrastructure to a basic state of functionality

sufficient to allow recovery, followed by the

reconstruction of infrastructure, which builds in the

lessons learned from previous performance, such that

community resilience is enhanced against future

disasters.

Annex: The Annex consists of technical assessment

sheets that cover the planning and design measures for

each infrastructure type—roads, railways, bridges,

tunnels, airports, ports and inland waterways—and for

each type of hazard—geophysical (earthquakes,

landslides and tsunamis), hydrological (flooding, flash

floods, and mudflows), climatological (extreme

temperatures and wildfires), and meteorological

(cyclones, storms, and wave surges). It also includes 26

in-depth case studies, which cover pre-disaster risk

assessment, emergency response, and post-disaster

reconstruction measures in the transport sector.

Aft

Page 17: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  17

ed Railways

2. Transport Infrastructure Systems

2.1 Transport Systems Physical man-made infrastructure originates and exists

in socio-economic contexts and interacts with the

surrounding social, economic, financial, political,

manufactured, and ecological environment. Transport is

a particular form of infrastructure where this is evident.

Transport networks have developed over long periods

of time and evolved into a patchwork of physical

networks consisting of varied transport links and modes,

and old and new infrastructure with different design

lives. These are governed by multiple institutions and

actors, both public and private, with different funding

streams, regulatory authorities, operations and

maintenance processes. Transport infrastructure also

sits within a large natural environment, the responsibility

for which often rests with other institutions and actors.

In order to understand the behavior of transport

infrastructure and why “disasters” occur it must be seen

and modelled as a complex adaptive system. A system

is defined as complex when its behavior cannot be

reduced to the properties and behaviors of its individual

components. The technical, human, organizational, and

societal components of the system interact in complex

and unpredictable ways. Risks can emerge through

these interactions across different

Complex adaptive systems are also characterized by

their capacity to self-organize and adapt in response to

the feedback received from the environment (Mortimer,

2012). Transport systems have this capacity for

adaption as they include decision makers, infrastructure

providers, and users who will “adapt” to changing

circumstances.

2.2 Interdependencies

Transport infrastructure is a complex system, which in

turn interacts with other complex infrastructure systems,

including power, communications, fuel etc. These

systems have their own design standards, and

institutional and actor networks.

Interdependency refers to the mutual functional reliance

of essential services on each other (see Figure 1). There

are multiple types of interdependencies, which do not

simply result from physical proximity (see Annex Section

8.3 for a tool for assessing infrastructure

interdependencies through stakeholder engagement).

• Physical interdependency occurs when the

operational output from one infrastructure affects

another, such as power generation facilities that feed

the pumping facilities that are used during subway

flooding.

• Cyber interdependency occurs when an

infrastructure depends on data transmitted through ICT

infrastructure. For example, signalling on railways and

the use of ICT for emergency response.

Page 18: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  18

• Geographical interdependency is the physical

proximity of infrastructures; utility lines are often

collocated with bridges, roads, and rail lines, for

example.

• Organizational interdependency occurs when the

state of an infrastructure depends on the other as a

result of policy, financial, governance, and

organizational links. They may also be organizationally

linked through shared governance, oversight, and

ownership (Engineering the Future, 2013).

Interdependencies can be both upstream and

downstream. For example, upstream interdependencies

for the transportation sector could include power

failures, which cause signalling problems for the railway.

Downstream would be those systems and utilities

affected by a failure in the transport network. Upstream

interdependencies are important for considering the

identification of hazards for the transport sector, whilst

downstream interdependencies should be considered

for assessing the criticality of the transport network

under analysis (Hughes, J. F., and Healy, K., 2014).

EVIDENCE 2: Hurricane Sandy interdependencies Hurricane Sandy is a good example of the interconnectedness of infrastructure systems and the cascading failures that will occur at the time of a natural hazard. It particularly highlights the transport sector’s reliance on electricity and fuel. The combination of electricity outages and damaged refineries and terminals disrupted the fuel supply chain. Many transportation owners and operators did not have sufficient backup generation resources to last the power outage. Key disruptions included:

Electricity outages disabled railways signals and could not support floodwater pumping systems.

The New York City subway system had its own pump system for normal drainage but did not have dedicated backup generators, and the spares that were brought in were insufficient.

LaGuardia airport had more than 15 million gallons of water and five pump houses had no electricity or backup generation. Subway tunnels and depots did not have the capacity to pump out water,

which damaged electrical and communications systems. Furthermore, the salt water corroded equipment that could not be cleaned on site due to the potential for short-circuiting or fire. The lack of power and fuel slowed the process of replacing or taking the equipment elsewhere. Source: Lau, C. H., and Scott, B., (2013)

Figure 1: Systems approach figure adapted from Bartlett (2001) Assessing these interdependencies and adopting a

systems approach opens up more strategic options for

policymakers. Systems thinking is the process of

understanding the relationships between components of

a whole system, rather than in isolation that can often

lead to unintended consequences.

An example of a systems-orientated approach and the

co-benefits it can bring is highlighted in the Evidence

Box 3.

EVIDENCE 3: New York High-Performance Infrastructure Guidelines (2005) The Design Trust partnered with the New York City Department of Design and Construction to develop High-Performance Infrastructure Guidelines. These advocated a systems-oriented approach that focused on improving the performance of the entire roadway system and simultaneously addressing

Figure 2: Utility Network Interdependencies: This diagram was produced by NARUC (2005) to illustrate the interdependencies between utility networks.

multiple sustainability objectives in the design of

infrastructure. These improved the lifecycle and performance of the asset, and hence its resilience to hazards, as well as additional co-benefits to public

Page 19: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  19

health, safety, quality of life, energy efficiency, and sustainability. Examples of integrated design included, designing roadways with a diversely planted media that act as a stormwater bio-retention area. This would also act as a traffic-calming device, improve pedestrian safety, dampen street noise, and improve air quality. Another example was designing a right of way with maximum shading by trees and permeable and high albedo pavements, to reduce run off, reflect light, and reduce the amount of heat absorbed by the road. This would increase pavement durability to extreme heat, as well as reduce urban heat build-up, improve air quality, and calm traffic (DTC, 2005: 9).

2.3 Disasters in Complex Infrastructure Systems Disasters are never solely natural. They are the product

of how natural incidents interact with aspects such as a

lack of preparedness, poor capacity and adaptation,

weak resilience, and over exposure and vulnerability to

hazards. The exposure and vulnerability of these

elements is to a great extent the result of human activity

and development decisions. The relationship of these

elements can be shown as the following pseudo-formula:

Hazards can generally be classified as “stress” events

(long-term and gradual) or “shock” events and are either

known or unknown. Hazards, as the disaster risk formula

indicates, do not necessarily lead to disasters, but are

only stressors and triggers in the system.

Failures in the transport system may not be

proportionally related to, or even the direct consequence

of, an external shock and can be prompted by even

small hazards that push one or more elements of the

system over their functional limit (see Kosi flooding,

Case Study 1).

There are a range of failure modes, including simple

linear failure, complex linear failure (as a result of

interdependencies), and complex non-linear failure from

the concurrence of unexpected events (Hollnagel 2011).

A shock, such as an earthquake, can enter the system

and accumulate in different non-linear feedback loops,

becoming reinforced and amplified by other

consequences generated by the same shock. This chain

reaction ultimately pushes the overall system beyond its

limits resulting in a “systems collapse.”

Page 20: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  20

3. RISK AND RESILIENCE

3.1 Defining Resilience

Resilience is best seen as an emergent property of what

a system does, rather than what it has. Resilience

encompasses a longer timescale of analysis and

acknowledges that in a complex system failure is

inevitable and there will always be unknown shocks and

stresses. A system may not recover to its previous state,

but contains the ability to adapt, self-organize, renew,

learn, innovate, and transform. This definition particularly

emphasizes “bouncing forward” rather than “bouncing

back” to the conditions that might have resulted in the

disaster in the first place (Folke 2006). These qualities

are critical in an uncertain and unpredictable

environment. Resilience refers to the ability of a system to withstand

and absorb disruption (through reducing vulnerability,

exposure, and increasing the system’s coping and

adaptive capacities), continue to maintain functionality

during an event and recover, and learn and adapt from

adverse events (Chang 2009). Resilience is also a useful

bridging concept between disaster risk reduction and

climate change adaptation as it ties together risk

mitigation and recovering from an event when it does

occur (ARUP and Rockefeller Foundation, 2014).

3.2 Risk-based Approaches

Versus Resilience Risk analysis is a process that characterizes the

vulnerabilities and threats to specific components to

assess the expected loss of critical functionality. Risk

management addresses the specific point highlighted in

the figure on the right.

SYSTEM RESILIENCE

TIME

Figure 3: Risk versus resilience, adapted from Linkov et al., 2014

Two key elements of complex engineered systems pose

issues for the applicability of risk assessment: (1) The interconnectedness of social, technical, and

economic networks and the presence of path

dependencies and non-linear interactions, which means

that different and unexpected responses can be

generated, even in response to the same stimuli at

different points in time (Park et al., 2013 365); and

(2) Unexpected extreme shocks. In the presence of

known unknowns and unknown unknowns, where the

probabilities, consequences, and magnitudes cannot be

identified, let alone calculate traditional risk analysis

techniques tend to oversimplify or ignore these

ambiguities.

VULNERABILITY

THREAT CONSEQUENCE

RISK RISK ANALYSIS

FUN

CTI

ON

ALI

TY

PLAN ADAPT

ABSORB RECOVER

CR

ITIC

AL

Page 21: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  21

Risk assessment has been the central approach

adopted by engineers to reduce or prevent failure by

increasing the robustness of transport infrastructure.

A risk-based approach, however, tends to be inflexible

and often results in fail-proof designs that are brittle and

can lead to catastrophic failure when conditions change

or there is a significant amount of uncertainty in the

system (Folke, 2006; Park et al., 2013). In attempting to

design out all failures and achieve “optimality,” risk-

based approaches fail to acknowledge the uncertainties

in a complex system and are ultimately not resilient to

surprise shocks or stresses (Park et al., 2013). LOW HIGH

Resilience thinking, however, addresses this issue by embracing complexity, uncertainty, and unpredictability. Resilience approaches have the following characteristics:

Uncertainty and changing conditions are

accepted; there is an acknowledgement that

failure will most likely occur. This approach

therefore seeks to minimize the consequences

of these failures by investigating the

interconnectedness of multiple domains and

also looking at the temporal dimension of the

effect of an adverse event on a system.

Figure 4: High/low risks and high/low resilience. This diagram shows that systems with high risk but high resilience perform better than those with similar levels of risk and low levels of resilience, and perhaps the same as systems with low risk and low resilience. (Source: adapted from Linkov et al., 2014: 407).

A B

C D

Page 22: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  22

• Resilience looks at the “slope of the absorption curve

and shape of the recovery curve” (Linkov et al., 2014:

407).

• A resilience approach involves adapting to changing

conditions and designing in controlled failure (safe to

fail) to reduce the possibilities of cascading failures

affecting the entire system.

Risk management and resilience approaches are

complementary and both are needed to build resilience

in a transport system. Sometimes conflicts can arise

between increasing robustness (fail-proof design) and

resilience, however, this can be managed if robust

structures are planned and designed with the overall

system’s resilience in mind.

3.3 Measuring Resilience The key challenge to combining risk and resilience

approaches is developing a common understanding of

how to quantify resilience, particularly given the different

perspectives of resilience (ecological, socio-ecological,

and engineering). The second challenge is to go beyond

assessing physical coupling, which is easier to quantify,

and take into account resilience characteristics and

interdependencies at the institutional, organizational and

economic scale (Tang and Eldinger, 2013).

Figure 5: Illustation of an analytical framework for mainstreaming resilience in the transport sector.

Page 23: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  23

EVIDENCE 4: Transport network resilience measures

FUTURENET (Future Resilient Transport Systems) is a project sponsored by EPSRC as part of the Adaptation and Resilience to Climate Change program and led by a consortium of partners led by the University of Birmingham. FUTURNET is exploring how to measure the resilience of a transport network in terms of values recognized by various stakeholders. For example, the ratio of planned “normal" journey time to actual journey time for users of the transport system—journey delays being the defining characteristic of network resilience for typical users but other metrics can be substituted for other stakeholders. They broadly divide failure into: serviceability limit state failure, where the journey is completed but the delay is unacceptable, and ultimate limit state failure, where the journey cannot be completed. They use two types of modelling to assess these failures—detailed physical models and large-scale statistical models. These are combined to assess the effect of meteorology on traffic volumes and speed in the absence of infrastructure failure, and can determine the effect of meteorology on segments of the network and the probability they are completely severed (Bouch et al., 2012).

3.3.1 Quantitative Measures

Probabilistic measures of resilience tend to measure the

joint probability of meeting robustness and rapidity

objectives in the event of a failure in the system. There

are a number of challenges in determining a network’s

level of resilience. Firstly, resilience is a property that

emerges from the interactions between system

elements over time, rather than a property of its

individual elements. Furthermore, there are few

effective measures to explain the effect of transportation

on the region’s economy and society and poor data at

the network level. The resilience of a system also

depends on whether the system meets the user’s needs

in terms of journey time and reliability (Bouch et al., 2012). Yet each user has a different

understanding of resilience and tolerance for failure,

posing additional challenges in accurately capturing and

measuring a “resilient” transport system. Finally,

quantitative measures of resilience entail significant

time and cost constraints and require a high level of skill

and training, as well as detailed information about the

system.

3.3.2 Qualitative Measures An alternative is to develop a proxy for measuring

resilience by identifying the qualitative characteristics of

a resilient system. Whilst these are subjective, they are

more flexible and involve engaging more of the key

stakeholders in a system, which is an important

component of identifying and planning transport

projects.

Here we have presented the resilience principles, which

should inform the development of a resilience assessment framework. Whilst much of the literature

often categorizes these resilience principles by

institutional, technical, and social dimensions, we have

found, through our review of the case studies, that these

principles do not map neatly onto particular dimensions

and that there are a number of overlaps. For ease we

illustrate how each principle applies across these

dimensions using the categories: Policies, Institutions,

and Processes; Expertise; Financial Arrangements and

Incentives; Operations and Maintenance; and Technical

Planning and Design.

3.3.3 Resilience Principles

The resilience principles are described in further detail

below, including how they apply across the five different

domains.

GOOD GOVERNANCE: • PIPS, O&M, Expertise, Financial Arrangements

and Incentives, and Technical Planning and

Design: Good governance involves defining roles

and responsibilities so that organizations’ functions

do not overlap and there is no competition for limited

financial and human resources. There should be

mechanisms for integration and coordination across

modes and systems, and between hierarchies and

jurisdictions. This, additionally, includes public

accountability, transparency, and anti-corruption

measures, particularly in project selection procedures

and procurement. Understanding and engaging with

the resilience perspectives and concerns of different

stakeholders, including private and public sector, and

transport users and communities, is another

important aspect of good governance.

Page 24: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  24

INFORMATION FLOWS

PIPS, Technical Planning and Design, and

O&M: Systems must exist for information to be

exchanged and transmitted quickly between

transportation system managers, staff, and users

(across different modes of transport), as well as across

multiple agencies and infrastructure systems. Efficient

information flows must also exist to transmit back

lessons after disasters and emergencies.

• Expertise: Agents (engineers, operators,

government officials etc.) need reliable information

derived from rigorous data collection and risk-

assessment processes in order to make strategic

decisions regarding transport infrastructure. They also

need to be trained in how to collect and use this

information.

FLEXIBILITY is the ability to change and evolve in

response to changing conditions.

• PIPS and Expertise: Flexible, forward-looking,

progressive plans implement change iteratively as more

information is learnt about the climate or local context.

Flexibility also involves agents being receptive to local

knowledge and new techniques.

• Financial Arrangements and Incentives: Flexibility

can be encouraged through financial incentives to

change attitudes and experiment with new ideas. It can

also be encouraged through methods such as Real

Options Analysis.

• Technical Planning and Design: Flexibility can be

introduced in asset design; provisions can be made for

a bridge deck to be raised at a future date in response

to increased flooding.

RESOURCEFULNESS is the ability to mobilize assets

and resources to meet priorities and goals. This includes

financial, social, physical, technological, information,

and environmental resources. Resourcefulness is “the

capacity to visualize and act, to identify problems, to

establish priorities, and mobilize resources when

conditions exist that threaten to disrupt an element of

the system” (Da Silva et al., 2012: 11). This applies

across all the domains.

RESPONSIVENESS refers to the ability and

motivation of agents to restore function and order

rapidly after a failure. Rapidity, however, should not

impair the ability to learn from the failure nor

reintroduce previous or new vulnerabilities. This

applies across all the domains.

CAPACITY TO LEARN: Engineers, emergency

planners, transport operators, owners, regulators etc.

should all be able to learn from experience and past

failures. Processes should be in place to encourage

reflexivity and learning from past failures and events.

This includes performance evaluations, etc. and

encouraging a dialogue between scientists and

policymakers so that policies and design standards

reflect the reality on the ground. This is true across all

domains.

REDUNDANCY refers to spare capacity and involves

increasing the diversity of pathways and options so

when one fails, others that serve a similar function can

substitute and take their place.

• PIPs, O&M, and Technical Planning and Design:

Increasing network redundancy and connectivity

involves increasing the number of transit routes in an

area as well as the range and diversity of options; be

this by walking, cycling, rideshare, car share, public

transport etc. Redundancy can also be developed

within emergency operations procedures so that in

case emergency responders or response units are

incapacitated, for example, a backup plan can be

readily mobilized.

Page 25: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  25

Heavy monsoon showers inundated the roads in Dharga Town, Sri Lanka, on May 17, 2010.

SAFE FAILURE involves designing infrastructure

so that when one component fails it does this

progressively with minimal disruption to other parts of

the infrastructure and network. Safe failure involves

accepting change and unpredictability and “controlling

modes of failure” (Park et al., 2013: 363) to minimize

more catastrophic consequences. This is contrary to

“fail safe” designs, which assume all failures have been

designed out. Safe failure is a means of achieving

robustness, as it allows failure of certain parts in order

to safeguard critical load-bearing parts of the

infrastructure and therefore minimize the extent of the

total failure.

ROBUSTNESS is understood as the ability of trans

port assets and the network to withstand stresses and

shocks to a level that is designated tolerable and cost-

effective. Standards of tolerability and these design

standards change over time.

• Technical Planning and Design: Robustness can

be achieved through measures that mitigate/

reduce the hazard (upstream works or

bioengineering, for example), or reduce the

exposure and vulnerability of transport

infrastructure. Robustness of the critical load-

bearing parts of the infrastructure can also be

achieved by designing the whole structure for

selective/ safe failure.

• A robust transport system also involves considering

the interdependencies between transport and other

infrastructure systems, either by improving the

robustness of these other systems (energy, water,

ICT etc.) or introducing buffers (Swiss Re, 2010)

that mediate the relationship between these system

links so that a shock does not instantly transmit into

system failure (Rinaldi, 2001).

O&M is key to maintaining the robustness of the

transport system.

Page 26: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  26

This section presents an overview of a resilience and

risk assessment framework and the key questions and

instruments that should be employed at each step.

Step 1 involves a high-level assessment of the

resilience and risk of transport systems to identify the

key challenges and needs in order to define the project

scope. Once the project scope has been defined in

Step 2, Step 3 assesses the resilience of the transport

system using a resilience matrix tool. Step 4 proceeds

to conduct a more detailed risk assessment of the

project and, on the basis of the combined resilience

and risk assessment, options are analyzed in Step 5.

4.1 Step 1: Needs Assessment

This step involves engaging with all relevant stake-

holders, including government, regulators, investors,

insurers, infrastructure operators from different systems

and modes, local authorities, and local com-munities,

and using the resilience analytical frame-work to

examine to what extent the nine principles of resilience

exist in the country’s transportation system. This

involves thinking across the five domains—PIPS,

expertise, financial arrangements and incentives,

operations and maintenance, and technical planning

and design—and across all stages of the DRM cycle:

pre-disaster risk assessment and management,

emergency response, and post-disaster recovery and

reconstruction.

Questions to ask include: Do the relevant institutions

(transport, environment, DRM, water, infrastructure etc.)

exhibit good governance and flexible forward decision

making? Are there good information flows between and

within institutions, at the horizontal and vertical level to

aid with emergency response? Are agents in these

institutions responsive, resourceful, and do they have

the capacity to learn?

During this step it is also important to consider to what

extent natural hazard risks impact short-, medium-, and

long-term social, economic, and strategic development

goals, plans, programs, and targets. Given resource

constraints, there are often trade-offs to consider

between different regions, transport priorities

(maintenance, new assets, road safety) and between

quality and quantity, particularly improving “basic

access” and having “fewer but stronger roads.”

Further consideration should be given at this stage to

the impacts of climate and extreme weather-related

risks, specifically on the performance objectives of the

4. DISASTER RESILIENCE AND RISK ASSESSMENT IN TRANSPORT SYSTEMS DISASTER RESILIENCE

Figure 6: Risk and resilience assessment (Source: IMC Worldwide)

Page 27: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  27

transport project/network. These relate to: (1) safety; (2)

ensuring basic access and mobility; (3) reducing the

need for regular and costly rehabilitation and

reconstruction works, as well as maintenance costs; and

(4) reducing the risks that transport projects may have

on increasing disasters and the vulnerability of the

whole network. Regular infrastructure assessments can

provide a good baseline understanding of the state of

the transport system and asset-management platforms

can provide information on the impacts of natural

hazards on transport infrastructure.

When identifying needs and challenges in the transport

sector it is also critical to identify and assess the

upstream and downstream interdependencies with

other infrastructure systems and identify weak spots and

critical points of failure that would affect the resilience of

transport systems. Infrastructure assessments can also

provide an invaluable baseline understanding of the

state of the transport system. All these considerations

and assessments should be done at the country

assistance strategy stage to set the country priorities

and objectives, but if this has not been done, they can

be included here at the planning and implementation

stage.

EVIDENCE 5: Interdependency analysis An interdependency analysis and assessment of the resilience of the infrastructure system as a whole should be conducted. An infrastructure timeline can be constructed to compare policy, planning, and project timelines across infrastructure types allowing coordination and alignment across policy timelines. This has been developed in the UK to show at a strategic level where government departments should coordinate before and during policy development to ensure there is not a risk of failure due to interdependency (Engineering the Future, 2013). An interdependency analysis can also show when there is a risk of cascading failures if a natural hazard occurs and what are the critical points of weakness in the system and what should be addressed in future TA and construction works projects.

4.2 Step 2: Project Scoping The previous stage may have identified economic,

social, political or strategic challenges and needs that

will then set the priorities for defining the project scope.

However, if increasing resilience has been assessed to

be a priority the project scope needs to be further

defined to enable more detailed assessments to take

place. This could be according to: (1) geographical

areas, which are more susceptible to natural hazards,

and face either a combination of high/low risks and

high/low resilience; (2) historically poorly performing

assets/networks or infrastructure with little remaining

design life; and (3) asset criticality assessments.

Asset criticality assessments can be done through a

combination of desk review and stakeholder

engagement. The desk review identifies critical assets

based on data such as average daily traffic, economic

information, functional classification, goods movements,

and emergency management Stake-holder input can

provide further information, which is not readily or

publicly accessible and thus ensures that the project

scope reflects local concerns. Problems with this

approach are that it can be time consuming and

data/resource intensive. The outcomes can also be

highly subjective and depend on who is invited and the

quality of the engagement. Asset criticality can also

ignore the low-level risks that face an extended road

network and instead prioritize high-value assets.

EVIDENCE 6: Assessing asset criticality The FHWA Climate Change and Extreme Weather Vulnerability Assessment Framework (2012) proposes a framework for performing asset criticality (the structural scale approach), which can be conducted either through a desk review or stakeholder input. Figure 7 shows the results. A series of maps was produced for each region showing the vulnerability ratings for roads, airports, ferries, and railways. The vulnerability ratings were mapped for all modes across the state. Red lines were where one or two areas have been found to be vulnerable to catastrophic failure; yellow, where roads are vulnerable to temporary operational failure at one or more locations; and green are roads that may experience reduced capacity somewhere along the segment (see Case Study 5 for a stakeholder input approach to assessing asset criticality).

Page 28: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  28

Figure 7: Washington State DOT Climate Impacts Vulnerability Assessment (reprinted with permission).

4.3 Step 3: Resilience Assessment

There are few models and tools that have attempted to

operationalize the resilience approach, and those that

do have tended to look at one domain (physical,

institutional, social) rather than the interconnections

between these domains. Increasing the resilience of

transport systems demands coordinated solutions

across these domains. A handful of models have

emerged to address this; two of which are summarized

below. More detailed frameworks tailored to specific

usage could be developed.

Linkov et al., (2013) developed a resilience matrix to

enable policymakers to coordinate solutions across

different domains and across the DRM cycle. The first

dimension captures the temporal aspect of resilience

and categorizes the different stages of change in a

system: plan/prepare, absorb, recover, and adapt. The

second dimension captures the different domains that

should be analyzed in a system: physical, cognitive,

information, and social. Metrics are devised for each cell

on the basis of literature reviews, stakeholder

engagement, and the principles of resilience. The

addition of a metric in one cell will inevitably affect other

metrics that are included. For example, physical

systems to collect data will need a corresponding metric

in the social domain to represent the ability to interpret

and communicate this information. These metrics are

measured both quantitatively and qualitatively by

technical experts and stakeholders in the system.

Traffic Pre

pa

re

Re

sist

Rec

ove

r

Ad

apt

Physical

Information

Cognitive

NA

Social

Energy

Physical

Information

Cognitive

Social

Figure 8: Resilience matrix approach (adapted

from Rosati J.D., 2014).

Page 29: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  29

This matrix does not provide an absolute measure of

resilience, but allows for a baseline assessment of the

system by indicating gaps in the system’s resilience,

project needs, and the role of partners. It also provides

a way of comparing project alternatives through multi-

criteria decision analysis, by scoring the system against

various resilience criteria such as redundancy, and

aggregating these weighted scores to provide an overall

resilience score for each system (Roege, 2014).

Hughes, J.F., and Healy, K., (2014) have also recently

developed a resilience assessment framework for New

Zealand’s Transport Authority. This is not represented

as a matrix and does not capture the temporal

dimensions of resilience, but captures the dimensions

(technical and organizational), principles, and measures

of resilience. They suggest that a criticality and risk

assessment should first be used to identify the strategic

and vulnerable points of a network and a resilience

assessment then carried out on these high-risk and

high-value assets. The issue with this is that a system

with low risks but also low resilience could be

overlooked.

4.4 Step 4: Risk Assessment Risk is a function of threats, vulnerabilities, and

consequences. This step assesses the risks to the

project to determine the expected loss of critical

functionality to a system.

• Context analysis: a) specify and further define the

context at the scale chosen (territorial, network, section,

structure); and b) establish risk criteria and indicators.

• Risk identification: a) identify threats (natural hazard

variables and contextual site variables); b) identify

vulnerabilities (sensitivity, exposure, and adaptive

capacity); and c) identify consequences (extent and

severity of disruption).

• Risk evaluation: a) construct risk scenarios and

score/value consequences and likelihoods; b) rank and

prioritize consequences/ vulnerabilities (see Evidence

Boxes Numbers 7 and 8).

EVIDENCE 7: California seismic retrofit program for bridges The California Department of Transportation after the Loma Prieta earthquake in 1989 inventoried approximately 25,000 bridges for seismic retrofitting. A prioritization methodology was designed to efficiently direct resources. The process began by establishing a required performance standard. For most the minimum standard was “no collapse” but some damage to the structure was acceptable as long as the structure remained intact and could be reopened soon after the disaster. The exceptions to this were 750 high-investment bridges, which were vital transportation lifelines. A layered screening process was then undertaken, which used four major evaluation criteria: seismic activity, seismic hazard, impact (based on attributes such as average daily traffic, route type and detour length), and vulnerability (structural characteristics). The score for each criterion was multiplied by a weighting factor—seismic activity and hazard were weighted more heavily—and summed to arrive at the total score. Source: National Research Council (2008).

EVIDENCE 8: UK Highways Agency model for prioritizing adaptation

In the UK Highways Agency model (2011), vulnerabilities are prioritized for action according to severity, extent of disruption, uncertainty (evaluates uncertainty around climate change projections and impact of climate change on the asset/activity), and the rate of climate change. The rate of climate change is the time horizon for effects to become material. An asset life sub-indicator is included to reflect the impact that decisions will have on assets with different design lives. For example, for short-term assets, which are likely to be renewed within 30 years, it is less a priority to take action regarding climate impacts that will materialize in the long term. The prioritization of vulnerabilities in turn informs the timescale for action. The UK Highways Agency (2011) the many different locations on the network need to be treated; adaptation is concerned with a long life, expensive asset where it is suggested that there would be clear benefit from future proofing new designs now; and there is a long lead time needed to plan adaptation.” (Highways Agency, 2011: 23).

Page 30: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  30

Figure 9: Priorities for adaptation of highways assets (Highways Agency, 2011: 22).

4.5 Feasibility Studies / Options Analysis Following the assessment of the project’s risks and

resilience, the final step involves identifying and

evaluating the range of options available. This can be

done through a cost-benefit analysis to generate a Net

Present Value (NPV). When mitigation and adaptation

policies cannot easily be quantified in monetary terms a

multi-criteria analysis is a useful additional tool. In the

case of significant uncertainty and the potential for

flexibility, real options analysis provides an alternative to

NPV assessments. The challenges and advantages of

these approaches in the context of DRM are described

below.

a. Cost-benefit analysis

Costs-benefit analysis (CBA) involves comparing cost

and benefit streams over time and these are then

discounted to generate a NPV. There are a number of

drawbacks to CBA, including the difficulty in accounting

for non-market values, failing to account for the

distribution of benefits and costs, and choosing the right

discount rate. CBA is particularly difficult for DRM

projects where the planning horizon is much longer.

There is also often an absence of reliable hazard and

vulnerability data, and a lack of information around the

benefits and profits of DRM projects (Mechler, 2005).

Japan has, however, adapted CBA for DRM projects

and used it to measure the resilience characteristics in

the framework above, including redundancy and

regulatory changes to improve good

governance/flexible forward-looking decision making

(see Evidence 9).

b. Multi-criteria analysis

Multi-criteria decision analysis offers a structured

methodology for combining quantitative and qualitative

inputs from risk assessment, CBA, and stakeholder

opinion to rank and evaluate project alternatives. MCA4

climate initiative (www.mca4climate.info) developed a

step-by-step multi-criteria decision guide for countries to

develop pro-development climate policy planning, and is

also relevant for infrastructure resilience (Hallegate,

2011). The first level of the decision tree is split be-

tween inputs (costs of implementing a policy) and

outputs (impacts of policy), which then lead to the

second-level criteria: the public financing needs and

implementation barriers of implementing a policy option

(inputs), and the climate-related, economic,

environmental, social, political and institutional impacts

of policy options (outputs). The inputs are at the third

level disaggregated into “minimize spending on

technology,” “minimize other types of spending,” “allow

for easy implementation,” and “comply with required

Page 31: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  31

timing of policy implementation.” The output side is

further broken down into 15 criteria covering climate-

related issues, economics, environment, social, political

and institutional dimensions (see Annex for decision

tree). See Evidence Box 9 for a case study on sea walls

and roads in the Bahamas.

EVIDENCE 9: Multi-criteria decision analysis for sea walls and roads in the Bahamas In 1999, Hurricane Floyd, a Category 4 (in fact wind speeds were just 2 mph short of Category 5) Hurricane traversed the Bahamian islands at peak strength causing significant damage to coastal roads and wooden jetties used to access water taxis and fishing boats plying between the various islands. The majority of the Bahamian islands are low-lying coral islands rising at the coast to just a few meters above sea level. A multi-criteria decision analysis was adopted to assess the value of building a sea wall, which was large enough to withstand extreme events. Criteria were included to assess the impact of a large sea wall on the environment’s aesthetics given that the islands are desirable tourist locations, and its contribution to the community’s safety. It was decided that high sea walls would be visually intrusive and that the residents would be advised to remain inside during a hurricane so there would be no additional safety benefits from increasing the height of the sea wall. This would also be an expensive option, and the value of the asset (the road) was not significant enough to warrant this. It was decided to design the sea wall for safe failure so that the road would be over-topped by extreme wave action and sea surges but it still prevented lower-level damage to the road (see Case Study 16 for further detail).

c. Real infrastructure options analysis:

Real options analysis offers a tool for dealing with the

uncertainty of climate change and seeks to value

flexibility in the design of infrastructure systems. NPV

ignores that managers may need to react to new

information or changes in the environment and therefore

undervalues opportunities that provide future options. If

there is uncertainty or the potential for flexibility or

learning, then real options analysis provides an

alternative to cost-benefit analysis. Costs and benefits

streams are still compared over time and discounted to

generate an NPV, the difference with CBA is accounting

for the value of flexibility. A decision tree framework

maps the costs, benefits, and probabilities of different

options and a sensitivity analysis is applied to examine

the implications of different climate change scenarios

(HM Treasury and Defra, 2009). The TE2100 plan for

the Thames Estuary in the UK adopted a quasi-option

value analysis to support decision-making under

uncertainty and provided a number of alternative

pathways in light of the uncertain climate (see Case

Study 6).

EVIDENCE 10: DRM and cost-benefit analyses in Japan In Japan, cost-benefit analyses are conducted for public works projects by committees consisting of academics, business, and legal experts. These occur before projects are adopted, and then every three to five years after to evaluate their efficiency. A CBA of coastal protection works in Japan assesses the expected losses to inland properties from flooding by tsunamis and storm surges; the prevention/mitigation of damage to land and properties from erosion; the prevention/mitigation of damage by blown sands and sea spray and negative effects on daily life; the value of natural landscapes and ecosystems; and the value of using the sea coast for recreation activities etc. The costs are discounted and compared under economic efficiency decisions criteria, such as net present value, or the economic internal rate of return. The cost effectiveness of redundant infrastructure, which is critical in the event of an emergency, is also factored into the evaluation of options. The evaluation considers why the project is needed on the basis of DRM considerations, numerically estimates the level of improvement (for example, shortened travel time or securing a transport link between core cities), and then compares the effectiveness amongst similar plans and projects. Cost-benefit analyses are additionally conducted on new regulations. A regulatory impact analysis (RIA) assesses the costs of a new regulation—approval processes, administration costs etc.—versus the benefits of the new regulation, such as improved land-use practices and prompter evacuation. An RIA was undertaken before adopting the Act on Building Communities Resilient to Tsunami in December 2011. (Source: Toyama M., and Sagara, J., (2012).

Page 32: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  32

Castellated sea wall in the Bahamas

d. Value for money:

Investors and donors seek to maximize Value for Money

in infrastructure programming. A report by Adam Smith

International (2012) noted that whilst the goal of

infrastructure programming is often to produce a

tangible asset, upstream technical assistance can

significantly improve downstream VfM and a VfM

analysis should therefore include as many of these

outcomes and impacts as possible. VfM should

measure the impacts of institutional, regulatory, and

capacity building programs to improve transport

infrastructure resilience.

4.6 Producing a Terms of

Reference

The terms of reference developed will need to clearly

define the resilience objectives that the project or

infrastructure needs to achieve and, if appropriate, the

minimum level of functionality that the infrastructure

should sustain in the event of a disaster. The terms of

reference will set out options to mitigate vulnerabilities

across a system, or minimize and manage the

consequences when failure does occur so that the

transport system continues to remain functional in the

event of a disaster. The scope of services could include addressing policies,

institutions, and processes; expertise; financial

arrangements and incentives; and O&M procedures.

Possible options to address mitigating vulnerabilities in

the planning and design of infrastructure are covered in

Section 5, whilst those that will minimize and manage

the consequences of failure are presented in Section 6.

Section 7 explores options for the post-disaster recovery

and reconstruction of infrastructure. The technical

planning and design features that the consultant should

consider in the planning and design of new

infrastructure are presented in Section 6. And the

Annex, Section 8.5, contains further technical

assessment sheets for consultants to review.

Page 33: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  33

5. PRE-DISASTER RISK ASSESSMENT AND MANAGEMENT

This section provides practical examples of the

measures that can be deployed to mitigate the

vulnerabilities of infrastructure to natural hazards

through the introduction of policies, institutions, and

processes; financial arrangements and incentives;

expertise; operations and maintenance procedures; and

technical planning and design measures. For measures

that will minimize the consequences of failure when a

disaster does occur and prevent the introduction of

further vulnerabilities see Sections 6 and 7, though the

majority of these measures should still be pre-planned

and arranged in order to ensure that they can be rapidly

deployed once a disaster strikes.

5.1 Policies, Institutions, and Processes The development of policies, institutions, and processes

for embedding resilience across national, regional, and

local levels should first consider “who owns the asset.”

Examples of the role of different parties and the

measures that they can deploy to build infrastructure

resilience are provided below:

5.1.1 National, Regional, and Local Policies • The government should establish a clear long-

term infrastructure strategy and guide the

development of sector resilience strategies as

well as define the role of parties in achieving

resilience. The development of resilience plans

should include the expertise of the meteorological

office; the departments of transportation, energy,

housing and urban development, planning, defence,

agriculture, water, environment, and science and

technology agencies; disaster management;

emergency responders; and local authorities

(Evidence 10, 11, and 12). This vision should, in turn,

be communicated to infrastructure owners, operators,

investors, and insurers, as well as regulators and

local authorities so that it is mainstreamed in the

operation, maintenance, and improvement of

transport assets (PricewaterhouseCoopers 2010;

Cabinet Office 2011).

A U.S. Army Africa engineer views Tanzania flood damage in 2010. 

Page 34: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  34

EVIDENCE 11: UK Policy Statement on Ports The UK’s draft National Policy Statement for ports, for example, proposes that ports need to look at the 10 percent, 50 percent, and 90 percent estimates against the emission scenario suggested by the independent committee on climate change (PricewaterhouseCoopers, 2010).

• Governments can facilitate the development of

resilient strategies through developing infrastructure

resilience guidelines to guide work at all levels and

ensure resilient investment is aligned with national

policy.

• Governments can launch a national infrastructure

vulnerability assessment and conduct an

interdependency analysis of infrastructure systems

(see Annex 8.3). Inventories of critical infrastructure

assets can be cross-referenced with hazard maps to

identify the threat from system failure. The UK and the

US, amongst other developed countries, are currently

exploring developing cross-sector performance

indicators to capture these interdependencies.

EVIDENCE 12: Critical infrastructure groups New Zealand’s critical infrastructure institutional arrangements: Regional Engineering Lifeline Groups work closely with regional emergency management and have been established to enable utility operators to work with other stakeholders and identify and address interdependences and vulnerabilities to regional scale emergencies. A National Engineering Lifeline Committee, consisting of private companies, NGOs, and government agencies was also established in 1999. The regional engineering lifeline groups work closely with regional emergency management. (APEC, 2010). UK Natural Hazards Team: Following the Pitt Review in the UK, the Natural Hazards Team (NHT) was set up in the Civil Contingencies Secretariat at the Cabinet Office. Its role is to establish a cross-sector resilience program between government, industry, and regulators. A Critical Infrastructure Resilience Programme has been established and, as part of this, government departments working on national infrastructure are working with NHT to develop Sector Resilience Plans. These form part of a wider National Resilience Plan for Critical Infrastructure. In spite of these efforts, the Institute for Civil Engineers and the Council for Science and Technology have said that this does not go far enough to establish a single point of authority with leadership to coordinate and mediate the responsibilities for infrastructure planning (Bissell, J. J., 2010).

Regulations and procedures should facilitate the exchange of information between scientific experts and decision makers. National policies and procedures should not hinder the incorporation of new scientific information into project design. This was perceived to be a barrier to incorporating revised design standards into new projects by the Inter-agency Performance Evaluation Task Force established after Hurricane Katrina (see Case Study 2).

Establish a single point of authority to coordinate

work across different agencies (energy,

communications, water, transport, environment etc.)

and examine the risks and potential cascading

failures across the whole infrastructure system, such

as an infrastructure resilience council. This is also

useful at the local or regional level (see Evidence 13).

Coordinate DRM/resilience projects through the

Ministry of Finance, since they have direct access

to and are the accounting office for all ministries.

Establish national disaster management councils

and oblige public bodies and legal bodies that are

involved in electricity, transport, finance etc. to

participate and draft disaster risk-reduction

operations and bear responsibilities for disaster risk-

reduction activities in the event of a disaster

(UNISDR, 2005).

5.1.2 Role of Economic Regulators • Regulators could revisit their regulatory

frameworks and incentive and penalty structures

so that they more accurately reflect the costs

from service failures due to extreme weather

events. The regulator’s mandate is to protect

consumer interest and quality of service, which is

negatively impacted when transport infrastructure

fails due to exposure and vulnerability to natural

hazards.

• Coordination across regulators: Economic

regulators should coordinate to ensure that climate

adaptation challenges are fully considered in the

investment and maintenance plans of regulated

utilities (PricewaterhouseCoopers, 2010; Cabinet

Office, 2011).

Page 35: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  35

5.1.3 Transport Planning • Transport priorities and performance-based

metrics should include “resilience” and climate

adaptation as separate criteria for appraising and

evaluating projects (see Evidence 15). Typically,

transportation planning includes specific goals and

objectives, which local authorities are expected to

consider in their transport plans. These include public

safety, economic competitiveness, a healthy

environment, tackling climate change, and providing

equal opportunities to all citizens. The “resilience” of

transport infrastructure, however, is not often

articulated as a goal in itself. In order for resilient

transport projects to be constructed, this objective

should be included in the department’s high-level

strategic goals (for example, the Transport for

London’s Sustainability

Assessment Toolkit).

• Procurement policies could add filtering criteria to

select those projects that have taken into ac-count the

risks from natural hazards, the longer-term risks from

climate change, and those that have taken into

account cross-sectoral adaptation. They regularly

incorporate environmental criteria so could be

expanded to consider adaptation (see Evidence 14).

• Move away from a system of “how to move

vehicles” towards “how to move people” and

improve multi-modal transport. Urban planning can

be used to increase multi-modal transport, including

non-motorized forms such as walking and cycling.

This has the following benefits: (i) reduces traffic

density and the need to build an increasingly large

number of roads, which form obstacles to flood flow

and exacerbate disasters; (ii) reduces the scale of the

exposure and vulnerability of the transport sector

(and the people and businesses that rely on them) to

disasters; and (iii) provides resilient forms of transport

in an emergency (walking and cycling) as well as

provides resilience to other concerns, such as the

volatile price of fossil fuel and climate change.

5.1.4 Local Approaches to Resilience • Encourage local approaches to mitigate the effect of

disasters on transport networks given the differential

impact of disasters across a country and the

presence of different microclimates across one

stretch of a transportation network. Ensure that local

authorities interact and share information on a regular

basis so that a similar level of resilience is met across

regions.

EVIDENCE 13: Drain London Drain London was launched following the GLA regional flood risk appraisal in 2006, which identified surface water flood risk as a “poorly understood and recorded type of flooding in London.” The responsibility had been spread out amongst numerous agencies and no organization had responsibility for coordinating the collaboration between parties and collating information. Drain London seeks to establish ownership of London’s drainage assets, assess the condition of these assets, and secure a better understanding of the risk from surface-water flooding. Numerous stakeholders are involved in this consortium, including Transport for London, the Greater London Authority, London Councils, the Environment Agency, Thames Water Utilities, and London Development Agency. Whilst it was already the role of the City of London Corporation to forge partnerships with the adjacent LLFA and the Environment Agency as well as Thames Water, Network Rail, Transport for London, and the Highways Agency, Network Rail and the Highways Agency had not fully engaged in these partnerships. In light of this, it has been recommended that working arrangements should now be formalized in the form of Levels of Service Agreements or Memorandums of Understanding (Source: Drain London, 2011).

• Local authorities and communities should under-

stand the risks affecting their infrastructure and what

infrastructure is critical in their community. Workshops

between local critical infrastructure representatives and

asset owners to assess critical assets,

interdependencies, service restoration time frames, and

the impact of hazards on the local system, can provide

invaluable information (Cabinet Office 2011). This

information should be stored and used for future local

planning assumptions and also shared with emergency

responders so they understand where the priority

infrastructure lies and how much time they have to

respond before the infrastructure collapses.

Page 36: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  36

Salmonberry Bridge & Port of Tillamook Bay Railroad damaged during the Dec. 3, 2007, flood. Lower Nehalem River Road Confluence of the Salmonberry River & the Nehalem River, Salmonberry Oregon. EVIDENCE 14: Auckland sustainable procurement process Auckland, for example, has included a sustainability principle in its procurement process to ensure sustainable outcomes and value for money over the whole lifetime of the goods, works or services under consideration. The procurement manual offers further information on tools that can be used, such as whole-of-life assessments or lifecycle approaches, which can take into account the total cost of ownership over the life of an asset (Auckland Council). EVIDENCE 15: Examples of Transportation Plans, including Resilience The Boston Region MPO is one region that incorporates resilience into project selection, allocating points for projects that improve the ability to respond to extreme conditions (FHWA). It developed an interactive natural hazards mapping tool that links to the MPO’s database of TIP projects and determines whether these are in areas exposed to flooding, storm surge or sea level rise. The US Forest Service at Olympic National Forest has also evaluated ways to include climate change considerations into its Road Management Strategy, which is a tool that compares the risks that a particular road segment poses to various other

resources against the criticality of that road. This helps prioritize roads for maintenance, upgrading, and decommissioning.

Chittenden County MPO in Vermont is working with the Department of Housing and Development to integrate climate change adaptation, hazard mitigation, and transportation into a single framework (Source: FHWA 2013).

5.1.5 Private Sector Infrastructure Owners and Operators Since the 1990s, the private sector’s role in financing and

operating public infrastructure has been growing.

Through public-private partnerships (PPP), the private

sector’s contribution to all public infrastructure has

averaged around USD 180 billion a year over the last few

years (World Bank, 2014).

Through PPPs, the private sector can offer a number of

advantages in terms of improving the quality of

construction: namely, greater technical expertise and an

understanding of lifecycle costing; efficiency and cost

effectiveness; and the provision of resources, which are

the most frequently cited reason for poor construction

quality in developing countries. The disadvantages for

developing countries are that the development, bidding,

and ongoing costs in PPP projects are still likely to be

greater than traditional procurement processes and the

initial lead time for PPPs are costly, complex, and time

consuming so need to be planned a long time in

advance. PPP arrangements also require sophisticated

regulatory and legal frameworks and the government

must invest significant time and skilled resources during

the development of PPPs as well as during the ongoing

monitoring of the private sector. If the private sector is an

owner/operator of transport infrastructure, the following

actions should be taken:

Page 37: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  37

• Infrastructure should be planned and designed taking

into account the resilience approach high-lighted in

Section 4;

• Business continuity plans should incorporate an

understanding of the resilience of the operation and

management of the infrastructure;

• These plans should be developed and reviewed with

supply chain partners, service users, and emergency

responders;

• Forums should be created for the private sector to

share experiences, prepare business continuity

plans, and provide training;

• Exchange and knowledge transfer information should

be encouraged through business and trade forums.

5.1.6 Design Standards • Performance-based standards and systems

analysis. Consider implementing performance-

based standards, which set the degree of functionality

that infrastructure should reach within a defined

recovery time, thus capturing the temporal dimension

of resilience. Design standards are principally

ensuring the robustness of the infrastructure in its

environment, but not the integrity and reliability of the

service that the infrastructure provides (Cabinet

Office, 2011). Setting performance-based standards

involves adopting a systems approach and assessing

the criticality of infrastructure links within the network

as well as understanding what the purpose of the

assets/links are within the system (i.e. evacuation

routes, links to hospitals, ports etc.). The potential

failure scenarios for these critical infrastructure links

can then be modelled in order to define an acceptable

level of risk, which sets the time it should take for the

assets to recover their functionality.

Design standards must be continually reviewed

to ensure that they are up to date, and the

assumptions behind key metrics re-evaluated.

This works best when designers/engineers push for

new information on the basis of their first-hand

experience designing and constructing infrastructure.

Worse-case scenarios should also be explored to

evaluate whether certain pieces of critical

infrastructure should be designed for more severe

weather events (see Evidence 16). Design standards

should be reconsidered for the following:

Subsurface conditions Materials specifications Cross-sections and standard dimensions Vertical clearance Drainage and erosion Structure Siting standards and guidelines

EVIDENCE 16: Examples of reviewed design standards In Massachusetts, the state highway agency has updated its highway design manual based on the principles of context sensitive design so that transport projects are more in tune with the local context, include land use, and community and hazard considerations (Meyer, 2012). Prior to Hurricane Katrina, state drainage manuals, AASHTO drainage guidance, and FHWA Floodplain regulations stipulated that bridges should be designed for a 50-year storm event, and the result was that state departments of transport designed for a riverine environment and did not consider the effect of wave actions on the bridge. Since then the FHWA has recommended a 100-year design frequency for critical structures that would consider a combination of wave and surge effects, as well as pressure scour when water overtops the structure. FHWA also suggested considering a 500-year design frequency (Meyer, 2008). Since Hurricane Katrina bridges are being rebuilt with a higher clearance over the water as many bridge decks floated off their supports as the storm surged over the bridge (Meyer, 2008). The Connecticut Department of Transportation, in a pilot project funded by the FHWA, is revisiting its hydraulic design standards for bridges and culverts, which reference rainfall data that has not been updated in decades. It will compare the hydraulic capacity using older rainfall data versus more recent data to evaluate whether design standards should be updated (FHWA, 2012). The UK has increased its HD33 drainage standard and revised its pavement specification to use the French Enrobé à Module Élevé 2 (EME2) (Highways Agency, 2009). The State of Maryland has issued guidelines

Page 38: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  38

MEMA press conference on Hurricane Sandy.

that the “construction of new State structures, the reconstruction of substantially damaged State structures, and/or other new major infrastructure projects should be avoided, to the fullest extent practicable, within areas likely to be inundated by sea level rise within the next 50 years,” and “New State ‘critical or essential facilities’ shall not be located within Special Flood Hazard Areas designated under the National Flood Insurance Program (NFIP) and be protected from damage and loss of access as a result of the 500-year flood” (Johnson Z.P. [Ed.], 2013).

5.1.7 Project Identification, Preparation, and Appraisal Standards Governments can encourage disaster risk reduction

to be mainstreamed into transport projects by

issuing standards and guidance on project

identification and preparation procedures.

Resilience can be mainstreamed through the

following means:

• Appraisal models, which evaluate and prioritize the

costs and benefits of various options, could also

measure the cost of infrastructure damage, failure

and service delays from multiple natural hazards, and

the benefits of long-term resilience. Currently,

appraisals assess the benefits of reduced congestion,

improved reliability, low carbon emissions, increased

mobility, and the costs of service downtime, strain on

other services or the capital investment needed;

though they do not explicitly include resilience.

• All feasibility reports should include an

assessment of the impact of disasters on transport

infrastructure.

• Neighboring land-use practices and upper

catchment land management should be

included within the scope of transport projects.

Improving the resilience of transport infrastructure

begins first and foremost by examining and

improving adjacent or upper catchment land use.

Ultimately, low-cost solutions, such as strategic

reforestation of upstream agricultural land, are

significantly more cost-effective than raising the

height of a bridge and investing resources in

increased scour protection (see Case Study 7 and

Evidence 17).

• EIAs can become critical tools for

mainstreaming resilience into transport

infrastructure by explicitly addressing the

impact of natural hazards on infrastructure, and

also by taking climate change into

consideration and how a project will respond to

an “evolving environmental baseline” (EC

2013b: 15). EIAs in many developing countries,

however, are often absent or disconnected from the

analysis and design process. This is mainly as a

result of financial and political pressures, which

prioritize maximizing the length of the road network.

Politically, roads are a massive vote puller. In

Nepal, for example, the arrival of bulldozers gave

Page 39: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  39

voters “instant roads,” yet this caused massive

environmental damage and also increased the

sediment load in mill hill rivers, exacerbating

flooding throughout the system (see Evidence 18).

• Project reporting standards: Technical experts

must ensure that there are project evaluation and

reporting requirements in place to share all

information about the project’s capabilities and

limitations with key decision makers and

emergency responders. Emergency responders

particularly need to be informed of the dangers of

collapse and the “time of failure” (Englot and Zoli,

2007).

• Standards can stipulate the study teams and

stakeholders to be engaged in the identification

and planning of all transport projects in order

to ensure the impact of natural hazards is taken

into account. These could include: transportation

planners, GIS specialists, asset managers,

climatologists and seismic experts, climate change

research centers, maintenance personnel, design

engineers, environment agency personnel, and

local communities.

• Guidelines should prescribe engaging with com-

munities and emergency responders right from the

initial project design through to identifying and

evaluating adaptation options. They have first-hand

knowledge of the local system, which is invaluable

for gathering information on the con-sequences of

extreme weather events on transportation

infrastructure. By involving the community in the

decision-making process, the project is more likely

to be well designed and maintained. See Evidence

19 for examples of how a lack of real and effective

engagement with the public has posed critical

challenges to the construction of resilient

infrastructure.

EVIDENCE 17: Upper catchment land management The importance of land-use practices is highlighted in a case study report, “Making Informed Adaptation Choices: A Case Study of Climate Proofing Road

Infrastructure in the Solomon Islands” (2011), which analyzed the Solomon Islands Roads improvement Project (specifically, sub-project 2) following the 2009 floods. This project was funded by the Asian Development Bank and the governments of Australia and New Zealand. The report found that engineering approaches and solutions were the primary focus of risk-reduction measures and whilst non-engineering climate adaptation strategies, such as better upper catchment land management, including minimizing impacts of commercial logging practises (which had led to major landslides and debris trapped at bridge sites), and deforestation, were noted, they were not pursued as they were considered to be beyond the scope of the project. Also, whilst the instability of the soft alluvial soils was noted, it was decided not to significantly realign the existing road because of particular concerns about land tenure issues (Narsey Lal and Thurairajah, 2011:10). EVIDENCE 18: Natural hazards and EIAs The European Investment Bank has included in its Environmental and Social Statement and Handbook requirements that projects apply cost-effective, appropriate adaptation measures where there is a risk from climate change, and more extreme weather events. The EIB will only finance projects that fulfil these requirements. DFID and the European Bank for Reconstruction and Development have also developed a toolkit in 2010, which included guidelines on integrating risk assessment and adaptation into project feasibility studies, environmental and social impact assessments, environmental actions plans, and water audits (Acclimatise and Cowi, 2012). In Japan, permission for highways and bridges is first obtained from DRM organizations (Ishiwatari and Sagara, 2012). The Caribbean Development Bank (CDB) has also developed guidelines for natural hazard impact assessment (NHIA) and their integration into EIAs (CDB and CARICOM, 2014).

 

Page 40: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  40

EVIDENCE 19: Public perception issues in construction A rural access project in Trinidad and Tobago involved investigating and making recommendations on the feasibility of rehabilitating and upgrading a substantial number of roads on the island. As it was year three of the program, the economics of a positive EIRR for the roads was low to negative so an acceptable engineering solution was for the use of double-bound surface treatment (DBST), effectively two layers of surface dressing, for the low traffic volume. The Trinidad Road Authority, however, refused to countenance this option as members of the public had previously commented that unless hot-rolled asphalt (HRA) was used they did not consider it a “proper” road. The cost and difficulty of laying HRA surfacing material on often tortuous and hilly alignments had unexpected detrimental effects on the road drainage layout and caused a large number of small to medium landslips on a supposedly stable road alignment, which would not have been caused by the use of DBST (Source: IMC Worldwide interview). A three-year rolling program of road rehabilitation works and repairs in Trinidad to address landslips arising from the shallow internal angle of friction of the over-consolidated clays adjacent to the numerous ridge roads faced a number of problems due to poor communication between the authorities and the public. An economic and structurally appropriate engineering solution had been adopted, but issues with detailing led to a large failure rate by year three of the program—there was poor drainage to the back and foundation of the gabion retaining

walls, which was exacerbated by the fact that the gabion height was below ground level, causing rotational failure of the entire wall. The client was not interested in modifying the details of the design due to perceived issues with public perception and loss of face (Source: IMC Worldwide interview).

5.1.8 Information—Generation, Collection, Exchange, and Dissemination • Improve and revisit on a regular basis the

collection of data on natural hazards and the

modelling and analysis of this data. For flooding

this can include: reducing the time lag between data

collection and analysis to the receipt of data on a daily

basis; improved flood modelling and analysis;

rehabilitation of radar and improvement of the

hydromet systems to allow for better utilization of

upstream hydrological information; and to provide

predictions of flood levels, flows, peak travelling

speed, and potential inundated areas (World Bank,

2010). It is also particularly important to continually

revisit flood maps as climate change has resulted in

higher than expected flooding levels (see Evidence

20).

EVIDENCE 20: Flood maps and Hurricane Sandy Unexpected levels of flooding during Hurricane Sandy meant that efforts to pre-emptively relocate rail equipment to higher ground on the basis of past flooding and historical experience was ineffective as

Flooding and damage to Metro-North’s system—in the aftermath of Hurricane Sandy—to the bridge and south yard at Harmon.

Page 41: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  41

existing flood maps were no longer accurate (Lau and Scott, 2013: 94).

• Standard formats and reporting standards should

be introduced for monitoring and collecting

damage data (see Case Study 4). Standardized

data can be used as a default standard for designers

(rainfall intensity charts, IDF curves). In many

developing countries, the choice of data is left to the

discretion of the consultants, and particularly smaller

budget projects will not commission hydrological

studies (World Bank, 2010).

• A timetable of regular risk assessments and

audits for infrastructure assets can provide

information on their condition and reliability.

• Knowledge sharing should be improved between

transportation agencies, climatologists,

scientists, insurance companies, and those

professionals and volunteers on the frontline of

emergencies. Open sharing of information deepens

the understanding of risks and solutions but opera-

tors are normally unwilling to let others free ride on

information they have invested and which may be

commercially sensitive. This information could

instead be provided to an independent third party that

could sanitize the information and the data could be

“sold rather than provided for free”

(PricewaterhouseCoopers, 2010). See Evidence 21

for examples of information sharing between

insurance companies and governments.

EVIDENCE 21: Insurance companies and data sharing RMS, a leading catastrophe risk management firm, has announced that governments will have free access to its catastrophe models to dynamically analyze risk and develop appropriate risk-mitigation decisions. This is a public-private partnership with UNISDR and the World Bank (RMS, 2014). The Insurance Council of Australia has also entered into a memorandum of understanding with Queensland to share its data, which has been combined with government-held geospatial data to produce an interactive online tool that allows the public to see which locations have been affected by disasters (Barnes, P., et al., 2014).

When cross-border issues and international treaties

lie at the heart of a systems failure there needs to be

improved inter-agency coordination and information-

sharing across regions, and mechanisms for conflict

resolution. Transport infrastructure often crosses

borders and therefore regional cooperation and

sharing of information amongst forecasters, decision

makers and climate information users are essential

components, particularly because of the trans-

boundary nature of many disasters. In the case of

Kosi, Nepali contractors were awarded maintenance

work within Nepal, but the ownership and direction

still lay with India. Failures in effective maintenance

work were not picked up in time, and the upstream

embankment was breached (see Case Study 1 and

Evidence 22). 

EVIDENCE 22: Mozambique regional exchange of

information

In recognition of the trans-boundary nature of

Mozambique’s rivers, national flood forecasting is

supported by the Southern African Regional Climate

Outlook Forum (SARCOF). The SARCOF facilitates

the exchange of information amongst forecasters,

decision makers, and climate information users in the

14 SADC member states. This forum meets each

September to prepare a seasonal forecast for the

SADC countries. The water authorities also exchange

data on a regular basis. It is reported that such

information sharing can transcend political

disagreements—with Mozambique and South Africa

reported to remain in communication during the

1980s when the countries were close to war

(Hellmuth, M. et al., 2007).

Infrastructure companies should be

encouraged to disclose information on how

they have taken the risks from natural hazards

into account. Information disclosure is a useful tool

for generating market pressure and incentivizing

behavior change. Stakeholders can scrutinize this

information, identify cross-sectoral adaptation

measures, and create pressure for infrastructure

owners/operators to adopt best practice

(PricewaterhouseCoopers, 2010).

• Keep records of past weather events and

create harmonized data-sharing mechanisms

through a national GIS system, for example (see

Evidence 23). Use this to review return periods of

storms and flooding events in light of new

information and in turn revise design parameters

Page 42: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  42

and recommendations.

EVIDENCE 23: GIS and crowd-sourcing maps

Following the 2010 earthquake in Haiti, maps

were produced by more than 600 volunteers from

the OpenStreetMap community who used high-

resolution imagery made available by the World

Bank, Google, and others, and digitized the

imagery to create a detailed map of Port-au-

Prince. Volunteers from 29 countries made 1.2

million edits to the map, and condensed a year’s

worth of cartographic work into 20 days. The

World Bank has since used OpenStreetMap to

create maps of the built and natural environment

in more than 10 countries (WEF, 2014).

Infrastructure sectors should engage in weather

information collection specific to their sector as

weather has specific and varied local impacts on

transport infrastructure. Information generated by the

central meteorological center is often too generic for

specific types of infrastructure or sectors. Infrastructure

sectors should deepen their understanding of weather

impacts and collaborate on information gathering. For

example, the effect of weather on overhead lines will

affect the railway sector.

5.2 Financial Arrangements and Incentives Financial arrangements are needed that encourage

coordination across infrastructure sectors, promote a

coherent long-term vision, the incorporation of resilient

criteria in infrastructure projects, and long-term planning

for disaster risk management. Measures that promote

resilience, for example increasing redundancy, will also

increase immediate costs even if in the long run these

measures prove to be cost-effective. Therefore, financial

incentives and penalties are needed to promote

resilience. 5.2.1 Emergency Funds and Insurance Pre-emptive disaster planning can include setting aside

emergency DRM funds or transferring risk to sovereign

insurance pools. Emergency funds could be contingent

upon departmental prevention and mitigation plans (see

Evidence 24). A number of reports (see Case Study 3)

and interviews conducted for this report noted that poor

budget discipline and a reliance on aid took the onus

away from governments to provide strategic leadership

and take proactive measures to increase the resilience

of transport infrastructure.

For further discussion on regional insurance funds see

Section 7 on emergency response and risk reduction.

Page 43: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  43

Bridge damage from the 1989 Loma Prieta earthquake in California.

EVIDENCE 24: African Risk Capacity

African Risk Capacity (ARC) is a regional insurance

pool in Africa, which provides payouts to

governments contingent on the establishment of

appropriate contingency plans and early warning

systems that are evaluated by ARC’s Board Peer

Review Mechanism. This is a move from the old

“response” paradigm towards pre-disaster risk

management.

5.2.2 Cost-Sharing Mechanisms Innovative approaches to financing cross-sector

adaptation should be encouraged, including cost-

sharing mechanisms that share the responsibility

for measures that offer co-benefits and address

the free rider problem. Natural hazards can be turned

into disasters by the actions of certain agencies

(agriculture, planning, transport etc.) that do not

consider the impact that their practices have on raising

the hazard exposure and vulnerability on neighboring

sectors. The impact of modern farming practices on

downstream flooding (see UK flooding Case Study 7)

has now been accepted in many countries, yet it is a

challenge to either incentivize or enforce changes to

these farming practices. Similarly, the power sector is

vital for the operation of the railway, yet it is the power

sector that bears the costs of adaptation.

EVIDENCE 25: Cost-sharing mechanisms in Japan In Japan, for example, cost-sharing mechanisms

exist between public works organizations and DRM

organizations to share the cost of raising the height of

expressways (Ishiwatari and Sagara, 2012). Roads

built on higher ground can provide routes for

evacuation and embankments can provide

evacuation shelters for nearby residents. Roadside

service stations, service stations, and parking areas

along highways can serve as bases of operation for

rescue teams and evacuation shelters for nearby

residents (Ishiwatari and Sagara, 2012).

5.2.3 Infrastructure Banks An infrastructure bank can offer a coherent and

consistent vision on resilient infrastructure, which

bypasses the problem of political and industrial

short-termism and the fragmented nature of some

infrastructure projects. It can also tap new sources of

private funding (Jones and Llewellyn 2013). An

infrastructure bank would be an entity to assess

infrastructure projects across agencies and authorities

and develop objective and uniform criteria, particularly

related to resilience, to select and prioritize projects.

Such a bank would bring together experts from

transportation, energy, environmental resources, and

Page 44: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  44

emergency response and coordinate work across

modes, sectors, and regions. It would also serve as a

knowledge hub to disseminate information on

vulnerabilities, solutions and best practices (NYS 2100

Commission, 2013). Through this bank, infrastructure

planning could have a more systemic approach that

would enable more strategic and, perhaps, resilient

investments. An infrastructure bank can encourage

private sector investment by either providing a partial or

full guarantee to support the initial equity cost of the

project’s finance, or the repayment of bonds issued

directly by investment projects. It does not directly

distribute public money, but rather, raises funds for

lending by issuing national investment bonds, for

example. These can be attractive investment schemes

for pension schemes and insurance companies (see

Evidence 26).

EVIDENCE 26: South Carolina Transportation Infrastructure Bank The South Carolina Transportation Infrastructure Bank (SCTIB), for example, is one of the most active infrastructure banks in the U.S. established by the 1995 National Highway System Designation Act, and has invested nearly USD 2.8 billion. It provided USD 66 billion to the SCTIB, which supports highway and bridge projects exceeding USD 100 million and transit projects. The SCTIB helps accelerate across the state the timeline of 200 transportation projects from 27 years to seven years (NYS 2100 Commission, 2013: 164).

5.2.4 Resilience Auditing and Resilient Selection Criteria Resilience selection criteria such as the USA Tiger

Discretionary grants (see Evidence 27) and

resilience auditing can encourage decision makers

to incorporate resilient investment criteria into

transport infrastructure. For example, the Institute for

Business and Home Safety (IBHS) is a consortium of

insurance companies in the U.S. seeking to improve the

resilience of infrastructure by offering a fortified for Safer

Living designation (FFSL), which is similar to LEED

(Leadership in Energy and Environmental Design). It is

anticipated that this certification will help secure tax

credits and lower insurance premium. IBHS expects that

this program will extend across all critical infrastructure

facilities, including transport.

EVIDENCE 27: US TIGER Discretionary Grants and Resilient Selection Criteria In the US, TIGER Discretionary Grants are awarded based on primary and secondary selection criteria. One of the primary selection criteria is “improving the condition of existing transportation facilities and systems, with particular emphasis on projects that minimize life cycle cost and improve resilience” (DOT, 2014: 12). The Department of Transportation assesses whether and to what extent:

“(i) the project is consistent with relevant plans to maintain transportation facilities or systems in a state of good repair and address current and projected vulnerabilities; (ii) if left unimproved, the poor condition of the asset will threaten future transportation network efficiency, mobility of goods or accessibility and mobility of people, or economic growth; (iii) the project is appropriately capitalized up front and uses asset management approaches that optimize its long-term cost structure; (iv) a sustainable source of revenue is available for operations and maintenance of the project; and (v) the project improves the transportation asset’s ability to withstand probable occurrence or recurrence of an emergency or major disaster or other impacts of climate change. Additional consideration will be given to the project’s contribution to improvement in the overall reliability of a multimodal transportation system that serves all users” (DOT, 2014:12).

5.3 Expertise

5.3.1 Capacity Building for Officials and Civil Servants

Tools, education, training material, and exercise

programs are needed so that government officials

and civil servants understand the principles of

resilience in transport and can carry out

assessments, use revised project screening and

monitoring tools, and develop action plans. The

bureaucratic system’s inertia and inadequate

capacity with respect to prompting organizational

change pose a challenge to implementing Disaster

Risk Management in the transport sector. Many

national strategies already recognize the need for the

identification of flood-prone areas, adaptation of

building codes, and plans for construction. However,

more projects are needed that can help with the

change process. Core areas of training are

particularly needed in (World Bank draft):

Page 45: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  45

Earthquake-damaged road between Port-au-Prince and Léogâne has failed, but is still in a functioning state. It is now at risk of complete failure during rainy season as the subgrade is exposed.

• Spatial planning • Risk analysis • Knowledge of mitigation strategies and protective

measures

• Partnership building and networking • Collecting, storing, and sharing information • Program evaluation, management, and design

expertise

5.3.2 Widening Expertise There is a need for more experts who understand the

role of DRM in infrastructure on project management

teams, including hydrologists, and climate and DRM

specialists. A national advisory body or a pool or

database of experts could provide the necessary

expertise and broaden the perspectives included in

project teams (ADPC, 2014). 5.3.3 Engineering Skills Base Improve the development skills base among

engineering consultants, as well as management

supervision skills. Engineers need to be trained to

adopt a systems perspective during the design and

planning of infrastructure. This could be done through

working closely with universities or including further

professional registration requirements. Well-qualified

consultants must be selected for engineering design

studies and works supervision, following the observation

in a number of case studies that some damage had

resulted from poor design or poor construction

techniques.

5.3.4 Communities Increasing awareness and learning in communities

around hazard-affected areas can help provide early

detection of problems and inefficiencies, as well as

increase their ownership of the operations and

maintenance of the infrastructure. Communities can

be taught early warning signs, such as tension cracks

opening in the ground high above the road bench, minor

rock falls, and slips at the foot or edges of the potential

slip areas. Infrastructure development is also more

successful and sustainable when roads are maintained

and built using community labor-based methods. It

builds the skills of local communities and the capacity for

replication, operation, and maintenance of works. It also

provides more opportunities for salvaging and reusing

existing materials after a disaster.

EVIDENCE 28: Community labor-based methods in Afghanistan

The village of Jabraeel on the banks of the Harirud River in Herat province has repeatedly suffered from flooding as the water overflows the river’s natural banks. The flooding has been exacerbated by unpredictable weather, the mismanagement of natural resources, and the construction of infrastructure that has encroached on the natural riverbed. Women in the community were trained to

Page 46: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  46

build gabion baskets (cages weaved from wire) and men filled them with stones, ensuring full community participation in the process. The gabions were then used to build a wall that would reduce the damage caused by flooding to the community (UNOPS, 2012).

5.4 Technical–Planning and Design

5.4.1 Introduction Resilient infrastructure requires commitment to

mainstream resilience at all stages of the project cycle.

It requires high-level strategic priority to ensure adoption

of the principles of resilience in project implementation

and infrastructure design and construction. The planning

and design stage can: (1) mitigate its vulnerability and

exposure to natural hazards; (2) minimize the severity of

the consequences when damage or failure does occur;

and (3) aid recovery of affected communities by

identifying and strengthening disaster management

planning and procurement of funds (see Evidence 29).

Technical planning and design measures are

implemented through building the enabling environment

for resilient infrastructure through projects aimed at

strengthening institutions, capacity building, construction

supervision, operations and maintenance, and finance.

The implementation and success of technical planning

and design measures are determined by institutional

measures, which range from new operations and

processes, to new regulations and standards through to

significant policy and institutional changes. Technical

measures may also demand different levels of capacity

building to be implemented, ranging from simple training

programs to more complicated awareness-building

activities aimed at mainstreaming new approaches or

ways of thinking. These technical measures in turn entail

various financial implications.

A series of technical measures have been developed

that represent the issues that should be considered for

various infrastructure assets in relation to potential risks.

The measures have been tabulated and ranked against

the resilience domains using a simple traffic-light

system. The ranking of each measure was derived from

discussions with infrastructure experts and therefore

represent engineering judgment. As such, it is open to

variation in opinion and should be used only as a guide.

The tables are designed to support the project designer

in assessing the risks to infrastructure and to aid in

prioritizing interventions to maximize value for money in

interventions. The rankings allow the project designer to

consider each measure against the domain in which it

can be implemented and the difficulty of achieving a

successful outcome in that domain.

IMPLICATIONS TRAFFIC-LIGHT SYSTEM

POLICIES, INSTITUTIONS, AND OPERATIONAL REGULATIONS/ INSTITUTIONAL/POLICY PROCESSES STANDARDS CHANGES

CAPACITY BUILDING SIMPLE TRAINING INTERMEDIATE NEW APPROACH/WAY OF THINKING

FINANCE/COST NO/LIMITED COST MEDIUM HIGH IMPLICATION

OPERATIONS AND MAINTENANCE ROUTINE INTERMEDIATE SIGNIFICANT CHANGE

TECHNICAL SOLUTIONS SIMPLE INTERMEDIATE HIGH TECH/COMPLEX

EASY HARD

Table 1: Technical measures and resilience domains

Page 47: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  47

Two tables providing examples of the technical

measures, which can be deployed to mitigate the risks to

linear infrastructure and bridges from earthquakes, are

included below. For further technical measures for

various infrastructure systems see the Annex, which sets

out the range of failure scenarios all infrastructure

experiences under each hazard event—flooding,

earthquakes, landslides, hurricanes/cyclones, tsunamis,

extreme heat, extreme cold, wildfires and mudflows—

and provides technical assessment sheet for each

infrastructure mode.

EVIDENCE 29: Designing for emergency,

evacuation, and recovery effort

In a major recovery effort, the logistical vehicles from overseas aiding the effort will need to be accommodated within the local transport and logistical networks. Thought must be given as to how best to use low-speed vehicles such as agricultural tractors with trailers that have exceptionally high ground clearance and can work in deep water or mud

during the initial period where existing roads have been destroyed and conventional vehicles cannot work. Critical links should therefore be designed and engineered to accommodate both the heavy vehicle and axle loads, and the size of the vehicles required to aid the recovery efforts. The structure of the pavements must also be strong enough to carry the loads without failures that will hinder the aid effort. An axle load of 20 tonnes is suggested against the more standard 11.5 tonnes per axle on routes of key importance. In addition, the road’s width and alignment must avoid “pinch points” that will restrict exceptionally wide or long loads that may need to be imported into the damaged area. Bridges must also be able to resist the anticipated event and remain able to carry exceptionally heavy loads imposed by construction equipment.

5.4.2 Earthquakes

Table 2 illustrates the failure scenarios associated with

earthquakes for all transport infrastructure. (Failure

scenario tables for other hazards are found in the Annex,

Section 8.5).

Page 48: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  48

EARTHQUAKE FAILURE CONTEXTSCENARIOS

Liquefaction (i) Liquefied soil forces its way to the surface, breaking through roads, railways and runways, causing uplift, subsidence, and voids. This uplift of the transport structure also damages underground infrastructure drainage and surface drainage systems, as well as services such as utilities, tanks, pipes, and manholes.

(ii) On slopes, the ground “slides” on the liquefied layer. Cracks and fissures can occur at the extremities of the slide.

(iii) Uplift damages underground infrastructure services such as utilities, tanks, pipes, and manholes.

(iv) Contamination of the materials in the road from the liquefied soil.

(v) Lateral spreading from liquefaction can apply pressure to bridge abutments, reducing bearing capacity or the integrity of the structure. It also applies pressure to quays and seawalls, reducing their bearing capacity and the integrity of the structure. Many ports’ facilities are constructed on fill materials placed over historic wetland. Such materials are generally fine and granular in nature and susceptible to liquefaction if provisions are not made to resist such force or relieve the pore pressure resulting from higher water table and seismic shaking.

Structural failure (i) Surface and sub-surface water drainage system failure.

(ii) Failure of utility and traffic-control systems.

(iii) Major/severe cracks that have the following effects: damage to the carriageway surface; disorientation of railway track and track buckling; shear failure of pier, abutment, deck, and surface; the tunnel lining leading to damage/ collapse.

(iv) Damages to structures such as storage buildings, paved storage area, storage

tanks/cranes/heavy equipment/shipping containers/heavy cargo, runways, taxiways, control towers, radar systems, fuel facilities, and supply facilities due to ground

movement/shaking. .

Land / Refer to the failure scenarios and approaches under section on landslides.

Mudslides

Tsunami / Wave / High Refer to the failure scenarios and approaches under section on road/railways under Tide the sub-section on tsunami/extreme low pressure (wave/high tide).

Flooding Refer to the failure scenarios and approaches under section on bridges/tunnel under the subsection on flooding. Table 2: Earthquake failure scenarios

Page 49: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  49

5.4.3 Linear Infrastructure (Roads and Railways) Measures: Earthquake Key measures to reduce the risk of earthquakes highlight

the importance of ground investigations and quality

control of not just the infrastructure itself but sub-soils

beneath a road or railway and the materials used for

embankments. The importance of adequate drainage

detailing is also highlighted. Most measures listed

increase robustness of the infrastructure, the exception

being the choice of whether to opt for earth or gravel,

flexible (asphalt) or rigid (concrete) pavement

construction—which is a choice between designing for

safe failure or increased robustness. The trade-off is not

just reflected in the contrasted cost-benefit analysis

between capital expenditure and maintenance, but the

speed and methods required to reinstate the

infrastructure in the case of an extreme event—a flexi-

ble structure will fail quicker but the robust solution may

not be able to be reinstated as easily if it fails.

A structure designed for “safe failure” will also have been

designed to limit cascading failures within the system

and will therefore limit the overall extent and costliness

of the damage.

Table 3: Linear infrastructure and earthquakes

Page 50: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  50

5.4.4 Bridge Measures: Earthquakes These measures focus on the design of the bridge

structure and foundation, either through increasing

robustness or designing some elements to be stronger

and allowing safe failure of parts of the bridge to

preserve the critical load-bearing elements of the bridge

structures. The example of pinned articulations in

suspension bridges highlights how robustness can be

increased through providing greater redundancy within

the transport infrastructure design itself.

5.4.5 Conclusions

In general, resilience is shown to be increased either by:

(i) designing the infrastructure itself to be more robust;

(ii) designing for safe failure or flexibility; (iii) increasing

the robustness of protection works; or (iv) separating the

infrastructure from the risk or hazard. Many of the

measures identified increased robustness by

mitigating the hazard and reducing the exposure and

vulnerability of the infrastructure. Airports, for example,

are generally provided as fairly robust infrastructure with

much more robust pavements than roads due to heavier

impact loads, and thereby substantial resistance to

extreme events already present in designs. Robustness

also includes measures that increase resilience of other

infrastructure that is interdependent on transport such

as power cables, ITC, fuel supply, and water

infrastructure. In contrast, redundancy and safe failure

(see Evidence 30) are measures that accept the risk but

limit wider catastrophic failure within the system, thus

increasing overall system robustness. Flexibility is

about including the potential to increase future

robustness by, for example, allowing the flexibility to

raise bridge decks to accommodate increased water

levels in the future.

Measures that increase robustness are not limited to

those that increase the strength of the infrastructure

itself (either substructure or superstructure), but also

increased robustness of associated measures or

protection works to mitigate against hazards.

Infrastructure protection can be enhanced by stabilizing

slopes and scour protection, or risks mitigated through

upstream river training works, reforestation, sustainable

urban drainage systems (SUDS) or the introduction of

buffers in the system (floodplains). In many cases these

measures, which increase robustness of the overall

transport system rather than the infrastructure itself, can

be more cost effective.

EVIDENCE 30: Safe failure of timber jetties in

Bahamas

Hurricane Floyd swept through the Bahamas in 1999 and destroyed a number of timber jetties as a consequence of the waves either surging up underneath and popping the planks into the air, or imparting vertical uplift loads to the piles causing them to be loosened or lifted from the seabed. Rather than adopt a heavier construction or different materials, an alternative approach was utilized whereby the timber decking was designed as drop in removable panels. These were designed to break away at the point where the force of the waves on the panels risked transmitting this impact to the surrounding structure. This is a good example of designing for “safe failure.” See Case Study 17 for more details.

5.5 Operations and Maintenance

5.5.1 Maintenance Maintenance is required to maintain the condition of

transport infrastructure, yet most countries continue to

prioritize the construction of new roads over upkeep of

the existing network. Maintenance works are needed for

culverts; canals; removal of sedimentation; control of

vegetation; slopes; and repair of edge; shoulders;

potholes; and cracks. The economic case for

maintenance is significant, and is only a small fraction

of the construction cost—5 percent to 6 percent per

annum for an unpaved rural road (Neal 2012). In reality,

however, only 20 percent of Asian rural roads have

consistent, regular, and routine maintenance whilst 80

percent is spent on emergency unplanned repairs and

reconstruction activities. A similar pattern is found in

sub-Saharan Africa.

Maintenance can be optimized through: • Adopting performance contracts for routine

maintenance tasks;

• Effectively using local resources, particularly human

resources, locally appropriate materials, and locally

Page 51: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  51

available and low-cost equipment;

• A nationally coordinated program with consistent

standards and an ongoing program of training,

retraining;

• A maintenance program that requires little planning,

supervision, and the need for highly qualified

technical staff;

• Equipping maintenance crews with non-destructive

testing and sensing devices to locate and analyze

problems;

• Mobilizing pre-established repair units and equipment

to efficiently treat minor deficiencies;

• Improving the interface between utilities and

transport infrastructure to minimize asset damage

due to utilities access and repairs.

5.5.2 Transportation Asset Management (TAM) TAM is a move from a reactive to preventative

maintenance approach, and it can also provide an

effective platform for keeping a record of infrastructure

damage and helping government agencies understand

where to prioritize investment across the transport

network as it tracks an asset’s entire lifecycle. Whilst

most TAM goals look at reliability, performance, and

efficiency they do not currently detail the specific causes

of failure, such as extreme weather (Meyer et al., 2012).

Any hazard that affects the condition, performance, and

life of the asset and its ability to provide a reliable and

safe service will influence the timing of rehabilitation and

replacement (Meyer et al., 2012). If a TAM goal was to

increase resilience to high-consequence events in a

cost-effective manner, then this would in turn inform the

development of objectives, performance metrics, and

data-collection efforts to help manage extreme risk.

Assets that are repeatedly affected by weather events

could be flagged (the flag could come from maintenance

asset performance logs, maintenance work orders, road

condition) and the costs of those events tracked. Risk

ratings or vulnerability indicators can also be included in

an asset-management database to enable agencies to

quickly see where to target adaptation actions. Further

information could be gathered by on-site investigations,

historical records, topographical surveys, and interviews

with local people living nearby.

5.5.3 Inspection

Regular and detailed inspection is required to underpin

maintenance and assess whether specific repair works

are needed. In some cases, such as for bridge bearings

of major structures, inspection and maintenance

requires specialist access skills. Bridge inspections

should include load-control testing and the rehabilitation

and replacement of key components such as bearings

to ensure infrastructure remains safe. Although bearings

are a vital part in ensuring service continuity and the

safety of bridges, they can be dangerously and easily

overlooked by cash-strapped asset owners and

managers, particularly for aging infrastructure where

there has been a lack of ongoing maintenance (NCE

Editor, 2014).

5.5.4 Real-time Monitoring

Real-time monitoring allows the collection of “live data”

of structures, often bridges, and is particularly useful as

the science of flood forecasting still has a large degree

of uncertainty and is currently available at too large a

spatial scale to inform effective mitigation measures

(Benn, J., 2013).

Data is generally collected through pre-placed sensors,

which feed into a remote monitoring system that can be

used to analyze and report data. Monitoring of data

allows real-time decisions to be made affecting the

operation, maintenance, and safety of bridges. Real-

time monitoring systems have been successfully used

in bridges as part of their operational requirements,

particularly on major or long-span bridges, which require

constant monitoring, often in regard to environmental or

weather conditions. Bridge monitoring technology

exists. It allows the long-term monitoring of settlements

of new construction, effects of locked bearings,

subsurface erosions, and settlement of bridge supports

(TRB, 2010). Relatively recent developments include

the improvement of measuring long-term motions and

vertical displacements at bridge piers and abutments of

settlements, scour, and subsurface erosion. Many of

these developments have been possible due to the

falling cost of sensor technology. The community can

Page 52: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  52

also play an important role in monitoring potential

hazards (See Evidence 31).

EVIDENCE 31: Community landslide early-warning system in Sri Lanka A community-based landslide early-warning system was implemented in Sri Lanka. It involved the community in capacity building through participation in hazard mapping, identification of safe areas, and participation in mock drills. These community aspects were done in conjunction with rainfall monitoring systems using a dynamic computer model to allow early predictions of landslide areas. The community also identified improvements to the emergency procedure by identifying problems with evacuation routes (ADRC, 2008). The relatively recent developments of the Internet and mobile phones all offer new communications mechanisms to better support more holistic approaches to DRM and communication in transport (National Research Council, 2006) (UNISDR, 2009).

Page 53: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  53

Runway snow removal at Atlanta airport.

6. EMERGENCY RESPONSE AND RISK REDUCTION

6.1 Introduction The period during and immediately after a disaster,

lasting up to two months, involves evacuating residents,

restoring critical lifeline routes, and basic access and

mobility as well as patching damaged infrastructure. This

is the interim period before the reconstruction process

can begin and pre-disaster levels of function are

restored. Emergency management consists of relief and

some rehabilitation. A resilient transport system is one

that is able to function even when infrastructure is

damaged or destroyed, and can restore a full level of

service within a specified timeframe.

This chapter includes a discussion of the plans and

assessments that must be arranged before a disaster

strikes in order to allow the affected country’s

government to rapidly deploy the necessary equipment,

personnel, transitional traffic measures, etc. and resume

functionality as quickly as possible. If this process is

managed smoothly, a space can be created for the

government to simultaneously begin assessing the

damage and considering how to “build back better” (See

Section 7).

It also offers some examples of practical ideas, which

professionals can promote through Technical Assistance

Projects to encourage emergency risk response in the

transport sector:

6.2 Policies, Institutions, and

Processes 6.2.1 Prioritize and Categorize Lifeline Routes Transportation lifeline networks, which are essential to

regional and national mobility, should be identified and

prioritized. These are routes that would aid in

Page 54: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  54

evacuations and maintaining basic transportation

services. Identify and categorize this lifeline network

through a risk-assessment process based on criteria

determined by stakeholders and a consideration of

economic, environmental, and social impacts. The

categorization of networks and the approximate

timeframe for services to be restored can be set through

performance-based standards.

• Lifeline audits should be conducted to assess

performance during both expected and extreme

disaster scenarios to help with response planning

(SPUR, 2012).

• Consider critical infrastructure, such as power and

water, which particularly need to be well networked

and accessible for the emergency services and more

generally for the public, during and immediately after

a disaster.

• Consider the interdependencies between transport

modes. For example, port operators need to liaise

with rail and road operators linking to and from the

ports.

• Communicate this categorization in advance to the

general public, agencies, utilities and emergency

service providers. This will help manage public

expectations and improve mobility after a disaster. It

will also ensure transportation agencies identify what

investments are needed to maintain these

transportation lifeline networks.

EVIDENCE 32: London Resilience Road Network

The London Road Resilience Network identifies the

roads in Greater London that need to be kept open in

times of extreme weather to allow essential services

to operate reliably and safely. It also ensures

continuity across jurisdictional boundaries for the

entire transport system (Department for Transport

2014).

6.2.2 Inventory Assets and Assess Capacity • Regular reviews should be carried out for airports

and seaports in the region in the event of a lack of

access during a disaster or increased demand for

their services. Ensure there is ferry vessel/terminal

compatibility by compiling and maintaining a register

of existing and potential emergency ferry terminals,

and their characteristics and requirements in the

event of an emergency. This should also include an

inventory of landings. Airports in Haiti, for example,

had low capacity, were in a poor condition and did not

meet international standards. Post-disaster, these

conditions heavily contributed to the crisis as poor

transport infrastructure became a barrier to

emergency aid and recovery.

• Transit assets should be inventoried (buses, vans,

fuel supplies, communications equipment, and repair

facilities) and key aspects of the assets listed

(construction type, year built, footprint etc.).

EVIDENCE 33: UK Local Resilience Forums and

Community Resilience Units

In the UK, local risk assessment is carried out by

emergency responders—“blue light” services, local

authorities, and front-line responders— under the

Civil Contingencies Act. Local Resilience Forums

(LRFs) were established under the Civil

Contingencies Act 2004 to help prepare for

emergencies. The Act stipulates that emergency

responders must meet at least once every six months

(Andrew, 2012). There are three categories of

responders: Category 1 are the blue-light emergency

services local authorities, the National Health

Service, the environment agency, and other partners.

Category 2 responders include the Highways Agency

and the public utility companies. Wider partners

include the military and the voluntary sector. LRFs

collectively publish Community Risk Registers

(CRRs) (Cabinet Office, 2011). A community

resilience unit was also established in the UK Cabinet

Office in 2007 to oversee and join work led by other

departments such as the Environment Agency and

the Department of Environment, Food and Rural

Affairs (Defra) on community resilience. Communities

are important in assessing risks and play a vital role

in emergency preparedness and response. For

example, agreements have been drawn up between

local and the National Farmers Union to subcontract

farmers and plant hire equipment to help clear access

routes to isolated communities when there is snow

(Andrew, 2012).

6.2.3 Collaboration Across Multiple Jurisdictions, Modes, Infrastructure Systems, and Actors • Transportation management centers can act as the

nerve centers for monitoring traffic, emergency response, coordination, and travel advisories. They should also be clearinghouses for all information during a disaster and have an overview of all emergency preparedness issues, which can usefully feed back into planning (NCHRP, 2014).

Page 55: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  55

• All transport operators should have disaster

contingency manuals, which will immediately

activate emergency procedures and establish a

disaster response headquarter. These should also

introduce redundancy into emergency operating

systems so that if a disaster hits the main operating

system there are procedures in place for a secondary

unit to temporarily take over.

• Coordinate across infrastructure systems and

share disaster contingency manuals between

operators of different modes and infrastructure

systems. Transportation routes often convey and are

co-located with utilities, and these utilities are also

essential for recovery and maintaining emergency

power systems. The assumptions on which these

manuals are based should be critically assessed and

revised with other infrastructure operators if

necessary.

• Operations and recovery planning has to integrate

private and non-profit sectors into their planning;

this has sometimes been done through non-

governmental frameworks such as the All Hazards

Consortium in the eastern United States (NHCRP,

2014).

• Communication protocols between the environment

agency and transport operators as well as between

weather forecasters and transport operators are

important so that they can take adequate precautions

to minimize disruption and ensure the safety of users.

EVIDENCE 34: Transportation Management Center, New York TRANSCOM, the coalition of 16 major highway, transit, and public safety agencies in the New York, New Jersey, and Connecticut, had a series of regional conference calls the weekend before Sandy, including more than 100 officials from transportation facilities, police and emergency management agencies, and the governor’s office. Members from Pennsylvania and Delaware joined the calls later as knowledge of the storm expanded. (NYS 2100 Commission, 2013: 71). Vermont Agency of Transportation (VTrans) also used an Incident Command System decision-making framework to coordinate over a large number of jurisdictions and agencies. These were established in affected regions and coordinated by a unified command in the capital (FHWA, 2013).

6.2.4 Contingency Plans and Transition Traffic Measures Highly visible contingency plans and transitional traffic

measures should be in place to identify alternative

routes in the case of an emergency, particularly to major

logistics facilities vulnerable to closure such as arterial

roads, ports, and airports. A well-connected

transportation system network that provides multiple

links to each destination provides redundancy and

flexibility in the system in the event of a disaster. This

should include an assessment of where the most

vulnerable and at-risk people are located and how they

should be evacuated. Transitional traffic measures

include: • Exploiting redundant capacity in the system by

adding extra ferry or bus services and maximizing the

capacity and flexibility of other vehicles.

• Introducing temporary transit services such as bus

bridges, bus lanes, and ferry services on routes with

the highest priority.

• Assessing whether transport routes can be adapted

in case of an emergency. San Francisco Planning

and Urban Renewal Association (SPUR)

recommended developing a plan for deploying diesel

and hybrid buses on incapacitated electric bus routes

(SPUR, 2012).

• Establish contraflow bus systems and emergency

reserve bus fleets effective during an emergency

(SPUR, 2012).

• Introduce mutual aid agreements between operators

in advance, for example, between bus agencies and

ferry operators to ensure there is spare capacity in

the event of a disaster.

• Implement high-occupancy vehicle requirements.

• Locate emergency park-and-ride location in advance

and draft websites and maps for circulation.

• Provide for bikes and pedestrians during an

emergency to increase the transport system’s

resilience. Pedestrian and bicycle use rises

significantly during a disaster whilst the government

is mobilizing resources to begin the reconstruction

process. Transport plans should provide for

continuous bicycle and pedestrian routes to ensure

the community’s rapid recovery, and the overall

resilience of the transportation system, which

connects people to places. Bicycles can also be used

by engineers and inspectors during the damage

assessment of infrastructure.

Page 56: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  56

• Introduce traffic measures to prevent further damage

to infrastructure materials and prevent heavy goods

vehicles from travelling on recently refurbished roads

or on flooded roads as this deforms the surface.

• Provide indicators (in a similar way as “snowpole

markers” are used to delineate the edge of the road)

for road users to notice where the sides of the road

are, and to indicate the flood depth, during inundation

events.

EVIDENCE 35: Alternative modes of transportation during Superstorm Sandy Superstorm Sandy highlighted the importance of alternative modes of transportation. Three new high-capacity point-to-point temporary bus routes that became known as “bus bridges were put into effect and the lower level of Manhattan Bridge was turned into a bus only route. Ridership on emergency ferry services also increased by over 335 percent in an average weekday (NYC, 2013). In response to Sandy, NYCDOT also immediately restricted single-occupancy traffic as soon as subway outages were confirmed. There was a sharp increase in bicycle use in New York following Sandy, from 3,500 users a day to 7,800 (though Citibike equipment was damaged during the storm). Through these measures, 74,000 people were able to cross the Manhattan Bridge by bus, foot, bicycle or private vehicle on November 2, 2012, more than three times the figure two days before when the bus bridge and HOV3+ (three occupants or more in a vehicle) rules were put into effect. In comparison, 87,000 people cross the bridge on a normal weekday (NYC 2013). Noting the hundreds of thousands of bikes left unused in San Francisco, SPUR (2010) recommended creating a Bicycle Emergency Response Team, made up of volunteers and paid professionals. The bicycle response plan would include: Shared bikes for short-term check-in and checkout; “below market rate bikes” for long-term use; “loaner” bikes at no cost but registered for return after the disaster; locations storage for bicycle pickup and check-in; picking up donated and low-end purchase and sell/lease/lend these, as well as fix those being donated;

establishing a media plan calling for bike donations/delivery; and communicating and inventorying a tracking system for people and bikes (SPUR, 2010: 25).

6.2.5 Coordinate and Standardize Emergency Equipment

Have on standby heavy equipment, mobile pump

units, materials, and an emergency budget

allocation. Stockpile stocks of fuel, Bailey bridge

components, and materials such as galvanized wire

for making gabion boxes and hand tools.

Ensure that other infrastructure equipment—

generators, battery back-up systems, and pumps—is

installed at key locations and will be reliable and

operational during an emergency.

Locate plant equipment to clear rubble at

strategic locations along the main access routes

allowing rapid access to blockages in the immediate

aftermath of the event.

Create statewide and regional pools of hard to

procure critical equipment that can facilitate rapid

recovery and allow for continuous system upgrades.

After Sandy, the MTA nearly exhausted its

replacement supplies using more than 80 percent of

supplies.

Pre-printed signs should be fabricated and stored.

Standardize equipment across transportation

agencies to improve redundancy and efficiency.

Providing a uniform selection of critical equipment for

signals and communications minimizes storage area,

increases available replacement parts, and

streamlines delivery.

Agencies should coordinate to share inventory

thus ensuring redundancy across systems. These

should not be located in hazard-prone locations

(NYC, 2013).

Page 57: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  57

Negotiate retainers with local contractors and

labor groups to ensure rapid mobilization in an

emergency response. Companies can use their

heavy equipment to secure immediate access to

communities and undertake temporary repair to

critical and damaged roads. It also saves transport

agencies the expense of storing resources and taking

care that they do not deteriorate.

EVIDENCE 36: Community landslide early-warning system in Sri Lanka A community-based landslide early-warning system was implemented in Sri Lanka. It involved the community in capacity building through participation in hazard mapping, identification of safe areas, and participation in mock drills. These community aspects were done in conjunction with rainfall monitoring systems using a dynamic computer model to allow early predictions of landslide areas. The community also identified improvements to the emergency procedure by identifying problems with evacuation routes (ADRC, 2008). The relatively recent developments of the Internet and mobile phones all offer new communications mechanisms to better support more holistic approaches to DRM and communication in transport (National Research Council, 2006) (UNISDR, 2009).

6.2.6 Transportation Staff Access • Procedures should also be in place to mobilize and

move staff from other locations that have not been

impacted by the disaster.

• Critical personnel, where they live, full contact

information, who is and is not likely to respond in an

emergency, should be identified in advance.

• Coordinate with other critical infrastructure

departments that have upstream/downstream

interdependencies with transport infrastructure to

ensure that there are emergency plans for their staff

(particularly those operating pumps/levees, for

example).

• Contingency plans for staff availability in times of

extreme weather should be formulated and temporary

personnel identified for times of extreme weather.

Consideration should also be given to the need for staff

lodging when weather is too bad for staff to get home.

6.2.7 Communication Systems Compatible and reliable communication systems

between service providers and between service

providers and road users must be available during an

emergency.

Pouring concrete to plug the hole in the sea wall below Sea Lawn Terrace at Dawlish, UK, on February 24, 2014. 

Page 58: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  58

• It is particularly critical that the means of

communication between the many service providers

are compatible and able to resist power cuts.

Scalable backup communication systems can be

created that work across various technologies

(bandwidths, analogue or digital radios). • Communicate resilience targets on the level of

usability and the time it takes to restore ICT systems

to manage user expectations. For example, targets

could be set for a minimal level of service (for

emergency responders)—functional (for the economy

to begin moving again) and operational (near

capacity).

• Service providers must also be able to communicate

“vulnerable points” to road users to prevent traffic

jams and accidents, as well as prevent further

damage to the roads. Intelligent Traffic Systems can

provide information for commuters and freight on

alternative routes to be used—variable signs on

roads, dedicated radio channels, mobile phone

messages providing accurate and real-time

information, Facebook, and Twitter.

EVIDENCE 37: Communication during emergency response After the 2007 earthquake in Peru, national telecom operators and the Transport and Communications Ministry created a special emergency phone network to connect the presidential office, the police, fire departments, and health institutions (UNISDR, 2008). Missouri’s Department of Transport reaches commercial vehicle operators through trucking organizations (FHWA, 2012). Social media was particularly used to communicate with the public about the recovery effort in New York following Sandy. The Daily Pothole Tumblr, which documents NYCDOT street maintenance crews, was temporarily transformed into the “Sandy Recovery” page to document clean-up efforts. The number of Daily Pothole subscribers increased by 50 percent after the storm, to 15,000, as did NYCDOT’s Twitter and Facebook following (NYC, 2013).

6.2.8 Regular Monitoring and Review of Emergency Processes The monitoring and review of processes through a multi-

stakeholder team will enable any problems and

inefficiencies to be identified, and event, impact, and

response scenarios to be modelled. This can be done

through modelling simulations or simple exercises.

All the aspects covered above—coordination,

information collection and exchange, communication

processes, redundancy in the system, potential for

flexibility; chains of command; the availability and

prioritization of resources; and transportation options for

critical emergency operators, commuters, and

communities—should be regularly reviewed. Exercises

should be planned on a regular basis and the relevant

tools and evaluation guidelines provided to conduct

these exercises. This also ensures that there is

organizational learning and experience does not just rest

with individuals (see Evidence 38).

EVIDENCE 38: Monitoring and reviewing emergency processes Exercises can be as simple as questions such as “who would you call in an emergency” and “do you have their number,” “what would you do if power lines were down?” Exercises should be a learning activity as well as testing activity (NCHRP, 2014). In the UK, the Pitt Review was commissioned following the Gloucester floods in 2007 (Andrew, 2012). This must be accompanied by the creation of knowledge networks to ensure previous lessons are utilized in the design of new policies, programs, and projects. Critical Infrastructure Modelling: During Hurricane

Katrina the water that overtopped unstable flood walls

damaged transport infrastructure, delayed

responding emergency services, and caused power

outages that prevented flood pumps and hospitals

from operating efficiently. In response, Idaho National

Laboratory, supported by the U.S. Department of

Energy, developed a software tool that visually

portrays the dynamics of cascading effects and the

way this affects the operation of emergency teams.

They used simple maps or aerial photos and focused

on the interdependencies of infrastructure in order to

prioritize emergency response. The model can be

updated and incorporated in a real-time view of the

environment by building in webcams or direct sensor

feeds. This allows emergency planners to run multiple

infrastructure failure scenarios, and allows

government agencies, utility companies, and first

responders to identify the critical infrastructure links

and prioritize where resources should be spent to

increase the resilience of the region (Source: Idaho

National Laboratory).

Page 59: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  59

6.3 Expertise Emergency staff capacity building involves training

personnel to project manage emergency works. Regular

emergency training exercises should be conducted to

identify any weak spots and ensure that they are

resolved. Highway maintenance workers should also be

trained to obtain first-responder, operations-level training

given that they are often the first employees to arrive on

the scene of a disaster (Cambridge Systematics, Inc.,

2004).

6.4 Financial Arrangements and Incentives 6.4.1 Flexible Emergency Budgets Emergency budgets need a great level of flexibility as the

need for a rapid response demands faster budget

approval. Increased coordination is also required to deal

with the complications arising from multiple actors using

different budget mechanisms to channel funds. Funding

can be diverted from existing programs and tendering

processes shortened to provide more rapid support to

emergency works required.

EVIDENCE 39: Emergency budgets in Japan

In Japan, for example, local governments report their infrastructure damage to the national government within ten days of a disaster and immediately request a national subsidy. Local governments can begin implementing their projects even before applying for the subsidy.

6.4.2 Catastrophe Bonds Catastrophe bonds provide an immediate payout after

the disaster has occurred and can be linked to

emergency response plans, as well as to the level of

adaptation built into the infrastructure by returning the

savings from reduced damage or service interruption to

investors (PricewaterhouseCoopers). A catastrophe

bond (cat bond) allows risk to be transferred from an

insurer or reinsurer into the capital markets thus

increasing the amount of insurance that can be written.

Furthermore, they are attractive to investors as a means

of diversifying their investment portfolios as natural

catastrophes are not correlated to existing economic

conditions. Catastrophe bonds are index-based

insurance mechanisms, where the indemnity is based on

a specific weather parameter measure over a pre-

specified period of time. Payout occurs when the index

exceeds a pre-specified value. Index-based insurance is

used when there is a strong quantifiable relationship

between weather risk and losses. More than USD 40

billion in cat bonds have been issued in the past decade,

including in transport (see Evidence 40). Turkey issued

a USD 400 million cat bond in April 2013 for earthquake

protection (Keohane, G. L., 2014). The main disadvantage, however, is basis risk—this is

the potential mismatch between contract payouts and

the actual loss experienced. Few of the 200 odd cat

bonds that have been sold have generated a payout

following a disaster (Keohane, G. L., 2014). For

example, four storms in Haiti created considerable

damage in 2008, but because most of this was due to

flooding and not wind (the triggering parameter of the

index-based coverage) a payout was not triggered by

CCRIF. Further challenges to developing cat bonds in

developing countries include the paucity and inadequacy

of data required to develop and price products and the

limited technical and financial expertise of domestic

insurers to underwrite catastrophe risk.

EVIDENCE 40: MetroCat Re and Superstorm Sandy

Superstorm Sandy wreaked significant damage on New York’s train, bus, and subway network, costing the Metropolitan Transit Authority (MTA) USD 4.75 billion to repair. As a result of significant price increases in the traditional reinsurance market, the MTA worked with its insurer, the First Mutual Transportation Assurance Company (FMTAC), to create MetroCat Re, the first catastrophe bond specifically designed to protect public transport infrastructure. It is a USD 200 million three-year cat bond where the payout trigger is linked to storm surge levels. If there are no storm surges above the specified thresholds before August 2016 the investors get their principal investment and returns of 4.5 percent annually above Treasury rates. Given these rates, the MetroCat Re was heavily over-subscribed (Keohane, G. L., 2014).

6.5 Technical Planning and Design, and Operations and Maintenance

6.5.1 Early-warning Systems Early-warning systems can be an important

operational part of disaster-risk management within

transport systems. They take a variety of forms, from

both the technologically advanced to relatively simpler

community-based systems. For example, in Japan, the

Central Japan Railway Company introduced automatic

train controls on the Tokaido Shinkansen system in

Page 60: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  60

2006, and also has an “Earthquake Rapid Alarm

System.” This is part of a wider risk-management system

comprising two general control centers (see Evidence

41).

EVIDENCE 41: Japan’s urgent earthquake detection and alarm system

Japan’s Urgent Earthquake Detection and Alarm System is made up of seismometers installed at 97 locations. Twelve-15 seconds before the 8.9 magnitude earthquake hit, a seismometer belonging to the country’s eastern rail operator sent an automatic stop signal to Japan’s high-speed bullet train’s electrical power transmission system, triggering the emergency brake on 22 trains. Control of the system is from general control centers. In the event of a large-scale natural disaster, one center can assume the duties of the other should one become inoperable. Following detection of an earthquake, the system will issue an alarm to trains in two seconds. Automatic train controls (ARC) on the high-speed train system are linked to this and can stop a train to prevent accidents (Source: Central Japan Railway Company, 2013).

6.5.2 Emergency Repair Works It is important for emergency repair works to get the

right balance between taking immediate action and

choosing the correct solutions with the longer-term

recovery process and future resilience in mind. In the

case of Dawlish, the use of a temporary breakwater from

shipping containers was an excellent example of

preventing further damage, but also one in which the

emergency response did not hamper or compromise the

more permanent solution (see Case Study 22).

6.5.3 Disaster Waste Recovery (DWR) In the immediate period following a disaster, waste can

be used for filling of holes/softspots and “lower-grade”

road construction. Concrete is often the most widely

available waste material, but other materials that can

also be effectively used are brick, stone, and gravel. A

blended mix of virgin material/recycled material can be

used as a solution in order to meet certain engineering

specifications, or where DWR is limited. DWR can be

applied to many construction projects, including roads,

bridges, embankments, flood protection, kerbs, bedding

for footways/paving, gabions, ballast for railway

sleepers, airport runways, ports, and harbors. There are technical challenges to get the right quality

material for DWR. Consideration should be given to

working with local crushing plants (usually associated

with quarries), where the plant (crusher, screens) can be

adapted to produce materials to the right specification. A

challenge is to obtain “good quality” rubble that is free

from non-construction material (household material,

hazardous material, waste etc.). The logistics of the

supply chain is important in relation to the waste DWR

point. There are many factors to consider, including the

trucking/transport available, clearance needs, storage,

material available, production volume etc. In order to institutionalize DWR, it is necessary to put in

place regulatory frameworks, controls, and standards

before a disaster to ensure quality and acceptance of

materials, techniques, and specifications. Testing and

certification of products and materials should also be

incorporated into the process. Local/in-country training is

also needed to establish the techniques and

specifications of crushed material etc. before a disaster. It can also be a challenge to gain widespread

acceptance of DWR and overcome people’s perceptions

of DWR material, both socially and culturally, as rubble

could have been someone’s home once.

Demonstrations and example specifications may help

overcome negative perceptions of DWR and build

capacity in this area. Furthermore, DWR can be linked to

livelihood/income-generation schemes, as in Haiti where

it has generated more than 100,000 hours of work for

local men and women.

Page 61: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  61

7.1 Introduction

Reconstruction of transport infrastructure involves the

repair of critical infrastructure to a basic state of

functionality sufficient to allow recovery, followed by the

reconstruction of infrastructure, which builds in the

lessons learned from previous performance, such that

community resilience is enhanced against future

disasters.

In order to quickly restore economic and social activities

after a disaster there must be policies, institutions and

processes, and financial arrangements and incentives

prior to the disaster so that an investigation of

infrastructure performance can be rapidly instigated after

a disaster, and effective and contextually appropriate

reconstruction measures deployed (Fengler, 2008).

Below some key principles that would guide the thinking

on how to first design projects that can help create an

enabling environment, which will reduce recovery time

and ensure that there is not a severe breakdown in

income generation, as well as some aspects to take into

account following a disaster, namely:

• Infrastructure assessment: An assessment of the

infrastructure immediately post-disaster to consider

how the system performed, where it failed and why;

• Infrastructure performance analysis: An analysis

of the predicted performance of the system as

designed during the construction phase in

comparison with how the system performed in reality;

Mitigation strategies: Development of methods for

addressing the failure mechanisms and targeting with

project interventions. These should be categorized

under the resilience principles that enable them to be

targeted during the reconstruction process. This

process will take time, which is often difficult to find in

the aftermath of a disaster particularly when the focus

is given to promoting activities to enable communities

to recover. There are a number of complex

challenges in a post-disaster environment, which, if

not prepared for adequately, can impair the quality of

reconstruction and the resilience of the rebuilt

transport infrastructure. A range of the key challenges

are highlighted below.

• Conflict between “like for like” versus

“resilience.” In most instances, reconstructed

infrastructure is rebuilt to current design standards,

which will increase the resilience of older assets that

have not recently been retrofitted, but essentially

continue to expose infrastructure to the same pre-

disaster vulnerabilities (see evidence

• Damage assessment and funding: “Like for like”

funding typically is only available for repair to the pre-

disaster conditions and as such there is a challenge

in identifying damage that is a direct consequence of

the disaster. Further challenges to deciding what can

and cannot be funded under “like for like”

reconstruction is the difficulty in assessing what the

actual network capacity loss is, the desired level of

service to be restored, and “what constitutes added

resilience.”

EVIDENCE 42: “Like for like” versus “building back better" Anecdotal evidence from many developing, and developed, countries suggests that assets are often rebuilt to the same pre-disaster standard and the cycle of exposure and vulnerability is continually repeated. New Zealand’s Stronger Christchurch Rebuild Team (SCIRT) recommended building back “like for like,” though identifying the source of the damage can be problematic. MacAskill (2014) discusses this issue in the post-earthquake rebuild in Christchurch, New Zealand. The stormwater network’s capacity was affected by land settlement

7. POST-DISASTER RECOVERY AND RECONSTRUCTION

Page 62: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  62

and reduced water capacity, but not by direct structural damage on the engineering assets, which is generally what qualifies for “like for like.” In one particular case in Christchurch engineers took into account the increased risk of flooding by going over and above “like for like” and adding a stormwater basin.

There is a challenge in committing stakeholders to

being actively involved and motivated in the

process of reconstruction, beyond the emergency

phase. The process is more costly, less attractive

from a media perspective, and requires

considerable commitment in time (Piper, 2011).

There are data collection and management

issues after a disaster, including: a lack of

coordination where multiple teams may be

collecting the same data and overlooking other

perishable and critical data; lack of data

repositories; difficulties in addressing issues of data

access and maintenance; perishable data and

different timeframes for data collection (Giovinazzi

and Wilson, 2012).

The need for speed complicates the application

of sound fiduciary principles. The regular budget

system is too rigid for the flexible response needed,

whilst off-budget mechanisms face increased

fiduciary risks and complicate coordination

(Fengler, 2008).

Cost and time overruns. According to an

investigation by Sun and Xu (2011) of 72 projects

in six cities of Sichuan Province, China, after the

2008 Sichuan earthquake, 32 percent of them

suffered from time overrun and 82 percent had cost

overruns (cited in Zhang, 2012).

Lack of transparency and account-ability. In

Aceh, Indonesia, 129 companies were blacklisted

by BRR for various procedural violations.

Economically or politically powerful groups often

dominate the planning and decision-making

process.

Absence of relevant and clear policies and legal

systems to guide, coordinate, and delegate

responsibilities for efficient and resilient

reconstruction.

A lack of communication and coordination

among stakeholders, including affected

communities, asset owners, lifeline agencies,

government and public agencies, non-

governmental agencies, construction/reinstatement

organizations and insurance companies.

Inadequate capacity and training amongst

personnel to deal with post-disaster reconstruction

works and to coordinate and manage the long-term

recovery and reconstruction, including the

administration and leveraging of multiple funded

projects.

A fragile construction market, suffering from a

scarcity of resources, inflation, and the

unavailability of construction professionals and

laborers. Insufficient involvement from the private

sector also poses challenges to the coordination

and management of reconstruction.

Resilience sacrificed for rapidity or cost saving.

Disaster remediation works tend to focus on

restoring the basic functioning as quickly as

possible to pre-disaster status without considering

resilience. Budget constraints can mean resilience

is seen as an additional cost. Fifty-four percent of

respondents of the New Zealand Infrastructure and

Buildings Construction Survey 2013 felt that

addressing climate change impact in investment

planning was of low importance, leading to missed

opportunities in post-disaster reconstruction.

Conflicting donor and country regulations in

projects co-funded by donor countries. In

Indonesia, the law states that in areas of conflict in

co-funded projects donor regulations will prevail;

implementation plans proposed by Indonesian

contractors on USAID projects in Aceh were often

delayed due to non-compliance with US regulations

(USAID, 2007).

Boundary disputes and land acquisitions are a

common constraint. Acquiring land is a lengthy

process and after a disaster records may be lost

and government personnel may also be victims with

little capacity and resource. In Aceh, issues with

Page 63: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  63

land acquisition led to the expiry of funds for

purchasing land for reconstruction (MDF-JRF,

2012).

Coordination between all agencies involved in

the reconstruction process. A key challenge

when reconstructing transport infrastructure is

aligning reconstruction with other agencies,

including other systems (utilities, electricity etc.),

land-use zoning, and urban development.

7.2 Policies, Institutions, and Processes Below are examples of the policies, institutions, and

processes that will facilitate recovery and reconstruction

following a disaster:

• Cross-agency reconstruction agencies are required

to coordinate data sharing, speed assistance,

maximize the efficient use of funds, and coordinate

and harmonize the reconstruction process. The role

tends to be coordination and monitoring, rather than

implementation, either by (a) integrating a new

coordinating agency into an existing ministerial

system; or (b) creating a separate agency with

specific authorities and responsibilities (WB, 2008: 8).

If the nature of the disaster is large, the location

remote, and local institutions weak then the need for

a special agency is greater.

• Systems should be established for cross-agency

information sharing and data storing. Some options

include:

Ø Data menus: In a disaster, local government

personnel do not always know what information

to ask for and where to find it. Each agency,

including the transport agency, could develop a

data menu containing a list of all datasets that are

requested during a disaster. This should include

the fields in the dataset, the units of

measurement, how to use the data, and

limitations. This document would be distributed to

all disaster agencies at the local level.

Ø A data steward: Each agency, including

transport, and each state/local government could

identify a “data steward” to act as a point of

contact for data requests after and in advance of

disasters (HUD, 2013).

Ø Interagency data portal to allow agencies to

access and store one another’s data. Agency

attorneys and privacy officials could discuss what

steps would be necessary to prepare the legal

framework for a multi-agency data portal (HUD,

2013).

Geospatial information to allow teams to

visually assess the condition of all asset, if

they are being assessed and their

prioritization in the work program. It helps

manage interdependencies between systems

and service providers and reduces the number of

times roads are dug up and construction teams

can better coordinate, reducing costs

considerably (HUD, 2013).

EVIDENCE 43: Data collection and synthesis post-disaster A unique feature of the Christchurch rebuild was the one-stop interactive digital map SCIRT used with its partners to collate all information. Agreements have been put in place with the energy companies to hold their asset data and represent it on this digital map. In New York, an Office of Data Analytics was created to collect and synthesize data on the city’s essential services and engage with private and utility sectors following Hurricane Sandy (NCHRP, 2014).

• Infrastructure guidelines can be helpful during the

reconstruction process to guide repair and

replacement decisions. However, there also needs to

be a mechanism in place to challenge and consider

alternatives to the prescribed design standards.

Page 64: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  64

Sinkholes and liquefaction North New Brighton in Christchurch

EVIDENCE 44: Christchurch SCIRT—Infrastructure Recovery Technical Standards Prescriptive Infrastructure Recovery Technical Standards and Guidelines were superseded as they were seen to be inappropriate for assets with residual operational life. The approach focused on returning a minimum service level across the city through repair, which allowed funding to be released for new infrastructure. The approach allowed balanced decisions about the most efficient use of the limited reconstruction funds, considering the resilience of the entire network, and undertaking cost-benefit analyses of initial capital costs, with the remaining asset life and the possibility of further earthquake damage (MacAskill, 2014).

• Pre-disaster contracting frameworks involve

establishing long-term framework agreements

between the client and contractors, consultants and

suppliers, which enables rapid mobilization, effective

risk sharing and collaborative working. Ultimately, this

saves time, cost, and resources and lays the

foundation for more resilient infrastructure.

EVIDENCE 45: Pre-disaster contracting in Japan and Queensland In Japan, emergency agreements are drawn up between national and local governments and private sector partners. Potential partners are pre-qualified according to their financial, technical, managerial capacities, reputation, and past performance, and this framework agreement is regularly updated every few years. (Zhang, 2012). It is also in the interest of construction companies to participate in the relief and recovery effort as part of their business continuity plans (UNISDR).

Queensland also uses a system of pre-disaster contracting, and has also looked into procuring materials from industry suppliers in other countries as its capacities after the Queensland flood were overwhelmed and there was a shortage of basic construction inputs.

• Alliance contracting is an arrangement where parties

enter into an agreement to work cooperatively and

share risk and rewards measured against pre-

determined performance indicators. The contractor’s

profit is earned through performance, reducing

claims. It also promotes collaboration within a

commercial framework between experts from

different companies acting in the project’s interest.

This form of contracting has been adopted in the

Stronger Christchurch Infrastructure Rebuild Team

and one of the principle reasons that was put forward

for using this form of contracting was to increase the

“resilience” of the reconstructed infrastructure (see

Case Study 23).

Flexible approaches to procurement: A central

concern after a large disaster is understanding the

capacity of the construction industry and the

availability of materials, as well as ensuring that in

releasing work out into the market this will not have

the effect of overstretching construction companies or

artificially driving up prices. New procurement

approaches have been adopted to manage the scale

of work after a disaster.

EVIDENCE 46: Flexible procurement In Queensland, the Department of Transport and Main Roads developed a Performance Incentivized Cost Reimbursable Works Contract model that allowed the state to issue work to the market without

Page 65: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  65

first defining the scope of the work. The department would work with the constructor to refine the scope of work and use a pain share/gain share arrangement. This has allowed the state to get projects out to the market faster, minimized disputes, and ensured the focus is on getting work done rather than administrating contracts (Low, P., 2013).

During reconstruction a clear monitoring and evaluation

plan is critical. Progress must be monitored on a monthly

basis and reconstruction programs need to react in real

time to fast-changing situations on the ground. An

overarching Results Framework can harmonize and

integrate strategic priorities by measuring intermediate

outcomes. Appropriate performance indicators should

also be selected that can usefully measure actual results

against expected results. Performance evaluation task

forces can also be established after a disaster to assess

why infrastructure failed and to ensure lessons are learnt

during the reconstruction process.

EVIDENCE 47: Monitoring and Evaluation In Aceh, Indonesia, the three common performance indicators (kilometers of road built, number of bridges and culverts built, number of bridges and culverts repaired) were too high level and could not capture the progress of construction activities. Specifically, clearing and grubbing, land fill, embankment, grading, layering, compacting, bridge piling, bridge fabrication, and asphalt paving (USAID, 2007). A former director of research and development for the Army Engineers Research Corps chaired the Interagency Performance Evaluation Task Force, which conducted a two-year evaluation of how and why levees and flood walls failed during Hurricane Katrina in 2005. It also commissioned a study on the Hurricane Protection Decision Chronology. This was designed to document the chronology of the planning, economic, policy, legislative, institutional, and financial decisions that influence the hurricane protections systems of Greater New Orleans. The task force used those lessons to assist the Corps in developing new rules for building levees in the New Orleans area and nationwide (see Case Study 2).

7.3 Financial Arrangements and Incentives 7.3.1 Funding Sources The challenge of reconstruction is the mobilization of

additional resources over and above the normal

development funding. Post-disaster recovery relies on

effective fast-track funding that makes use of available

sources of financing, both internally and externally. It

needs to consider both public and private financing,

though for transport infrastructure, responsibility for

repair and reconstruction is most likely to sit within the

public domain. Practical ideas for various funding

sources are found below:

• Budget-sharing mechanisms between local and

central governments: Budget-sharing mechanisms

between local and central governments allow local

authorities to apply for additional funding for

reconstruction works. The procedures should be

negotiated in advance and cover the following:

procedures for applying for a subsidy to the central

government; the cost-sharing ratio of rehabilitation

works; criteria for the types and severity of disasters,

which require these mechanisms; establishment of a

body of experts and organizations to the central

government level and team formulation and

procedures for damage assessment. Special additional budget allocation: Where

regional budgets are insufficient, there may be

options for requesting additional funding from

national or international bodies.

Evidence 48: Bhutan—Monsoon damage restoration fund The Department of Roads in Bhutan has a dedicated fund for the repair of roads and bridges after the annual monsoon. This funding is used primarily for the clearance, reconstruction, and reconnection of roads with little attention given to improving their resilience. This is despite the knowledge that there is often damage at the same locations each year.

Public-private partnerships: Policy incentives can

be used to promote private sector investment to

share reconstruction costs. Public-private

partnerships are often used to procure funds for

infrastructure improvement, as it is seen as relatively

low risk and suitable for long-term fund operation by

pension and insurance institutions.

Regular budget: Allowance for diversion of funding

for existing projects to urgent repair work in the case

of disasters.

Existing programs with international partners:

There may be options for negotiating for additional

funds or diverting existing funds from international

partners into post-disaster activities.

Loans: If allowed by law, it may be possible to obtain

Page 66: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  66

emergency loans, though this may impact on the

future fiscal position of the country/province.

New taxes: This is unlikely to be an attractive option,

though theoretically possible. Levies, taxes or

surcharges can be used to raise additional funds for

reconstruction.

Policy incentives for boosting domestic trade

and commerce: Adopting changes to policy for

commerce can promote investment and help to inject

liquidity into affected areas.

Disaster insurance: Initiatives such as the Pacific

Catastrophe Risk Insurance pilot are insurance

programs aimed at helping to reduce the financial

vulnerability of small island nations in the Pacific to

natural disasters.

Recovery of private sector: Promoting private

sector recovery can promote collaboration in repair

and operation of transport infrastructure, devolving

responsibility and releasing resources. Infrastructure

repair may rely on the private sector resources and

providing support to these private enterprises can

facilitate recovery.

Direct assistance: Housing assistance with

materials; livelihood restoration with free seeds, tools

etc.; temporary income sources (i.e. cash-for-work);

and alternative employment opportunities with

retraining or referrals for rapid repairs or clearance of

transport route.

Indirect assistance: Temporary tax breaks; credit

schemes to businesses with soft terms; and injecting

equity to support recovery.

7.3.2 Financial Incentives Emergency funding arrangements can also incentivize

resilience to be mainstreamed within reconstruction

projects and encourage pre-disaster planning, which will

aid effective recovery and reconstruction (see Evidence

49 and 50). Practical ideas are found below. • Performance-based funding for disaster repair

and reconstruction: Resilient assessment criteria

can be applied in the selection and prioritization of

transport infrastructure investments, as has been

done in New York following Hurricane Sandy.

• Betterment funds: Betterment funds can be

established to restore or replace hazards to a more

disaster-resilient standard than before. Betterment

costs are the difference between restoring or

replacing an asset to its pre-disaster standard and the

cost of restoring or replacing it to a more disaster-

resilient standard.

EVIDENCE 49: Incentivizing pre-disaster planning through funding conditions The Natural Disaster Relief and Recovery Arrangement in Queensland provides funding to state and territories and has pre-agreed relief and recovery measures and a clearly defined threshold and cost-sharing formula. It also incentivizes mitigation measures by requiring states to implement disaster mitigation strategies as a precondition to receiving assistance for restoring or replacing public asset. If it has not implemented these, the assistance is reduced by 10 percent (World Bank 2011). EVIDENCE 50: New York works task force— resilient assessment criteria The governor and legislative leaders launched the New York Works Task Force in May 2012 to coordinate a statewide infrastructure plan to effectively generate and allocate the state’s capital resources. The task force brings together professionals in finance, labor, planning, and transportation. This allows a more holistic analysis of needs and interdependencies. The NYS 2100 Commission worked with the New York Works task force to develop and then apply the following four resilient criteria in the selection and prioritization of infrastructure investments:

1) State of good repair: Whether the proposed repair, renovation or upgrade extends its life in a cost-effective way; 2) Systems focus: Whether investment benefits the economic or ecologic system in which it is located; 3) Financial and environmental sustainability: Whether the investment lowers ongoing or avoids future costs, including negative externalities such as damage to the environment; 4) Maximize return on investment: Whether the investment has a positive cost/benefit ratio over is entire lifecycle (Source: NYS 2100 Commission, 2013).

Page 67: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  67

Loma Prieta earthquake damage on Bay Bridge, California, in 1989.

7.4 Expertise There is a temporary increase in the reviewing and

permitting activities required at all levels and plans

should be made to ensure all agencies have the capacity

to effectively manage and expedite these processes.

This capacity building could include training sessions

and workshops, one-on-one technical assistance, and

peer-learning opportunities.

Further options include the creation of specific online

portals offering tools, best practices, links to funding

opportunities, a calendar all training and TA offerings in

the region, blogs and discussion boards, updates on

regional activities, and forums to request assistance

from technical experts. New York is establishing such a

portal (HUD, 2013: 138).

Page 68: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  68

BIBLIOGRAPHY Acclimatise and COWI (2012) Guidelines for Project Managers: Making vulnerable investments climate resilient, report for the

European Commission. Available at: http://climate-adapt.eea.europa.eu/c/document_library/get_ file?uuid=81fdc9d1-c840-409e-

8060-82862cf65017&groupId=18 [accessed: 08/04/2014] Adam Smith International (2012) Measuring and Maximising Value for Money in Infrastructure Programmes. Available from:

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/%20194319/measure-maximize-VfM-infrastructure.pdf

[accessed: 20/05/2014] ADPC (2007) Towards Mainstreaming Disaster Risk Reduction into the Planning Process of Reconstruction. Available at:

http://www.adpc.net/v2007/ikm/EVENTS%20AND%20NEWS/NEWS%20ROOM/ Downloads/ 2008/Apr/ CaseStudyRoadsPhilippines.pdf [accessed: 07/04/2014] ADPC (2014) Saving lives and property by mainstreaming disaster risk management in the transport sector of Bhutan Ahlers, M. (01 Nov, 2012) “Huge Plugs could have Spared Subways from Flooding, Developers Say.” [Online] CNN News. Available

at: http://edition.cnn.com/2012/10/31/us/new-york-subway-plugs/index.html [accessed: 20/05/2014] Andrew, R. (2012) Building Community Resilience. Civil Engineering Special Issue, Vol. 165 (Issue CE6, November 2012) APEC (2010) Public-Private Partnerships and Disaster Resilience. Report from APEC Workshop on Public Private Partnerships and Disaster Resilience, Bangkok, 24-29 August 2010. Available at: http://www.em.gov.au/Documents/ APEC%20-

%20Final%20Outcomes%20Report% 20-%20pdf%20form%20-%20March%202011.PDF [last accessed: 08/04/2012] Asian Development Bank (2011) Guidelines for Climate Proofing Investment in the Transport Sector: Road Infrastructure Projects.

ADB, 2011. Available at: http://www.sefifrance.fr/images/documents/basdguidelines_climate_proofing_ roads.pdf [accessed:

20/05/2014] Asian Disaster Reduction Centre (ADRC) (2008) Total Disaster Risk Management. Good Practices 2008 [Online] Asian Disaster

Reduction Centre (ADRC). Available at: http://www.adrc.asia/publications/TDRM2005/TDRM_Good_ Practices/GP2008_e.html

[accessed: 20/05/2014] Auckland Council (undated) Auckland Council Procurement Policy [Online] Available at: http://www.aucklandcouncil.

govt.nz/EN/planspoliciesprojects/councilpolicies/ Documents/aucklandcouncilprocurementpolicy.pdf [accessed: 09/04/2014] Barnes, P., et al (2014) Working as One: A road map to disaster resilience in Australia, Special Report, Australian Strategic Policy

Institute, available at: https://www.aspi.org.au/publications/working-as-one-a-road-map-to-disaster-resilience-for-

australia/SR73_disaster_resilience2014.pdf [accessed: 23/12/2014] Benn, J. (2013) Railway Bridge Failure during Flood in the UK and Ireland: Learning from the Past In: Proceedings of the ICE -

Forensic Engineering, Volume 166 (Issue 4, 01 November 2013), pp. 163 –170 [accessed: 20/05/2014] Benson, C. and Twigg, J., with Rossetto, T. (2007) Tools for Mainstreaming Disaster Risk Reduction: Guidance Notes for Development Organisation. International Federation of Red Cross and Red Crescent Societies / the ProVention Consortium.

[Online] Available at: http://www.preventionweb.net/files/1066_toolsformainstreamingDRR.pdf [accessed: 20/05/2014] Bissell, J. J. (2010) Resilience of UK Infrastructure. Post note, (362), 1-4. Bles, T., Ennesser, Y., Fadeuilhe, J., Falemo, S., Lind, B., Marjolein, M., Ray, M., and Sandersen, F. (2010) Risk Management for

Roads in a Changing Climate: A Guidebook to the RIMAROCC Method: Final Version. ERA-NET Road. [Online] Available at:

http://kennisonline.deltares.nl/product/22249 [accessed: 20/05/14][accessed: 20/05/2014] Blockley, D., Agarwal, J., and Godfrey, P. (2012) Infrastructure Resilience for High-Impact Low-Chance Risks. Civil

Engineering Special Issue Volume 165 (Issue CE6, November 2012) Bouch, Dijkstra, Dingwall, Gunn, Jaroszweski, Ryley, Sivell, Avery, Baker, Chapman, Dixon, Fleming, Frost, Goulden, Hooper, Lawley, Paulley, Quinn, Reeves, Wade, Wilks and Zanni (2012) Future Resilient Transport Networks (FUTURENET) Assessing transport network security in the face of climate change. Submitted to 91st Annual Meeting of the Transportation Research Board, January 22–

26, 2012, Washington DC Busch, N., and Givens, A. (2013) Achieving Resilience in Disaster Management: The Role of Public-Private Partnerships. Journal of Strategic Security Vol. 6 (No. 2)

Cabinet Office (2011) Keeping the Country Running: Natural Hazards & Infrastructure [Online] Available from: https://

www.gov.uk/government/uploads/system/uploads/attachment_data/file/61342/natural-hazards-infrastructure.pdf [accessed:

Page 69: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  69

20/05/2014] Cambridge Systematics, Inc. (2004) Security and Emergency Preparedness in the Transportation Planning Process: Oregon

Department of Transportation Case Study: Final Report. Prepared for Federal Highway Administration. [Online] Available from:

http://www.planning.dot.gov/Documents/SEPOregonDOT.pdf [accessed: 20/05/2014] Cardona, O.D., Van Aalst, M.K., Birkmann, J., Fordham, M., Mcgregor, G., Perez, R., Pulwarty, R.S., Schipper, E.L.F., and Sinh, B.T. (2012) Determinants of risk: exposure and vulnerability. In: Managing the Risks of Extreme Events and Disasters to Advance Climate

Change Adaptation [Field, C.B., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach,G.-K. Plattner, S.K. Allen, M.] Caribbean Development Bank (CDB) and Caribbean Community Secretariat (CARICOM), 2004. Sourcebook on the Integration of Natural

Hazards into the Environmental Impact Assessment (EIA) Process. Caribbean Development Bank, Barbados Central Japan Railway Company (2013) Annual Report 2013. Tokyo: Central Japan Railway Company. [Online], available from:

http://english.jr-central.co.jp/company/ir/annualreport/_pdf/annualreport2013.pdf [accessed: 20/05/2014] Chang, S.E. (2009) Infrastructure Resilience to Disasters. In: US Frontiers of Engineering Symposium: Session on “Resilient and

Sustainable Infrastructures”. Arnold and Mabel Beckman Center, Irvine, California, September 10-12, 2009, available at:

http://www.nae.edu/File.aspx?id=15629 [accessed: 20/05/2014] Chang, Y., Wilkinson, S., Brunsdon D., Seville, E., and Potangaroa, R. (2011) An integrated approach: Managing resources for post‐disaster reconstruction. Disasters 35, No. 4, pp 739-765. Available at: http://www.ncbi.nlm.nih.gov/ pubmed/21913934 [accessed: 20/05/2014] Chock, G., Robertson I., Kriebel, D., Francis, M., and Nistor, L. (2013) Tohoku, Japan, Earthquake and Tsunami of 2011:

Performance of Structures under Tsunami Loads. American Society of Civil Engineers. Available at: http://www.asce.

org/Product.aspx?ID=2147487569&ProductID=187776013 [accessed: 20/05/2014] Christchurch City Council (2011) Christchurch Infrastructure Rebuild Plan: How we plan to fix our earthquake damaged roads and

underground services. Christchurch, New Zealand. Available at: http://resources.ccc.govt.nz/files/ canterburyearthquake/scirt-

infrastructure-rebuild-plan_web.pdf [accessed: 20/05/2014] City of New York, Mayor Michael R Bloomberg (2013) A Stronger More Resilient New York. Available at: http://www.

nyc.gov/html/sirr/html/report/report.shtml [accessed: 08/04/2014] Clark, J., and Hellin, J. (1996) Bioengineering for effective road maintenance in the Caribbean. Natural Resources Institute (NRI),

Chatham, UK. Available at: http://www.nri.org/publications/cat/landwater.htm [accessed: 20/05/2014] CNA (2013) Gov’t considers insuring against natural disasters. The China Post [Online] Available at: http://www.

chinapost.com.tw/taiwan/national/national-news/2013/09/20/389366/Govt-considers.htm [accessed: 08/04/2014] CNN Library (13/07/2013) Hurricane Sandy Fast Facts [Online] CNN. Available at: http://www.cnn.com/2013/07/13/

world/americas/hurricane-sandy-fast-facts/ [accessed: 20/05/2014] Cole, M. (2014) London Underground Bridges, Shield of Steel. Available at: http://www.nce.co.uk/home/transport/ london-

underground-bridges-shield-of-steel/8659312.article [accessed: 20/05/2014] da Silva, J., and Morera, B. (2014) City Resilience Framework. Arup/The Rockefeller Foundation, 04/2014. Available at:

http://publications.arup.com/Publications/C/City_Resilience_Framework.aspx [accessed: 20/05/2014] da Silva, S., Kernaghan S., and Luque, A. (2012) A systems approach to meeting the challenges of urban climate change. International

Journal of Urban Sustainable Development, Vol. 4, Issue 2. Available at: http://www.tandfonline.com/

doi/abs/10.1080/19463138.2012.718279#.U3nMvXlwaUk [accessed: 20/05/2014] Defra, Welsh Government, Environment Agency, Natural England et al (2012) Greater working with natural processes in flood and coastal erosion risk management. A response to Pitt Review Recommendation 27. Environment Agency Reference number/code GEHO0811BUCI-E-E. Available at: www.wessexwater.co.uk/WorkArea/DownloadAsset. aspx?id=8978[accessed: 20/05/2014] Department for Transport (2014) Transport Resilience Review: A review of the resilience of the transport network to extreme

weather, available at: https://www.gov.uk/government/uploads/system/uploads/attachment_data/ file/335115/transport-resilience-

review-web.pdf [accessed: 23/12/2014] EEFIT (2011) Recovery Two Years after the 2011 Tohoku Earthquake and Tsunami: A Return Mission Report by EEFIT. Available at: http://www.istructe.org/webtest/files/23/23e209f3-bb39-42cc-a5e5-844100afb938.pdf [accessed: 20/05/2014] Eisenack, K., Stecker, R., Reckien, D., and Hoffmann, E. (2011) Adaptation to Climate Change in the Transport Sector: A Review of

Actions and Actors. Mitigation and Adaptation Strategies for Global Change, Volume 17, Issue 5, pp 451-469. Available from:

http://link.springer.com/article/10.1007%2Fs11027-011-9336-4 [accessed: 20/05/2014]

Page 70: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  70

Engineering the Future (2013) Infrastructure Interdependencies Timeline, available at: http://www.

engineeringthefuture.co.uk/government/pdf/EtF_Infrastructure_Interdependencies_Report.pdf, [accessed 18/12/2014] Englot J., and Zoli T., (2007) Critical Issues in Achieving a Resilient Transportation Infrastructure, HNBT Corporation,

Symposium on Emerging Developments in Multi-Hazard Engineering, available at: http://mceer.buffalo.edu/

meetings/AEI/Presentations.asp [accessed: 22/12/2014] European Commission, (2012) Guidelines for Project Managers: Making vulnerable investments climate resilient. Report for the

European Commission Final, September 2012. Available at: http://ec.europa.eu/clima/policies/adaptation/

what/docs/non_paper_guidelines_project_managers_en.pdf [accessed: 20/05/2014] European Commission (2013a) Adapting Infrastructure to Climate Change, Commission Staff Working Document. Brussels,

16.4.2013 SWD (2013) 137 final. Available at: http://ec.europa.eu/clima/policies/adaptation/what/docs/ swd_2013_137_en.pdf

[accessed: 20/05/2014] European Commission (2013b) Guidance on integrating climate change and biodiversity into EIA, Study Contract No

07.0307/2010/580136/ETU/A3, implemented for the European Commission by Milieu Ltd, Collingwood Environmental Planning Ltd and Integra Consulting Ltd, available at: http://ec.europa.eu/environment/eia/pdf/EIA%20Guidance.pdf [accessed: 22/12/2014] Fankhauser, S., Ranger, N., Colmer, J., Fisher, S., Surminski, S., Stainforth, D., and Williamson, A. (2013). An Independent National

Adaptation Programme for England. Policy brief, March 2013. Grantham Research Institute on Climate Change & Environment / Centre for

Climate Change Economics and Policy. Available at: http://www.lse.ac.uk/ GranthamInstitute/publications/Policy/docs/PB-independent-

national-adaptation-programme-for-england.pdf [accessed: 20/05/2014] Fay, M., Atsushi, L., and Perrissin-Fabert, B. (2010) Financing greener and climate-resilient infrastructure in developing countries—

challenges and opportunities, EIB Papers, Vol. 15, Iss. 2, pp. 34-58 (ISSN 0257-7755). Available at: http://

www.eib.org/attachments/efs/eibpapers/eibpapers_2010_v15_n02_en.pdf [accessed: 20/05/2014] Federal Transit Administration Office of Budget and Policy (2011) Flooded Bus Barns and Buckled Rails: Public Transportation and

Climate Change Adaptation. FTA Report No. 0001. [Online] Available at: http://www.fta.dot.gov/ documents/FTA_0001_-

_Flooded_Bus_Barns_and_Buckled_Rails.pdf, [accessed: 08/04/2014] Felstead, I. and Markeson, L. for London Borough of Islington (2011) Preliminary Flood Risk Assessment for London Borough of Islington, Drain London. Available at: http://www.islington.gov.uk/publicrecords/library/Planning-and-building-

control/Information/Advice-and-information/2012-2013/(2012-08-09)-Preliminary-flood-risk-assessment.pdf [accessed: 08/04/2014] Fengler, W., Ihsan, A., and Kaiser, K. (2008) Managing Post-Disaster Reconstruction Finance — International Experience In Public

Financial Management. Policy Research Working Paper No. 4475. [Online] World Bank Publications. Available at:

http://elibrary.worldbank.org/doi/book/10.1596/1813-9450-4475 [accessed: 20/05/2014] Fischer, E. (2011) How Japan’s Rail Network Survived the Earthquake. [Online] Available at: http://www.railway-

technology.com/features/feature122751 [accessed: 20/05/2014] Fleming, D. (2009) Scour Revealed as Cause of Irish Bridge Collapse [Online] http://www.nce.co.uk/news/structures/ scour-

revealed-as-cause-of-irish-bridge-collapse/5207460.article# [last accessed: 08/04/2014] Flood Risk Management Research Consortium (2008) Impacts of Upland Land Management on Flood Risk: Multi-Scale Modelling Methodology and Results from the Pontbren Experiment. FRMRC Research Report UR16 [Online]. Available at:

http://nora.nerc.ac.uk/5890/1/ur16_impacts_upland_land_management_wp2_2_v1_0.pdf [accessed: 20/05/2014] Folke, C. (2006) Resilience: the emergence of a perspective for social–ecological systems analyses. Global Environmental Change,

Volume 16, Issue 3, pp. 253-267. Elsevier Forest Research (2011) Woodland for Water: Woodland measures for meeting Water Framework Directive objectives: Summary of final report from Forest Research to the Environment Agency and Forestry Commission (England). Environment Agency, 07/2011.

Available at: https://www.gov.uk/government/uploads/system/uploads/attachment_ data/file/291522/scho0711btyr-e-e.pdf [accessed: 20/05/2014] Giannopoulos, G., Filippini, R., and Schimmer, M. (2012) Risk assessment methodologies for Critical Infrastructure Protection. Part I:

A State of the Art. JRC Technical Notes. EUR 25286 EN – 2012. [Online] Available at: http://

publications.jrc.ec.europa.eu/repository/bitstream/111111111/25670/1/lbna25286enn.pdf [accessed: 20/05/2014] Giovinazzi, S., and Wilson, T., (2012) “Recovery of Lifelines” following the February 22, 2011 Christchurch earthquake: successes and issues. In: New Zealand Society for Earthquake Engineering 2012 Annual Technical Conference, Christchurch, New Zealand, April 13-15, 2012. Available at: http://www.nzsee.org.nz/db/2012/Paper090.pdf [accessed: 20/05/2014] Hallegatte, S., (2011) MCA4climate: A practical framework for planning pro-development climate policies, Adaptation

Page 71: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  71

Theme Report: Increasing Infrastructure Resilience Hayat, E., and Amaratunga, R. D. G. (2011) Road reconstruction in post-disaster recovery; The challenges and obstacles. [Online]

Available at: http://usir.salford.ac.uk/23372/1/23372.pdf [accessed: 20/05/2014] Hellmuth, M., Moorhead, A., Thomson, M., and Williams, J. (eds) (2007) Climate Risk Management in Africa: learning from practice. International

Research Institute for Climate and Society (IRI), Columbia, University, New York, USA. Available at: http://iri.columbia.edu/wp-

content/uploads/2013/07/Climate-and-Society-No1_en.pdf [accessed: 20/05/2014] Highways Agency (2009) Climate Change Adaptation Strategy and Framework. Revision B - issued November 2009. Available at:

http://assets.highways.gov.uk/about-us/climate-change/CCAF_Strategy_and_Vol_1_Rev_B_Nov.pdf [accessed 08/04/2012] HM Treasury and DEFRA (2009) Accounting for the Effects of Climate Change: Supplementary Green Book Guidance. Available

at: http://archive.defra.gov.uk/environment/climate/documents/adaptation-guidance.pdf [accessed: 08/04/2014] https://www.networkrail.co.uk/timetables-and-travel/storm-damage/dawlish/ Hollnagel (2011), Introduction to FRAM: The functional resonance analysis method, available at: http://www.

functionalresonance.com/FRAM-2_introduction_to_FRAM.pdf [accessed: 18/12/2014] Hudecz, A. (2012) Climate Change Adaptation: A Report on Climate Change Adaptation Measures for Low-Volume Roads in the Northern Periphery. The ROADEX IV Project, EU Northern Periphery Programme [Online] Available at: http://

orbit.dtu.dk/en/publications/climate-change-adaptation(c6b8da35-f296-49fc-9651-51e233bcd77c).html [accessed: 20/05/2014] Hudson, S., Cormie, D., Tufton, E., and Inglis, S. (2012) Engineering Resilient Infrastructure. Proceedings of the ICE - Civil

Engineering, Volume 165, Issue 6, 01 November 2012, pp. 5 –12. Available at: http://www.icevirtuallibrary.com/

content/article/10.1680/cien.11.00065 Idaho National Laboratory (undated) Modeling and Simulation [Online] Available at: https://inlportal.inl.gov/

portal/server.pt/community/national_and_homeland_security/273/modeling_and_simulation/1707 [last accessed: 08/04/2014] Hughes, J. F., and Healy, K., (2014) Measuring the resilience of transport infrastructure, AECOM New Zealand Ltd, NZ Transport

Agency research report 546, available at: http://nzta.govt.nz/resources/research/reports/546/docs/546. pdf, [accessed: 18/12/2014] Insurance Institute for Business and Home Safety (2014) Resilience STAR™ [Online] Available at: https://www.

disastersafety.org/resilience-star/ [accessed: 08/04/2014] The International Institute for Sustainable Development (2013) Climate Resilience and Food Security: A framework for planning and

monitoring. [Online] Available at: www.iisd.org [accessed: 20/05/2014] Ishiwatari, M., and Sagara, J. (2012) Structural Measures against Tsunamis. Knowledge Notes, Cluster 1: Structural Measures,

Note 1-1. World Bank Institute. Available at: http://wbi.worldbank.org/wbi/document/structural-measures-against-tsunamis

[accessed: 20/05/2014] Johannessen, B. (2008) Building Rural Roads. International Labour Organisation. Available at: http://www.ilo.org/

asia/whatwedo/publications/WCMS_100216/lang--en/index.htm [accessed: 20/05/2014] Johnson, I. (2012) Adapting Vermont’s Transportation Infrastructure to the Future Impacts of Climate Change: VTrans Climate Change Adaptation White Paper. Vermont Agency of Transportation. [Online] Available at: http:// vtransplanning.vermont.gov/sites/aot_policy/files/documents/planning/Climate%20Change%20Adaptation%20 White%20Paper.pdf [accessed: 20/05/2014] Johnson Z.P., (ed.). 2013. Climate Change and Coast Smart Construction: Infrastructure Siting and Design GuidelinesSpecial Report of the Adaptation Response Working Group of the Maryland Commission on Climate Change. Maryland, Department of Natural Resources, Annapolis, MD. Joint Survey Team of the JSCE Concrete and Structural Engineering Committees (2011) Report on Damage to (Civil Engineering) Concrete Structures in Fukushima Prefecture (First Report) (on the damage caused by the Great East Japan Earthquake). [Online] Available at: http://www.jsce.or.jp/committee/concrete/e/newsletter/newsletter25/index_files/ JSCEreport_damage_inFukushima.pdf

[accessed: 20/05/2014] Jones, R., and Llewellyn, J. (2013) ‘UK infrastructure bank is the right road to take’. Financial News [Online] 20 November, 2013.

Available at: http://www.efinancialnews.com/story/2013-11-20/uk-infrastructure-bank-right-road-to-take-

comment?ea9c8a2de0ee111045601ab04d673622 [accessed: 08/04/2014] Keohane, G. L. (2014) Preparing for disaster by betting against it. The New York Times, Opinion Pages, Opinionator [Online] 12

February, 2014 10.00 AM. Available at: http://opinionator.blogs.nytimes.com/2014/02/12/preparing-for-disaster-by-betting-against-

it/?_php=true&_type=blogs&_r=0, [accessed: 02/05/2014] Lal, P.M. and Thurairajal, V. (Nov 2011) Making informed adaptation choices: A case study of climate proofing road infrastructure in

Page 72: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  72

the Solomon Islands. Available at: http://www.climatechange.gov.au/climate-change/grants/pacific-adaptation-strategy-assistance-

program/making-informed-adaptation-choices-case-study-climate-proofing-road-infrastructure-solomon-islands [accessed: 20/05/2014] Lau, C. H., and Scott, B., (2013) Strengthening regional resilience through national, regional and sector partnerships: draft report

and recommendations, National Infrastructure Advisory Council Le De, L. (2011) Post Disaster Reconstruction Strategy: Opportunity or Opportunism? 2009 Tsunami in Samoa as a Case Study. A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Environmental Management, University of Auckland, New Zealand, http://www.islandvulnerability.org/m/ledem.pdf, [accessed: 20/05/2014] Linkov, et al., (2014) Changing the resilience paradigm, Nature Climate Change 4, 407-409 Low, P. (2013) Mobilising the reconstruction effort: Queensland Australia innovates to catalyze disaster recovery. Insight, the global

infrastructure magazine, Issue No. 5. KPMG. [Online] Available at: http://www.kpmg.com/AU/en/IssuesAndInsights/ArticlesPublications/Insight-Magazine/Documents/ insight-issue5-

resilience.pdf [accessed: 20/05/2014] MacAskill, K. A. (2014) Postdisaster Reconstruction of Horizontal Infrastructure Systems: A Review of the Christchurch Rebuild. In: Randy R. Rapp & William Harland (Eds.), The Proceedings of the 10th International Conference of the International Institute for Infrastructure Resilience and Reconstruction (I3R2) 20-22 May 2014. (pp. 189-195).

West Lafayette, Indiana: Purdue University. Available at: http://docs.lib.purdue.edu/i3r2/2014/rrr/8/ [accessed: 20/05/2014] Martin-Breen, P., and Anderies J. (2011) Resilience: A Literature Review. Rockefeller Foundation [Online] Available at:

http://www.rockefellerfoundation.org/blog/resilience-literature-review [accessed: 20/05/2014] Masters, J. (13/02/2014) Cure for Africa’s Rustic Roads. New Civil Engineer. [Online] Available at: http://www.nce.

co.uk/features/transport/cure-for-africas-rustic-roads/8658753.article. [accessed: 25/03/2014] Masters, J. (05/03/2014) Concrete storm repairs: plugging the storm breach in Dawlish. In: New Civil Engineer, 05/03/2014,

p.18. EMAP. MDF-JRF (2012) Working Paper Series: Lessons Learned from Post-Disaster Reconstruction in Indonesia: Effective Post-Disaster

Reconstruction of Infrastructure: Experiences from Aceh and Nias. MDF-JRF Secretariat, Working Paper 3. Available at:

http://www.multidonorfund.org/doc/pdf/070313WP-Infra.pdf [accessed: 20/05/2014] Mechler, R., (2005) Cost-benefit Analysis of Natural Disaster Risk Management in Developing Countries: Manual. GTZ GmbH for Federal Ministry for Economic Cooperation and Development, Germany. Available at: http://www. mekonginfo.org/assets/midocs/0003131-environment-cost-benefit-analysis-of-natural-disaster-risk-management-in- developing-countries-manual.pdf [accessed: 20/04/2014] Meyer, M.D., (2008) Design Standards for U.S. Transportation Infrastructure: The Implications of Climate Change, available at:

http://onlinepubs.trb.org/onlinepubs/sr/sr290Meyer.pdf [accessed: 22/12/2014] Meyer, M. D., Rowan, E., Savonis, M., and Choate, A. (2012) Integrating Extreme Weather Risk into Transport Asset Management.

American Association of State Highway and Transportation Officials. Available at: http://climatechange.

transportation.org/pdf/extrweathertamwhitepaper_final.pdf [accessed: 20/05/2014]

Page 73: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  73

Meyer, et al., Climate Change, Extreme Weather Events and the Highway System: A Practitioner’s Guide, National

Cooperative Highway Research Program Mitchell, T., and Harris, K. (2012) Resilience: A risk management approach. ODI Background Note. [Online] Available at:

http://www.odi.org.uk/publications/6271-resilience-risk-management-climate-change, [accessed: 08/04/2014] Moench, M. (2009) Responding to climate and other change processes in complex contexts: Challenges facing development of

adaptive policy frameworks in the Ganga Basin. Technological Forecasting & Social Change 77 (2010) 975–986. Elsevier. Monbiot, G. (13/01/2014) Drowning in Money: The untold story of the crazy public spending that makes flooding inevitable. The

Guardian, (01/2014) [Online] Available at: http://www.theguardian.com/commentisfree/2014/jan/13/flooding-public-spending-

britain-europe-policies-homes [accessed: 20/05/2014] Montgomery, M.A., Broyd, T., Cornell, S., Pearce, O., Pocock, D., and Young, K. (2012). An innovative approach for improving

infrastructure resilience. Proceedings of the Institution of Civil Engineers, 165 (CE6), Article 1100062. Morimura, T. (2011) Introduction of safe and efficient N700-1 bullet system and countermeasures against derailment during earthquake.

Available at: http://www.japantransport.com/seminar/JRCentral0111.pdf [accessed: 20/05/2014] MoSSaic: Management of Slope Stability in Communities. Established by Professor Malcolm Anderson DSc, FICE, CEng, A.M.

ASCE and Dr Liz Holcombe MSci. Available at: http://mossaic.org/ [accessed: 20/05/2014] Muller, M. (2012) Water management institutions for more resilient societies. Proceedings of the ICE - Civil Engineering, Volume 165,

Issue 6, 01/11/2012, pp. 33 –39. Murray-Tuite, P. M. (2006) A Comparison of Transportation Network Resilience under Simulated System Optimum and User Equilibrium

Conditions. Proceedings of the Winter Simulation Conference 2006. WSC 06. Perrone, L.F., Wieland, F.P., Liu, J., Lawson, B.G., Nicol,

D.M. and Fujimoto, R.M. (eds.) 3-6 Dec. 2006, Monterrey, CA, USA. pp. 1398 – 1405. National Academy of Engineering and National Research Council of the National Academies (2009) The New Orleans Hurricane Protection System: Assessing Pre-Katrina Vulnerability and Improving Mitigation and Preparedness. Washington, D.C.: The National Academies Press. Available at: http://www.nap.edu/openbook.php?record_ id=12647&page=34 [accessed: 20/05/2014] National Research Council of the National Academies (2006) Facing Hazards and Disasters Understanding Human Dimensions. Washington, D.C.: The National Academies Press. National Research Council of the National Academies (2008) Transportation Research Board Special Report 290: Potential Impacts

of Climate Change on US Transportation. pp 137 and 138. Washington, D.C.: Transportation Research Board. Available at:

http://onlinepubs.trb.org/onlinepubs/sr/sr290.pdf [accessed: 20/05/2014] NCE Editor (2014) Space Invaders. In: New Civil Engineer Magazine. Available at: http://www.nce.co.uk/features/

structures/space-invaders/8658023.article [accessed: 24/03/2014] Neal, I. (2012) The Potential of Sand Dam Road Crossings. Institution of Civil Engineers, UK. Dams and Reservoirs, Vol. 22, Issue 3

and 4 (01/09/2012) pp. 129-143. Available from: http://dx.doi.org/10.1680/dare.13.00004 [accessed: 20/05/2014] Nemry, F., and Demirel, H. (2012) Impacts of Climate Change on Transport: A focus on road and rail transport infrastructures.

European Commission, Joint Research Centre Scientific and Policy Reports. Available at: http://ftp.jrc. es/EURdoc/JRC72217.pdf

[accessed: 20/05/2014] New York City Department of Design and Construction (2005) High Performance Infrastructure Guidelines. Available at:

http://www.nyc.gov/html/ddc/downloads/pdf/hpig.pdf [accessed: 08/04/2014] New York City Department of Transportation (2013) Sustainable Streets: 2013 and Beyond. Available at: http://www.

nyc.gov/html/dot/downloads/pdf/2013-dot-sustainable-streets-6-resiliency.pdf [accessed: 20/05/2014] New Zealand’s Controller and Auditor General (2013) Audit Report. [Online] Available at: http://www.oag.govt. nz/2013/scirt

[accessed: 20/05/2014] NYS 2100 Commission (2013) Recommendations to Improve the Strength and Resilience of the Empire State’s Infrastructure.

Available at: http://www.governor.ny.gov/assets/documents/NYS2100.pdf [accessed: 08/04/2014] Office of Inspector General, USAID (2007) Audit of USAID/Indonesia’s Aceh Road Reconstruction Project Under its Tsunami Program.

Audit Report No. 5-497-07-008-P, July 2007, Manila. Available at: http://oig.usaid.gov/sites/default/files/audit-reports/5-497-07-008-

p.pdf [accessed: 20/05/2014]

Oregon Seismic Safety Policy Advisory Commission (OSSPAC) (2013) The Oregon Resilience Plan: Reducing Risk and Improving Recovery

for the Next Cascadia Earthquake and Tsunami - Report to the 77th Legislative Assembly. OSSPAC. Salem, Oregon (02/2013) Available

at: http://www.oregon.gov/OMD/OEM/osspac/docs/Oregon_Resilience_Plan_ Final.pdf [accessed: 20/05/2014]

Page 74: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  74

Park, J., Seager, T.P., Rao, P.S.C., Convertino, M., and Linkov, I. (2013) Integrating risk and resilience approaches to catastrophe

management in engineering systems. In: Risk Analysis, 11/09/2012, pp.33(3), pp.356-367 Pitcher, G. (20/02/2014) Dawlish rail washout triggers call for inland lines. In: New Civil Engineer, 20 February 2014, p.5. EMAP. Piper C., (2011) A diagrammatic framework for disaster risk management Pitt, M. (2008) The Pitt Review: Learning Lessons from the 2007 Floods. Available at: http://webarchive.

nationalarchives.gov.uk/20100807034701/http:/archive.cabinetoffice.gov.uk/pittreview/thepittreview/final_report. html [accessed:

20/05/2014] PricewaterhouseCoopers LLP (2010) Adapting to climate change in the infrastructure sectors: Maintaining robust and resilient

infrastructure systems in the energy, transport, water and ICT sectors. Available at: http://archive.defra.gov.

uk/environment/climate/documents/infrastructure-pwc-full.pdf [accessed: 20/05/14] PwC (2013) Rebuilding for resilience - Fortifying infrastructure to withstand disaster. PwC, 09/2013. Available at: http://www.pwc.com/en_GX/gx/psrc/publications/assets/pwc-rebuilding-for-resilience-fortifying-infrastructure-to-

withstand-disaster.pdf [accessed: 20/05/14] PwC (20120) Investing in transportation - Doing more with less. PwC, 01/2012. Available from: http://www.pwc.ru/

en_RU/ru/capital-markets/assets/doing-more-with-less-eng.pdf [accessed: 20/05/14] Rail Accident Investigation Branch (RAIB) (2013) Rail Accident Report: Partial failure of a structure inside Balcombe Tunnel, West

Sussex, 23 September 2011. Rail Accident Investigation Branch, Department for Transport. Report Ref: Report 13/2013, August 2013. Available from: http://www.raib.gov.uk/cms_resources.cfm?file=/130815_R132013_ Balcombe_Tunnel.pdf [accessed: 20/05/2014] Resilience Alliance (2010) Assessing Resilience in Social-Ecological Systems: Workbook for Practitioners, Revised Version 2.0.

Available from: http://www.resalliance.org/index.php/resilience_assessment [accessed: 20/05/2014] Rinaldi, S.M., Peerenboom, J.P., and Kelly, T.K. (2001) Identifying, Understanding, and Analyzing Critical Infrastructure

Interdependencies. In: IEEE Control Systems Magazine, December 2001. Available at: http://www.ce.cmu.edu/~hsm/

im2004/readings/CII-Rinaldi.pdf [accessed: 20/05/2014] RMS (2014) Press Release: RMS Partners with the United Nations and the World Bank to Advance Global Catastrophe Resilience. Available at: http://www.rms.com/about/newsroom/press-releases/press-detail/2014-07-01/ rms-partners-with-the-united-nations-and-the-world-bank-to-advance-global-catastrophe-resilience, [accessed: 22/12/2014] Roege, P.E., et al., Metrics for energy resilience. Energy Policy (2014) Rogers, C., Bouch, C., Williams, S., Barber, A., Baker, C., Bryson, J., Chapman, D., Chapman, L., Coaffee, J., Jefferson, I., and Quinn, A. (2012) Resistance and resilience—paradigms for critical local infrastructure. In: Proceedings of the ICE - Municipal Engineer, Volume 165, Issue 2, 01/06/2012, pp.73 –83. Available at: http://www.icevirtuallibrary.com/

content/article/10.1680/muen.11.00030 [accessed: 20/05/2014] San Francisco Planning and Urban Research Association (SPUR) (2010) After the Disaster: Rebuilding Our Transportation Infrastructure. SPUR

Report, 07/2010. Available at: http://www.spur.org/sites/default/files/publications_pdfs/SPUR_ Rebuilding_Our_Transportation_Infrastructure.pdf

[accessed: 20/05/2014] Sato, M., and Boudreau, L., (2012) Knowledge Note 6-4; Cluster 6: The Economics Of Disaster Risk, risk management, and risk

financing: The Financial and Fiscal Impacts. World Bank. Available at: http://wbi.worldbank.org/wbi/Data/wbi/ wbicms/files/drupal-

acquia/wbi/drm_kn6-4.pdf [accessed: 20/05/2014] Schliefstein, M. (16/08/2013) Upgraded metro New Orleans levees will greatly reduce flooding, even in 500-year storms. [Online]

The Times Picayune. Available at: http://www.nola.com/hurricane/index.ssf/2013/08/upgrated_ metro_new_orleans_lev.html

[accessed: 20/05/2014] Shrestha, R.K., et al. (2010) Institutional dysfunction and challenges in flood control along the trans-boundary Kosi River: A Case study

of the Kosi Flood 2008. In: Economic & Political Weekly, 45.2: 45-53. Available at: http://www.epw.in/special-articles/institutional-

dysfunction-and-challenges-flood-control-case-study-kosi-flood-2008.h [accessed: 20/05/2014] Shultz, M., Mckay, S.K., Hales, L.Z. (2012) Flood and Coastal Storm Damage Reduction Program: The Quantification and Evolution

of Resilience in Integrated Coastal Systems. US Army Corps of Engineers, Engineer Research and Development Centre. Ref: ERDC TR-12-7. Available at: www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA570387 [accessed: 20/05/2014] Solberg, S., Hale, D., and Benavides, J. (2003) Natural Disaster Management and the Road Network in Ecuador: Policy Issues and

Recommendations. Washington, D.C.: Inter-American Development Bank. Available at: http://www.iadb.

org/wmsfiles/products/publications/documents/353002.pdf [accessed: 20/05/2014]

Page 75: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  75

Stirling, A. (2007) Risk, precaution and science: towards a more constructive policy debate. Talking point on the precautionary

principle. EMBO Rep. 2007 April; 8(4): 309–315. Available at: http://www.ncbi.nlm.nih.gov/pmc/ articles/PMC1852772/ [accessed:

20/05/2014] Swiss Re (2010) Integrative Risk Management: Advanced Disaster Recovery. Risk Dialogue Series. Available at:

http://cgd.swissre.com/global_dialogue/topics/archive/integrative_risk_management/Integrative_Risk_Management_

Advanced_Disaster_Recovery.html [accessed: 20/05/2014] Tang, A. K., and Eldinger, J.M. (Eds) (2013) Chile Earthquake of 2010: Lifeline Performance. Technical Council on Lifeline Earthquake

Engineering (TCLEE) Monographs TCLEE 36, 2013 / 424 pp. Available at: http://www.asce.org/Product.

aspx?id=2147487569&productid=187972328 [accessed: 20/05/2014] Terram (2014) Case Study: Geocells used to prevent embankment erosion: Slope Stabilisation and Drainage for the M25. Published at

http://www.terram.com/projects/slope-stabilisation-and-drainage-for-m25.html [accessed: 20/05/2014] Thames Estuary 2100 case study. In: UK Climate Projections science report: Marine & coastal projections — Chapter 7. Available at:

http://ukclimateprojections.metoffice.gov.uk/media.jsp?mediaid=87898&filetype=pdf [accessed: 20/05/2014] Tignor, M., and Midgley, P.M. (eds.) (2011) Special Report: Managing the Risks of Extreme Events and Disasters to Advance

Climate Change Adaptation (SREX). IPCC Working Groups I and II, Cambridge University Press, Cambridge, UK, and New York,

NY, USA, pp. 65-108. Toyama, M., and Sagara, J.,(2012) Knowledge Note 6-1; Cluster 6: The Economics Of Disaster Risk, risk management, and risk

financing: Measuring the Cost-effectiveness of Various DRM Measures. World Bank. Available at:

http://wbi.worldbank.org/wbi/Data/wbi/wbicms/files/drupal-acquia/wbi/drm_kn6-1.pdf [accessed: 20/05/2014] Tyler, S. and Moench, M. (2012) A framework for urban climate resilience. Climate and Development, Vol. 4, No. 4, October 2012,

311–326. Available at: http://www.seachangecop.org/sites/default/files/documents/2012%20 10%20ISET%20-

%20Framework%20for%20urban%20climate%20resilience.pdf [accessed: 20/05/2014] UNISDR (2013) Business and Disaster Risk Reduction: Good Practices and Case Studies. Available at: http://www.

unisdr.org/files/33428_334285essentialscasestudies.pdf [accessed: 20/05/2014] UNISDR (2013) Private Sector Strengths Applied: Good practices in disaster risk reduction from Japan. Available at:

http://www.unisdr.org/files/33594_privatesectorstrengthsapplied2013di.pdf [accessed: 20/05/2014] UNISDR (2009) Reducing Disaster Risks through Science: Issues and Actions, The full report of the ISDR Scientific and Technical

Committee 2009. Available at: http://www.unisdr.org/files/11543_STCReportlibrary.pdf [accessed: 20/05/2014] UNISDR (2005) National Report of Japan on Disaster Reduction for the World Conference on Disaster Reduction, Kobe-Hyogo,

Japan, 18-22 January 2005. Available at: http://www.unisdr.org/2005/mdgs-drr/national-reports/Japan-report.pdf [accessed:

20/05/2014] UNOPS (2012) UNOPS and Disaster Risk Reduction, available at: https://www.unops.org/SiteCollectionDocuments/

Factsheets/English/Focus-areas/20121312UNOPS%20and%20DRR_EN_FINAL.pdf, [accessed: 23/12/2014] Urena Serulle, N. (2010) Transportation Network Resiliency: A Fuzzy Systems Approach. Utah State University, All Graduate

Theses and Dissertations, Paper 769. Available at: http://digitalcommons.usu.edu/etd/769 [accessed: 20/05/2014] US Army Corps of Engineers (2006) Performance Evaluation of the New Orleans and Southeast Louisiana Hurricane Protection System:

Draft Final Report of the Interagency Performance Evaluation Task Force Volume I – Executive Summary and Overview, 1 June 2006.

Available at: http://www.nytimes.com/packages/pdf/national/20060601_ ARMYCORPS_SUMM.pdf, [accessed: 08/04/2014]

US Department of Housing and Urban Development (HUD), Hurricane Sandy Rebuilding Task Force (2013) Hurricane Sandy

Rebuilding Strategy: Stronger Communities, A Resilient Region. [Online] Available at: http://portal.hud.gov/

hudportal/documents/huddoc?id=hsrebuildingstrategy.pdf [accessed: 07/04/2014] US Department of Transportation, (2014) Notice of Funding Availability for the Department of Transportation’s National Infrastructure Investments under the Consolidated Appropriations Act, 2014, Docket No. DOT-OST-2014-XXXX. Available at: http://www.dot.gov/sites/dot.dev/files/docs/Final%20TIGER%20NOFA%20for%20TIGER%20 Website_22April%202013.pdf

[accessed: 08/04/2014] US Department of Transportation Federal Highway Administration (2010) FHWA Climate Change Vulnerability Assessment

Pilot Project: Hampton Roads, Virginia Department of Transportation—VDOT. Report No. FHWA-HEP-14-006. Available at:

http://trid.trb.org/view.aspx?id=1302411 [accessed: 20/05/2014] US Department of Transportation Federal Highway Administration (2010) Climate Change Adaptation Case Studies Washington State

Department of Transportation—WSDOT. FHWA-HEP-14-004. Available at: http://www.fhwa.dot.

gov/environment/climate_change/adaptation/case_studies/washington_state/index.cfm [accessed: 20/05/2014]

Page 76: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

  76

US Department of Transportation Federal Highways Administration (2012) The Federal Highway Administration’s Climate Change and

Extreme Weather Vulnerability Assessment Framework. FHWA Publication No: FHWA-HEP-13-005. Available at: http://www.fhwa.dot.gov/environment/climate_change/adaptation/publications_and_tools/ vulnerability_assessment_framework/ [accessed: 20/05/2014] US Department of Transportation Federal Highways Administration (2013) Assessment of the Body of Knowledge on Incorporating Climate Change Adaptation Measures into Transportation Projects, FHWA-HEP-14-016. Available at:

http://www.fhwa.dot.gov/environment/climate_change/adaptation/publications_and_tools/transportation_projects/ [accessed: 20/05/2014] Victoria Transport Policy Institute (2010) Evaluating Transportation Resilience: Evaluating The Transportation System’s Ability To

Accommodate Diverse, Variable and Unexpected Demands With Minimal Risk. TDM Encyclopaedia. Available at:

http://www.vtpi.org/tdm/tdm88.htm [accessed: 20/05/2014] Wall, T.A., and Meyer, M.D. (2013) Risk-Based Adaptation Frameworks for Climate Change Planning in the Transportation Sector - A Synthesis of Practice., Transportation Research Circular, Number E-C181. Prepared for the Climate Change, Energy, and

Sustainability Impacts on the Transportation Infrastructure Subcommittee, 11/2013. Available at: http:// onlinepubs.trb.org/onlinepubs/circulars/ec181.pdf [accessed: 20/05/2014] Washer, G.A. (2010) Highway IDEA program: Long-Term Remote Sensing System for Bridge Piers and Abutments— Final Report for Highway IDEA Project NCHRP-123. Prepared for the NCHRP IDEA Program, Transportation Research Board, The National Academies, 12/2010. Available at: http://onlinepubs.trb.org/Onlinepubs/IDEA/FinalReports/Highway/ NCHRP123_Final_Report.pdf

[accessed: 20/05/2014] White, J.A.S. (2001) Hurricane Floyd Reconstruction. WSPimc. White, J.A.S. (2001-03) Hurricane Floyd Reconstruction. WSPimc. Woolley, D., and Shabman, L. (2008) Decision-Making Chronology for the Lake Pontchartrain & Vicinity Hurricane Protection Project. Final Report for the Headquarters, U.S. Army Corps of Engineers; Submitted to the Institute for Water Resources of the U.S. Army

Corps of Engineers. Available at: http://library.water-resources.us/docs/hpdc/Final_ HPDC_Apr3_2008.pdf [accessed: 20/05/2014] World Bank (2010) Making Transport Climate Resilient—Country Report: Mozambique. World Bank, (08/2010). Available at: http://www.ppiaf.org/sites/ppiaf.org/files/publication/Mozambique_Making- Transport-Climate-Resilient.pdf [accessed: 20/05/2014] World Bank (2011) Queensland Recovery and Reconstruction in the Aftermath of the 2010/2011 Flood Events and Cyclone Yasi.

Prepared by the World Bank in collaboration with the Queensland Reconstruction Authority. Available at: http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2011/07/22/000386194_201107 22031713/Rendered/PDF/633930revised00BLIC00QUEENSLAND0web.pdf [accessed: 20/05/2014] World Bank (2000) Republic of Mozambique: A Preliminary Assessment of Damage from the Flood and Cyclone Emergency

of February – March 2000. The World Bank. Available at: http://siteresources.worldbank.org/

INTDISMGMT/Resources/WB_flood_damages_Moz.pdf [accessed: 20/05/14] World Bank Institute (2012) Knowledge Notes, Cluster 4: Recovery planning. Available at http://wbi.worldbank.org/ wbi/content/knowledge-notes-cluster-4-recovery-planning [accessed: 20/05/2014] World Economic Forum, World Bank, UNISDR (2008) Building Resilience to Natural Disasters: A Framework for Private Sector

Engagement. Available at: http://www.unisdr.org/files/1392_DisastersRepFINCopyright.pdf [accessed: 08/04/2014] World Economic Forum (2014) How mapping can increase disaster resilience. Available at: http://www. preventionweb.net/english/professional/news/v.php?id=40247&a=email&utm_source=pw_email [accessed: 22/12/2014] World Bank (2014) Global Infrastructure Facility. Available at: http://www.worldbank.org/en/topic/

publicprivatepartnerships/brief/global-infrastructure-facility [accessed: 22/12/2014] World Wildlife Fund Scotland (undated) Slowing the Flow: A Natural solution to flooding problems. Available at:

http://assets.wwf.org.uk/downloads/slowingflow_web.pdf [accessed: 20/05/2014] Zhang, J. (2012) Public-private-people-partnership (4P) for disaster preparedness, mitigation and post-disaster reconstruction. A thesis submitted in partial fulfilment of the requirements for the Degree of Master of Philosophy at The University of Hong Kong, Hong Kong . Available at: http://hub.hku.hk/bitstream/10722/180983/1/FullText. pdf?accept=1 [accessed: 08/04/2014]

Page 77: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

77  

8. ANNEX 

 

Table of Contents 

 

8.1 Resilience assessment matrix              page 80 

8.2 New Zealand Transport Agency’s resilience assessment framework      page 82 

8.3 Infrastructure Interdependency Analysis            page 83 

8.4 MCA4 climate policy evaluation framework           page 84 

 

8.5 Technical Planning and Design Assessment Sheets and failure scenarios 

 

Technical Assessment Sheets  Page number 

8.5.1 Flooding  85 

Flooding, Failure Scenarios  85 

Flooding, linear infrastructure  86 

Flooding, Bridges Measures  87  

Flooding, inland waterways  89 

8.5.2 Landslide: All infrastructure  89 

Failure Scenarios  89 

Landslides, all infrastructure  90 

8.5.3 Waves and High Tides (Hurricanes, Cyclone, Typhoon)  91 

Failure Scenarios  91 

Hurricane/Cyclones/Typhoons, all infrastructure  92 

8.5.4 Earthquake, Failure Scenarios  93 

Earthquakes, Failure Scenarios  93 

Earthquakes, airports and ports  94 

8.5.5 Tsunami, Failure Scenarios  95 

Tsunami, Failure Scenarios  95 

Page 78: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

78  

Tsunami, linear infrastructure  96 

Tsunami, ports and airports  97 

Tsunami, bridges  98 

8.5.6 Extreme Heat  99 

Failure Scenarios  99 

Extreme Heat, Linear infrastructure  100 

8.5.7 Extreme Cold  101 

Failure Scenarios  101 

Extreme Cold, Roads, Airports and Ports   102 

8.5.8 Wildfire, Failure Scenarios  103 

Failure Scenarios  103 

Wildfire, all infrastructure  104 

8.5.9 Mudflow and flash flood  105 

Failure Scenarios  105 

Mudflow and flash flood, all infrastructure  106 

 

8.6 Case Studies ‐ Learning from Failure to Achieving Resilience 

No  Title  Location  Page  1 

Learning to Live with Floods Following the 2008 Kosi River Flooding 

Kosi River Area, India and Nepal 

107 

 2 

Interagency Performance Evaluation Task Force Post Hurricane Katrina (2005) 

United States 109 

3  Ecuador’s National Disaster Management System andthe Road Network 

Ecuador112 

4  Towards Mainstreaming Disaster Risk Reduction into the Planning Process of Road Construction in the Philippines 

Philippines 114 

5  Federal Highway Administration Climate Change Pilot Project 

United States116 

6  UK Thames Estuary 2100 Flood Risk Management  ‐ A Flexible Real Option Approach 

United Kingdom 118 

Page 79: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

79  

 

   

7  Flooding Management– Agricultural Practices and Rural Land Management; UK 

United Kingdom 120 

8  Partial Infrastructure Failure following Severe Storm Event tracked to Maintenance Deficit 

Balcombe, UK 122 

9  Local Solutions and Alternative Materials to Increase the Resilience of Low Volume Roads 

Bagomoyo and Lawate‐Kibongoto Roads, Tanzania 

123 

10  Upgrading Bridge Design to Increase Disaster Resilience 

Guadalcanal, Solomon Islands 

125 

11  Protection of Bridge Piers from Failure due to Scour  London and Lancashire, UK 

126 

12  Public Transport Infrastructure Resilience to Severe Flooding Events 

New York, USA127 

13  Bioengineering (Fascines) for Effective Road Maintenance  

West Coast Main Road, St Lucia 

129 

14  Embankment Slope Stabilisation and Drainage using Cellular Geotextile 

Junction 16‐23 M25 Widening Project, United Kingdom 

131 

15  Reducing Landslide and Rockfall Risk due to Cascadia Earthquake and Tsunami Events 

Oregon, USA 132 

16  Seawall Construction following Hurricane Floyd (1999) Coastal Roads on the Family Islands, Bahamas 

134 

17  Reconstruction of Timber Jetties following Hurricane Floyd (1999)  

Family Islands, Bahamas 135 

18  Fast Recovery and Resilient Rail Reconstruction following Great East Japan Earthquake (2011) 

Japan 137 

19  Review of Port, Harbour and Bridge Design following the Great East Japan Earthquake and Tsunami (2011) 

Japan 141 

20  Oregon Transportation Resiliency Status Oregon, USA143 

21  Aviation Sector Response following the Great East Japan Earthquake (2011) 

Japan 145 

22  Temporary Stabilisation and Future Redundancy Identified following Wave Damage (2014) to Coastal Rail Infrastructure  

Dawlish, UK146 

23  Post Disaster Institutional and Operational Arrangements Following Christchurch Earthquake (2011) 

South Island, New Zealand 

148 

24  Sandy Task Force and Rebuilding Resilient Infrastructure 

USA 151 

25  Wildfire: 2009 ‘Black Saturday’,  Wildfire,   

Australia 153 

26  Flashflood and Mudflows   

Algeria, Boscastle UK, and Solomon Islands. 

155 

Page 80: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

80  

8.1 Resilience Assessment Matrix 

Selected section of the energy resilience assessment matrix from Roege, P.E.,  et  al.,  (2014) Metrics  for  energy  resilience,  Energy  Policy  

 

 

 

Figure 1: Energy Resilience Assessment Matrix (reproduced with permission from  

Page 81: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

81  

 

Table B.2  Technical resilience All‐hazard assessment  

Based on the principles of robustness, redundancy and safe‐to‐fail 

Only score those elements that are relevant or of interest  

Before beginning assessment, unfilter all cells and delete previous scores (to ensure no hidden cells are scored) 

Score  4.0 = Very high (3.51 – 4) 

3.0 = High (2.51 – 3.50) 

2.0 = Moderate (1.51 – 2.50) 

1.0 = (0 – 1.50) 

Select filter for asset/region, ie whether the assessment is for an asset or wider region (do not filter blanks) 

At least one rating is required for each category 

User to complete columns highlighted in blue only 

ROBUSTNESS   Weighted robustness score  2.3   

Category  Measure  Filter: asset or regional (network) assessment 

Item #  Item measured  Measurement  Measurement scale  Individual score 

Category average 

Weighting 

(%) 

Weighted score 

Note/ justification 

Structural 

Maintenance  Region    Effectiveness of maintenance for critical assets 

Processes exist to maintain critical infrastructure and ensure integrity and operability – as per documented standards, policies & asset management plans (eg roads maintained, flood banks maintained, stormwater systems are not blocked. Should prioritise critical assets as identified. 

4 – Audited annual inspection process for critical assets and corrective maintenance completed when required. 

3 – Non‐audited annual inspection process for critical assets and corrective maintenance completed when required. 

2 – Ad hoc inspections or corrective maintenance completed, but with delays/backlog. 

1 – No inspections or corrective maintenance not completed. 

3.0 

2.8  33.33%  94.4 

 

Renewal  Region    Establish asset renewal plans and upgrade plans to improve resilience 

Evidence that planning for asset renewal and upgrades to improve resilience into system networks exist and are implemented. 

4 – Renewal and upgrade plans exist for critical assets, are linked to resilience, and are reviewed, updated and implemented. 

3 – Renewal and upgrade plans exist for critical assets and are linked to resilience, however no evidence that they are followed. 

2 – Plan is not linked to resilience and an ad hoc approach is undertaken. 

1 – No plan exists and no proactive renewal or upgrades of assets. 

4.0 

 

Design 

Region    Suitability/robust‐ness of critical asset designs across region 

Percentage of assets that are at or below current codes 

4 – 80% are at or above current codes 

3 – 50‐80% are at or above current codes 

2 – 20‐50% are at or above current codes 

1 – Nearly all are below current codes 

3.0 

 

Region    Condition of critical assets  Assessment of general condition of critical assets across region 

4 – 80% are considered good condition 

3 – 50‐80% are considered good condition 

2 – 20‐50% are considered good condition 

1 – Nearly all poor condition 

3.0 

 

Region    Location of critical assets in areas known to be vulnerable to a known hazard (eg land slip, coastal erosion, liquefiable land, etc) 

Percentage of assets that are in zones/areas known to have exposure to hazards 

4 – <20% have some exposure to known hazards 

3 – 20‐50% are highly exposed, or >50% are moderately exposed 

2 – 50‐80% are highly exposed 

1 – 80% are highly exposed to a hazard 

2.0 

 

  Region    Spare capacity of critical assets within region (in the event of partial failure, or surge in demand) 

Percentage of critical assets with additional capacity over and above normal demand capacity 

4 – 80%+ of critical assets have >50% spare capacity available 

3 – 50‐80% of critical assets have >50% available 

2 – 20‐50% of critical assets have >50% spare capacity 

1 – 0‐20% have spare capacity. 

2.0 

 

 

Procedural 

Standards/ codes 

Region    Existence of design codes to address resilience issues and risks. Update codes/standards to include resilience design principles into modern methods and materials (part of ongoing updates) 

Existence of applicable updated design codes for all physical assets – which incorporate resilient design approaches 

4 – Codes exist, have been implemented, are up‐to‐date and are applicable to all asset types 

3 ‐ Codes have been developed and updated, however, not implemented 

2 – Codes are in existence but not updated 

1 – No codes 

2.0  2.0  33.3%  66.7 

 

Page 82: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

82  

Section 8.2: New Zealand Transport Agency’s resilience assessment matrix. Figure 2: Hughes, J.F., and K Healy (2014) Measuring the resilience of 

transport infrastructure. NZ Transport Agency Research Report, 546: 62 

Page 83: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

83  

8.3 Infrastructure Interdependency Analysis 

This tool has been developed by the Systems Centre, University of Bristol and the Bartlett at UCL, and 

was  commissioned  by  used  by  HMT  to  map  out  the  interdependencies  between  different 

infrastructure  systems.  The  framework  should  be  read  clockwise.  For  example,  starting  from  the 

energy sector box, what is the impact of the energy sector on ICT (box to the right) and what is the 

impact of the ICT sector on the energy sector (box to the left of ICT and under energy)? For the impact 

of energy on transport read two boxes to the right of energy and above transport, and for the impact 

of  transport  on  energy  read  two  boxes  left  from  transport  and  two  under  energy.  The  overall 

framework is represented below as is a snapshot of the ICT and Transport Sector interdependencies. 

 

 Figure 3: Infrastructure Interdependencies reprinted with permission from: Engineering the Future (2013)  Infrastructure  Interdependencies  Timelines.  London:  Royal  Academy  of  Engineering.  p.10. Available: www.raeng.org.uk/ETF‐Infrastructure‐Interdependencies 

Page 84: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

84  

8.4 Generic Decision Tree: MCA4 climate policy evaluation framework  

 

Figure 4: MCA4 Climate Policy Evaluation Framework, Source: Hallegatte, S., (2011) MCA4climate: A 

practical framework for planning pro‐development climate policies, Adaptation Theme Report: 

Increasing Infrastructure Resilience   

Page 85: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

85  

8.5.1 FLOODING   Table 1: Flooding Failure scenarios  

FLOODING FAILURE SCENARIOS 

CONTEXT 

Inadequate drainage 

(i)  The  hydraulic  size  or  gradient  of  culverts  is  inadequate  resulting  in blockage/silting of culverts from sediment or debris, wash out of embankments, or loss  of  culverts;  and  (ii)  the  longitudinal  drainage  channels  or  outfalls  are overwhelmed. These failures can result in the inundation of the road/railway. 

This is of particularly concern for runways and taxiways, and large paved areas in ports. 

Inundation and raised groundwater levels 

(i) Weakens/erodes  sub‐grade,  capping  layers,  sub‐base  layers,  and wearing  on gravel, paved or earth roads; (ii) causes road distress from increase in groundwater levels  and  soil  moisture  (pore  pressure  effects  caused  by  wheel  loads  and mobilisation of plasticity in fine fracture); (iii) causes foundation weakness/failures beneath ballast/track  in  flooded deep/long  cuttings on  flat gradients;  (iv  causes degradation of bearing capacity of supporting foundation (loss of material strength and stiffness);  

Bridges/tunnels: Deterioration of structural  integrity due to an (i)  increase  in soil moisture  levels  (acceleration  in  the  degradation  of materials,  increased  ground movement)  (ii)  changes  in  the  groundwater  affecting  the  chemical  structures of foundations and  fatigue of structures;  (iii)  ingress of groundwater through tunnel linings 

Inundation of tunnels: excessive groundwater flows, overland flows or raised/water river levels damage tunnel linings 

Inadequate capacity 

Water flows exceed capacity resulting in overtopping of bridges 

 

Erosion/ Scour 

Impact on bridges and  inland waterways. Undermining of substructure elements (abutment  and pier)  and/or  erosion  of  approach  embankments;  Excessive  flows cause erosion of the river banks and induce erosion/scour of training walls, weirs, tow paths, ramps, gauges etc.  

Floating or sunken debris 

Debris builds up against  intermediate  supports or under bridge deck  soffits, and sunken debris increases scour depths due to increased turbulence  

Debris can build up against inland waterway structures and weirs, increasing loads on  these  structures. Water  levels  upstream  and  sunken  debris  can  particularly increase scour depths due to turbulence. 

Movement backfill to abutment 

Clay  in  the  fill  materials  used  in  bridge  design  can  expand  or  contract  under prolonged precipitation or inundation. 

High water level 

This can create navigation problems on inland waterways where there are bridges or  other  structures  with  limited  headroom,  or  where  there  is  limited  channel freeboard on supporting embankments. 

Aggradation  Accumulation of sediment carried by high water flows can block inland waterways restricting operations and raise water levels upstream. 

Page 86: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

86  

Linear Infrastructure (Roads and Railways) Measures: Flooding  

Most of the resilience measures are focused on increasing robustness, with the exception of swales, Irish  crossings  and  embankment  overtopping  (safe  failure)  and  planning  alternative  routes (redundancy).  In  general,  robustness of  infrastructure  tends  to be  increased  through  hard or  soft engineering measures to strengthen the protection works (embankments, drainage systems, culverts) as opposed to stronger pavement construction itself. Such measures often increase overall resilience of the built environment with high embankments providing access, acting as flood defences for urban areas and refuge for displaced communities in cases of severe flooding.  

Table 2: Technical Assessment Sheet ‐ Linear Infrastructure, Flooding 

 

PIPs

EXPERTISE

OPERATIONS AND 

MAINTENANCE

TECHNICAL 

COST/FINANCE

MEASURES

PLANNING

Use soft engineering techniques (green infrastructure) and adaptive management 

Incorporate Sustainable Urban Drainage Systems (SUDS) principles in the design.

Hydrological and drainage design should be carried out considering not only

historical data but also predicted increase in annual precipitation and higher water

and river levels. 

Plan for/provide alternative routes in the event of a road/railway closure.

(Example of redundancy). 

PREPARATION AND DESIGN

Allow undersized culverts to be overtopped by designing for such failures (Irish 

Crossings). (Example of safe failure).

Construct roadway over embankments to accept the passage of flood waters at

defined locations (swales). (Example of safe failure). 

Elevate vulnerable road segments.Allow embankments to overtop  in extreme flood events. (Example of safe 

failure).IMPLEMENTATION

Use appropriate embankment materials ‐ rock fill at bridge approach; granular

materials

Increase longitudinal drains’ capacities ‐ ensure road drainage is routinely shaped

by grader, protect verges and channel side slopes with appropriate vegetation

cover, ensure effective longitudinal drainage capacity in cuttings to remove flood

water.

Provide cutting slope drainage ‐ adequate and effective drainage cut off drains

installed to top of cutting slopes, berms etc.

Harden river defences – retaining walls, gabion baskets, earth dikes, random

rubble, etc.

Increase protection of susceptible materials against salinity (e.g. corrosion

resistant reinforcement to culverts and bridges; higher concrete strength and

increased cover).

Use robust pavement structures ‐ erosion resistant surfacing, concrete better than

asphalt better than surface treatment better than gravel; chemically stabilised

base materials (cement stabilised)

Protect culverts against erosion (rock armour, stone pitching, gabions)  

Construct embankments in accordance with the international designs standards

using materials appropriate for low earth dams.

IMPLICATIONS

Page 87: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

87  

Bridges Measures: Flooding  

Similar to the flooding of roads and railways, most of the resilience measures are focused on increasing robustness,  with  the  exception  of  designing  for  submerged  bridge  deck  and  letting  bridge embankments being washed away in a major flood event (safe failure) and design as a floating bridge or so bridge deck can be elevated at some future date (flexibility). The robustness measures are split between those that increase the design strength or overall scale of the bridge structure (e.g. increased openings larger spans, increased clearances to bridge soffit) and attendance to associated measures such  as upstream  reforestation and  SUDS  to dampen  the design hydrograph  for  the watercourse, reducing  peak  flood  flows  and  preventing  the  build  up  of  debris  causing  scour.  In  other  cases robustness can be achieved at the planning stage through  introducing vehicle  load restrictions. This case shows the range of different measures that can be deployed to increase the overall resilience of transport infrastructure.  

 

 

 

 

 

 

 

 

Table 3: Bridges, Flooding  

 

Page 88: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

88  

 

 

 

 

 

Page 89: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

89  

Inland Waterways Measures: Flooding 

In general the measures listed increase robustness through improved protection (river banks, trash 

gates to avoid built up of debris/sediment). 

Table 4: Inland Waterways, Flooding 

 

 

8.5.2 LANDSLIDES: ALL INFRASTRUCTURE  Table 5: Failure scenarios   

LANDSLIDE FAILURE SCENARIOS 

CONTEXT 

Surface runoff/ ingress into slopes 

The main trigger will often be the  intensity of short, extreme rainfall. This can affect the  stability of  slopes due  to  surface  runoff over or  ingress  into  the  slopes. Roads, railway and tunnel  infrastructures are most susceptible to  landslides; especially as a result of human  interference e.g. deep mountainous  cut  (rock  falls and  landslides), diversion of overland water flows onto slopes (land and mud slides).  

Water‐level changes 

Rapid changes at the groundwater level along a slope can also trigger slope movement affecting roads, railways, bridges and tunnels. 

 

Erosion  Water  flows down  the slopes or  flows across  the  toe cause erosion of  toe support. Rates of erosion are increased by unstable soils and steep slopes. This impacts roads, railways and bridges 

PIPs

EXPERTISE

O&M

TECHNICAL 

COST/FINANCE

MEASURES

PLANNING

Provide an adequate number of strengthenedmooring facilities for waterway traffic, and

to moor up during high flows. 

PREPARATION AND DESIGN

Provide adequate drainage capacity at the toe of an embankment to convey any flood

water. 

Protect banks from flood flows (and vessel wash): hardening, vegetation and speed

limits.

Provide extra freeboard to sections raised on an embankment.

IMPLEMENTATION

Provide trash gates and other defensive barriers to trap debris and protect structures.

Remove obsolete structures if causing problems (e.g. trapping sediment).

Raise side embankments to reduce flood risk and/or increase channel freeboard; extend

side weirs, retrofit gates and so on to accommodate changes in water level and flow;

replace ineffective bank protection with environmentally friendly climate‐proofed

protection.

IMPLICATIONS

Page 90: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

90  

Rivers  carrying  debris  from  landslides  can  cause  scour,  erosion  of  river  bank  and approach  embankment;  scour  cause  damages  to  the  bridge  substructures’ foundations.  

Wildfire  Loss of the roots of plants and trees that hold the soil together from wildfire triggers movement of soil affecting roads, railways, bridges, and tunnels 

Snowmelt  In many cold mountain areas, snowmelt can be a key mechanism by which  landslide initiation can occur, affecting roads, railways, bridges and tunnels 

Ground Movement 

Removal of  slope  support by general ground  shaking or by  liquefaction of  the  soils during earthquakes, affects all infrastructure 

 

All Infrastructure Measures: Landslide  

All of the measures listed improve robustness of the infrastructure, through a combination of better drainage and/or increased robustness of embankments, soils and slopes. This approach can limit the risk of catastrophic failure by isolating vulnerable areas and enabling re‐stabilisation of slopes and ensuring that failure does not replicate.  

Table 6: Technical Assessment Sheet ‐ 2All Infrastructure, Landslides 

 

PIPs

EXPERTISE

O&M

TECHNICAL 

COST/FINANCE

MEASURES

PLANNING

Remove or prevent uncontrolled water flows at slopes through  

Remove or prevent uncontrolled water flows at slopes through better 

slope drainage systems to capture of water. This could include cut‐off

drains or improved slope drainage (e.g. chutes, herringbone drains,

pipes).

Strengthen river training and toe retaining structures to prevent

landslides impacting water bodies.

PREPARATION AND DESIGN

Stabilise slopes using bio‐engineering (e.g. Grasses, shrubs or trees).

Chemically stabilise soils (e.g. using vinyl, asphalt, rubber, anionic and

non‐ionic polyacrylamide (PAM), or biopolymers).  

Stabilise an incipient landslide by constructing (to provide a shear key

and buttresses); flattening the slope (to decrease the driving force of

an active slide) and stabilise by unloading the road grade

(formation/foundation).

IMPLEMENTATION

Reinforce slopes using geo‐textiles (e.g. geofabrics, geocells, geo

grids).

Provide rockfall netting, catch trenches and/or concrete rock shelters

along vulnerable locations.

Reshaping the surface of slopes (e.g  through terraces or benches, 

flattening over steepened slopes, soil roughening, or land forming).  

Use mechanical stabilisation techniques (e.g. rock, gabion baskets,

concrete, steel pins, rock anchors, toe retaining walls).

IMPLICATIONS

Page 91: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

91  

8.5.3   WAVES AND HIGH TIDES (HURRICANES, CYCLONE, TYPHOON) 

 

Table 7: Failure Scenarios  

Extreme  low pressure can  induce high precipitation  (flooding), higher tides and storm surges, more 

damaging waves and extreme winds.   

 

CYCLONE/ HURRICANE FAILURE SCENARIOS 

CONTEXT 

Inundation  (i) Raised sea  levels, exacerbated by wave action  results  in  the overtopping of sea defences. This weakens the bearing capacity of the roads and railway track beds. It also saturates embankments and weakens soft coastal defence structures.  (ii)  The  overtopping  of  sea  defences  causes  scour  and  erosion  to  protective breakwater, wave walls and quay walls.  (iii) Road embankments and rail beds can be washed away  (iv) Flooding of tunnel entrances 

Scour/ Erosion 

 (i) Scour and erosion to protective sea walls and returning walls causes damage to structures including: roads and railways, trackside and road side furniture, dockside super  structures  such  as  warehouses,  cranes  and  overhead  utilities;  boundary structures such as noise barriers, high brick walls and timber fences; and abutments, piers, foundations, approach embankments and service culverts. (ii) Scour can also occur at river banks through the transportation of sediment during high waters which can create further sediment build up.  

High lateral wind speeds/ gusts 

(i) Effects on vehicles/vessels. Vehicles are susceptible to overturning (especially high sided freight vehicles) and trains. Wind can impact planes, especially at subsidiary air strips either while planes are  landing or taking off, or while parked on stands. The airplanes will maximize their possibility to land and take‐off into the wind, but, this is not always possible due to the existing runway orientation or due to sudden wind variations, for example due to high hills etc. adjoin the airport. In practice, air‐planes often operate under crosswind and sometimes tailwind conditions. For safety, cross‐and tailwind values are restricted to certain limits above which flying operations are curtailed.  High winds may  also  affect  the  navigation  of  vessels,  for  example  the Danube closed to the Iron Gates.  In such an instance, navigation of pushed convoys in ballast without bow thrusters may be suspended. Due to the large wind lateral area of the vessels above the waterline, the side forces acting on the vessel may become so high that safe manoeuvring may not be possible using only the propulsion devices of the pusher. (ii)  Cable  sag  or  tension  failure  of  overhead  cables  and  other  overhead  utilities (reduces the spacing/clearance between the cables, trees, building) such as due to being torn down by train pantographs,  (iii)  Damage  to  tall  structures  e.g.  supporting  pylons,  signs  and  posts,  cranes, overhead  utilities,  control  towers,  navigational  equipment  and  communication systems, and support buildings in ports and airports (iv) Loss of street  furniture,  including  traffic signs,  lighting columns,  traffic  signals, service ducts, and power cables. (v)  Instability of boundary structures such as noise barriers, high brick walls  (older structures) and timber fences (strength of the shallow foundation affected by wind load);  

Page 92: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

92  

(vi) Harmonic vibration or uplift of bridge deck or superstructures. High bridges are more  prone  to  extreme  wind  events  and  bridge  signs,  overhead  cables  and  tall structures (lamp columns) face increased risk from the greater wind speed.  

Falling/ flying debris 

(i) Damage to infrastructure ‐ bridges, runways, terminals, navigational equipment, perimeter fencing, signs, banks and training walls ‐ from flying  items, structural or natural;  (ii) Damage to infrastructure from collapsing or falling elements, structural or natural; (iii) Debris blocks drains, culverts, rivers, etc.  (iv) Trees, power lines and debris blocking road and railways, ports entrances, river junctions, tow paths and other rights of way.  (v) Debris (such as driftwood) can damage infrastructure, including vessels 

 

All Infrastructure Measures: Waves and High Tides 

These measures combine a more critical design of infrastructure to survive higher wind specification of  hurricanes  (and  subsequent  increased  design  strength  and  therefore  robustness  of  transport infrastructure) and ancillary and protection measures such as clear  lines of site, avoiding vulnerable high ancillary structures. In some cases safe failure is proposed for jetties in non‐critical locations.   

Table 8: Technical Assessment Sheet ‐ All Infrastructure, Waves and High Tides 

 

Page 93: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

93  

8.5.4 EARTHQUAKES  Table 9: Failure Scenarios  EARTHQUAKE FAILURE SCENARIOS 

CONTEXT 

Liquefaction  (i) Liquefied soil forces its way to the surface, breaking through roads, railways and runways, causing uplift, subsidence and voids. This uplift of the transport structure  also  damages  underground  infrastructure  drainage  and  surface drainage systems, and services such as utilities, tanks, pipes and manholes. 

(ii) On slopes, the ground ‘slides’ on the liquefied layer. Cracks and fissures can occur at the extremities of the slide;  

(iii) Uplift damages underground infrastructure services such as utilities, tanks, pipes, and manholes;  

(iv) Contamination of the materials in the road from the liquefied soil. 

(v) Lateral spreading from liquefaction can apply pressure to bridge abutments, reducing  bearing  capacity  or  reducing  the  integrity  of  the  structure.    It  also applies pressure to quays and seawalls, reducing their bearing capacity and the integrity of the structure. Many ports’ facilities are constructed on fill materials placed over historic wetland. Such materials are generally fine and granular  in nature and susceptible to liquefaction if provisions are not made to resist such force or relieve the pore pressure resulting from higher water table and seismic shaking. 

Structural failure 

(i) Surface and sub‐surface water drainage system failure (ii) Failure of utility and traffic control systems;  (iii) Major/severe cracks which have the following effects: damage to the carriageway surface; disorientation of railway track and track buckling; shear failure of pier, abutment, deck and surface; the tunnel lining leading to damage/collapse (iv) Damages to structures, like storage buildings, paved storage area, storage tanks/cranes/heavy equipment/shipping containers/heavy cargo due to ground movement/shaking, runways, taxiways, control towers, radar systems, fuel facilities and supply facilities 

Land/ Mudslides 

Refer to the failure scenarios and approaches under section under LANDSLIDES 

 

Tsunami/Wave/High Tide 

Refer to the failure scenarios and approaches under section Road/Railways under TSUNAMI/EXTREME LOW PRESSURE (WAVE/HIGH TIDE) 

Flooding  Refer  to  the  failure  scenarios  and  approaches  under  section  Bridges/Tunnel under FLOODING 

 

   

Page 94: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

94  

Ports and Airports Measures: Earthquakes 

These measures reflect the desire to maintain operation of airports after an extreme event. Therefore all of the measures listed increase robustness except measures about relocation or provide alternative airport provision elsewhere in the case of such an event occurring.  

Table 10: Technical Assessment Sheet ‐ Ports and Airports, Earthquakes 

 

   

PIPs

EXPERTISE

O&M

TECHNICAL 

COST/FINANCE

MEASURES

PLANNING

Ensure other structures such as storage buildings, storage tanks and

cranes are capable of accommodating potential seismic events safely.

Consider building lower capacity alternative airfields/airports in other

locations (as in Belize) as a less costly alternative to building resistant

runways. This is an example of redundancy. 

Relocate runway where runways/taxiways are built in vulnerable

location on soils conducive to liquefaction.

PREPARATION AND DESIGN

Design foundations to withstand potential seismic events even if

structures are damaged. 

Provide seismic designs for equipment mounted in ceilings. 

Design critical infrastructure to withstand greater seismic events than

other buildings or structures (e.g. fuel supplies, radar installations,

provision of seismically sound supports to provide base isolation to

avoid damage to equipment in Air Traffic Control Towers. 

IMPLEMENTATION

Provide comprehensive soil improvements, which could include

installation of stone columns to support the runway pavement. 

IMPLICATIONS

Page 95: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

95  

8.5.5  TSUNAMI  Failure Scenarios  Tsunamis  are  ocean waves  produced  by  undersea  earthquakes  or  landslides.  Tsunamis  are  often incorrectly referred to as tidal waves, but a tsunami  is actually a series of waves that can  travel at speeds averaging 450 to 600 mph (725 to 965 kph) across the open ocean. The reports from the 2011 Japan earthquake (Chock, 2013) noted that tsunami waves reached a height  in excess of 10 metres. The waves rushed inland almost as far as 10 kilometres in some locations. Tsunami waves can therefore cause significant damage to transport infrastructure, even when it is remote from the coast. Defensive infrastructure is expensive and generally cannot be considered to be cost effective except for very high risk sites (e.g. nuclear power stations).  Table 11: Failure Scenarios Tsunami  

TSUNAMI FAILURE SCENARIOS 

CONTEXT 

Debris   (i) A  tsunami  creates exceptional  amounts of debris as  it destroys buildings  and other structures, or picks up boats, vehicles, containers and the like and carries them forward.   The debris exacerbates  the damaging effects of  the wave as  it  sweeps inland.   As the wave’s forward motion wanes a backwash wave  is generated. The back  wash  wave  and  the  debris  carried,  continue  to  damage  infrastructure, particularly  the  landward  side  of  sea  defence  structures  which  have  not  been designed to resist such effects. 

(ii) Debris will block roads and railways and whole drainage systems, in particular channels/soak‐ways/pipe systems/manholes/culverts 

Inundation  (see Flooding failure scenarios) Loss of bearing capacity of road pavement and rail bed (increase level of moisture content) weakens the strength and stiffness of the soil properties 

Scouring and Erosion (including landward) 

(i)  Scour  and  erosion  damages  road  pavements  and  rail  bed  embankments  and associate structures  

(ii) Damages abutment, piers,  foundation, approach embankments,  and  service culverts are subjected to scour and erosion  

(iii) Weakens the stability of jetty, quay wall, seawalls or barriers 

(iv) Concrete lined earth barriers can suffer heavy scour and erosion 

(v)  Large  segmental walls  are  susceptible  to  overturning  after  scouring  due  to overtopping flow. Lack of continuity between elements allows quick development of failures. 

(vi) Caisson‐type breakwaters founded on rubble mounds are susceptible to sliding and overturning 

Wave force/speeds 

(i) Wash way of road embankment and rail bed, quay wall, seawalls, barriers or breakwaters 

(ii) Losses of street furniture, including traffic signs, lighting columns, traffic signals, service ducts, and power cables.  

Page 96: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

96  

(iii)  damage/destruction  to  large  sluice  gate  structures,  and  back  of  quay infrastructure,  including  offices,  administration  building  storages,  sheds  access road, railways and other terminal facilities.  

(iv) Uplift of bridge deck or superstructures  (v) Overturning or uprooting of bridge substructures 

Debris  (i) Debris often accumulates on the side of structures and this can result in damming effects that may increase the lateral load on the structures;  

(ii) Damaged seawall can generate massive debris which can travel with inflow,  

(iii) Accumulated debris at inland waterway entrance channels and sluice gates can cause damage 

 

Linear Infrastructure (roads and railways) Measures: Tsunami 

Only limited measures for protecting linear transport infrastructure against tsunamis is provided. While some protection is anticipated in vulnerable areas it may be better to ensure that that some failure of infrastructure in extreme cases is accepted, and design carried out to limit rebuild costs, if possible.  

Table 12: Technical Assessment Sheet – Linear Infrastructure, Tsunami 

 

   

PIPs

EXPERTISE

O&M

TECHNICAL 

COST/FINANCE

MEASURES

PLANNING/PREPARATION & DESIGN/IMPLEMENTATION

Plan and design (where feasible) for main road and railways to be built

above the tsunami maximum inundation levels and/or beyond reach

of both inflow and backflow effects of the tsunami. 

Where roads and railways are built within reach of tsunami effects

provide protection against erosion and scour on embankments, both

for inflow and outflow.

IMPLICATIONS

Page 97: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

97  

Ports and Airports Measures: Tsunami 

Coastal airports are particularly vulnerable to high wave action or tsunami and in particular airports on small  Islands.  In  the  event of  a  tsunami,  the major  structures  that may be  affected  are  runways, taxiways, drainage  system  and underground utilities,  as well  as hanger  and  terminal buildings. As airports  are  critical  infrastructure which  need  to  be  operational  soon  after  a  disaster  the  prime measure here  is  locating  airports out of  likely  affected  areas, or maximum  inundation  levels.  The provision of emergency landing on a stretch of highway is an example which will create redundancy in the system, thereby increasing overall robustness.   

Table 13: Technical Assessment Sheet ‐ Ports and Airports, Tsunami 

 

 

   

PIPs

EXPERTISE

O&M

TECHNICAL 

COST/FINANCE

MEASURES

PLANNING

Design or upgrade sections of highways on higher land for STOL (short

take‐off and landing) aircraft to carry out emergency evaluations and

post disaster relief.

Consider relocation of coastal airports to an alternative sites on higher

land or where protected from the coast by higher land (this is an

example of redundancy). 

Provide alternative emergency airstrips away from Tsunami danger

zones thus ensuring redundancy.

PREPARATION AND DESIGN

Design ports with a better understanding of tsunami refraction and

diffraction.

Design seawalls with adequate piled foundations in tsunami zone

areas.

Design to prevent the total loss of piers, wharf walls and their tiebacks

and restrain selected breakwater panels to provide post‐tsunami

access.

IMPLEMENTATION

Review strength of existing barriers and strengthen if required (e.g.

through provision of concrete‐lined earth barriers).

Review the strength of existing coastal protection or breakwaters

(particularly the number and/or size of armour unit/rock protection)

and increase if required.

IMPLICATIONS

Page 98: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

98  

Bridges Measures: Tsunami 

These measures mainly increase robustness of the structure itself. Some of the measures here may 

conflict with design principles that address other hazards.  

Table 14: Technical Assessment Sheet – Bridges, Tsunami

 

PIPs

EXPERTISE

O&M

TECHNICAL 

COST/FINANCE

MEASURES

PLANNING

Build above tsunami maximum inundation levels and beyond the

reach of both inflow and backflow effects of a potential tsunami,

where possible. 

Provide alternative routes and temporary by‐pass roadways to 

increase redundancy. 

Review strength of existing bridge decks for seismic tsunami loads

(including vertical uplift restraints) and retrofit where existing bridge

decks are insufficient.  

Comprehensively assess vulnerability of existing structures for

failure/collapse in seismic and potential tsunami prone areas. An

appropriate assessment approach (or equivalent) should be based on

Seismic Design Categories (SDC), AASHTO (2009 ‐ 4 seismic categories,

A, B, C and D).

PREPARATION AND DESIGN

Ensure new bridges are designed to resist lateral/vertical loads from

potential tsunami flow. Design for hydrodynamic lateral loads and for

both hydrostatic and hydrodynamic uplift due to anticipated tsunami

flows.

Where practicable, ensure bridges are designed so that potential

flexural overturning failures of entire piers/connected multiple bridge

girder spans occur at connections so that foundations are protected

(an example of safe failure). In practice, this will not apply in areas of

seismic risk, as this will conflict with resilience against seismic events.

Ensure structures are designed to accommodate both seismic dynamic

loading and tsunami hydrodynamic loading, including hydrostatic and

hydrodynamic uplift due to the anticipated tsunami flow.

IMPLEMENTATION

Ensure seismic shear keys are sufficient to restrain lateral movement

of bridge decks (i.e. Sufficient lateral restraint provided). 

Restrain bridge decks against uplift from and removal away from their

supporting piers and abutments. Ensure that the buoyancy of bridge

decks (such as the effects of air trapped between girders) is

considered in the design of tension anchorages.

Provide erosion and scour protection for bridge substructures and

approach embankments, both for inflow and outflow.

IMPLICATIONS

Page 99: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

99  

8.5.6 EXTREME HEAT  

Failure Scenarios Extreme heat can damage infrastructure.  The effects are however magnified as a consequence of its combination with periods of extreme  cold  in  the  same  location  (e.g. east European  summers  and 

winters).  Extreme  heat  does  not  significantly  damage  ports  and  inland  waterway  infrastructure. However,  supporting  infrastructure  in particular access  roads, concrete  structures,  signs, overhead cables, surface markings, etc. suffer the same effects as described in Road and Railways and Airports above. One potential  impact  to navigation,  in particular on  inland waterways,  is a  reduction  in  the water level (due to evaporation and an increase in the speed of seasonal hydraulic cycles). In addition, an increase in the average temperature could lead to increase growth of invasive aquatics vegetation leading  to  the clogging of water  supply  lines and drains as well as  increased demand  for cleaning, maintenance and dredging. 

Table 15: Failure Scenarios, Extreme Heat 

EXTREME HEAT FAILURE SCENARIOS 

CONTEXT 

Expansion and Buckling 

(i)  Leads  to rail track movement  and  slack  (thermal misalignment)  causing derailment; (ii) sag of over power cables; no balancing weights to take up the thermal expansion (Note: Extreme and extended periods of heat  reduces precipitation which  in turns  leads  to  increase  risk  of  wildfires  which  can  damage  transport infrastructure) 

Concrete pavement failures 

Inadequate  expansion  joint  provision  or maintenance  thereof  leads  to  the failure and lifting and deformation of one or more joints as the road pavement expands. The effects are magnified if the road must accommodate significant contraction during cooler periods. This also affects ports and airports 

Bitumen/Asphalt degradation 

Heat will affect and reduce the  life of the road through softening and heavy traffic related rutting or bleeding. However, high temperature differences can also coincide with high levels of ultraviolet radiation (due to strong sunlight) to cause  the  bitumen/asphalt  to  oxidize,  becoming  stiffer  and  less  resilient, leading to the formation of cracks. This also affects ports and airports 

Degradation of road foundation/ rail bed and supporting embankment 

A  decrease  in  soil  moisture  leads  to  deformation  of  the  road  pavement structure which leads to potholes, cracks and rutting. This also affects ports and airports  

Deformation of Marking materials 

Premature  deterioration  of  the  material  properties.  This  affects  roads, railways, bridges, tunnels, ports and airports  

Materials degradation 

(i) Premature degradation of bearings and deformation of structural members: (ii) degradation of runway/taxiway foundation and supporting embankment 

Thermal Expansion and increased movement 

(i)  Extra  stress:  Expansion  of  bridge joints  and  paved  surface;  (ii)  Excessive movement of bearings, closing of movement joints gaps.  

High Air temperature 

The extreme heat or rise in temperature induces lower air density, a factor that reduces the thrust produced by aircraft and the wing’s lift.  

Page 100: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

100  

Linear Infrastructure (Roads, Railways, Airports and Ports): Extreme Heat 

In general the measures listed here increase the robustness of the infrastructure through changes in the materials used or design specification. The increased size of movement joints is an example of how infrastructure can be made stronger through increased flexibility within the design itself. Similarly the use of control systems shows how  increased  robustness of a system may rely on  its operation and governance rather than the design and maintenance of the physical infrastructure itself.  

Table 16: Technical Assessment Sheet – Linear Infrastructure, Extreme Heat 

 

 

PIPs

EXPERTISE

O&M

TECHNICAL 

COST/FINANCE

MEASURES

PLANNING

Increase use of heat tolerant street and highway landscaping to reduce 

To accommodate higher air temperatures extend or design a longer 

runway (the International Civil Aviation Organisation recommends an

increase of the runway length of 1% for each 1oC). 

Increase the use of efficient ground cooling systems

Use information and control systems to prevent unnecessary road/rail

use in extreme heat situations (particularly heavy loads).

PREPARATION AND DESIGN

Design using more robust pavement marking materials that can

withstand seasonal changes. (e.g. thermoplastics road marking

materials are suitable for high temperatures.)

Ensure adequate movement joints and/or gaps on structures to

prevent deformation of members due to excessive expansion.

Increase specification for bridge bearings and expansion joints to

account for extreme heat effects which take account of greater

expansion/contraction movements. This will include specification of

appropriate bearing elastomers to prevent premature degradation due 

to excessive heat.

IMPLEMENTATION

Avoid using concrete pavement expansion joints by constructing

Continuously Reinforced Concrete Pavements (CRCP).

Use heat resistant asphalt/stable bitumen to ensure better

performance in higher temperatures. 

Use different type of passive refrigeration schemes, including 

thermosiphones, rock galleries, and “cold culverts” (NRC 2008) 

Raise the Rail Neutral Temperatures used in design, and associated

lateral restraints, combined with operational constraints as necessary

to reduce buckling.

IMPLICATIONS

Page 101: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

101  

8.5.7 EXTREME COLD AND SNOWSTORMS  Failure Scenarios The  impacts  discussed  here  relate  to  the  direct  impacts  of  very  low  temperatures  and  snow storms/blizzards.  For the effects consequent upon the melting of accumulations of snow please refer to  the  sections  above  in  regard  to  excess  precipitation  and  FLOODING.    The  main  impacts  on transportation relate to the operation of the infrastructure rather than the infrastructure itself. Good maintenance practice, such as sealing and repairing roads before the winter months are necessary to mitigate the risks from extreme cold. 

Table 17: Failure Scenarios, Extreme Cold 

 

EXTREME COLD FAILURE SCENARIOS 

CONTEXT 

High frequency‐thaw cycle 

(i) Premature deterioration of road pavements (moisture in the foundation freezes and  thaws causing a volume change within  the materials).  Increased  freeze‐thaw conditions in selected locations creates frost heave and potholes on road surfaces. This also impacts ports and airports 

Frost/Icing/ Freezing 

Ice  on  railway tracks  leads  to  poor  adhesion,  ineffective  braking  (skid,  loss  of traction, wheel spin); rail points/switches not able to move due to being frozen in one position, which may  lead to derailment;‐brittle fracture of rail track and steel structures (at least 20°C below design level).  

Snow/Blizzards  (i) Drifts block railway lines and build‐up on signals; (ii) Dead loads in excess of the strength of  the structure damage station  roofs, overhead power  lines, signs and gantries; (iii) powdered snow  ingested  into vehicles and trackside equipment can cause  loss of function of trackside equipment 

Ground movement  Caused by freeze thaw cycles and also caused by Performa frost melting results in cracks or causes the road to slide (results in slope failure, sinkholes and potholes). It can also dislodge large boulders and rocks, causing mud/landslides (see LANDSLIDES). This impacts roads, railways, ports and airports 

Excessive contraction 

Opening of movement  joint gaps  in bridges due to excessive contraction; bearing failure 

Damage/failure of structural members 

Brittle  failure  of  steel  structural  members;  spalling  of  concrete  arising  from permeable and  saturated  concrete; concrete  substructure damaged by  ice  flows; excessive  build‐up  of  ice  on  structural  members;  deformation  of  structural members. Impacts bridges, airports, lock gates and weirs. 

De‐icing /Anti‐icing Chemicals 

Contamination of surface water and drainage outfalls, such as through operational de‐icing of aircraft due to cold weather 

 

   

Page 102: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

102  

Roads, Railways, Airports and Ports:  Extreme Cold 

All of the measures listed increase robustness of the infrastructure. The location of a runway to avoid permafrost is an example of how planning can increase robustness. The inclusion of retention ponds to reduce the scale of impact of de‐icing chemical shows how the choices made to increase transport infrastructure resilience can have wider impacts. 

Table 18: Technical Assessment Sheet ‐ Extreme Cold 

 

 

   

PIPs

EXPERTISE

O&M

TECHNICAL 

COST/FINANCE

MEASURES

PLANNING

Avoid locating runway and taxiways on permafrost due to rising

temperatures.

Consider locations and factors that avoid increasing the intensity of extreme

cold (e.g. frost and snow hollows) in project design.

Review whether surface dressing is appropriate (for road pavement

resurfacing)‐ as in cold countries with greater freeze‐thaw effects this has a

lower performance as when a binder exposed to direct frost it can become

brittle and allow water to penetrate into the pavement.

PREPARATION AND DESIGN

Increase pavement thickness to prevent frost penetration into frost

susceptible soils.

Design bridge substructures and river training infrastructure to resist iceflow 

damage and the lateral forces applied. 

Design structural members and joints/bearings of bridges to withstand

extreme cold, and design for ice build‐up loads on these members and the

structure as a whole.

In extreme cases, consider installation of systems to heat road pavements.

IMPLEMENTATION

Provide permanent (and temporary) snow (blizzard) barriers.

Eliminate environmental impact of de‐icing pollutants through provision of

retention ponds to control and separate polluted run‐off from paved areas

with that from grassed areas thereby reducing the volume of water at risk of

pollution.

Ensure good quality design and construction practices tominimise spalling of

concrete (e.g. Use higher strength and self‐compacting concrete). 

Install systems to heat frozen points and signal heads on railways.

Use new advanced road studs and marking types that respond to low

temperature to warn drivers of freezing temperatures on the surface of the

road.

IMPLICATIONS

Page 103: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

103  

8.5.8 WILDFIRE  Failure Scenarios Wildfires,  also  termed  bushfires  or  forest  fires,  are  unplanned  fires which  are  can  be  extremely 

hazardous to infrastructure and life and can spread rapidly over large areas from the initial fire start 

point. Periods of extremely hot dry weather (combined with low humidity), provide ideal conditions 

for the outbreak of wildfires. Whilst typically associated with hot weather, wildfires are not exclusively 

summer events and wildfires can occur even in very cold winter conditions. 

Table 19: Failure Scenarios, Wildfire 

 

WILDFIRE 

FAILURE 

SCENARIOS

CONTEXT 

Combustible 

materialsAssets which are  combustible will be damaged  in  fire. Wooden, bridges and 

wooden railway sleepers are very vulnerable.

Roadside verges 

and railway 

verges – vehicles

Roadside  verges  can  create  favourable  conditions  for  fires  to  start‐  either 

through  ie  discarded  cigarettes,  parking  (hot  parts  of  vehicle  contacting 

combustible material),  or  providing  access  for deliberate  and  starting  illegal 

fires.

Power lines and 

treesTrees can damage power lines or electrical equipment, especially during 

storms when both can be affected by wind or storms. Damaged power lines 

can start wildfires. 

Poor 

management of 

transport assets 

During wildfires roads may need to be closed due to fire risk. Good network 

management and asset management is needed to facilitate access/egress for 

public and emergency response teams according to fire management 

scenarios.

 

 

 

 

 

 

 

 

 

Page 104: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

104  

Roads, Railways, Airports and Ports:  Wildfire 

Fire prevention is often a much better strategy than mitigating against the effects of fire damage, but due to the nature of the risk, this is not always possible and fire risks should be assessed and managed in  a  systematic  way  so  that  these  assessments  can  help  inform mitigation  works  and  technical decisions. They will also help in managing transport networks during a fire, particularly with regard to life‐saving activities. In certain high fire risk areas, restricting development is one option, but practical measures to reduce combustible material, especially at roadside verges, are extremely  important  in reducing fire risk. Other technical measures, such as replacing concrete railway sleepers can reduce overall damage levels.   

Table 20: Technical Assessment Sheet – Wildfires 

 

PIPs

EXPERTISE

O&M

TECHNICAL 

COST/FINANCE

MEASURES

PLANNING

Plan control lines (natural or constructed barriers) or treated fire edge used in

fire suppression and prescribed burning to limit the spread of fire. Control

lines are only likely to be effective if they are supported by suppression

activities and hence need to be in areas of low fuel. Careful consideration

needs to be given to the placement of control lines if they are to be effective,

and because they can involve significant and ongoing vegetation management

which can degrade environmental and heritage values.

Prioritise and rate the risk of assets (including people and property) according

to hazard (likelihood of exposure and consequence of fire). Make use of GIS

mapping to disseminate information where appropriate

Assess mitigation measures in accordance with fire risk to determine 

vegetation management regime and other mitigation actions.

Safeguard critical routes and access (public bunkers, community fire refuges

etc).

PREPARATION AND DESIGN

Consider fire‐resistant vegetation species when carrying out roadside planting.

On roadside verges, keep a vertical separation between fuel and vehicle (10cm 

height one vehicle width (3m) adjacent to road shoulder or on trafficable

verges through verge management/clearance works.

For rail, select non‐flammable materials where appropriate (ie concrete

instead of timber) where appropriate for ‘sleepers’ or rail ties. Initial costs may

higher, but whole life cycle costs may be better

Transport infrastructure buildings to be resistant to ember attack.

Incorporate control lines or fire breaks in roads where appropriate (see

Planning Note above) – remove trees and cut back vegetation. Use bare earth

breaks. Trees even 20m upwind can reduce effectiveness of break. Use of

control lines (firebreak). 

IMPLEMENTATION

Through regulation, enforcement and education, a ‘fuel‐free’ road shoulder

verge should be maintained during fire danger period, where required (for

example; limit or eliminate combustible material).

Carry out management (clearance and removal) of trees around power lines to

prevent damage and sparking ignition sources.

IMPLICATIONS

Page 105: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

105  

8.5.9 FLASHFLOOD/MUDFLOW 

A flash flood is a surge of water, usually along a river bed, dry gulley or urban street often following a period of intense rainfall. Conducive conditions for flash floods are mountainous areas, hilly and steep slopes which act as a highly responsive watershed. The hazard can:  

develop over very short time periods  

can occur  even if no rain has fallen at the point where the flooding occurs 

erode loose material, soils and topsoils and turn into mudflows  Other causes of landslides include landslide dam outbursts (where landsides block a river and create a natural dam which is breached suddenly, glacial lake outburst flows (GLOF), sudden bursting of river banks and failure of ‘engineered’ water retaining structures.    Table 21: Failure Scenarios, Flashfloods/Mudflows  

FLASHFLOOD/ MUDFLOWFAILURE SCENARIOS

CONTEXT 

Inadequate drainage

(i) the  hydraulic  size  or  gradient  of  culverts  is  inadequate  resulting  in blockage/silting of culverts from sediment or debris, wash out of embankments, or loss  of  culverts;  and (ii) the  longitudinal  drainage   channels   or  outfalls   are overwhelmed or there is no slope drainage.

Inadequate capacityWater flows exceed capacity of the allowable resulting in overtopping of bridges or damage to bridge deck.

Erosion/ Scour

Impact  on  bridges  and  inland waterways. Undermining  of  substructure elements (abutment  and  pier) through scour and/or  erosion  of  approach  embankments;  Excessive  flows cause erosion of the river banks and induce erosion/scour of training walls, weirs, tow paths, ramps, gauges etc.  

Floating or sunken debris

Debris builds up against intermediate supports or under bridge deck soffits, and  sunken  debris  increases  scour depths due  to  increased  turbulence.  Debris  can  build  up  against  inland  waterway  structures  and  weirs, increasing  loads on   these   structures, especially damaging or destroying bridge decks.  Water levels  upstream  and  sunken  debris  can  particularly increase scour depths due to turbulence.

AggradationAccumulation of  sediment  carried by high water  flows  can block  inland waterways restricting operations and raise water levels upstream.

Sudden release of stored water

Landslide dam outbursts (where landsides block a river and create a natural dam which  is  breached  suddenly.  Reducing  landslides  is  covered  under separate studies but some points are reiterated in this case study), glacial lake outburst flows (GLOF), sudden bursting of river banks and failure of ‘engineered’ water retaining structures. 

Environmental/Social

Changes in land use, such as infrastructure development (roads, housing etc) can increase impermeable area and volumes of overland flows. Roads can act as conduits for overland flows.

 

   

Page 106: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

106  

Roads, Railways, Airports and Ports:  Flashflood/Mudflow 

The  damaging  effects  of  flashfloods/mudflows  can  often  be  predicted  through  the modelling  of overland flows. Solutions can include early warning systems which are linked to meteorological data.  Infrastructure should be designed for the correct design peak discharges with allowances for debris build‐up at structures. Scour is a well‐known risk for hydraulic structures, and care must be taken in any design work in this area. Bio‐engineered solutions are an important part of mitigation and should be considered alongside hard‐engineering solutions where appropriate.  

Table 22: Technical Assessment Sheet, Flashflood/Mudflow 

 

Page 107: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

107  

   The Kosi River transports some 120 million cubic metres of sediment annually. However, because of complex and varied precipitation patterns and underlying geology in each of the sub‐catchments, there are highly pulsed and variable  flows during which  time most of  the  sediment  is  transported.   This sediment partly arises due to incidents such as landslides which block smaller rivers in the middle hills of Nepal. When these are breached they can generate intense sediment laden floods. High sediment flows also arise as a result of earthquakes and glacial lake outburst floods in the Himalayas as well as the general sediment load due to a high rate of erosion upstream particularly in the higher regions of the catchment area.   These natural causes alone, however, are not the sole contributors of flooding events along the Kosi River. Roads, railways, irrigation channels and embankments which block natural patterns of drainage can also accentuate flood events. For example, embankments, while they provide protection to some areas (creating tension between communities), tend to block precipitation from draining into the main stream causing flooding. Moreover where embankments are constructed the only place for sediment deposition  is  in the river channel  itself. This can raise the  level of the river bed at rates as high as a metre per decade, reducing river channel capacity, and increasing risk of flooding at times of high flow volume. This has continued so that  in some areas  the  riverbed  is 4m above the surrounding  lands. Embankments have not controlled  flooding but made  it worse, as well as created a  false  sense of security (Shrestra, 2010).   Some of the key issues related to the Kosi flooding and recommendations are highlighted below:  

POLICIES, INSTITUTIONS AND PROCESSES Develop  adaptive  institutions,  improve  coordination  across  borders,  and  establish  local management and control. Whilst the barrage and upper embankments are  located  in Nepal, the responsibility to operate and maintain them lies with India. Furthermore the responsibility for the Kosi project lies with the Government of Bihar which  must first consult the Government of India, which then consults the Government of Nepal before conducting any infrastructure maintenance. The convoluted institutional mechanism has hindered responsive decision making. Mechanisms for information  sharing,  decision making,  joint  control  and  coordination  are  poor  and  need  to  be improved.  However,  Shrestra  (2010)  suggests  this  extends  beyond  lack  of  coordination  and information  flow and  there  is a need to address  internal and trans‐boundary political  issues and revisit the now outdated Kosi Treaty.  

 

OPERATIONS AND MAINTENANCE  Improve the monitoring and maintenance of embankments (flood control measures). According to the flood victims embankments had not been maintained for 7‐8 years, and the 2008 flood event was caused by  the breach of an un‐repaired embankment. Without  top down  responsibility  for  shared management and maintenance, investment in building flood controls may not improve flood resilience.  Improve local awareness and flood preparation. There were no early warning systems and the possibility of an embankment breach had not been planned for so there was a general lack of preparedness. This also relates to the general  level of monitoring and maintenance of embankments, as set out under technical below. 

 

CASE STUDY 1: Learning to Live with Floods following the 2008 Kosi River Flooding: Kosi 

River area, India and Nepal 

COASTAL ROADS ON THE FAMILY ISLANDS, BAHAMAS  

Page 108: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

108  

TECHNICAL  

From flood control to flood resilience. The  intensity of flooding along the Kosi river, when the flow was just 1/7th of the system design flow, was caused by the reliance on flood control measures alone as  a  flood management  strategy. The  approach of  focusing on engineering  solutions, has  led  to  a reliance  on  structural measures  alone  for  flood  control, which  has  reduced  flood  resilience.  This example highlights a need to shift from a one dimensional approach of ‘keeping the water out’ through flood  controls  towards  better  ongoing maintenance  and  a  holistic  long  approach  of  open  basin management, or the Dutch concept of ‘making room for the river’. 

 SOURCES:   Shrestha,  R.K.,  et  al.  (2010)  Institutional  dysfunction  and  challenges  in  flood  control  along  the transboundary Kosi River: A Case study of the Kosi Flood 2008. In: Economic & Political Weekly, 45.2: 45‐53.  Available from:  http://www.epw.in/special‐articles/institutional‐dysfunction‐and‐challenges‐flood‐control‐case‐study‐kosi‐flood‐2008.h [accessed: 20/05/2014]  Moench, M.  (2009) Responding to climate and other change processes in complex contexts: Challenges facing development of adaptive policy frameworks in the Ganga Basin. Technological Forecasting & Social Change 77 (2010) 975–986.  Elsevier.  

Page 109: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

109  

After  Hurricane  Katrina  in  August  2005  the  Corps  leadership  commissioned  an  Interagency Performance Evaluation Task Force which was tasked with answering five key questions: 

‐  What was the hurricane protection network in place on August 29th 2005? 

‐  What forces did Hurricane Katrina put on the protection network? 

‐  What were the consequences of this event? and 

‐  What would be the risk and reliability of the protection network on June 1 2006? 

It also commissioned a study on the Hurricane Protection Decision Chronology. This was designed to document  the  chronology of  the planning, economic, policy,  legislative,  institutional  and  financial decisions  that  influence  the hurricane protections  systems of Greater New Orleans.  In December, 2005 the National Academy of Engineering/National Research Council Committee on the New Orleans Hurricane Protection projects was set up to provide independent, expert advice to the IPET. The key recommendations that emerged from all three of these studies are highlighted below: 

POLICIES, INSTITUTIONS AND PROCESSES 

‐ Consider  relocation as a policy option and ensure  that  the planning and design of HPS do not encourage settlement in flood prone areas. Voluntary buyouts and relocations of some structures and residents is a politically sensitive issue but can improve safety and reduce flood damage. 

‐  ‘Changes or clarifications  to congressional policies and  reauthorizations as  they  relate  to  large construction  projects may  be  necessary  to  effectively  implement  findings  of  periodic  scientific reviews.’  (NRC:  35).  The  process  for  incorporating  new  scientific  information  on  changing environmental conditions or design can be complicated by congressional reauthorization standards.  A revision to the standard hurricane standard in 1974 was not incorporated when the project was re‐evaluated for fear that the project would need to be re‐authorised. This risked delaying the project by several years, as an ongoing prolonged debate on cost sharing rules in Congress meant that no projects had been authorised since 1974.  

‐ Reporting requirements should ensure that technical experts share all relevant information with                             decision‐makers. The project record shows that the District of New Orleans knew in general terms of the lessening of project DOP and LOP over time, but the Corps’ reporting requirements did not inform the  higher  authorities  or  local  sponsors  that  the  project  if  completed  would  not  provide  SPH protection. It is important that project evaluation and reporting protocols are in place so that technical experts share all relevant information about project capabilities and limitations with decision makers. Even  if  no  project  changes  are made  this  could  have  an  impact  on  land  development  and  use, wetlands/landscape  restoration activities, pumping capability, evacuating planning and emergency response, and special protection of critical infrastructure. 

 

OPERATIONS AND MAINTENANCE 

‐ Independent bodies should periodically conduct external reviews of large complex projects ‐For large complex projects such as the New Orleans hurricane protection system, an independent body should periodically review the design, construction and maintenance should be conducted to ensure that the calculations are reliable, methods are appropriate, designs are safe and any blind spots have been identified. It can also identify politically sensitive issues. ‘The absence of a standing, agency‐wide process for continuing assessment and reporting of project performance capability left the District to make  its own determination as  to whether  the analytical  foundation was adequate  for  requesting 

CASE STUDY 2: Interagency Performance Evaluation Task Force Post Hurricane Katrina

(2005) 

Page 110: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

110  

changes  to  project  designs,  and  for  satisfying  higher  federal  authorities  and  local  sponsors  that additional project funding was warranted.’ (Woolley and Shabman, 2007, p. ES‐17) 

‐ Periodically update concepts, methods and data to reflect changing environmental conditions and have a process  in place  to  integrate  this  information  into decision making  so  infrastructure can continue  to meet  its performance objectives. The New Orleans hurricane protection  system was designed to a Standard Project Hurricane according to their understanding of hurricanes in the late 1950s. These equations however, were based on storms that preceded Category 3 Hurricane Betsy in 1965, and the strong Category 5 Hurricane Camille in 1969. Most levee heights in New Orleans were adjusted after Betsy but not after Camille’s greater  surge heights  in Mississippi. After Katrina  the standard  project  hurricane  standard was  abandoned.  Instead,  designers  created  a  computerised sample of 152 possible storms, from 25 year events to 5,000 year events and tested each storm along a wide variety of paths, at different forward speeds and accompanied by varying amounts of rainfall. They also modelled the effects of waves accompanying the surge. More than 62,000 model runs were used to develop the overhauled levee system. The levees were rebuilt to block overtopping by surges from  a  100  year  storm  and  withstand  surges  from  a  500  year  event  (overtopping  still  occurs). Furthermore,  their design accounted  for South‐eastern  Louisiana’s  sinking  soils and projected  sea level rise by adding a foot or two increase in the height of the structures. 

Establish a publicly accessible archive of all data, models, model results and model products created from the landmark IPET evaluation to ensure future work builds on these studies. The NRC report noted that the ‘institutional memory’ of IPET risks being lost as all external experts will return to their respective careers. 

 

TECHNICAL – PLANNING AND DESIGN 

‐ The  ITEP recommended that planning and design methodologies need to examine system wide performance  where  component  performance  is  related  to  system  performance  and  the consequences of that performance. A system is only as robust and resilient as its weakest component. In New Orleans the approach was component‐performance‐based, which made it difficult to examine integrated performance of components. This systems wide approach also needs to be considered in the reconstruction process. The ITEP report noted that the New Orleans metropolitan area was still vulnerable until the remaining sections of the system were upgraded and completed, to match the resilience of the repaired sections. The ITEP report noted that:  

“The System did not perform as a system: the hurricane protection  in New Orleans and Southeast Louisiana was a system in name only (…). It is important that all components have a common capability based on the character of the hazard they face. Such systems also need redundancy, an ability for a second tier of protection to help compensate for the failure of the first tier. Pumping may be the sole example of some form of redundancy; however, the pumping stations are not designed to operate in major hurricane conditions. The system’s performance was compromised by the  incompleteness of the system, the inconsistency in levels of protection, and the lack of redundancy. Incomplete sections of the system resulted in sections with lower protective elevations or transitions between types and levels of protection that were weak spots. Inconsistent levels of protection were caused by differences in the quality of materials used in levees, differences in the conservativeness of floodwall designs, and variations  in  structure protective elevations due  to  subsidence and construction below  the design intent due to error in interpretation of datums.” (US Army Corps of Engineers (2006) : I‐3) 

‐ Rethink the extent and configuration of High Protection Structures and consider creating a more manageable system of protective structures. Recognise that the risks of levee/floodwall failure can never be reduced to zero and in many cases levees can create catastrophic residual risk if conditions change, they are affected by extreme events or they are not properly maintained. Before Hurricane Katrina there was ‘undue optimism about the ability of this extensive network (350 miles of protective 

Page 111: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

111  

structures) to provide reliable  flood protection. For this reason the Association of State Floodplain Managers recommended that where levees do exist or are the best option out of carefully considered alternatives, levees should be: ‘(1) designed to a high flood protection standard; (2) must be frequently and adequately inspected, with all needed maintenance continufunded and performed (if this does not occur,  the  levee must be  treated as non‐existent);  (3) used only a  s method of  last  resort  for providing a  LIMITED means of flood risk reduction for existing development; and (4) are inappropriate as a means of protecting undeveloped  land  for proposed development’  (ASFPM, 2007, all caps  in original cited in NRC (2009): 23). Levees should also be designed for planned failure.  

‐ Reconsider design standards for heavily urbanised areas. For heavily urbanised regions, the 100 year standard level of protection from flooding is inadequate. For example, a structure located within a special flood hazard area on an NFIP map has a 26% chance of suffering flood damage during a 30 year mortgage  (http://www.fema.gov/faq/faqDetails.do?action=Inut&faqId=1014). The NRC  report noted that: ‘The 100‐year standard has driven levels of protection below economically optimal levels, has encouraged  settlement  in  areas behind  levees,  and  resulted  in  losses of  life  and  vast  federal expenditures following major flood and hurricane disasters.’ (NRC, 2009: 32) 

 

SOURCES: 

Schliefstein, M. (16/08/2013) Upgraded metro New Orleans levees will greatly reduce flooding, even in 500‐year storms. [Online]. The Times Picayune.  Available from:  http://www.nola.com/hurricane/index.ssf/2013/08/upgrated_metro_new_orleans_lev.html [accessed: 20/05/2014]  US Army Corps of Engineers (2006) Performance Evaluation of the New Orleans and Southeast Louisiana Hurricane Protection System: Draft Final Report of the Interagency Performance Evaluation Task Force Volume I – Executive Summary and Overview, 1 June 2006.  Available from:  http://www.nytimes.com/packages/pdf/national/20060601_ARMYCORPS_SUMM.pdf, [accessed: 08/04/2014]  Woolley, D., and Shabman, L. (2008) Decision‐Making Chronology for the Lake Pontchartrain & Vicinity Hurricane Protection Project.  Final Report for the Headquarters, U.S. Army Corps of Engineers; Submitted to the Institute for Water Resources of the U.S. Army Corps of Engineers Available from: http://library.water‐resources.us/docs/hpdc/Final_HPDC_Apr3_2008.pdf  [accessed: 20/05/2014]  National Academy of Engineering and National Research Council of the National Academies (2009) The New Orleans Hurricane Protection System: Assessing Pre‐Katrina Vulnerability and Improving Mitigation and Preparedness. Washington, D.C.: The National Academies Press. Available from: http://www.nap.edu/openbook.php?record_id=12647&page=34 [accessed: 20/05/2014]  

Page 112: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

112  

Ecuador  suffers  from  numerous mudslide  and  landslides  as well  as  El Nino, which  in  1997‐1998 damaged  28%  of  the  transport  sector.  Roads,  contention walls  and  dikes  in  Ecuador  are  poorly designed and constructed, often without technical studies, risk assessments or adequate  technical supervision, and fail on a regular basis. A major road in 1999 was closed because of a landslide, cutting of one of two major commuter routes between two cities, and was still closed three years  later. A study by the IADB entitled “Ecuador Natural Disaster Management and the Road Network” analysed the various institutional and financial weakness in Ecuador’s disaster risk management systems which have created a network of poor quality transport  infrastructure. This report proposed a number of recommendations which are summarised and highlighted below: 

POLICIES, INSTITUTIONS AND PROCESSES 

‐ Eliminate ad hoc institutions, clarify roles and responsibilities and empower the national planning board to prepare, coordinate, enforce and evaluate the DRM plan. The report noted that Ecuador’s system was reactive with a number of ad hoc institutions outside the normal state apparatus dealing with infrastructure and disaster management. These weakened the existing Ministry of Public Works, introduced competition for resources, and created a disjointed system with overlapping functions and little coordination. Regional political struggles in Ecuador were identified as having contributed to the creation and permanence of  these ad hoc  institutions. Politicians  in La Costa  region were seen  to capitalise on any crisis to create ad hoc institutions in their region that could circumvent the national organisations  in  la  Sierra. The  coordination between  all  these branches was  also perceived  to be lacking.  Each  organisation  uses  and  allocates  its  own  resources  and  makes  decisions  without coordinating with the others. 

‐ Continue and deepen the institutional program aimed at improving the Ministry of Public Works’ capabilities.  The  report  noted  that  the Ministry  of  Public Works  is  responsible  for  procuring  its maintenance works but the concessionaires, due to legal problems, have performed no maintenance of  rehabilitation.  The MOP was  observed  to be  overstaffed,  inadequately  funded,  and with  poor capabilities to plan and prioritise.   

‐ Decouple selection of professionals to manage risk prevention and disaster response from political cycle.  Construction  and  business  groups  were  seen  to  be  ‘closely  correlated  with  political representation’, which leads to a poor system for contract supervision and compliance. This fails to encourage good project selection and the incentives for good delivery.  

‐  Introduce  region  specific  construction  code  standards  for  project  design,  maintenance  and rehabilitation  and  link  to  supervision  and  enforcement.  Construction  codes  were  noted  to  be currently  an  assimilation  and  compilation  of  codes  from  US,  Mexico  and  Europe.  The  report recommended  implemented  area  specific  codes  to  reflect  the  differences  in  the  vulnerability  of Ecuador’s regions to natural disasters. It was also noted that existing codes are not enforced. 

 

FINANCIAL ARRANGEMENTS AND INCENTIVES 

‐ Donors should not provide funds that support a disjointed system and extend the life of ad hoc organisations.   The  report  identified poor budget discipline  and  rent  seeking  as  key  issues which creates incentives to key technical standards low. In an emergency Ecuador’s Finance Ministry may be called upon by the President to transfer funds from other departments to assist in the relief effort. Furthermore, the budget of DRM organisations depends on the level of damage and their bargaining abilities rather than the quality of their prevention and mitigation measures.  

CASE STUDY 3: Ecuador ‐ Natural Disaster Management System and the Road Network

Page 113: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

113  

‐ The report calls for DRM funds to be contingent upon evidence that national and sector plans are in development to encourage greater budget discipline. 

‐ The report calls for innovative funding approaches to raise infrastructure quality. Funding policies were  seen  to be  insufficient and  inconsistent, often varying year  to year depending on  funds and political priorities. Insurance does not cover roads, bridges, railways etc. though by law it must cover airports and seaports. However, the laws regarding insurance are not comprehensive or clear and are rarely enforced. 

 

OPERATIONS AND MAINTENANCE 

‐ Establish operational procurement procedures to define the organisations and activities that are eligible  for  funding,  mechanisms  for  transfer,  contracting  rules,  and  stipulate  obligations  for independent auditing. Poor procurement practices mired in corruption were reported as a key issue in producing a poor quality of design and construction in Ecuador as firms compete on the basis of the size of kickbacks rather than quality, price and reliability. Moreover, the possibility of further contracts to  rehabilitate and  repair damaged  roads was  seen  to have  introduced perverse  incentives at  the design and construction stage.  

Additional recommendations included: 

‐ Incorporate communities in the management of tertiary and rural network recovery 

‐ Implement incentive contracts and competition for civil works.  

‐ Organise a system of pre‐negotiated, ‘retainer contracts’ with private firms to speed recovery  

‐ Empower and strengthen technical skills of Mop and provincial governments to define and execute DRM plans 

 SOURCE: 

Solberg, S., Hale, D., and Benavides, J. (2003) Natural Disaster Management and the Road Network in Ecuador: Policy Issues and Recommendations. Washington, D.C.: Inter‐American Development Bank. Available from: http://www.iadb.org/wmsfiles/products/publications/documents/353002.pdf  [accessed: 20/05/2014]  

Page 114: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

114  

The Philippines is exposed to many natural hazards‐ typhoons, floods and earthquakes mean the road network also has a high degree of exposure to landslides, road slips, embankment scouring and other geotechnical hazards. Road closures are common, disrupting both the movement of passengers, goods and services, affecting communities and well as negatively impacting on the country’s economy and infrastructure.  

The road sector was considered a priority for mainstreaming disaster risk reduction by the Regional Consultative Committee (RCC) on Disaster Management. Against this background, a partnership was developed between the Philippines National Disaster Coordinating Council (NDCC) and the Philippines Department of Public Works and Highways to implement DRR on the road network in the Philippines. The partnership was technically supported by the Asian Disaster Preparedness Centre  (ADPC) with financial support from UN International Strategy for Disaster Reduction (UN/ISDR) through Swedish International Development Cooperation Agency (SIDA). A Technical Working Group was set‐up with multi‐agency membership  to steer  the project and provide  the  technical  inputs needed. The basic approach was to 1)  look at the existing procedures followed with regard to DRR and road projects, especially  with  regard  to  the  feasibility  and  preliminary  stages.  2)  analyse  the  damage  to  road infrastructure from disasters.  3) Identify steps for incorporating DRR in project developments and 4) Review the future priority needs for road construction projects.  

A short report was published about the strategy and actions they have carried out, and are working towards, to achieve these aims. It was entitled “Towards Mainstreaming Disaster Risk Reduction into the Planning Process of Road Construction”. This case study provides a summary of the main points.  

POLICIES, INSTITUTIONS AND PROCESSES 

‐  Liaise  with  a  large  number  of  stakeholders,  programs,  projects  and  agencies  –  The  report recognised that mainstreaming DRR concerns into the road sector involves a number of stakeholders and  interrelated  plans  and  programs,  including:  road  maintenance  investment  programs,  road improvements,  seismic  vulnerability  assessments,  technical  assistance  for  risk  assessment  and management, monitoring and evaluation of roads, studies on sediment related disaster on national highways, and hazard mapping and assessment for community disaster risk management programs.  

‐ Improve Environmental Impact Assessments (EIA) ‐ The previous EIA report structure considers the impact  of  hazards  by  defining  an  “environmentally  critical  area”  of  the  project  site  where  it  is frequently visited by the natural hazards. However,  it does not explicitly provide details on how to address natural hazard vulnerability and risks to  infrastructure and the consequent  impact from  its damage or failure.  

 

FINANCIAL ARRANGEMENTS AND INCENTIVES 

‐ The report advises that by considering risks at an early stage, there is the potential for cost‐savings. For  example,  the  alignment  of  roads  that  avoid  areas  of  high  landslide  risk  may  avoid  costly stabilisation  techniques  that  would  have  not  otherwise  been  identified  until  geotechnical investigations were carried out at the detailed design stage (RCC, 2008). It also points out that national budgets do not always provide funds for surveys and investigations at the feasibility study stage, and it is therefore unusual for disaster risk reduction measures to be incorporated at early stages of project preparation. The cost‐benefit analysis was also found not to be comprehensively considering DRR. 

 

CASE STUDY 4: Disaster Risk Reduction and the Road Network, The Philippines 

Page 115: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

115  

OPERATIONS AND MAINTENANCE 

‐ The key recommendation was that the key to successfully integrating disaster risk reduction on road projects lies in the planning phase of the project cycle, which includes project identification and preparation of the feasibility study. 

‘Feasibility reports should include an assessment of the impact of potential  disasters’ and ‘DPWH needs to have a standard on project identification and preparation procedures to eliminate quality discrepancies  between  nationally  and  externally  funded  projects  and  to  pave  the  way  for mainstreaming disaster risk reduction in road projects’  ‐ Overall it was found that typically due to lack  of  funding  for  construction  of  national  road  projects,  the  Department  of  Public Works  and Highways  administers  a  basic  feasibility  study,  but  for  foreign‐assisted  projects  the  assessment process is more in‐depth and extensive. It was also noted that externally funded projects are prepared to higher standards, particularly in relation to environmental assessments (where disaster risk aspects are described if required by the particular agency) and resettlement planning. It was reported that the road  studies  undertaken  did  look  at  hazards,  but were  primarily  limited  to  protecting  the  road segments from geological hazards such as landslides and debris, and not comprehensive enough.  

‐ Data, monitoring and risk assessment 

It was reported that there was an uneven application of design standards between national and local roads,  including an absence of one fixed format for collecting  information on damage to roads and bridges  from natural hazards. Hydrological data was available, but  information was not uniformly processed to allow  it to be used in road design (ADPC, 2008) (RCC, 2008). It was additionally noted that  is  important to benchmark hazard  intensities with their return periods/damages, but this was difficult  due  to  low  resolution  topographic  maps,  few  hazard  monitoring  stations  and  a  short monitoring period with limited processed data on hazards. The report recommended that the capacity of staff to assess the  impact of disasters needs to be  increased, particularly at regional and district levels.  

SOURCE:  

ADPC (2007) Towards Mainstreaming Disaster Risk Reduction into the Planning Process of Reconstruction.  Available from:  http://www.adpc.net/v2007/ikm/EVENTS%20AND%20NEWS/NEWS%20ROOM/ Downloads/ 2008/Apr/CaseStudyRoadsPhilippines.pdf [accessed: 07/04/2014]  

Page 116: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

116  

In  2010  the  FHWA  selected  five  pilot  teams  to  test  its  climate  change  vulnerability  asset model. Washington State Department of Transport used a qualitative climate scenario planning approach and facilitated  workshops  during  which  participants  used  asset  maps,  climate  scenarios  and  local knowledge to assess vulnerability. 

DESCRIPTION 

An asset inventory was compiled to help workshop participants identify assets that may be exposed to  climate  change.  Data  was  collected  from  different  sources,  such  as  asset  and  maintenance management systems. Climate data was collected from the University of Washington Climate Impacts Group, and used to produce impact maps which communicated historical trends and projections to workshop participants. WSDOT identified climate scenario considering 2, 4 and 6 foot sea level rise, shifts in timing and type of precipitation, temperature extremes, increased severe storms and wildfires 

Vulnerability  assessment  workshops  collected  and  mapped  out  institutional  knowledge  about vulnerability. The workshops  include 200 participants,  including maintenance  staff,  regional office staff  and  state  ferry,  aviation  and  rail  system managers.  A  GIS  specialist  overlaid  detailed  asset inventories with climate  impact data and the participants then used a qualitative scoring system to assess assets for criticality and to rate the effect that changes in climate would have on infrastructure. One of WSDOT’s best practices for identifying issues and concerns was asking participants ‘what keeps you up at night?’ and ‘what happens if the climate related conditions gets worse?’ The advantage of this format was that it used local knowledge and also built key relationships across the department. 

   

 

 

 

 

Results were synthesised  into a series of maps for each region showing the vulnerability ratings for roads, airports, ferries, railways. The vulnerability ratings were mapped for all modes across the state. Red lines were where one or two areas are vulnerable to catastrophic failure, yellow, where roads are vulnerable to temporary operational failure at one or more locations and green are roads that may experience reduced capacity somewhere along the segment.  

  

CASE STUDY 5: Federal Highway Administration Climate Change Pilot Project 

Figure 1: Impact‐Asset Criticality Matrix or "Heat Sheet" This is a visual  representation  of  the  relationship  between  relative criticality and potential impacts. 

Page 117: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

117  

 

          Figure 2: State‐wide Climate Vulnerabilities 

 

SOURCE: 

United States Department of Transportation Federal Highway Administration (2010) Climate Change Adaptation Case Studies Washington State Department of Transportation – WSDOT. FHWA‐HEP‐14‐004.  Available from: http://www.fhwa.dot.gov/environment/climate_change/adaptation/case_studies/washington_state/index.cfm [accessed: 20/05/2014]  

Page 118: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

118  

The Environment Agency’s Thames Estuary 2100 (TE2100) project has developed a strategy for tidal flood risk management up to the year 2100. The range of flood management options presented in the final plan will protect London and the Thames Estuary against sea level rise scenarios and storm surge over the next century, including extreme scenarios. The steps taken are outlined below. 

 

First, the TE2100 project developed a range of climate change scenarios for mean sea level rise and storm surge behaviour and began by assessing the range of responses to the flood risk arising from water  level  rise. These  responses were  then  gathered  into different action portfolios which were assembled into packages to create strategic High Level Options (HLOs), which could deal with different levels of extreme water level rise. These four options were: Traditional Engineering (HLO1), Floodplain Storage (HLO2), New Barrier (with/without Thames Barrier) (HLO3), and New Barrage (HLO4). 

Climate changes scenarios were then introduced to see which Options could deal with which scenario, shown in the figure above. All HLOs could deal with water level rise under the ‘central’ and ‘medium high’ climate change scenarios, but only HLOs 2, 3 and 4 can deal with a  ‘High Plus scenario’. Only HLO4 could deal with a ‘High Plus Plus’ case. 

Finally the High Level Options were assembled  into schedules of portfolios showing the thresholds these options  reached over  time. Threshold 1 around 2030‐40 was  the  limit of  the existing  flood management systems, Threshold 2 around 2070 the limit of the Thames Barrier, Threshold 3, the limit of a modified Thames barrier beyond 210. 

Multi criteria analysis was used to outline a range of impacts (direct and indirect) for inclusion in the CBA that was conducted for all High Level Options under a central climate change scenario. The CBA of options was then repeated under different baseline and impact estimates and the option with the highest cost‐benefit ratio given current climate change knowledge was chosen. This Option outlines a 

CASE STUDY 6: UK Thames Estuary 2100 Flood Risk Management – A Flexible Real Option 

Approach 

Page 119: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

119  

series of interventions over time, each of which have estimated lead times that imply decision points at which the individual responses within the wider High Level Option need to be approved. 

A monitoring system has been put in place and every 5‐10 years the strategy is revisited. If climate change is happening more slowly or quickly decision points for the interventions can be changed to keep benefit‐cost relationships close to those set out in the initial appraisal.  Also at each review the whole strategy  is reappraised  in  light of new  information to see  if switching to another High Level Option is recommended by the CBA, for example if climate change has significantly accelerated there may be a case for switching to a tide excluding barrage, HL04. 

The TE2100 strategy also safeguards  land which may be needed  for  future  flood risk management activities such as new defences, flood storage areas, managed realignment etc. 

 

SOURCES: 

HM Treasury and DEFRA (2009) Accounting for the Effects of Climate Change: Supplementary Green Book Guidance. Available from: http://archive.defra.gov.uk/environment/climate/documents/adaptation‐guidance.pdf [accessed: 08/04/2014]  Thames Estuary 2100 case study.  In: UK Climate Projections science report: Marine & coastal projections — Chapter 7. Available from: http://ukclimateprojections.metoffice.gov.uk/media.jsp?mediaid=87898&filetype=pdf [accessed: 20/05/2014] 

Page 120: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

120  

The thinking in the UK around flood management has begun to shift towards rural land management and  sensitive  farming practices. The agricultural  sector has a critical  role  to play  in managing and mitigating  flooding  throughout  the  system.  Farmers  have  altered  the  landscape  to  maximise agricultural production by felling trees, removing hedgerows, engaging in intensive grazing, artificial drainage, and modern farming practices. These have compacted the soil, reduced the capacity of the land  to hold water  and  created  conduits  for water  to  run off  the  surface. Rivers have  also been gradually  squeezed  over  the  last  few  hundred  years  into  straight,  fast  flowing  channels  to  hurry rainwater off agricultural fields. These fast flowing rivers carry silt which causes rivers to clog up and exacerbates flooding downstream, effecting nearby villages, towns and transport infrastructure. It has been calculated that these measures increase the rates of instant run‐off from 2% of all the rain that falls on the land to 60% (Environment agency 2012).  

Whilst  river managers previously  thought  that  it was necessary  to straighten, canalise and dredge rivers to enhance their capacity to carry water, this has now been shown to be counterproductive. The Pitt Review, commissioned after the UK’s 2007 floods, concluded that "dredging can make the river banks prone to erosion, and hence stimulate a further build‐up of silt, exacerbating rather than improving problems with water capacity" (Pitt 2008). Rivers cannot carry all the water that falls during intense periods of rain and measures such as dredging etc. simply increase the rate of flow, moving the flooding from one area to another.  The majority must be stored in the soils and on floodplains.  

Below are a summary of key recommendations proposed by the Pitt Review and a number of leading flood risk management experts in the UK. 

TECHNICAL – PLANNING AND DESIGN 

‐ Natural green  infrastructure and adaptive management. The philosophy until now has been  to quickly  ‘get  rid  of water’  but  in  the UK  this  is  beginning  to  shift  to  focusing  on  rural  catchment management  solutions  that will  reduce  the peak  flow of  rivers. There  are  three  general  types of measures (Pitt Review 2008): 

(1) Water retention through management of infiltration 

(2) Provision of storage including wetlands, floodplains, reservoirs, detention basins (dry), retention ponds (wet), grassed  swales, porous pavements, soakaways and 'green' roofs. 

(3) Slowing  floods by managing the hillslope and river conveyance, such as planting woodlands, or restoring watercourses to their natural alignment. Research in the UK on land in Pontbren (mid‐Wales) estimated that if all the farmers in the catchment placed tree shelter belts flooding peaks downstream would be reduced by about 29%. Full reforestation would reduce the peaks by about 50% (FRMC: iii). Reintroducing flood plain forests to upland areas slows water as it passes over its irregular surface and is more effective than partly damming streams with felled trees which have unpredictable results as they divert rainfall onto surrounding fields where the water can run off, bypassing bends in the river. Engineers are also reintroducing snags and bends into rivers, which catch the sediment flowing down rivers, as well as reconnecting rivers to the surrounding uninhabited  land so they can flood safely and take the speed and energy out of rivers. 

 

POLICIES, INSTITUTIONS AND PROCESSES 

A number of institutional and regulatory barriers still exist to promoting rural land management. Tree planting grants in Wales have stopped (Monbiot 2014) and the Common Agricultural Policy states that to receive a single farm payment (the biggest component of farm subsidies), the land has to be free 

CASE STUDY 7: Flooding Management in the UK – Agricultural Practices and Rural Land 

Management 

Page 121: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

121  

of  ‘unwanted  vegetation’  (Monbiot  2014)  otherwise  it  is  not  eligible.  These  subsidy  rules  have unwittingly resulted in the mass clearance of vegetation and exacerbated flooding. At the same time, grants to clear land have risen in the UK, and farmers now receive extra payments to farm at the top of watersheds. In the UK the green group WWF has said that farmers should only get subsidies if they agree to create small floods on their own land to avoid wider flooding in towns and villages. 

Farmers have  suggested  that  instead of making grants  conditional on  river management,  farmers should be given extra financial incentives. Whilst farmers can already get extra EU grants to hold water on  their  land  experts  say  subsidies  are harder  to obtain.  Furthermore  research  (FMRC  2008) has estimated  that  all  farmers  in  a  catchment  area must  become  involved  in  river management  to significantly reduce peak  flows, and opt  in  financial  incentives tend to be  less effective  in  inducing behaviour change than conditionalities. 

SOURCES: 

Pitt,  M.  (2008)  The  Pitt  Review:  Learning  Lessons  from  the  2007  Floods.  Available  from:  http://webarchive.nationalarchives.gov.uk/20100807034701/http:/archive.cabinetoffice.gov.uk/pittreview/thepittreview/final_report.html [accessed: 20/05/2014]  Forest Research (2011) Woodland for Water: Woodland measures for meeting Water Framework Directive objectives: Summary of final report from Forest Research to the Environment Agency and Forestry Commission (England).  Environment Agency, 07/2011. Available from: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/291522/scho0711btyr‐e‐e.pdf [accessed: 20/05/2014]  Monbiot, G. (13/01/2014) Drowning in Money: The untold story of the crazy public spending that makes flooding inevitable. The Guardian, (01/2014) [Online] Available from: http://www.theguardian.com/commentisfree/2014/jan/13/flooding‐public‐spending‐britain‐europe‐policies‐homes [accessed: 20/05/2014]  Flood Risk Management Research Consortium (2008) Impacts of Upland Land Management on Flood Risk: Multi‐Scale Modelling Methodology and Results from the Pontbren Experiment. FRMRC Research Report UR16 [Online].  Available from: http://nora.nerc.ac.uk/5890/1/ur16_impacts_upland_land_management_wp2_2_v1_0.pdf [accessed: 20/05/2014]  World Wildlife Fund Scotland (undated) Slowing the Flow: A Natural solution to flooding problems. Available from:  http://assets.wwf.org.uk/downloads/slowingflow_web.pdf [accessed: 20/05/2014]  Defra, Welsh Government, Environment Agency, Natural England et al (2012) Greater working with natural  processes  in  flood  and  coastal  erosion  risk  management.  A  response  to  Pitt  Review Recommendation 27.   Environment Agency Reference number/code GEHO0811BUCI‐E‐E Available from: www.wessexwater.co.uk/WorkArea/DownloadAsset.aspx?id=8978 [accessed: 20/05/2014]  

Page 122: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

122  

 

 

In the UK in 2011, an emergency inspection showed partial collapse of the steel structure fixed to the underside of rail tunnel in Balcombe, on the main train line from London to the South Coast of the UK. This  brief  case  study  highlights  the  value  and  critical  importance  of  periodic  inspection  and maintenance regimes. The failure occurred following a period of prolonged rainfall and flooding, but a higher standard of infrastructure maintenance could have enabled this infrastructure to be resilient at this time.  

TECHNCAL – PLANNING AND DESIGN 

Technical  failure  scenario  ‐ The  tunnel  lining attached  to  the brick  tunnel  roof became detached following  the  failure of  some of  the  supporting anchors  (20mm diameter  threaded  stainless  steel anchor studs fixed with polyester resin into holes drilled in the tunnel’s brick lining). Further failure could  have  had  catastrophic  consequences  for  trains  passing  through  the  tunnel.  On  the  steel structure 18 studs (5%) were found to be missing and a further five studs were loose.  Although the underlying defect was known about, it was not addressed. Had not the crew of an engineering train passing  through  and  noticed  the  defect,  a much more  serious  event  could  gave  occurred.    The subsequent  investigation found that the resins used were not compatible with the brickwork, with damp and shrinkage exacerbating the situation.  

 

POLICIES, INSTITUTIONS AND PROCESSES 

Need for Robust Inspection and Maintenance Regime ‐ A number of other causal factors were also identified  including  those  responsible  for  the maintenance  of  the  tunnel  failing  to  recognise  the significance  of  the  missing  studs  identified  before  the  partial  collapse,  despite  numerous  early indicators of the error. Information on the defect was also not shared and addressed in a systematic way and an administrative error recorded that the defect had been addressed when it had not. There was also confusion when identifying and communicating the specific defect area, partially because the tunnel chainage markers were incorrect in places.  

 The above case study is summarised from RAIB (2013). 

SOURCE: 

Rail Accident Investigation Branch (RAIB) (2013) Rail Accident Report: Partial failure of a structure inside Balcombe Tunnel, West Sussex, 23 September 2011.  Rail Accident Investigation Branch, Department for Transport.  Report Ref: Report 13/2013, August 2013.  Available from: http://www.raib.gov.uk/cms_resources.cfm?file=/130815_R132013_Balcombe_Tunnel.pdf [accessed: 20/05/2014]  

CASE STUDY 8: Partial Infrastructure Failure following Severe Storm Event tracked to 

Maintenance Deficit: Balcombe Tunnel, West Sussex, UK 

Page 123: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

123  

The  African  Community  Access  Programme (ACAP) is a research project working to improve the  resilience  of  gravel  or  compacted  earth roads. Such  roads often become  impassable or repeatedly washed away following heavy rainfall. While  this  case  study  focuses  on  the  90%  of Tanzania’s  91,000  km  of  roads  which  are unpaved the lessons learnt will equally  apply to the majority of rural roads in sub‐Saharan Africa, and  others  worldwide,  which  are  of  similar construction.   

The  approach  taken  by  ACAP  is  to  provide technical support and guidance to make longer‐lasting  repairs with  local materials  and  labour. This avoids the need for the main road network to  be  upgraded  or  strengthened  using imported  aggregate,  which  is  expensive,  not least  because  of  the  transport  distances required.  

The  main  problem  encountered  was  that most road specifications published are for conventional highway  construction  for  heavily  trafficked highways.  These  generally  restrict  the  use  of locally sourced marginal materials which increases costs  and  make  low  volume  road  upgrades uneconomical.  It can also dissuade  investment  in routine and periodic maintenance.  

This  project  produced  different  material specifications  to  produce  ‘environmentally optimised’ road designs that utilise materials that are, in theory, inferior to crushed stone. However, for low volume roads, such as noted below the key design  feature  is  not  to  accommodate  lots  of heavy vehicles, but to         survive through heavy rainfall and flooding events. 

TECHNICAL – PLANNING AND DESIGN 

‐Targeted isolated problem sections on two roads through the use of geocell materials in ‘soft spots’ 

The Bagomoyo road is rolling in nature and is for the most part sandy earth, but has some black cotton soil sections which become very weak when wet. As a result, the road tended to become impassable due to flooding of the black soil, which turned into a sticky mud during the rainy season. The road was reconstructed using strips of concrete in each wheel path. The concrete was infilled into geocells and various type of bituminous surface dressing and slurry seal then applied. 

CASE STUDY 9: Local Solutions and Alternative Materials to Increase Resilience of Low 

Volume Roads: Bagomoyo and Lawate‐Kibongto Roads, Tanzania 

Rural concrete slabs undertaken as part of DfID’s AFCAP 

(African Community Access Programme). Source: 

Roughton  

Geocells being installed as part of DFID’s AFCAP (African 

Community Access Programe). Source: Roughton 

 

Page 124: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

124  

The Lawate‐Kibongoto road  in the district of Siha contains many steep sections and  is constructed from local red clay soils, which becomes very slippery when wet. In some places even four‐wheel drive vehicles cannot climb the hills after rains. This road was reconstructed using  lightly reinforced and unreinforced concrete slabs and paving blocks, as well as a double surface dressing and concrete strips and geocells like those used at Bagomoyo. 

Combining  innovative  approaches  and  locally  focused  ‘appropriate  technologies’  removes  the requirement for costly upgrading of the majority of the roads. This will avoid the need for roads to be frequently re‐gravelled or rebuilt after heavy rains. At both sites the designs utilised materials such as cement and bituminous slurry seal which are not available in many places, and the plastics geocells were  imported from South Africa, however, the road construction was able to be delivered using a labour based approach. 

 

OPERATIONS AND MAINTENANCE 

This  approach  used  labour  based  construction  methods  using  predominantly  locally  sourced materials 

Both of these two roads have been monitored to see the performance of these alternative pavement techniques, particularly after heavy  rainfall. Design manuals have been published  for engineers  in Ethiopia and Malawi, and further individual projects are working towards similar outputs for Kenya, South Sudan, Mozambique, the Democratic Republic of Congo and Tanzania. 

This project employed Roughton as the consulting engineer, and was funded by the UK Department for International Development (DFID). 

 SOURCE:   Masters, J. (13/02/2014) Cure for Africa’s Rustic Roads. New Civil Engineer. [Online] Available from:  http://www.nce.co.uk/features/transport/cure‐for‐africas‐rustic‐roads/8658753.article. [accessed: 25/03/2014]  

Page 125: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

125  

 

 

The Solomon Islands have regularly experienced climate‐related  extreme  events;  including  tropical  cyclone‐related  heavy  rains,  storms  and  coastal  storm  surges; which have caused significant economic losses as well as loss of lives. Guadalcanal, the largest of six major islands of the Solomon group, experienced around 40 different disaster events between 1950 and 2009. In response, the Solomon  Islands Government was supported by donors to rehabilitate the roads to be able to withstand a higher category of weather event. This  focused on repair and improvement  to  the White River  to Naro Hill Road  in North‐western  Guadalcanal,  particularly  due  to  the impact of debris flows and landslides.   

 

 

TECHNICAL – PLANNING AND DESIGN 

Upgrading the threshold capacity of bridges ‐ This Solomon Islands Road Improvement Programme (SIRIP2) sub‐project upgraded the threshold capacity of the bridge structures, increasing the bridge design to a high‐level bridge (1.5 m above the Q100 level) to allow for debris to pass under the bridge deck. The debris catcher (to catch debris flows and slides, which often result from landslides) was also designed specifically for the Tamboko site. 

This  solution  followed  an  assessment  of  the  impacts  of  debris  flow  on main  bridges  as  part  of engineering  adaptation  to  climate  proof  infrastructure.  For  example,  the  Tamboko  Bridge  was originally designed as a low‐level bridge at Q10 level, with upstream river training and debris catcher. However, following the 2010 flooding events, the bridge design was changed to a high‐level bridge, (1.5 m above the Q100 level) to allow for debris to pass under the bridge deck. The high level bridge also has 30‐metre  spans  so  that  there are significantly  fewer obstructions  to  the  flow. The debris catcher was also designed specifically for the Tamboko site due to the high load of debris that occurred during the 2009 and 2010 flood events. Such an adaptive approach to increase the threshold capacity of these key structures following the 2010 flooding experience was possible. 

SOURCE: 

Lal, P.M. and Thurairajal, V. (Nov 2011) Making informed adaptation choices: A case study of climate proofing road infrastructure in the Solomon Islands.  Available from: http://www.climatechange.gov.au/climate‐change/grants/pacific‐adaptation‐strategy‐assistance‐program/making‐informed‐adaptation‐choices‐case‐study‐climate‐proofing‐road‐infrastructure‐solomon‐islands [accessed: 20/05/2014]  

CASE STUDY 10: Upgrading Bridge Design to increase Disaster Resilience: Guadalcanal, 

Solomon Islands. 

Flooding aftermath in USA (Des Moines, Iowa). 

Source regan76, Creative Commons License. Date: 

June 23, 2008. 

Page 126: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

126  

 

Lower Ashenbottom Viaduct is located on the preserved East Lancashire Railway near Rawtenstall in Lancashire.    In  June 2002  the central pier of  the viaduct carrying  the  railway over  the River  Irwell partially collapsed, probably due to scour caused by debris collecting against the middle pier. 

 

     

 

London  Underground  (LU)  is  in  the  process  of installing scour protection  for  four of  the bridges identified as being at the highest risk of scour. The first is a Victorian brick arch structure (Underbridge MR80) over the River Gade in North London, which was originally constructed in 1887. 

TECHNICAL – PLANNING AND DESIGN 

In Lancashire, debris capture was key to reducing scour damage. Calculations  indicated that scour resulting  from  recent  flood  flow  (25‐50 year  return period,  June 2002) without any debris did not exceed the estimated  foundation depth and no other structures nearby were damaged due to the same flood event. Flood levels did not reach the bridge deck hence any possibility of deck flotation and loss of support to the pier from the dead load could be discounted. Further analysis showed that debris collection on the central pier (especially a large tree trunk) would have doubled scour depths through creating additional turbulence and enhanced local flow velocities. This example demonstrates how the failure to maintain the flow of a water‐course, and undertake maintenance – or otherwise prevent debris collecting at key locations – can significantly reduce flood resilience. 

In  London  a  Feasibility  Study  identified  the most  appropriate  scour  protection  solutions.  This included an  intrusive  survey  to determine  the existing geotechnical parameters and an ecological survey to minimise construction impacts. In this case, the preferred solution was to install steel sheet piles upstream and downstream, construct a concrete  invert  in the river between them, and place precast concrete blocks downstream of the concrete invert to prevent scour holes forming. 

SOURCES:  Benn, J. (2013) Railway Bridge Failure during Flood in the UK and Ireland: Learning from the Past In: Proceedings of the ICE ‐ Forensic Engineering, Volume 166 (Issue 4, 01 November 2013), pp. 163 –170 [accessed: 20/05/2014]  Cole, M. (2014) London Underground Bridges, Shield of Steel.  Available from:  http://www.nce.co.uk/home/transport/london‐underground‐bridges‐shield‐of‐steel/8659312.article [accessed: 20/05/2014] 

Flood Damage Burway Bridge over the River Corve after the floods (UK). Source: DI Wyman and is licensed for reuse under the Creative Commons Attribution‐Share Alike 2.0 license. Date 3 July 2007 

CASE STUDY 11: Protection of Bridge Piers from Failure to Scour: Lancashire, UK 

Salmonberry  Bridge  &  Port  of  Tillamook  Bay Railroad damaged during the Dec. 3rd 2007 Flood: Lower  Nehalem  River  Road  Confluence  of  the Salmonberry  River  &  the  Nehalem  River, Salmonberry  Oregon.  Source:  Chris  Updegrave, Creative Commons License, February 09, 2008. 

Page 127: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

127  

 

 

The  impact  of  Hurricane  Irene  (2011)  on  the  rail infrastructure,  low  lying areas and  subway  system  in New  York  City  shows  how  public  transport infrastructure  that  is  of  strategic  importance  to  the capital city’s economy can be impacted by severe flood events.  Recent  experiences  of  flooding  in New  York have  resulted  in  a  number  of  improvements  to  the resilience  of  the  transport  infrastructure  being proposed, as set out below.  

 

 

 

 

TECHNICAL – PLANNING AND DESIGN 

‐ Protection of Underground Tunnels and Terminals from flash flooding:  

Flooding has forced the closure of New York’s subway a few times in the past decade. This includes heavy rain 2 inches falling in an hour) in 2004 and a flash flood of 3.5 inches in August 2007. This led to $30 million worth of flood mitigation projects including the installation of valves to keep discharged water from re‐entering the subway system, raising subway station entrances, and improved pumping and  sewer  system  capacity. These measures were  suggested  in  the New York City Department of Design and Construction  (2005) but alone have proved  insufficient to prevent  flooding, such as by Superstorm  Sandy  (2012).  As  a  result,  other  approaches  are  being  investigated.  Other recommendations (NYCDDC, 2005) include: Installing waterproof, vertical roll‐down doors at the foot of subway  stair entrances,  installing mechanical below‐grade vent closures  to prevent water  from entering through ventilation shafts; protection to seal off electrical equipment from flood risk; and using  inflatable plugs/bladders  to keep  flood waters out of  tunnel entrances – which  is discussed below. 

‐ The concept of an Emergency Tunnel Closure is being investigated by the Resilient Tunnel Project. This  is  an  initiate  being  developed  by  the  Pacific  Northwest  National  Laboratory, West  Virginia University, and ILC Dover for the US government to prevent and contain tunnel flooding (Ahlers, 2012). The concept is to install an inflatable cylinder which can be activated and inflate in minutes to plug tunnels  to protect  them  from  flooding. The design allows  this solution  to be deployed  in different tunnel  cross‐sections  such as where  there are platforms,  lights,  tracks and other equipment. This approach is being evaluated to see in what instances it is more cost‐effective than retrofit of existing tunnels.  

‐ Protect above ground transit systems: Both Hurricane Irene (2011) and Superstorm Sandy (2012) demonstrated how commuter rail service on Long Island and low‐lying segments of the Metro‐North system  are  vulnerable  to  severe  events.  This  vulnerability  included  key  facilities  such  as  depots, signalling  systems  and  electricity  substations  –  with  impacts  including  flooding  and  associated corrosive damage  from prolonged salt water exposure, and  in some cases  rail  track being washed away. Recommended flood mitigation measures include: 

CASE STUDY 12: Public Transport Infrastructure Resilience to Major Flooding Events, New 

York, USA 

Flooding and damage to Metro‐North's system ‐‐ in 

the aftermath of Hurricane Sandy ‐ to the bridge and 

south yard at Harmon. Souce: MTA. Creative 

Commons License. Date: October 30, 2012 

Page 128: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

128  

•   Constructing drainage improvements along railroad rights‐of‐way and at rail/bus depots, including culverts which channel water underneath the railway. Retaining walls should also be constructed, where appropriate, to protect the railway. 

•   Installing aluminum dam doors at depots that house buses and trains in low‐lying areas prone to flooding (e.g., Zones A, B and C). 

•  Relocating sensitive equipment from the basement and first floor to higher floors or to the roof. 

•   Installing new, permanent, high capacity pump equipment. 

•   Reinforcing water‐penetration points in depots and stations, such as windows, doors or cracks in walls. 

‐ Upgrade pumps in flood prone areas 

In addition to pursuing new flood mitigation measures, improvements to existing pumping capacity at tunnels and other below‐grade  facilities should be  implemented. This  is essential to  limiting water exposure and ensuring rapid restoration of service. Improvements should include: 

• Installing new, higher‐capacity discharge lines at points of water accumulation. 

• Upsizing existing fixed pumps. 

• Installing adequate back‐up power sources to ensure that pumps continue to operate even in the event of a localized power outage. 

•  Ensuring  the  availability  of  high  capacity mobile  pumps  to  respond  to  unpredictable  flooding situations in a variety of locations. 

 

SOURCES: 

New York City Department of Design and Construction (2005) High Performance Infrastructure Guidelines. Available from:  http://www.nyc.gov/html/ddc/downloads/pdf/hpig.pdf  [accessed: 08/04/2014]  Ahlers, M. (01 Nov, 2012) "Huge Plugs could have Spared Subways from Flooding, Developers Say." [Online] CNN News.  Available from:  http://edition.cnn.com/2012/10/31/us/new‐york‐subway‐plugs/index.html [accessed: 20/05/2014]  

Page 129: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

129  

 

 

Since  the mid‐1980s  the West Coast Road  (WCR) has been undergoing  improvements, principally widening.  Soil  erosion  and  slope  stabilisation  are  significant  problems  along  the  WCR.  The predominant erosion process  is surface erosion on the cut slopes, fill slopes and soil disposal areas with a few pockets where weaker materials had failed in shallow slumps. 

Since  this  time  significant  bioengineering works  have  been  undertaken  to  address  the  particular nature of the erosion problems for different rock and soil types. In the case of slopes characterised by a matrix of volcanic boulders and clay, soil erosion was more pronounced and minor gullies had been formed on some of these cut slopes. There were also sections of the road where residual volcanic clays overlaying unweathered clay materials had become saturated and then failed as slumps.  

A variety of bioengineering  techniques had been used on  fill  slopes and  soil disposal  sites. These included fascines and live mini check dams of G.sepium, as well as extensive use of Bambusa vulgaris, V.Zizanioides  and P.purpureum.  For  example,  25‐45 degree  slopes were  extensively planted with Vetiveria zizianioides and  fascines of Pennisetum purpureum which were held  in place by pegs of Gliricidia sepium. At the base of the slope and above the drain, dry stone boulder toe walls had been constructed with V.zizanioides planted between the boulders. Other bioengineering techniques used include planting a wide variety of grass, shrub and tree species. 

Details on the areas where fascines should be used, the specific construction methods, and materials used are presented below. 

TECHNICAL – PLANNING AND DESIGN 

Fascines ‐ A fascine is created to form a dense hedge on the contour of the slope from materials which have  the  capacity  to propagate  from horizontally placed hardwood  cuttings.  Fascines  are  able  to withstand small surface slope movements and are strong in tension across the slope. 

Area of use 

1. Strengthen the sides of gullies and vulnerable areas below culvert outfalls 

2. Protect drains from becoming blocked by small boulders from above the slope 

3.  Rehabilitate spoil disposal sites 

4. Stabilise fill slopes   

5. Check shallow surface movements of < 300mm depth on cut slopes in soft materials 

Site Condition 

1. G.sepium  fascines are most effective on well drained granular soils or  loosely compacted debris materials 

2. Use on slope gradients up to 30 degrees. Can be constructed on steeper slopes but it is undesirable to have unmanaged trees on very steep slopes due to the extra surcharge on the slope and risk of topping. If used on steeper slopes the fascine should be coppiced or pollarded 

3. Pennisetum purpureum (Elephant grass) fascines can be used on steep slopes up to 45 degree 

Materials 

Gliricidia cutting diam. 60‐120mm,  length 1‐2m, ring‐barked at  intervals of 300‐500mm and 4m of Gliricidia cutting required per running meter of trench 

Construction steps 

CASE STUDY 13: Bioengineering (Fascines) for Effective Road Maintenance: West Coast 

Road, St Lucia 

Page 130: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

130  

1. Line out a contour along the slope. 

2. Prepare cuttings of G.sepium (see specification D). Ring‐bark at intervals of 300‐500mm to stimulate rooting along its length. Prepare bundles of 4‐5 and keep in a cool area until required. 

3. Prepare a 200mm deep trench on the contour of the slope. 

4. To conserve soil moisture, do not open up long areas of the trench before the cuttings are ready to be laid along the contour. 

5. Place the bundles of cuttings into the trench. Ensure that the separate bundles of cutting overlap. 

6. Roots will develop from the base end of each cutting and also where the cutting has been ring‐barked. In order to make the fascine as strong as possible these points of most vigorous rooting should not overlap. 

7. Cover the cuttings with a maximum of 100mm of soil. 

 

SOURCE:   

This case study draws together a case study and technical details from Clark, J., and Hellin, J. (1996) Bio‐engineering for effective road maintenance  in the Caribbean. Natural Resources  Institute (NRI), Chatham, UK. Available from: http://www.nri.org/publications/cat/landwater.htm [accessed: 20/05/2014]  

Page 131: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

131  

 

 

The  construction  of  the  M25  widening  project (Junctions 16 to 23 and Junctions 27 to 30 in July 2009) was  constructed  to  be  resilient  to  potential  slope erosion.  The  construction  of  embankments  used  a geotextile  structure  as  a  cost‐effective way  to  help prevent  erosion  of  the  motorway’s  steep embankments,  ensuring  maximum  stability  with minimal maintenance.  

The  details  and  advantages  of  this  technique  are 

highlighted below.  

 

 

TECHNICAL – PLANNING AND DESIGN 

A honeycombed geotextile system was installed on the surface of the constructed embankment. Once secured in place with pins, the cells were filled with a layer of top soil which was then hydro‐seeded. The strong and flexible cellular structure of the geotextile is designed to prevent the movement of the top soil layer, while allowing surface drainage needed for vegetation growth. 

This combined function of enabling vegetation growth while maximising stability allowed the geotextile to support the establishment of vegetation cover acting as natural anchor and protecting the embankment surface from weather erosion.  

Approximately 1,800m2 of geotextile was installed along the 6m high embankments. The geotextile used  in  this  example,  Terram  1B1,  consists  of  an  extruded  polymer  grid  core with  a  non‐woven geotextile  filter  thermally bonded on both sides. The core acts a vertical channel, directing excess ground water down into the main drainage system, while the filters allow the water to pass into the core but prevent soil from washing through. This Design Build Finance and Operate (DBFO) contract was  awarded by  the Highways Agency  to Connect Plus  and built by  the  contractors  Skanska  and Balfour Beatty. 

 SOURCE:  Terram (2014) Case Study: Geocells used to prevent embankment erosion: Slope Stabilisation and Drainage for the M25. Published at http://www.terram.com/projects/slope‐stabilisation‐and‐drainage‐for‐m25.html [accessed: 20/05/2014] 

CASE STUDY 14:  Embankment Slope Stabilisation and Drainage using Cellular Geotexticle: 

Junction 16‐23 M25 Widening Project, United Kingdom 

Source: Terram (PGI). 

Page 132: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

132  

 

 

Oregon, USA has been recognized as an active fault in the Cascadia subduction zone, which poses a major  geological  hazard.  Recent  research  by  the  U.S.  Geological  Survey  (USGS)  has  shown  that seismogenic landslides (that is, new slides initiated by earthquakes) tend to move a few inches to a few feet, while existing slides reactivated by earthquakes are more likely to move several yards, so it is important to focus on existing failures. At the time of writing there were 526 known unstable slopes directly affect US highway 101 alone. These could be reactivated and  fail catastrophically during a primary earthquake or following the resulting tsunami, or be destabilized to varying degrees, which could then be affected by aftershocks and restrict rescue and recovery efforts. In 2013, the Oregon Seismic Safety Policy Advisory Commission proposed new steps to improve resilience to the next big disaster event. This Oregon Resilience Plan emphasizes the resilient physical infrastructure needed to improve the resilience of infrastructure, communities, and the economy.  

The  following photos and diagrams describe some of  the most common slope  failure modes  from landslides  and  rockfalls  and  the  possible  mitigation  strategies  for  that  type  of  failure.  All  are reproduced with permission from ODOT. 

TECHNICAL – PLANNING AND DESIGN 

 

1. Structural mitigation of a landside: constructing a retaining wall 

 

 

 

 

 

 

2. Stabilising a landslide by constructing a shear key and buttress 

   

 

 

3. Stabilising a landslide by the Unloading method 

CASE STUDY 15: Reducing Landslide and Rockfall Risk due to Cascadia Earthquake and 

Tsunami Events: Oregon, US 

Page 133: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

133  

   

 

4. Flattening the slope decreases the “driving force” of an active slide 

   

 

5. Drainage is one of the most cost‐effective methods of landslide mitigation 

   

SOURCES: 

Oregon Seismic Safety Policy Advisory Commission (OSSPAC) (2013) The Oregon Resilience Plan: Reducing Risk and Improving Recovery for the Next Cascadia Earthquake and Tsunami ‐ Report to the 77th Legislative Assembly. OSSPAC . Salem, Oregon (02/2013) Available from: http://www.oregon.gov/OMD/OEM/osspac/docs/Oregon_Resilience_Plan_Final.pdf [accessed: 20/05/2014]  

Page 134: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

134  

In  1999 Hurricane  Floyd,  a Category  4  (in  fact wind  speeds were  just  2mph  short of  category  5) hurricane traversed the Bahamian Islands at peak strength causing significant damage to coastal roads and wooden jetties used to access water taxis and fishing boats plying between the various islands.  The majority of the Bahamian Islands are low lying coral islands rising at the coast to just a few metres above sea level.  To design new sea walls that would not be overtopped by wave action and sea surges associated with future hurricanes would have been both expensive and visually intrusive.  The latter was also considered undesirable in a tourist location.  Alternative innovative solutions were needed to address  these  constraints.   Of  the  solutions  investigated  two were  carried  forward  to detailed design and construction.   

In  choosing  the  solutions, note was  taken of  the  fact 

that during the most extreme weather events, namely 

further  hurricanes,  residents  would  be  advised  to 

remain  indoors  and  not  drive  their  cars.    Therefore 

vehicle traffic on the coast roads would be minimal.  It 

was decided that the walls should be designed for safe 

failure  and  to  deconstruct  under  continuous  and 

prolonged  overtopping.  The  defining  features  and 

advantages  of  this  design  are  highlighted  below. 

Bahamas Castellated Sea Wall, Source: IMC Worldwide 

TECHNIAL – PLANNING AND DESIGN  

‐ The wall would be over topped by wave action.  The top level of the blocks was coincident with the new  level of  the adjoining  road.   The  joint between  the  road and  the blocks would be  sealed by concrete so that water could not penetrate behind the blocks. Receding flood waters would not be contained behind the wall and thereby not impose an overturning force at the top of the structure. 

‐ The wall was designed  to deconstruct. Under  continuous  and prolonged overtopping under  an extreme event a  loss of part or whole of  the wall was accepted.   This design was already proven: following Hurricane Frances in 2004 a number of the walls were locally damaged but the blocks were readily recoverable from the beach and available for a wall’s reconstruction.   Therefore, the blocks were sized to have sufficient mass to resist wave forces without significant damage should they be dislodged  and  submerged.   They would  then  likely  remain on  the beach until  the weather event subsided.  The mass of the wall blocks was also sized to ensure it was able to be lifted by the typical construction equipment available on the islands. 

‐ Castellated Wall Upstands. These are typical RC retaining structures bedded on the rock.  The tops of the walls extended above the road level behind the wall.  Again the overall height was insufficient to prevent wave overtopping during the more extreme weather events.  Raising the walls was not an economic or environmental solution.  To restrict the inevitable but infrequent damage concrete slabs were used behind the walls.  To reduce the overturning effects of flood water retained behind the wall castellations were introduced in the wall upstand to break up the wave action yet allow the waters to recede readily from behind the walls used. 

 SOURCE: 

White, J.A.S. (2001) Hurricane Floyd Reconstruction. WSPimc. 

CASE  STUDY  16:  Sea  Wall  Reconstruction  following  Hurricane  Floyd  (1999)

Coast Roads on the Family Islands, Bahamas  

Page 135: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

135  

  

 

In  1999 Hurricane  Floyd,  a Category  4  (in  fact wind  speeds were  just  2mph  short of  category  5) hurricane traversed the Bahamian  Islands at peak strength causing significant damage occurred to coastal  roads and wooden  jetties used  to access water  taxis and  fishing boats plying between  the various  islands.   All piled and decked  jetties  lost  the majority of  their  timber decking and had  the timber piles dislodged. Video  footage of  the destruction of one  jetty shows  the waves  surging up underneath and either “popping” the planks into the air or physically lifting sections that were well fixed, thus lifting the piles. Until the timber decking gave way, vertical uplift loads had been imparted to the piles, which caused them to be  loosened or completed  lifted  from the sea bed, resulting  in further damage to the remaining structure of the jetty.  One option could have been to adopt a heavier construction or different materials which would have  increased resilience – but this approach was considered to be neither economic nor sustainable.   

   

Photos: Bahamas Timber Jetties, after Hurricane Floyd: Source: IMC Worldwide 

An alternative approach was utilised whereby the existing construction methods could be maintained, and at a  cheaper  cost. The defining  features of  this  resilient  construction method are highlighted below.  

TECHNICAL – PLANNING AND DESIGN 

‐ The  timber decking was designed as drop  in  removable panels.   These drop  in panels did not transmit the wave  impact forces to the surrounding structure and hence to the piles.   However, to avoid  the panels being dislodged by  larger waves  that were not associated with extreme weather events some form of breakaway fitting had to be designed to retain the panels in place until such time as  the  forces  imposed  on  the  panels  could  result  in  consequential  damage  to  the  surrounding structure.  A simple metal strip fuse was bolted at points around the underside of the drop in panel to retain it in place under normal load conditions. The fuse had to be designed to fail at a suitable load.  The design used was a  simple galvanised  steel  strip designed  to  fail  in bending at a defined  load equivalent to what was deemed an unacceptable uplift force. 

The photograph (below on left‐side) illustrates that “Lift‐out” deck panels removed and stacked ready to be stored safely ashore. The photograph (below on the right‐side) shows that fixed deck panels at pile locations for stability with a typical “pop‐out”/”lift‐out” panel placed ready for fixing. 

 

CASE STUDY 17: Reconstruction of Timber Jetties following Hurricane Floyd (1999): Family 

Islands, Bahamas 

Page 136: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

136  

   

Photos: Bahamas Timber Jetties, after reconstruction (Source: IMC Worldwide) 

OPERATIONS AND MAINTENANCE 

‐ Capacity Building. One concern was future replacement of the fuses. While the Works Department knew this was important there still a concern that this information might be lost by changing personnel and/or not cascade down  to  the  relevant persons  in charge on  the  islands. Without  this  retained  institutional memory ‘failure’ of the panels could lead to engineers or others “making sure it does not happen again” by fixing the panels rigidly in place or using unsuitable stronger fuses. Sufficient attention and funding for capacity building is therefore crucial for ongoing resilience. 

Post‐disaster performance of drop  in panels:  In 2004, around three years after these  jetties were reconstructed,  as  set  out  below,  the  Bahamas was  again  hit  by Hurricane  Frances,  a  Category  4 hurricane.  Many of the jetties lost their drop in panels, but these were recovered. The jetties were quickly restored by re‐inserting the salvaged panels and replacing those  lost using  locally available materials, which was particularly important on the more remote islands. 

SOURCE:  

White, J.A.S. (2001‐03) Hurricane Floyd Reconstruction. WSPimc. 

Page 137: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

137  

 

 

 

The reconstruction of Japan’s transport infrastructure after the Great East Japan Earthquake was more efficient and rapid than the Kobe earthquake in 1995. Following the 1995 quake it took over a year and a half for highway reconstruction and 82 days for the bullet train infrastructure to be repaired. In contrast, the 2011 damage to Japan’s road network was limited because of seismic retrofitting and rehabilitation work. The main highways and roads were repaired within the week and the bullet train service was resumed within 49 days. Also, four days after the disaster fourteen ports were entirely or partially usable and the affected airport reopened for emergency services. This rapid re‐opening of critical transport infrastructure helped to facilitate effective relief activities in the area. (World Bank Institute, 2012). 

 

 

 

 

 

 

 

 

 

 

Steps  in  infrastructure rehabilitation, Source: World Bank  Institute (2012) Knowledge Notes, Cluster 4: Recovery planning (page 6) 

Highlighted below are a selection of  the defining  features of  Japan’s emergency and post‐disaster governance structures, financial arrangements, emergency procedures and operations mechanisms which facilitated rapid and efficient recovery after the 2011 earthquake. The seismic design features and early warning systems that limited railway damage are also described in detail. Additionally, some lessons that emerged from the EEFIT field mission to Japan two years later are covered. 

POLICIES, INSTITUTIONS AND PROCESSES 

‐ Emergency headquarters. The Ministry of Land,  Infrastructure, Transport and Tourism  set up  its emergency headquarters about 30 minutes after the quake.  

‐ Pre‐disaster agreements with the private sector. An emergency agreement has been in effect since 2006 in Japan between the GSI, an agency under Japan’s Ministry of Land, Infrastructure, Transport and Tourism, and APA, which has a shortlist of 94 member companies best suited  for carrying out surveys following a disaster. Shortlisted companies agree to keep resources available for immediate mobilisation. This EA allows GSI and APA to work out details in advance including emergency contact information,  necessary  technical  specifications  and  shorthand methods  for  communication,  all  of which are regularly  revised and updated. APA members annually  register their  interest  to  join  the 

CASE STUDY 18: Fast Recovery and Resilient Rail Reconstruction following Great East 

Japan Earthquake (2011): Japan 

Page 138: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

138  

shortlist.  In the aftermath of a disaster APA will recommend companies at the request of GSI, who then enter  into a contract with this recommended company/companies on a fast track sole source contract basis (UNISDR, 2013). 

‐  Established  coordinating  bodies  to  harmonise  reconstruction  solutions.  The  Ishinomaki  City Recovery and Community Development Council’s role was to coordinate the various project managers and agencies dealing with  land use, structural engineering solutions etc. to explore and harmonise recovery options. There is otherwise a tendency for agencies to provide a quick response by remaining within the scope of their authority (EEFIT, 2013). 

‐  Pre‐arranged  twinning  arrangements  between  localities.  Twinning  arrangements  were  pre‐arranged between localities in disaster‐affected areas and their counterparts in unaffected areas to deal with emergencies. Local governments suffered serious damage to their office facilities, computer services were damaged, data lost, and many lost their public officials (221 died or remained missing in 17 municipalities  in the three hardest hit prefectures). Other prefectures and municipalities took the initiative to send their own public officials to help – around 79, 000 in capacities ranging from civil engineering, urban planning to social work and finance were dispatched from all over Japan until the end of 2011.  

‐ ‘Like for  like’ reconstruction principles versus ‘betterment/resilient’ principles. There have been some issues regarding incorporating new recommendations into newly constructed defences as the disaster  law  in Japan says  it  is a principle to replace structures  ‘like for  like’, which  in controversial cases may not be the  most effective solution’. (EEFIT 2013: 58) 

 

FINANCIAL ARRANGEMENTS AND INCENTIVES 

‐ Flexible budget arrangements expedited project implementation. Within 10 days of the disasters local governments reported their  infrastructure damage to the national government and request a national subsidy. The national government conducts a disaster assessment within 2 months of the disaster and approves the subsidy. Even before applying for the subsidy local governments can begin implementing their projects.  

The  national  governments  subsidises  two‐thirds  of  the  project  costs,  and  much  of  the  local government’s share is covered by national tax revenues. Thus, local governments actually cover only 1.7 percent of the costs at most.  Japan implements a special corporate tax for reconstruction and a special  income tax, the government also enforces pay cuts  for national public employees and asks local governments to cut salaries. It additionally issues reconstruction bonds and establishes a special account for reconstruction.  

‐ Civil engineering structures are covered by insurance in Japan, up to a maximum payout limit. 

 

OPERATIONS AND MAINTENANCE 

‐ Identified and prioritised the clearing of critical access routes. The first priority was to open up the 15 eastward access routes, which were cleared within four days. 13 days after the disaster the main expressway was open to general traffic. Operation toothcomb allowed for the quick rehabilitation of roads following the disaster. All the debris was cleared on 16 routes stretching out from various points on the major north‐south artery and reaching east to the coastal areas worst hit by the tsunami. 

‐  Coordinated  to  address  labour  shortages  in  a  post  disaster  situation. A  shortage  of  labour  in October 2011 was  jeopardizing projects,  the MLIT  thus organised  the  ‘Liaison Council  for Smooth Execution of Recovery and Reconstruction Projects’ with members of the state, Iwate, Migyagi and Fukushima prefectures, Sendai city and Japan Federation of Construction Contractors and National Construction Contractors Association. In 2012 the following steps were taken: (1) labour unit costs for 

Page 139: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

139  

designing public projects were revised to reflect current labour cost levels and (2) lead engineers were allowed to cover multiple projects, as long as they were related and close to each other. (White Paper on Land, Infrastructure, Transport and Tourism in Japan, 2011) 

‐ Develop land registers. The development of land registers was a key lesson emerging form the March 11th earthquake to clarify boundary disputes in the reconstruction process. 

 

TECHNICAL – PLANNING AND DESIGN 

Japan’s seismometer along with the quakeproof structures and anti‐derailing systems undertaken 

after 1995 and 2004 earthquakes, were critical in avoiding critical damage and accidents. 

Anti‐derailing  systems  for  railways  ‐  Technology  to  prevent  derailment  and  deviation  during  an earthquake, comprised derailment prevention guards which were  installed on the  inside of rails  in high risk areas, including high speed points, to prevent rocking derailment. Other measures included “deviation prevention stoppers” installed in the centre of Shinkansen (high speed train) rolling stock bogies. The anti‐derailing guard rail is directly fixed onto the tie in parallel to the rail to ensure that the wheel on one side always remains on the rail. The guard rail can also easily be turned over to the centre of the rack for maintenance work. (Morimura, 2011). 

The top figure shows how rocking derailment occurs in an eathquake, and the occurrence of lateral wheel dispalcement (1) and wheel uplifting (2). The bottom figure shows how anti-derailing guard rails at point (4) prevent derailment. (figure adapted from Morimura, 2011)

‐ Seismically reinforced railways and surrounding infrastructure 

This included the seismic reinforcement of columns of elevated rail structures, taking into account the latest predicted ground motion data (from the Japanese government). 

Following the Great East Japan Earthquake (2011), surveys of railway viaducts and bridges found that this  seismic  reinforcement  undertaken  before  the  earthquake  had  largely  been  effective  (where subject to seismic loads and not affected by the Tsunami – see JCSE, 2011). This validated the design approach to improve ductility and not strength.  

Significant  flexural damage  to  columns was  still noted where  seismic  reinforcement against  shear failure had been carried out, but where columns with spiral bars at the column hinge were used (in accordance with new seismic standards) to provide a very high deformation capacity, no extensive 

Page 140: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

140  

damage was found, aside from flexural cracks. Also columns which had been seismically reinforced with steel casings were undamaged. 

Bridge piers and columns without previous seismic reinforcement did suffer damage and it was also found  that  pre‐tensioned  pre‐cast  catenary  poles  did  not  perform  well,  suffering  damage  and breakage  and  the  subsequent  repairs  to  the  electrical  system were  the  biggest  obstacles  to  the resumption of operations. 

Whilst  seismic  reinforcement measures  saved  railways  from  the worst damage and not one  train passenger died the day of the earthquake, Kimitoshi Sakai, earthquake and structural engineer at the Railway Technical Research  Institute wrote  in  the Railway Technology Avalanche magazine  that a common standard of seismic countermeasures should be introduced. Measures introduced after the earthquakes in 1995 and 2004 were conducted independently of each other. With a national system, however, appropriate seismic countermeasures could be chosen according to the area’s seismicity, ground conditions, structural conditions and level of traffic. (Fischer, 2011). 

 SOURCES:  World Bank Institute (2012) Knowledge Notes, Cluster 4: Recovery planning. Available from http://wbi.worldbank.org/wbi/content/knowledge‐notes‐cluster‐4‐recovery‐planning [accessed: 20/05/2014]  Fischer, E. (2011) How Japan’s Rail Network Survived the Earthquake. [Online] Available from: http://www.railway‐technology.com/features/feature122751 [accessed: 20/05/2014]  Morimura, T. (2011) Introduction of safe and efficient N700‐1 bullet system and countermeasures against derailment during earthquake.  Available from: http://www.japantransport.com/seminar/JRCentral0111.pdf  [accessed: 20/05/2014]  UNISDR (2013) Business and Disaster Risk Reduction: Good Practices and Case Studies. Available from: http://www.unisdr.org/files/33428_334285essentialscasestudies.pdf [accessed: 20/05/2014]  EEFIT (2011) Recovery Two Years after the 2011 Tohoku Earthquake and Tsunami: A Return Mission Report by EEFIT. Available from: http://www.istructe.org/webtest/files/23/23e209f3‐bb39‐42cc‐a5e5‐844100afb938.pdf [accessed: 20/05/2014]  Central Japan Railway Company (2013) Annual Report 2013.  Tokyo: Central Japan Railway Company. [Online] Available from: http://english.jr‐central.co.jp/company/ir/annualreport/_pdf/annualreport2013.pdf [accessed: 20/05/2014]  Joint  Survey  Team  of  the  JSCE  Concrete  and  Structural  Engineering  Committees (2011) Report on Damage to (Civil Engineering) Concrete Structures in Fukushima Prefecture (First Report) (on the damage caused by the Great East Japan Earthquake). [Online] Available from: http://www.jsce.or.jp/committee/concrete/e/newsletter/newsletter25/index_files/JSCEreport_damage_inFukushima.pdf [accessed: 20/05/2014]  

Page 141: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

141  

 

 

An earthquake magnitude 9.0 Mw; depth 32km; location 150km offshore, representing a probability of 1 in 1,000 year return period hit Japan in 2011. The maximum tsunami inundation height was 9.5m and the range of the vertical displacements (subsidence) varied from ‐20cm to ‐84cm. 

An evaluation of the performance of Japan’s structures under tsunami loads is found in a report by Chock, et al., (2013) Key lessons they identified learnt from this event were that: 

Probabilistic analyses in addition to historical reviews are required to identify acceptable risk based design criteria to estimate the maximum credible or considered tsunami.  

There  is  also  a  need  to  estimate  flow  depths  and  velocities  in  order  to  estimate  the hydrodynamic forces applied to structures during a tsunami. Velocities at the leading edge of swell at this event have been estimated to be 12.3 to 13.4m/s.  

A  tsunami  accumulates  an  enormous  amount  of  debris  consisting  of  vegetation,  building materials, automobiles, boats, ships and even entire buildings. The resulting debris flow will impact structures in the paths of the tsunami. Timber structures appear to be most susceptible to debris impact damage, but individual members in concrete and steel framed structures can also suffer damage or even failure. The debris damage from floating ships can be significant.  

The key points below are extracted from the report by Chock et al., (2013) and provide further detail on the performance of Japan’s infrastructure under tsunami load. 

 

TECHNICAL – PLANNING AND DESIGN 

‐ When assessing/retrofitting/designing any transport systems with strategic bridges  in  locations exposed to tsunamis, there is a need to take into account that any exposed areas of a bridge can result in the entire structure being subject to large lateral loads.  

Most  post‐tsunami  bridge  failures  relate  to  connection  details of  how  the  structural  load  path passes between decks, piers, abutments to the foundations. This is illustrated as follows. Consider where a pier top connection is designed not to fail, and where the assessed theoretical tsunami flow velocity to cause failure of the piers is identified to be 3.9m/s. In contrast, if the pier connection has been designed to fail, and the bridge deck thereby removed as a consequence of a tsunami  lateral load impact, then the same piers would withstand flow velocities of up to 11.5 m/s prior to flexural failure. For anticipated  tsunami  flows, bridge decks must  therefore be designed  for hydrodynamic lateral loads in addition to both hydrostatic and hydrodynamic uplift.  

All rail bridges should be designed for appropriate seismic impacts, to avoid any major disruptions. The failure of a single railway bridge can result in failure of an entire rail line serving many communities along a coastline.   This  is particularly  important as there  is no easy way to replace a  failed railway bridge with  a  temporary  structure, because of  grade  and  alignment  requirements,  as well  as  the magnitude of  rail  traffic  loading.  (In  contrast,  alternate  routes,  temporary by‐pass  roadways,  and temporary steel‐truss bridges can be built rapidly where a road has been destroyed after an event, providing access to cut‐off communities.) 

Ports and harbour design should be designed for ‘Safe Failure’ to prevent total  loss of sections of piers, wharf walls, and their tiebacks.  For example, while pile‐supported wharves (quays) are seldom damaged,  non‐pile  supported  wharves  can  be  subject  to  settlement  of  backfill  due  to  seismic consolidation of loose soils or liquefaction with lateral spreading. Bulkhead walls (quay walls) can be subject  to  lateral  failure  due  to  soil  erosion  or  loss  of  restraint  stiffness  due  to  scour  at  tieback anchorages. Also, scour and lifting or undermining of even very thick slab wharf pavements can occur. 

CASE STUDY 19: Review of Port, Harbour and Bridge Design following the Great East 

Japan Earthquake and Tsunami (2011): Japan 

Page 142: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

142  

Design Sea Walls for ‘Safe Failure’ (see separate case study) by ensuring they can overtop without failure. Seawalls which do not overtop tend to perform without failure in areas with lesser tsunami heights, but where overtopping occurs, damage can be extensive, generating massive debris which can travel with inflow. Low seawalls remaining intact with adequate foundation systems can still be effective in slowing flow velocities/momentum. Similarly, Tetra‐pod armour units or similar may be moved but normally survive and maintain function during a disaster event. In contrast, concrete lined compacted earth barriers are generally not effective and failure mechanisms numerous.  

 

SOURCE: 

Chock, G., Robertson I., Kriebel, D., Francis, M., and Nistor, L. (2013) Tohoku, Japan, Earthquake and Tsunami of 2011: Performance of Structures under Tsunami Loads. American Society of Civil Engineers.  Available from: http://www.asce.org/Product.aspx?ID=2147487569&ProductID=187776013 [accessed: 20/05/2014]  

Page 143: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

143  

 

 

 

The Oregon legislature, noting the likely devastating impact of a Cascadia earthquake, passed a House Resolution charging the Oregon Seismic Safety Policy Advisory Commission  to develop a resilience plan.  The Oregon  Resilience  Plan  defined  the  resilience  goal  of  a  transportation  network  to  first facilitate immediate emergency response, and second restore general mobility within specified time periods.  

In order to establish resilience goals the task group first assessed the transportation network in four geographical areas, and then established resilience targets for all transportation facilities. It prioritised highways in three tiers: Tier 1 –small backbone system allowing access to vulnerable regions, major population centres and areas vital for rescue and recovery; Tier 2 – larger network that provides access to most  urban  areas  and  restores major  commercial  operations;  and  tier  3  –  a more  complete transportation network.  Resilience targets were then established at three levels: 

•  Minimal: minimal service is restored primarily for emergency responders, repair crews, food and critical supplies 

•  Functional – sufficient to get the economy moving but there may be  fewer  lanes  in use, some weight restrictions and lower speed limits 

•  Operational – restoration is up to 90% of capacity and it is sufficient to allow people to commute to school and to work.  

An extract from Oregon’s resilience assessment is found below, highlighting the desired performance targets and current recovery conditions.  On the basis of this assessment the Task Force recommended a multi modal plan that strengthened particularly critical components of the transportation system –highways, air, rail, ports and local access roads – in phased steps so that mobility could be increased in the most cost effective way. 

CASE STUDY 20: Oregon’s Resilience Plan for Infrastructure – Prioritising and Categorising 

Lifeline Routes 

Page 144: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

144  

 

SOURCE:  

Oregon Seismic Safety Policy Advisory Commission (OSSPAC) (2013) The Oregon Resilience Plan: Reducing Risk and Improving Recovery for the Next Cascadia Earthquake and Tsunami ‐ Report to the 77th Legislative Assembly. OSSPAC . Salem, Oregon (02/2013) Available from: http://www.oregon.gov/OMD/OEM/osspac/docs/Oregon_Resilience_Plan_Final.pdf [accessed: 20/05/2014]  

Page 145: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

145  

 

 

When the Great East Japan Earthquake struck in 2011 there was enormous demand for flights as all land transport links were cut off over an extensive area and the delivery of emergency relief as well as  the  transportation of medical and  relief  teams and evacuees were being  seriously  impeded. A UNISDR (2013) report on Private Sector Strengths Applied: Good Practices in Disaster Risk Reduction in Japan included a case study on Japan Airlines Co. Ltd.’s efficient response to the earthquake. The key points from this report are summarised below. 

OPERATIONS AND MAINTENANCE 

‐ Relaxed regulatory controls. The aviation authorities temporarily relaxed regulatory controls and Japan Airlines Co., Ltd (JAL Group) cancelled and adjusted the aircraft size of regular flights to free up large aircraft for the Tohoku region that was hit, which involved re‐coordinating plane assignments on a daily basis.  

‐ Established procedures to mobilise and reallocate personnel to disaster zones. Additionally, cabin attendants, ground staff, airport equipment and machinery were sent to airports all over Tohoku to handle the extra flights. In the first 20 days JAL flew an extra 561 flights to the disaster affected areas, with a seat occupancy rate of 84.4%. 

‐  Created  a  disaster  contingency  manual  and  put  emergency  procedures  in  place.  The  JAL immediately activated the procedures in its regularly revised Disaster Contingency Manual and set up a disaster response headquarters with the CEO at its head. Within ten minutes of the earthquake JAL’s operations control centre (OCC) cancelled flights bound for Sendai and Haneda where reports were coming  in that a tsunami was imminent, instructed Sendai Airport to direct passengers and staff to safer areas  in  the airport and divert circling aircraft  to other airports  in  the area. Departments  in charge of flight route scheduling and equipment management were amalgamated so decisions could be based on demand assessments and put in place quickly.  

‐ Introduced redundancy into the emergency operating system. After the disaster JAL established a procedure in case Tokyo suffered a major earthquake as the OCC which controls all flights is located in Tokyo. In this case JAL’s Osaka Airport branch would be temporarily responsible until another OCC was established.  

‐ Improved the reliability of emergency communication. A key lesson from the disaster was the need to establish a reliable means of communication ‐ In coordinating new flight schedules it is necessary to obtain  information quickly, and while most communications were down public  telephones with emergency batteries and telephones with backup power sources were still operational. 

‐ Strong organisational ethos and staff  identity. One of JAL’s corporate philosophies  is  ‘each of us makes JAL what it is’. This encouraged decisive actions and decision making in the field. 

SOURCE: 

UNISDR (2013) Private Sector Strengths Applied: Good practices in disaster risk reduction from Japan. Available from: http://www.unisdr.org/files/33594_privatesectorstrengthsapplied2013di.pdf [accessed: 20/05/2014]  

CASE STUDY 21: Great East Japan Earthquake and Aviation – Disasters and the Private 

Sector 

Page 146: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

146  

 

 

 In the UK in 2014 severe winter storms damaged the Great Western Main Line (originally built in 1846), the main rail link to the west of the country.  The total resulting damage was variable across a 525m length but included 80m of ground, including track bed and supporting seawall being washed away, leaving tracks suspended in mid‐air. Damage was also caused to the parapet wall, which was critical in protecting the track ballast. There were no injuries, as no trains were running during the events.   

 

 

 

 

 

Priority was given to the emergency response phase after both storms, due to the high importance of keeping with vital rail link open. The overall target for resumption of rail services was within six weeks of the initial damage. The following key elements enabled this to take place: 

OPERATIONS AND MAINTENANCE 

‐ Effective Early Warning System: the initial storm was forecasted and the rail line was closed to trains and staff relocated to safe distances. The rail operator had good weather forecasting systems in place and trains were stopped from running and rail staff were relocated and no human losses occurred. 

‐ A  comprehensive damage  inspection was  carried  out  identifying  secondary dangers  (unstable slopes away from the main damage area) and to identify the critical path for reconstruction works: Following the storm, the damage was assessed with defects given a red, amber, green classification, depending on their importance for getting the railway open again.  The priority action was to protect the existing ground and assets from further damage.   This was achieved by removing the damaged track and protecting the communication cables running adjacent to the track, including rail signalling and the Global Crossing Cable connection to the USA. Work also progressed on building a cable bridge so that services and signalling equipment could pass over the rail bed to allow reconnection of cabling.  

This  inspection also  identified  that 20,000  tonnes of cliff  face near Teignmouth has  sheared away above the railway. As a result the slope above the track needed to be stabilised before the track could safely reopen.  The sheared cliff face was removed using ‘Spidermax’, a specialised piece of kit that allows mechanical work to reprofile the top of the cliff edge. An additional technique was to use a high‐pressure water cannon to dislodge fallen earth. 

‐  Emergency  Works  to  Prevent  Further  Damage:  Innovative  use  of  shipping  containers  as  a temporary sea defence to quickly preventing damage from a secondary storm. The final part of the 

CASE STUDY 22: Temporary Stabilisation and Future Redundancy Need Identified 

following Wave Damage to Coastal Rail Infrastructure (2014): Dawlish, United Kingdom 

Source: Smalljim, This file is licensed under the 

Creative Commons Attribution‐Share Alike 3.0 

Unported licence. Date 7 February 2014. 

Source: Geof Sheppard, This file is licensed under 

the Creative Commons Attribution‐Share Alike 3.0 

Unported licence. Date 12 April 2014. 

Page 147: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

147  

emergency works was to further protect the damaged area from wave action with the use of 11 ten‐tonne shipping containers welded together, forming a temporary breakwater. These were filled with sand and stone and placed in front of the damaged area. At low tides, sprayed concrete was also used to protect the exposed scar from further damage. Evidence of success: Before the main concrete pour took  place  another  storm  hit  the  affected  area,  and  caused  further  damage,  but  the  temporary breakwater  proved  effective  despite  sustaining  damage.  Following  the  second  storm,  additional shipping containers were put in place to protect the new damage to the seawall.   

 

TECHNICAL – PLANNING AND DESIGN 

Post Disaster Reconstruction Works: Site specific standard construction solution – was enabled by the temporary sea defence. Following the temporary repair, 5,000m3 of insitu concrete was used to reinstate  the  void. Walls  were  tied  into  the  foundations  with  drilled  and  grouted  steel  bars.  A reinforced concrete strip footing was poured on the rear of the mass concrete formation.  Two sets of pre‐cast vehicle barriers (‘L‐shaped’ units) were used. This enabled the rear row acted as a retaining wall and the front row acting as a permanent shutter for the track bed channel and to contain the track ballast.  

Long Term Strategic Planning for Redundancy. Prior to this failure, over £10 million had been invested in sea defences in this area, but the level of damage was still unprecedented. With rising sea levels and  increased  frequency of  storm events  increasing with  climate  change  the  rail operator  is now reconsidering alternative options to re‐route trains inland in the longer term. This would also reduce redundancy  into the transport network so the strategic  link from the capital, London to the South‐West of England is maintained in the case of future incident, or maintenance works. 

 

 

SOURCES: 

Pitcher, G. (20/02/2014) Dawlish rail washout triggers call for inland lines.  In: New Civil Engineer, 20 February 2014, p.5.  EMAP.  Masters, J. (05/03/2014) Concrete storm repairs: plugging the storm breach in Dawlish. In: New Civil Engineer, 05/03/2014, p.18. EMAP.  https://www.networkrail.co.uk/timetables‐and‐travel/storm‐damage/dawlish/  

 

 

Page 148: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

148  

 

 

In September 2011, following two major earthquakes in Christchurch on 4th September 2010 and 22nd February 2011, the Stronger Christchurch  Infrastructure Rebuild Team  (SCIRT) was established and tasked with  repairing  and  reconstructing  the horizontal  infrastructure  ‐  pipes, wastewater,  storm water, roads, walls and road structures. SCIRT is a mixed team of public and private organisations that have agreed to participate in an alliance contract. The SCIRT alliance involves three owner participants (the  three  public  entities)  –  Christchurch  City  Council  (funder  and  asset  owner),  New  Zealand Transport Authority (funder and asset owner), and Canterbury Earthquake Recovery Authority (funder only). It has three functional layers – a governance framework, an integrated services team (which has asset assessment and design functions) and five delivery teams (see diagram below).  

A selection of defining aspects of the governance and operation of SCIRT are outlined below, providing points  of  learning  for  future  recovery models.  Further  detail  regarding  challenges  in  the  specific context of SCIRT’s governance and operation be  found  in  the New Zealand’s Office of  the Auditor General report: Effectiveness and efficiency of arrangements to repair pipes and roads in Christchurch (2013) and MacCaskill (2014). 

 

 

Source: Rod Cameron, SCIRT 

 

 

 

 

CASE STUDY 23: Post Disaster Institutional and Operational Arrangements Following 

Christchurch Earthquake (2011): South Island, New Zealand 

Page 149: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

149  

POLICIES, INSTITUTIONS AND PROCESSES 

‐ Flexibility and collaboration – managing uncertainty. The key aspect of the alliance arrangement is the emphasis on collaborative approach between the owner and non‐owner participants. Given the scale of damage following the second major earthquake in February, there was a realization that the more  traditional  contracting  arrangement  set  up  after  the  September  earthquake was  no  longer appropriate for the reconstruction of horizontal  infrastructure.   The alliance contract  is based on a shared pain‐gain  financial arrangement amongst  the  stakeholders.  It  is  suited  to  the post‐disaster context where the exact scope of works is uncertain and condition of underground assets needs to be clarified  as  work  progressed, with  on‐going  risk  of  further  earthquakes  and with  the  significant demand for design and construction resources. 

‐ Clear roles and responsibilities.   The 2013 Audit report criticized CERA for not providing effective leadership and strategic direction to SCIRT. It highlighted that roles and responsibilities are sometimes blurred. This can create ambiguity over how decisions are made and who makes these decisions. An aspect particular to the SCIRT approach is that there are three owner participant organizations that bring  different  views  to  the  table.  However,  involvement  of  multiple  organizations  in  the reconstruction of infrastructure is not unusual in a recovery situation. 

‐ Delayed  land use decisions may  impact progress of  infrastructure repair. The 2013 Audit report pointed  out  that  SCIRT’s  rapid  pace  of  operation was misaligned with  the  slower  progression  of strategic planning  for the wider rebuild. For example, there  is a significant area of residential red‐zoned land in Christchurch, which is deemed to be at high risk of future earthquake‐related damage (such as liquefaction and rockfall) and is considered uneconomical to repair on an individual property basis. CERA  is  responsible  for deciding  the  future use of  this  land.  There  is  currently no decision regarding this future use. This, and the associated uncertainty around flood defence options (which are under consideration with the Council), could delay repair works under SCIRT’s remit. 

‐ Defining scope of repair works requires negotiation and trade‐offs.  The SCIRT Alliance Agreement defines  the desired  level of  repair  for horizontal  infrastructure as “a standard and  level of service comparable with that which existed immediately prior to the September 2010 earthquake”.  However, it was difficult to define the pre‐earthquake levels of service in a way that helps to inform asset rebuild or repair decisions. There has also been an effort to introduce improvements, such as increasing pipe capacity. Introducing improvements raises the level of service, but also raises the cost and requires extra funding. 

The starting point for the reconstruction was “like for like” replacement of damaged infrastructure. However,  this  is  not  necessarily  a  straightforward  decision.  Design  using modern materials  and standards inherently introduce resilience to a network that was badly damaged. However, there is a funding constraint, which means  that engineers have  to carefully consider how  to best spend  the available  funds across the different assets, and across  the city,  in a way  that  leaves a manageable legacy for the Council. Decisions tend to be more difficult in areas of low to moderate damage, where there  is potentially some operational  life  left  in the asset, compared to highly damaged areas that clearly need rebuilding as opposed to patch‐repair.* 

A key document for guiding replacement and repair decisions is the Infrastructure Recovery Technical Standards and Guidelines, which was developed after the earthquakes. This document provides the basic  framework  for  a  consistent  approach  for  determining  appropriate  treatment  options.  This document has evolved throughout the recovery effort. There has also been a mechanism in place to challenge this guidance, or to apply for extra funding where opportunities for improvement have been identified.  The  design  engineer  creates  a  case  and  a  “Scope  and  Standards  Committee”,  with representatives  from  each  of  the  owner  participant  organizations,  are  the  final  arbiter  on  these decisions (discussed further in MacAskill, K., (2014) 

Page 150: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

150  

It took some time to negotiate funding arrangements between the client organisations. An official cost sharing agreement was signed in June 2013. However, there is ongoing demand for funding from many aspects of post‐disaster recovery, requiring funder attention to a prioritisation process to balance the various demands and agree on the funding to be applied to the horizontal infrastructure. 

 SOURCES:  New Zealand’s Controller and Auditor General (2013) Audit Report. [Online] Available from:  http://www.oag.govt.nz/2013/scirt [accessed: 20/05/2014]  Christchurch City Council (2011) Christchurch Infrastructure Rebuild Plan: How we plan to fix our 

earthquake damaged roads and underground services.  Christchurch, New Zealand. Available from: http://resources.ccc.govt.nz/files/canterburyearthquake/scirt‐infrastructure‐rebuild‐plan_web.pdf [accessed: 20/05/2014]  MacAskill, K. A. (2014) Postdisaster Reconstruction of Horizontal Infrastructure Systems: A Review of the Christchurch Rebuild. In: Randy R. Rapp & William Harland (Eds.), The Proceedings of the 10th International Conference of the International Institute for Infrastructure Resilience and Reconstruction (I3R2) 20‐22 May 2014. (pp. 189‐195). West Lafayette, Indiana: Purdue University. Available from: http://docs.lib.purdue.edu/i3r2/2014/rrr/8/ [accessed: 20/05/2014]  

Information was also kindly provided by Rod Cameron (Value Manager at SCIRT) and Kristen MacAskill (PhD student examining decision making in post-disaster urban infrastructure reconstruction activities at the Centre for Sustainable Development, Cambridge University)

Page 151: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

Disaster Risk Management in the Transport Sector 

BIBLIOGRAPHY 

151  

 

 

The Hurricane  Sandy Rebuilding Task  Force was established on December 7th 2016  charged with coordinating  federal  interagency  efforts.  It was  chaired  by  the  Secretary  of  Housing  and  Urban Development  (HUD)  and  including members  from  27  different  federal  executive  branch  agencies (including  transportation) and White House offices. The Task Force was  supported by an advisory group composed of many state, tribal and local elected leaders from the most severely impacted cities and towns. The Task Force’s  functions were to coordinate rebuilding efforts,  ‘identify and work to remove obstacles  to  resilient  rebuilding  in  a manner  that  addresses existing  and  future  risks  and vulnerabilities and promotes the long‐term sustainability of communities and ecosystems’ (Executive Order 13632 in Hurricane Rebuilding Strategy: 167) 

The Task Force’s primary  task was  to  issue  the Hurricane Sandy Rebuilding Strategy which  lists 69 guidelines for the recovery, many of which were already adopted by the time  it was published. As required,  the Task Force  terminated 60 days after  the publication of  this strategy and  the Federal Emergency Management Agency assumed the majority of the coordinating role, working with HUD and other lead agencies for the Recovery Support Functions established by National Disaster Recovery Framework.  

A selection of some of the guidelines from the Task Force’s report (2013) ‘Hurricane Sandy Rebuilding Strategy: Stronger Communities, A Resilient Region’ are summarised below. 

POLICIES, INSTITUTIONS AND PROCESSES 

Data sharing and accountability – the role of the Project Management Office  

The Task Force created PMO in January 2013 to serve as a data‐driven cross‐agency and help speed assistance to and maximise the efficient use of funds in the recovery process. The PMO worked closely with agencies, OMB, and the oversight community, such as the agency  Inspectors general and the Recovery Accountability  and  Transparency Boards  (RATB).  It was  also established  to  leverage  the lessons learnt from Hurricane Katrina and the best practices from ARRA. $50 billion in relief funding was provided and administered through more than 60 different programs. The PMO served as the central source of information about the progress and performance of this funding.  Its role was to: (1) promote the transparent use of  funds by developing  financial and performance updates that were accessible  to  the  public;  (2)  coordinate  matters  related  to  budget  execution  and  performance management  across  the  19  federal  agencies  funded  by  the  Sandy  Supplemental;  (3)  collect  and analyse agency  financial and performance data to understanding the progress of recovery; and (4) provide oversight support to RATB and Agency Inspectors General by providing data and information and bringing together agency stakeholders. The need for accountability and transparency emerged as a key lesson from Hurricane Katrina.(HUD, 2013: 153 – 15) 

 

FINANCIAL ARRANGEMENTS AND INCENTIVES 

‐ Transportation funding should be aligned with national policy goals ‐ Federal funding has included an interim final rule in its emergency relief program that the Federal Flood Risk Reduction Standard (best available flood hazard data plus one foot of freeboard) applies to the rebuilding of structures.  

The report also noted that new resilience grants will be based on the Transportation Investment Generating Economic Recovery (TIGER) program and incorporate the Infrastructure Resilience Guidelines and other resilience components to develop a specific program for the Sandy affected region. The goal will be to ensure public transit systems can perform their critical functions in the face of future disasters and impacts of climate change. (HUD, 2013: 71‐72) 

CASE STUDY 23: Sandy Task Force and Rebuilding Resilient Infrastructure 

Page 152: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

Disaster Risk Management in the Transport Sector 

BIBLIOGRAPHY 

152  

NOAA is also promoting the use of green infrastructure by providing financial support, information and tools and services for coastal communities. Coastal Resilient Networks grants will also support an economic assessment to analyse the different levels of inundation protection and benefits of shoreline rebuilding and restoration alternatives in the region (HUD, 2013: 73). 

 

OPERATIONS AND MAINTENANCE 

‐ Develop clear infrastructure resilience guidelines. 

Infrastructure Resilience Guidelines: Following the Sandy recovery Effort the Task Force created an interagency working group  that developed a  shared  set of Federal  resilience guidelines  to govern infrastructure investment. These 7 guidelines are: 

1) Adopt a science based, forward  looking comprehensive analysis that in the project design and selection includes an assessment of the following criteria: Public health and safety; direct and indirect economic impacts (financial and opportunity cost of losing infrastructure functions and services after a disaster); social impacts, environmental impacts; cascading impacts and interdependencies across communities and  infrastructure  sectors;  changes  to  climate and development patterns  that  could affect the project or communities; inherent risk and uncertainty; and monetisation of the impacts of alternative investment strategies.  

2) Select projects using transparent and inclusive decision processes: Apply a multi‐criteria decision analysis – including a cost‐benefit analysis –into funding selection and administration processes and share the decision criteria, evaluation process and findings with all stakeholders. 

3) Work with partners  across  all  levels of  governance,  as well  as  the private  sector  to promote regional  and  cross  jurisdictional  resilience  that  identifies  interdependencies,  shares  goals  and information. 

4) Monitor and evaluate the efficacy and fiscal sustainability of the program, taking  into account changing environmental conditions, development patterns and funding sources.  

5) Promote environmentally sustainable and innovative solutions 

6)  Implement  meaningful  financial  incentives  and/or  funding  requirements  to  promote  the incorporation of resilience and risk mitigation into infrastructure projects 

7) Adhere to resilient performance standards 

The  report  recommended  that  these  Infrastructure Resilience Guidelines be  adopted nationally (HUD, 2013: 49‐53) 

 

SOURCE: 

US Department of Housing and Urban Development (HUD), Hurricane Sandy Rebuilding Task Force (2013) Hurricane Sandy Rebuilding Strategy: Stronger Communities, A Resilient Region. [Online] Available from: http://portal.hud.gov/hudportal/documents/huddoc?id=hsrebuildingstrategy.pdf  [accessed: 07/04/2014]  

 

   

Page 153: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

Disaster Risk Management in the Transport Sector 

BIBLIOGRAPHY 

153  

 

Saturday 7 February 2009. Known as ‘Black Saturday’, numerous bushfires raged across the state of Victoria, killing 173 people, injuring 414 and affecting tens of thousands. It was one of Australia’s worst natural disasters. This  case  study  focusses on  the  recommendations made by a  royal  commission (2009  Victorian  Bushfires  Royal  Commission  Final  Report)  which  in  part  covered  transport infrastructure. The fires resulted from a culmination of extremely hot and dry weather and high wind speeds. Continuing fires, inaccessible roads and loss of power and telecommunications hindered relief efforts and interfered with communication and mobility. More than $1 million worth of damage was caused to rail infrastructure. A platform was destroyed as well as 4,200 sleepers and two rail bridges. Following repair works lines were fully operational nine days later. The fires also meant roads were closed for safety reasons.   

 

POLICIES, INSTITUTIONS AND PROCESSES Prior to the disaster the authorities were familiar with dealing with bushfires and tools and guidance where available to assess and manage the risk, but however there appeared to be a lack of a systematic approach and VicRoads were mandated by the Royal Commission to carry out detailed risk assessments for every road they were responsible for (see TECHNICAL – PLANNING AND DESIGN box). VicRoads consequently developed detailed these risk assessments based upon main objectives of roadside fire management,  which they identified as:  1. Prevent Fires on Roadsides 2. Contain Roadside Fires 3. Manage Safety of Users 4. Provide Control Lines (roads which can help provide a ‘fire break’ and provide good access for fire suppression 5. Recovery from Roadside Fires 

CASE STUDY 25: Wildfire: 2009 ‘Black Saturday’,  Wildfire, Australia  

TECHNICAL – PLANNING AND DESIGN  To meet the objectives outlined in the POLICIES, INSTITUTIONS AND PROCESSES section Vic Roads carried out the following: For Objectives 1 and 2 a likelihood /consequence assessment was carried out to determine fire risk for each road). The resulting VicRoads Bushfire Risk Maps (low, moderate, and high risk roads) are uploaded as GIS map, and provide a tool for maintenance of road verges and a planning tool for fire management including treatments.  Important likelihood factors include road category, history of ignitions and ability for fire to spread. Important consequence factors include human, economic, environment and cultural assets.  Objective 3 required an assessment of access/egress criteria and potential mitigation measures including vegetation management. It was recognised that it was not possible to ensure safe travel on roads during and after a bushfire, especially during the passage of the fire front. Risk maps of the road network, both arterial and municipal, are available and should be used in conjunction with the guideline. These maps can be found on the CFA DropBox  and an extract can be seen below.  The map goes through several validation processes including field inspections to ground truth it. Railway In order to cost savings and more consistent safe working practices, V/Line reports that they are  pushing towards the use of concrete rail sleepers. Whilst they are more expensive, they last longer and need less maintenance.   http://www.vline.com.au/pdf/publications/annualreports/annualreport08‐09.pdf 

Page 154: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

Disaster Risk Management in the Transport Sector 

BIBLIOGRAPHY 

154  

  

 Sources:  CFA (2001). Roadside Fire Management Guidelines. CFA, Melbourne. http://www.cfa.vic.gov.au/fm_files/attachments/Publications/roadside_guide.pdf  CFA (2010). Roadside Fire Management Works, guidelines and procedures. Country Fire  Authority, Melbourne.  (DSE & CFA, 2008). Guideline for Planning and Designing Fire Control Lines, DSE/CFA, Melbourne.  VBRC (2010). 2009 Victorian Bushfires Royal Commission Final Report. 2009. Victorian  Bushfires Royal Commission, Melbourne.  VicRoads (2013), Road Bushfire Risk Assessment Guideline and Risk Mapping Methodology. Melbourne. https://www.vicroads.vic.gov.au/business‐and‐industry/design‐and‐management/bushfire‐risk‐assessment‐guidelines  VicTrack (2007). Victorian Rail Industry Environmental Forum, Vegetation Management Guidelines for Rail Corridors. https://www.victrack.com.au/~/media/7d50aebf3cf44c81bd2d8251985dfae4.pdf    

OPERATIONS AND MAINTENANCE The Commission reported that five of the 15 fires were associated with the failure of electricity asset.  VicRoads was identified as a key stakeholder in identifying and mitigating the risks posted by trees on roadsides that could come into contact with electric power lines. See the Draft VicRoads Vegetation Management Plan for Electric Line Clearance (2012) for the management of trees around power lines. Early Warning Systems Following the Black Saturday event, the government with the support of major telecommunication companies, set up a SMS service in Victoria State to provide warnings of extreme fire danger. Whilst the system had initial limitations, further development work was promised by the government.  http://www.theage.com.au/national/victorians‐receive‐fire‐text‐warning‐20090302‐8mfq.html Other early detection systems It is useful to consider what approaches countries, other than Australia, have taken in terms of Early Warning Systems (EWS). However, none are identified as relating specifically to transport. Indonesia has an Early Warning System for Forest Fire Management in East Kalimantan, Indonesia based on a National Fire Danger Rating Index and, weather forecast, haze conditions, and hot spots.  The Mexico Fire Information System (Sistema de Información de Incendios Forestales) web site offers daily maps of fire weather and fire behavior potential. The European Union‐funded program, Sensor and Computing Infrastructure for Environmental Risks (SCIER), uses ground based sensors such as video cameras and hydro‐met instruments. The system models predicted effects of wildfires and generates detailed maps to manage the emergency http://www.scier.eu/Default.asp?Static=9.  Early Recognition System in Germany, Estonia, Mexico, Portugal, and Czech Republic. Tower‐based, automatic forest fire early recognition systems use optical scanning systems with automatic recognition of clouds by day and night.  

Page 155: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

Disaster Risk Management in the Transport Sector 

BIBLIOGRAPHY 

155  

 

 

A  flash  flood  is a surge of water usually along a river bed or dry gulley or urban street potentially causing  significant  damage,  erosion  and  loss  of  life.  Conducive  conditions  for  flash  floods  are mountainous  areas,  hilly  and  steep  slopes  which  act  as  a  highly  responsive  watershed,  and impermeable or saturated ground.  The hazard can  

develop over very shorter time periods (minutes or hours) 

often less warning and predictability. They can occur within minutes or a few hours of flood if no rain has fallen at the point where the flooding occurs.  

erode loose materials, soil and turn into a mudflow.  Other causes of landslides include landslide dam outbursts (where landsides block a river and create a natural dam which is breached suddenly. Reducing landslides is covered under separate studies but some points are reiterated in this case study), glacial lake outburst flows (GLOF), sudden bursting of river banks and failure of ‘engineered’ water retaining structures.    Case studies  Bab El Oued, Algiers, 2001 Severe urban flash flooding in 2001 resulted in the deaths of 972 victims in less than one hour with severe effects on infrastructure. The flood was exacerbated by the inability of the affected areas to retain floodwaters and roads acting as conduits for the floodwater. This lack of retention was caused primarily by the over development of housing and roadways in the natural valleys present in the hilly terrain in many parts of Algiers, called oueds. These oueds, while the choice of settlement for many, are extremely susceptible to flash floods.   Boscastle, United Kingdom,  August 2004, Severe flash flooding occurred at this coastal village when intense summer rain over nearby moors, turned a small steep river through Boscastle Village  into a   destructive torrent. Vehicles and debris became lodged under the bridge and caused water to back up in the village making the flooding worse. The flash floods affected hundreds of homes and businesses and, swept away about 115 vehicles and badly damaged roads, bridges, sewers and other infrastructure. Due to a helicopter aided rescue there were no fatalities   Honiara, capital of Solomon Islands, April 2014 Heavy rain from a tropical depression, which later became Tropical Cyclone Ita, caused severe flooding in the Solomon Islands at the beginning of April 2014, killing 22 people and affecting and over 50,000. The worst affected area was the capital Honiara after the Mataniko River burst its banks on 3 Apr and caused flash flooding. There was extensive damage to bridges (piers, abutments, approaches, scour protection), and service connections were all damaged. Headwalls and wing walls of culverts were damaged and several culverts were completely washed away. The event took place during the day, which is considered to have significantly reduced the loss of life    

CASE STUDY 26 : Flashflood and Mudflows – Algeria, Boscastle UK, and Solomon Islands.  

Page 156: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

Disaster Risk Management in the Transport Sector 

BIBLIOGRAPHY 

156  

   

TECHNICAL – PLANNING AND DESIGN Boscastle More than £10 million of improvements were carried out. Computer models, video footage and flood simulations were used in the designs. Works included  

River widening and deepening  installing a flood culvert to  improve flow and replacing a bridge to increase flow capacity; 

The main car park was raised and set back  from the river to make space for water and sediment ; 

Installing a flood relief culvert via a new dissipation chamber.   At the time of the floods the operational forecast model had a resolution of 12 km, which was too large to predict this event. Now the forecast model operates with a 1.5 km resolution which is more likely to pick out small scale extreme weather. UK weather warnings are now also issued around the likelihood of severe weather happening and the impact it might have.  Honiara, capital of Solomon Islands The planning for the restoration to pre‐flood conditions recommended that studies of upstream river catchment activities were carried out which would the inform the hydraulic design, alternative pavement designs and resilient structures designs to accommodate climate change adaptation, and disaster risk reduction have been stolen – partly an  opertions and maintenance issues).   Case studies Summary Structural measures –   

Bio‐engineering  incorporating  biological  and  ecological  concepts  to  reduce  or  control erosion, protect soil, and stabilize slopes using vegetation or a combination of vegetation and engineering   and construction materials. Consider bamboo  fencing, brush  layering, Fiberschine (coconut fibre), netting (for example ‘Jube netting’), live fascines (bundles of live branches which grow roots and strengthen earthen structures, palisades, wattle fence. All low cost and easy to install, but may need additional works to prevent significant flash flood. 

Catchment  works  to:  increase  retention,  increase  permeability,  change  land  use  – terracing, diversion ridges or channels to intercept run‐off on slopes, grassed waterways 

River training (banks protection for example using spurs, riprap, ) ‘hard engineering’, crib walls, check dams, sills to reduce bed erosion, gabions, screen dams, channel lining, 

Other  flood  control measures  –  water  retention  basins,  river  corridor  enhancement, rehabilitation, retaining walls, drop structures (sills, weirs, chute spillways, drop pipes and check & Sabo dams).  

Bridge protection:   Much damage was done by the debris carried along in the floodwater. Recommendations post‐disater identified that the resilience of bridges would be enhanced by building back structures with higher decks and larger spans, with fewer piers presenting an obstacle to flow. Piers could be protected by deflectors (though some deflectors used in the past   

Page 157: Disaster Risk Management in the Transport Sector...Systems can exist with low risks and low resilience, and these even may perform the same as systems with high risks and high resilience

Disaster Risk Management in the Transport Sector 

BIBLIOGRAPHY 

157  

 

SOURCE:  

Algiers http://reliefweb.int/report/algeria/algeria‐floods‐fact‐sheet‐1‐fy02 

 Solomon Islands http://www.adb.org/th/node/42403 OCHA, 12 May 2014https://www.gfdrr.org/sites/gfdrr/files/Solomon%20RAI%20Flood%20.pdf Boscastle https://www.gov.uk/government/news/tenth‐anniversary‐of‐boscastle‐and‐north‐cornwall‐floodshttp://www.nce.co.uk/boscastle‐to‐get‐46m‐flood‐defence‐project/52346.articlehttp://www.metoffice.gov.uk/news/in‐depth/Boscastle‐10‐yearshttp://www.boscastlecornwall.org.uk/flood/BoscastleFlood.pdf Shrestha, AB; GC, E; Adhikary, RP; Rai, SK (2012) Resource manual on flash flood risk management –Module 3: Structural measures. Kathmandu: ICIMOD http://www.preventionweb.net/files/30062_30062resourcemanualonflashfloodrisk.pdf  

Shrestha, AB; (2010) Managing Flash Flood Risk in the Himalayas: Information Sheet  #1/10. Kathmandu: ICIMOD http://www.preventionweb.net/files/13252_icimodmanagingflshfloodriskinthehim.pdf 

 Anderson, Malcolm G., and Elizabeth Holcombe. 2013. Community‐Based Landslide  Risk Reduction: Managing Disasters in Small Steps. Washington, D.C.: World Bank. doi:10.1596/978‐0‐8213‐9456‐4. License: Creative Commons Attribution CC BY 3.0  

 

OPERATIONS AND MAINTENANCEBoscastle 

A ‘tree management regime’ was introduced to reduce the risk of tree blockage from fallen trees or trees liable to be washed away along the flooding route.  

A ‘stone catcher’ was installed to reduce the chances of the new highway culverts blocking; and 

 Honiara, capital of Solomon Islands A maintenance regime was recommended to esnure the creeks and drainage infrastructure was kept in good condition and not to impede flows which was a partial factor in the severity of the flooding in places.