28
奈米物理特論 半導體奈米結構之成長與光電特性 交通大學電子物理系 周武清 教授 大綱: Part I: 半導體奈米結構成長--------- 分子束磊晶(MBE, molecular beam epitaxy) 半導體奈米結構形貌研究---AFM Part II: 半導體奈米結構光電特性---Photoluminescence Part III: 半磁性半導體奈米結構之自旋磁光特性 清華大學物理系 奈米物理特論 2008/03/13 上課內容 (I)

清華大學物理系 奈米物理特論 20080313 (I)spin/course/97/20080313 (I).pdf · 2008. 4. 11. · shutter substrate buffer strain ... the edge of island R av (t) ~ t1/3 Therefore,

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • 奈米物理特論

    半導體奈米結構之成長與光電特性

    交通大學電子物理系 周武清 教授

    大綱:Part I: 半導體奈米結構成長---------

    分子束磊晶(MBE, molecular beam epitaxy)半導體奈米結構形貌研究---AFM

    Part II: 半導體奈米結構光電特性---PhotoluminescencePart III: 半磁性半導體奈米結構之自旋磁光特性

    清華大學物理系奈米物理特論 2008/03/13 上課內容 (I)

  • 有幾種製作半導體奈米結構或量子點的方法?

    (a) Microcrystallites in glass(b)Quantum dots fabricated by lithographic techniques(c) Self-organized quantum dots (d) Chemical synthesis

    Top down

    Bottom up

  • Stranski-Krastanow (SK)從二維到三維長晶模式(wetting layer, WL)

    Volmer-Weber (VW)三維長晶模式

    Frank-van der Merwe二維長晶模式

    Self assembled (organized) quantum dots, SAQD.

    WL

    u(H, n 1 , n 2 , ε) = Eml(n 1) + n2 E isl + (H - n 1 - n 2) E ripEml(n1)=∫dn{G+ Δ[Θ(1-n) + Θ(n-1) e -(n-1)/a]} G=Cε2 – ΦAAEisl= gCε2 – ΦAA + E0[ -(2/x2)lne1/2x + α/x + β(n2)/x3/2]

    Erip = Eisl (x→∞ ) = gCε2 – ΦAA

    Buffer layerEpitaxial layer

  • u(H, n 1 , n 2 , ε) = Eml(n 1) + n2 E isl + (H - n 1 - n 2)E rip

    I. Daruka and A.L. Barabasi, APL 72, 2102 (1998)

  • Energy Gap vs Lattice Constant(材料)菜色豐富千變萬化

  • 超高真空操作程序與重要性、分子束源種類及調控磊晶速率

    如何製作半導體奈米結構?

  • molecularsource

    shutter

    substrate

    buffer

    strain

    分子束磊晶術

  • 碲化鋅量子點之表面高低(明暗)形貌直徑約10-30奈米 AFM

  • O. Leifeld et al., APL74, 994 (1999)

    半導體奈米結構之形狀

  • 半導體奈米結構之形狀

    PRL64, 1943 (1990)

  • 半導體奈米結構之形狀

    H.C. Ko et al., APL70, 3278 (1997)

  • 半導體奈米結構之形狀

    APL80, 4232 (2002)

  • Ref. D. Litvinov et al.APL 81, 640 (2002)

  • Ref. S.Lee et al., Phys. Rev. Lett. 81, 3479 (1998)

  • Day2 RT air Day2 RT N2 Day2 LT N2

    Day3 RT air Day3 RT N2 Day3 LT N2

    Day1CdSe QDs 3 ML

  • Day 1 Day 2 Day 3 Day 4 Day 5

  • Dot size vs. Time

    6.268.117.680.729.290.7312.5100.54H (nm)D (nm)T (days)

    12

    day 4

    day 1

    70 80 90 100

    6

    8

    10

    12

    Day 4

    Day 3

    Day 2

    Day 1

    Hig

    ht (n

    m)

    Diameter (nm)

  • Vav(t)ρ(t)=const. ρ(t)=const. Rav(t)-3

    Mass transfer involves kinetic surface barrier for the atom detach fromthe edge of island Rav(t) ~ t1/3

    Therefore, ρ(t) ~ t-1

    0 1 2

    2x1010

    3x1010

    dot i

    nten

    sity

    (cm

    -2)

    days (log scale)

  • ZnSe CdSe 2.5 MLs

    CdSe 2.7 MLsCdSe 3.0 MLs

    AFM non-contact mode

    Find the WL thickness, 2D to 3D growth transition.

  • CdSe (3.0 MLs)/ZnSe

  • u(H, n 1 , n 2 , ε) = Eml(n 1) + n2 E isl + (H - n 1 - n 2)E rip

    I. Daruka and A.L. Barabasi, APL 72, 2102 (1998)

  • 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0-0.5

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0 the large dot in this work the small dot in this work ref. 15 ref. 24

    ripen growth incoherent 2-D growth

    S-Kcoherent growth

    dot d

    ensi

    ty (1

    09 c

    m-2)

    average coverage (MLs)2.6 2.8 3.0 3.2 3.4 3.6 3.8

    0

    40

    80

    120

    two type of QDs

    larger dot

    smaller dot

    average coverage (MLs)

    aver

    age

    diam

    eter

    (nm

    )

    2

    4

    6

    8

    10

    S-Kcoherent growth

    incoherent 2-D growthripen growth

    average height (nm)

  • 0 3000 6000 9000 12000

    0.0

    0.2

    3.0 MLs 3.3 MLs 3.5 MLs

    perc

    enta

    ge (%

    )

    dot volume (nm3)

    The importance of size control

    Two types of QDs.

  • Effect of ZnSe partial capping on the ripening dynamics of CdSe quantum dots

    Typical AFM images of CdSe QDs samples capped with ZnSelayers of (a) 0, (b) 1, (c) 2, and (d) 3 ML. The temperature forZnSe capping was 260 °C.

  • Dependence of dot height on time. Curve A dashed dots expresses

    Curve B dashed line represents the ripening of a QD which has a faster ripening rate.Curve C solid line describes

    Lai et al.APL 90, 083226 (2007)