38
PREDICTION OF POLYMER PHYSICAL PROPERTIES THROUGH NEW, CONNECTIVITY-ALTERING MONTE CARLO ALGORITHMS Doros N. Theodorou Department of Chemical Engineering, University of Patras and ICE/HT-FORTH, GR-26500 Patras, Greece and Institute of Physical Chemistry, NRCPS “Demokritos”, GR-15310 Ag. Paraskevi, Athens, Greece. [email protected] [email protected]

Doros N. Theodorou

  • Upload
    keiran

  • View
    34

  • Download
    0

Embed Size (px)

DESCRIPTION

PREDICTION OF POLYMER PHYSICAL PROPERTIES THROUGH NEW, CONNECTIVITY-ALTERING MONTE CARLO ALGORITHMS. Doros N. Theodorou - PowerPoint PPT Presentation

Citation preview

Page 1: Doros N. Theodorou

PREDICTION OF POLYMER PHYSICAL PROPERTIES

THROUGH NEW, CONNECTIVITY-ALTERING MONTE CARLO ALGORITHMS

Doros N. Theodorou

Department of Chemical Engineering, University of Patras and ICE/HT-FORTH, GR-26500 Patras, Greece and Institute of Physical Chemistry, NRCPS “Demokritos”,

GR-15310 Ag. Paraskevi, Athens, Greece.

[email protected] [email protected]

Page 2: Doros N. Theodorou

PROBLEM

Dense, long-chain polymer systems are very difficult to equilibrate with conventional simulation methods

Longest relaxation time of polymer melt:s – s

Longest time that can be simulated with atomistic MD: ~ 10 ns

SOLUTION

Develop “bold” Monte Carlo algorithms that can quickly sample distant regions in configuration space

Use moves that modify connectivity among polymer segments

Page 3: Doros N. Theodorou

UNITED ATOM LINEAR POLYETHYLENE

C1000, 24000 interacting sites, flat MW distribution (I=1.05)

T=450 K, P = 1 atm

Atomistic model:

•Lennard-Jones interaction sites

• Constant bond lengths (l=1.54Å)

• Flexible bond angles

• Torsional potential

Mavrantzas, V.G. et al., Macromolecules 32, 5072 (1999)

Page 4: Doros N. Theodorou

CONCERTED ROTATION MONTE CARLO

             

L. R. Dodd, T.D. Boone, DNT, 1993

Page 5: Doros N. Theodorou

CONCERTED ROTATION MONTE CARLO

“driver” angle

“driver” angle

             

 

L. R. Dodd, T.D. Boone, DNT, 1993

Page 6: Doros N. Theodorou

CONCERTED ROTATION MONTE CARLO

“driver” angle

“driver” angle

             

 

L. R. Dodd, T.D. Boone, DNT, 1993

Page 7: Doros N. Theodorou

CONCERTED ROTATION MONTE CARLO

“driver” angle

“driver” angle

             

 

L. R. Dodd, T.D. Boone, DNT, 1993

Page 8: Doros N. Theodorou

END-BRIDGING MONTE CARLO                      

                       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                       

P.V.K. Pant & DNT, 1994

Page 9: Doros N. Theodorou

END-BRIDGING MONTE CARLO                      

                       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                       

P.V.K. Pant & DNT, 1994

Page 10: Doros N. Theodorou

Convenient Ensemble:

Fixed N total number of chains

n total number of mers

P pressure

T temperature

k*

relative chemical potentials for all k-mer species but two

END-BRIDGING MONTE CARLO                      

                       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                       

i j kj i

j k

i j

i k

k=1,…,m, ki, j

Chain length distribution controlled through k* profile

Page 11: Doros N. Theodorou

EBMC PERFORMANCE AS A FUNCTION OF CHAIN LENGTH

 

rcm

t0=CPU time for <[rcm(t)-rcm(0)]2> to reach <R2>

R

Page 12: Doros N. Theodorou

EQUILIBRATION OF CHAIN CONFORMATIONS

0e+00 1e+05 2e+05 3e+05 4e+05CPU (secs)

4000

6000

8000

10000

12000

<R2 >

(A2 )

C500: <R2> versus CPU time

I=1.09, T=450 K, b=1 atm

bulk CUC

200 300 400 500 600 700 800X

0

5000

10000

15000

20000

25000

30000

<R2>

(A2 )

C400: <R2> versus chain length

I=1.085, T=450K, b=1atm

bulkCUCsbest linear fit to bulk

o

0e+00 1e+05 2e+05 3e+05 4e+05CPU (secs)

4000

6000

8000

10000

12000

<R2 >

(A2 )

C500: <R2> versus CPU time

I=1.09, T=450 K, b=1 atm

bulk CUC

200 300 400 500 600 700 800X

0

5000

10000

15000

20000

25000

30000

<R2>

(A2 )

C400: <R2> versus chain length

I=1.085, T=450K, b=1atm

bulkCUCsbest linear fit to bulk

o

Mavrantzas, V.G., Boone, T.D., Zervopoulou, E., DNT, Macromolecules 32, 5072 (1999)

R C500:

Page 13: Doros N. Theodorou

END-BRIDGING MONTE CARLO OF cis-1,4 POLYISOPRENE MELTS

Page 14: Doros N. Theodorou

END-BRIDGING MONTE CARLO OF cis-1,4 POLYISOPRENE MELTS

Page 15: Doros N. Theodorou

END-BRIDGING MONTE CARLO OF cis-1,4 POLYISOPRENE MELTS

Page 16: Doros N. Theodorou

Combination with greatly facilitates equilibration at lowtemperatures.

parallel tempering

-1100 -1000 -900 -8000

10

20

30

40cis-1,4 PI 303K

318K 333K 353K 373K 393K 413K 438K 463K 493K 523K 553K

P

op

ula

tio

n D

istr

ibu

tio

n

U+PV (kcal/mol)

Page 17: Doros N. Theodorou

VOLUMETRIC PROPERTIES OF cis-1,4 POLYISOPRENE

T=413K

3o 1.178 cm / gX

Literature values:N.Nemoto et al., Macromolecules, 1971: υ = 1.1964 cm3/gC.D. Han et al., Macromolecules, 1989: υ = 1.183 cm3/g

T=413K:

Page 18: Doros N. Theodorou

END-BRIDGING IN ATACTIC POLYPROPYLENE

Page 19: Doros N. Theodorou

END-BRIDGING IN ATACTIC POLYPROPYLENE

Page 20: Doros N. Theodorou

END-BRIDGING IN ATACTIC POLYPROPYLENE

Page 21: Doros N. Theodorou

END-BRIDGING IN ATACTIC POLYPROPYLENE

Page 22: Doros N. Theodorou

END-BRIDGING IN ATACTIC POLYPROPYLENE

Page 23: Doros N. Theodorou

CHARACTERISTIC RATIOS OF PPR

2

2

limnl

RC

n

n skeletal bonds, each of length l

m

isotactic (iPP) mmm…

r

syndiotactic (sPP) rrr…

atactic (aPP) rmr…

(random)

[1] Ballard et al., Polymer 19, 379 (1978); Zirkel et al., Macromolecules 52, 6148 (1992)

[2]Suter, U.W. and Flory, P.J. Macromolecules 8, 765 (1975)

[3]Ryckaert, J.-P., in Binder and Ciccotti (Eds)

PT EBMCPPtype Melt CUC

Experiment[1]

RISmodel[2]

chains[3]

aPP 6.21.0 5.20.4 5.5 5.5 6.1

sPP 8.51.1 9.60.1 11.0 8.0

iPP 6.60.3 6.2 4.2 6.1

Page 24: Doros N. Theodorou

N,~,TV

Ab

c

MC simulations performed at given b, T, . Resulting c() dependence integrated to yield A/N as a function of at given b, T.

~

SAMPLING ORIENTED POLYMER MELTS

Conformation tensor:R

oR2

~

3RR

c average over all chains

unperturbed

A/N(,T,c)~Helmholtz energy function in flowing melt:

In quiescent, underformed melt, c = I~

with N=number of chains, =mass density

Introduce thermodynamic “fields”

][c~,,TB

)~,T,(N

A

c~Tk

1

c (1,3)

Page 25: Doros N. Theodorou

 

xx 

yy = -P

zz = -P

PE MELT UNDER UNIAXIAL EXTENSIONAL FLOW

 

          

 

 

         

maximalrelaxation time 

xx ( ) .

dtx

dL

xL

ε1

 

Helmholtz energy, energy, and entropy of oriented melt

Mavrantzas, V.G. and DNT, Macromolecules, 31, 6310 (1998)

0.00 0.10 0.20 0.30 0.40xx

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Ene

rgy

Cha

nge

(J/g

)

TSUA

C78

Page 26: Doros N. Theodorou

 

xx 

yy = -P

zz = -P

PE MELT UNDER UNIAXIAL EXTENSIONAL FLOW

 

          

 

 

         

 

Mavrantzas, V.G. and DNT, Comp.Theor.Polym.Sci., 10, 1 (2000)

Cpredicted=(2.350.10)10-9 Pa-1 (C200 melt)

Cexperimental= 2.20 10-9 Pa-1

(Janeschitz-Kriegl)

Birefringence

0 1 2 3 4xx-yy (MPa)

0.000

0.002

0.004

0.006

0.008

0.010

nxx

-nyy

C200

C78

Page 27: Doros N. Theodorou

SOLUBILITY OF OLIGOMERS IN POLYMER MELTS

s1-mer

polymer

polymer

SCISSION

FUSION

[f1'Npn0PT*] statistical ensemble

f1' f1/exp[(s1+3)(n)/(kBT)]

f1= oligomer fugacity

(n)=(i- j)/(si-sj), polymer chemical potential per segment

Np: total number of polymer chains. n0 : number of polymer segments if all oligomers were connected to chains. P : pressure. T : temperature. * : profile of relative chemical potentials controlling polymer chain length distribution.

Zervopoulou, E., Mavrantzas, V.G., DNT J.Chem.Phys. 115, 2860 (2001)

Page 28: Doros N. Theodorou

SOLUBILITY OF C10 and C20 IN PE (NERD force field)

Method 1: Insertion-deletion moves in the f1NpnPT* ensemble

Method 2: Fusion-scission moves in the f1'Npn0PT* ensemble

0.0 0.2 0.4 0.6 0.8 1.0fugacity of C

10 (atm )

wei

ght f

ract

ion

of C

10

Experim enta l

M ethod 2M ethod 1

Solubility o f C10

and C20

in PE (N ER D force fie ld)(un iform m olecular w eight d istribution, I=1.08)

T=458K

0.000 0.005 0.010 0.015fugacity of C

20 (atm )

wei

ght f

ract

ion

of C

20 M ethod 2

T=474K

Page 29: Doros N. Theodorou

SWELLING OF PE UPON SORPTION OF C10

0.0 0.2 0.4 0.6 0.8 1.0fugacity of C

10 (atm )

(V-V

0)/V

0 (%

) M ethod 1M ethod 2

Sw elling and density o f the system as a function o f C10

fugacity(un iform m olecu lar w eight d istribution, I=1.08,T = 458K)

0 0.2 0 .4 0 .6 0 .8 1fugacity o f C 10 (atm )

0

0.2

0 .4

0 .6

0 .8

1

den

sity

(g

r/cc

)

M ethod 1M ethod 2

T=458K

Method 1: Insertion-deletion moves in the f1NpnPT* ensemble

Method 2: Fusion-scission moves in the f1'Npn0PT* ensemble

T=458K

Page 30: Doros N. Theodorou

Double Bridging(Karayiannis et al., 2001)

i“predator” mer i of ich

j attacks “prey” mer j of jch trimer (ja, jb, jc) adjacent to jja

jbjc

is excised from jch

SIMULATION OF STRICTLY MONODISPERSE MELTS: DOUBLE BRIDGING MONTE CARLO

N. Karayiannis, V.G. Mavrantzas, DNT, 2001

Page 31: Doros N. Theodorou

Double Bridging(Karayiannis et al., 2001)

ij

“predator” mer j2 of jch

j2

attacks “prey” mer i2 of ich

i2

trimer (ia, ib, ic) adjacent to i2

iaib

ic

is excised from ich

SIMULATION OF STRICTLY MONODISPERSE MELTS: DOUBLE BRIDGING MONTE CARLO

N. Karayiannis, V.G. Mavrantzas, DNT, 2001

Page 32: Doros N. Theodorou

Double Bridging(Karayiannis et al., 2001)

ij

j2

i2

trimer (ja’,jb’,jc’) connects i and j ja’

jb’jc’

ia’

ib’ic’

trimer (ia’,ib’,ic’) connects j2 and i2

SIMULATION OF STRICTLY MONODISPERSE MELTS: DOUBLE BRIDGING MONTE CARLO

N. Karayiannis, V.G. Mavrantzas, DNT, 2001

Page 33: Doros N. Theodorou

Double Bridging(Karayiannis et al., 2001)

new chain jch’ is formed

new chain ich’ is formed

SIMULATION OF STRICTLY MONODISPERSE MELTS: DOUBLE BRIDGING MONTE CARLO

N. Karayiannis, V.G. Mavrantzas, DNT, 2001

Page 34: Doros N. Theodorou

INTRAMOLECULAR DOUBLE REBRIDGING(N. Karayiannis, V.G. Mavrantzas, DNT, 2001)

Page 35: Doros N. Theodorou

DB & IDR: MONODISPERSE LINEAR PE at 450K,1atm

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0C h ain L en gth

1 .2 8

1 .2 9

1 .3 0

1 .3 1

1 .3 2

1 .3 3

1 .3 4

1 .3 5

1 .3 6S

pec

ific

Vol

um

e (c

m3 /g

)

ex p erim en ta l d a tasim u la tio n resu lts

Page 36: Doros N. Theodorou

DB & IDR: MONODISPERSE LINEAR C1000 MELT 8000 atoms, T=450K, P=1atm

0 2 4 6 8 1 0 1 2 1 4k (A

-1)

-1 .0

-0 .5

0 .0

0 .5

1 .0

1 .5

2 .0S

(k)-

1

s im u la tion re su ltsX -ra y d iffrac tion d a ta

Page 37: Doros N. Theodorou

SUMMARYAlgorithms based on End-Bridging Monte Carlo (EBMC) equilibrate atomistic models of polymer melts of average molecular weight 104-105 g/mol at all length scales.

Free energy and birefringence of oriented melts under steady-state processing flows can be obtained through EBMC in the presence of orienting fields.

Variable connectivity MC schemes allow prediction of sorption isotherms of oligomers in polymer melts without the need to insert/delete or exchange molecules between phases.

Performance at low temperatures can be enhanced by combining EBMC with parallel tempering.

Double Bridging and Intramolecular Double Rebridging equilibrate monodisperse melt systems with precisely defined molecular architectures.

Page 38: Doros N. Theodorou

ACKNOWLEDGMENTSCollaborators

Dr. Vlasis Mavrantzas

Dr. Manolis Doxastakis Dr. Vagelis Harmandaris Mr. Nikos Karayiannis Dr. Christina Samara Dr. Vanessa Zervopoulou

Sponsors

DG12 of the European Commission, Brite-EuRam and GROWTH programmes (projects MPFLOW, PERMOD, DEFSAM)

DG12 of the European Commission, TMR programme (NEWRUP Research Network)

Greek GSRT, PENED programme, contracts 218-95E, 95-99E

SIMU Network