42
二次電池社会研究会 12回分科会 2012/09/19 東京大学工学2号館 洋上風力発電装置の現状と 新型式の提案 Hiromichi Akimoto, Dr. Eng. Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Technology (KAIST), Email: [email protected] 秋元博路

洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

二次電池社会システム研究会

第12回分科会 2012/09/19 於 東京大学工学部2号館

洋上風力発電装置の現状と

新型式の提案

Hiromichi Akimoto, Dr. Eng.Division of Ocean Systems Engineering (OSE),

Korea Advanced Institute of Technology (KAIST),

Email: [email protected]

秋元博路

Page 2: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

講演者の紹介

• 工学博士 (船舶工学、東京大学 1996)• 職歴

▫ 鳥取大学 (1996.04-2005.03)• 応用数理工学科

• 助手、講師、助教授

▫ 東京大学(2005.04-2011.10)• 環境海洋工学専攻→システム創成学専攻

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology

• 環境海洋工学専攻→システム創成学専攻

• 准教授

▫ Korea Advanced Institute of Science and Technology (KAIST) (2011.10-現在)

• Division of Ocean Systems Engineering• Visiting Foreign Professor

• 研究分野

流体数値シミュレーション(船舶、航空分野)、洋上再生可能エネルギー(風力、潮流

、海流、波力)、超高速船、表面効果翼船(WISES, WIG)、物流シミュレーション

Page 3: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

KAIST

• Korea Advanced Institute of Scienceand Technology (韓国科学技術院)▫ 大学院が主体

▫ 予算397Million USD(2007)(政府3割、獲得資金3割)

• 所在地: Daejeon

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology

• 所在地: Daejeon▫ 大田広域市

▫ ソウルからKTXで1時間

▫ 政府機能の一部が置かれる

▫ R&D集積地の1つ

• KIOSTI( 旧名 KRISO, KORDI, MOERI)• Samsung の船舶関連研究施設など

3

Page 4: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

洋上風力発電洋上風力発電洋上風力発電洋上風力発電

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology

Page 5: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

Cost of renewable energy

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology 5

再生可能エネルギーによる発電コスト(出典:「World Energy Outlook 2009, IEA (2010)」よりNEDOが作成)

Page 6: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

Increasing demand of offshore windDeep water wind turbine

development

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology

Increasing demand of floating wind turbine• Limited shallow water area in some countries like Japan• Major concept is floating horizontal axis wind turbine (HAWT)

▫ Difficult to scale up▫ Top heavy configuration increases installation cost

(NREL)Floating wind turbine concept(IHIMU and Univ. Tokyo)

Page 7: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

Limited shallow water in Japan

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology 7

Maps around Europe and Japan in the same scale(from satellite view of Google map)

Page 8: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

Limited shallow water in Japan

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology 8

Maps around Europe and Japan in the same scale(from satellite view of Google map)

Page 9: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

HVDC connection in Europe

• High Voltage Direct Current connection

• Leveling fluctuation of renewable energies

• Electricity transfer from

•再生可能エネルギーの

多国間連携のため、洋上

にも系統電源ラインがで

きつつある

•洋上送電コストの前提が

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology

Norway to Germany (580km) is working and is profitable

• Distance between Korea and Japan is only 200km

9

HVDC connections in EuropeGreen= approved project, Red = existing, Blue= Options under consideration

•洋上送電コストの前提が

日本と異なる

Page 10: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

Installed offshore wind power

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology 10

2011 Annual report, GWEC (2012)

• UK is the top runner of offshore wind power

Page 11: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

Offshore wind farm in Japan?

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology

Efficient installation of bottom fixed turbines is almost impossible in Japan

11

Horns Rev (Horns Reef) wind farmVestas V80 2MWx80 = 160MW, 2002

offshore wind power KASUMI

ウィンド・パワーかみす洋上風力発電所

40-50m offshore, 2MWx7 (2Mx8 2nd farm under construction)

Page 12: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

Largest wind farm in the world

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology 12

Greater Gabbard 500MW wind farm On sandbanks 23km offshoreSiemens 3.6MW x 140

Page 13: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

Floating wind turbine

• ヨーロッパで見られる大規模な着床式洋上風車

の発電施設は、日本では実現しない

• 需要増に伴い深水域での風力発電が必要

• 日本での利用には、「浮体式風車」が不可欠

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology

着床式は、陸上風車の延長だが、浮体式は、

土地の造成(浮体建造)揺れる事を前提とした設計

が必要

13

Page 14: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

Floating wind turbine

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology

How to reduce cost?• Smaller float• Swayable turbine tower

WindFloat (PrinciplePower): Sway concept (Sway)Passive tilt

Hywind (StatoilHydro)Spar buoy type

Page 15: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

国内の浮体式洋上風車への取り組み

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology 15

環境省環境省環境省環境省-京都大学京都大学京都大学京都大学

五島列島椛島 (かばしま)沖合2km、ハイ

ブリットスパーブイ, 系統連携, 100kW(2012/8), 2MW(2013/5)

経済産業省経済産業省経済産業省経済産業省-福島洋上風力コンソーシアム福島洋上風力コンソーシアム福島洋上風力コンソーシアム福島洋上風力コンソーシアム

丸紅, 東大, 三菱商事, 三菱重工, IHI MU, 三井造船、新日鐵、日立製作所、古河電工、清

水建設、みずほ情報総研

Substation+2MW (2012), 7MWx2 (-2015)

Page 16: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

国内の浮体式洋上風車への取り組み

その他その他その他その他

国土交通省国土交通省国土交通省国土交通省

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology 16

福岡市福岡市福岡市福岡市-九州大学九州大学九州大学九州大学 風レンズ風車風レンズ風車風レンズ風車風レンズ風車

博多湾、2011より実証実験中、風レンズ

風車(3kWx2)+太陽電池(1.5kW)+生け

シュラウドの付加により、2~3倍の発電

(1.4~1.7倍のブレード長タービンよりも

低コストにできるか?)強風対策、支持構造の増加が課題

経済産業省、環境省、国土交通省がばらばら

に取り組む

漁業補償を考えると、農林水産省が入るべき

調整機関が無いと非効率なR&D投資

国土交通省国土交通省国土交通省国土交通省

港湾での風車利用

促進、建築基準策

定、国際標準への

取り組み

Page 17: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

新形式新形式新形式新形式 浮体式風力発電の提案浮体式風力発電の提案浮体式風力発電の提案浮体式風力発電の提案

再生可能エネルギーを採算可能エネルギーにするには

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology

再生可能エネルギーを採算可能エネルギーにするには

Page 18: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

浮体式風車実証試験の目的

• 実証、ビジネスモデルの確立

• 浮体式の標準化における発言力強化

問題点

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology

• 標準化の目的は? (議論の不在)▫ 標準化に組み込まれた特許の収入、囲い込み?

• 差別化する独自技術の不明瞭さ

▫ 台風に耐えられる性能は、標準になりにくい

• 他の国なら、そのような海域に風車はおかない

▫ プロジェクトの時間スケール(スピード感)は適切か

18

Page 19: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

浮体式風車のコンセプトに対する疑問

洋上風車の経済性に関するロジック

• 陸上よりも強風が安定的に得られる(高い設備利用率)• 道路ではなく海上を輸送�大型化可能�効率向上

• 広大な利用可能海域

しかし、

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology

しかし、

• 風の強い海域 � 建設、保守作業の日数確保が困難

• 大容量、軽量、コンパクトな発電、動力伝達が必要(難しい)

• 10MW超大型化案は着床式、浮体式の大型化は困難

• 漁業補償の交渉可能な場所は限定的

▫ 経済性の低い風車で先に占められてしまうおそれ

▫ 「海表面積あたり発電量」が重要な指標となる

19

Page 20: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

Fundamental questions of floating wind turbine

In good wind power site, we expect high wind and rough sea state

• Top heavy floating structure?• Need to keep its upright position?• How many available days for

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology

• How many available days for construction?

Is the concept right answer in ocean engineering?

22

• ボートの上で立ち上がってはいけない

• 洋上では揺れる事を前提に

• 銀座(高価な洋上施設上)で風車を回しても赤字

海洋工学の基礎から外れた不自然さ海洋工学の基礎から外れた不自然さ海洋工学の基礎から外れた不自然さ海洋工学の基礎から外れた不自然さ

Page 21: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

垂直軸型風車

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology

Vertical axis wind turbine (VAWT)▫ Low center of gravity, non-directional(no yaw control)

Advantages in floating configuration

Vertical axis wind turbine (Nanuphar)

23

Deepwind, (DTU, Riso)20MW VAWT on a rotating spar buoy

23

NOVA (WindPowr Ltd.)Huge VAWT concept

Page 22: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

Floating Axis Wind Turbine (FAWT)

Central columnBlades

Wind

3MW FAWT5MW Vertical axis turbine

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology 24

Floater

• Inclined axis floating turbine (rotating spar buoy)• Passively adjustable tilt angle to wind power• Low requirement of structural strength• Reduced total device size

Akimoto et al. (2011)

Page 23: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

(a) HAWT (b) VAWT-S (c) VAWT-C (e) FAWT(d) Deepwind

Floating VAWT concepts

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology

: Bearing and drive train

Rotating float

Stationeryfloat

Page 24: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

3MW FAWT designFront view Side view

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology 27

• 85.1m height, 76m max. diameter, 7.5m/s wind

• Straight or helical bladesCost of energy 0.069USD/kWh (comparable to land based wind turbines)

Page 25: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

Torque convertersUpright condition Tilted condition

20ton

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology

• Contacting rollers receive torque from the turbine axis

• Multiple roller units allowing the tilt of turbine axis

• Off-axis and lightly loaded drive train

244ton

Page 26: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

風力発電の主要な問題の解消

• Cost• Bird strike▫ Low tip speed ratio of VAWT(half of HAWT tsr)

• Lightning strike▫ Off-axis drive train and generators can be easily

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology

▫ Off-axis drive train and generators can be easily protected from the lightning shock

• Designable aspect ratioof sweep area

• No R&D for high-capacity drive• Less concern of noise (in offshore)

30

Electric current

Page 27: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

Publications

http://environmentalresearchweb.org/cws/article/news/47975

• Environmental ResearchLetters and its web news

• RECHARGE• Selected in “2011

Highlights” of Environmental Research Letters

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology 31

http://www.rechargenews.com/business_area/innovation/article298770.ece

• Appeared in an AljazeelaTV document on Korea (as one of research topics in KAIST)

• YouTube: “Floating axis wind turbine” http://youtu.be/L6wdvCQ5zJMhttp://youtu.be/Z11CvB764CI

Page 28: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

Evaluation of economic performanceFAWTFloating 3MW turbine• Rotor diameter 76m• Turbine height: 85.1m

HAWTOffshore, shallow-water,3-MW baseline turbine (NREL)

• Rotor diameter: 90m• Hub height: 80m

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology 32

• Hub height: 80m

Page 29: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

Cost comparison with horizontal axis turbineCost components in 3MW rated power HAWT FAWTRotor 477 726Drive train, nacelle 1425 659Control, Safety Sys., Monitor, Pitch mech. & bearings 60 60Tower/Central column 415 221Marinization (13.50% of Turbine & Tower cost) 321 225

Monopile foundation/Support Structure / Float 1114 1712Transport, Install, Electrical interface, Assessment 1835 1835Scour Protection 204 0Surety Bond (Decommissioning - 3.0% of ICC) 180 168

Initial capital cost8.3% reduced

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology 33

Surety Bond (Decommissioning - 3.0% of ICC) 180 168Offshore Warranty Premium 357 250

(Subtotal: Initial capital cost ICC) (6386) (5855)Levelized Replacement Cost (LRC) (USD per year) 55 55O&M (USD per turbine/yr) 215 145Bottom Lease Cost (USD/year) 12 12

(Subtotal: Annual Operating Expenses [USD/year]) (282) (212)Cost of Energy (USD/kWh) 0.095 0.069

Based on the cost estimation of NREL, USA, 2006 [1000USD unit]

Annual operating expense 24.8% reduced

Cost of energy27.4% reduced

Page 30: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

Cost comparison with horizontal axis turbine

In comparison to 3MW bottom fixed HAWT(NREL 2006)

• Initial investment (-8.3%)▫ Simplified drive train, No yaw control and tower▫ Float is still expensive than seabed construction

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology

• Operating cost (-24.8%)▫ No special utility ships (ex. crane ship)(proportional to the initial investment in the preliminary study)

• Cost of energy (0.067USD/kWh, -27%)▫ Still higher than the target of land based wind turbine▫ Possible improvement (optimization, scale up, stable

offshore wind power)

34

Page 31: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

Concept for scaling up (2x3MW)

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology 36

Twin turbine:• Counter rotating turbines cancel

reaction torque of generators• Reduce total cost of anchoring

Page 32: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

• Cancelling reaction torque of generators

• Increased efficiency 20%• Repulsive Magnus force

between two turbines

Counter rotating twin turbine

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology

between two turbines• Reduction of total

mooring cost• Higher utilization of sea

surface

37

Page 33: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

Concept for small power plant

• Foldable blades• Transportable• Endurance in heavy weather

• Deployable

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology

70kW plant (25m height)Deployable power plant for disaster area and ocean platform

38

• Deployable• Disaster area• Ocean platforms

Page 34: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

FAWT farms for Korean PeninsulaEast side coastal area• Deep water depth• Expected rapid energy

demand increaseNorth Korea: 51% population, 5.4% electricity generation of South Korea

• Electricity transfer among

Suitable site for FAWT and electricity exports

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology

• Electricity transfer among nearby countries is essential for utilizing fluctuating wind as in Europe

• High Voltage Direct Current connection to Japan should be started in the near future

40

Map of wind farms in Korea (www.thewindpower.net)

200km

Page 35: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

HVDC connection in Europe

• High Voltage Direct Current connection

• Leveling fluctuation of renewable energies

• Electricity transfer from

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology

Norway to Germany (580km) is working and is profitable

• Distance between Korea and Japan is only 200km

41

HVDC connections in EuropeGreen= approved project, Red = existing, Blue= Options under consideration

Page 36: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

Additional applicationAdditional applicationAdditional applicationAdditional application

Floating Axis “Water” TurbineFloating Axis “Water” TurbineFloating Axis “Water” TurbineFloating Axis “Water” Turbine

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology

Floating Axis “Water” TurbineFloating Axis “Water” TurbineFloating Axis “Water” TurbineFloating Axis “Water” Turbine

43

Page 37: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

High density of energy in water

• 1000x density• Predictable power of

tidal stream• Stable ocean current

� Higher capacity

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology

� Higher capacity factor

44

Marine Current Turbine Ltd., 2003

Page 38: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

Inclined turbine concept

• Adjustable to stream power▫ Low structural requirement▫ Reduced support structure

• Non-submerged mechanics▫ Higher durability

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology

▫ Easy maintenance

• Turbine surfacing▫ Pulling up turbine axis to

water surface for maintenance access

• Installation▫ On seaside structures or float

45

Page 39: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

Comparison with existing conceptENERMAR

(Kobold turbine)

H=5m

Floating Axis Turbine

139kW40ton

25-30kW35ton

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology 46

• Increased turbine height• Reduced floater size

Φ=6m

H=25m

Page 40: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

Twin turbine (2MW) for Kuroshio Ocean Current▫ 1MW each at 2.5m/sec

current

Ocean current turbine

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology 47

Cost of energy0.063USD/kWh

Page 41: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

Applications

Lift up for maintenance

Transportation and maintenance accessmaintenance does not require diving work

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology 48

Tidal generator farm12m height turbine for 15m depth shallow water

Page 42: 洋上風力発電装置の現状と 新型式の提案 · Low tip speed ratio of VAWT(half of HAWT tsr) • Lightning strike Off -axis drive train and generators can be easily H

まとめ

1. 着床式洋上風車は、国内設置に限界

2. 漁業補償の交渉可能な海域は限定的

経済性の低い風車で占められる事により、国内市場が終わっ

てしまう危険性

3. 浮体式は、水平軸型が主流だが、陸上風車の延長で

は限界がある

H. AKIMOTO, Division of Ocean Systems Engineering (OSE), Korea Advanced Institute of Science and Technology

は限界がある

4. 浮動軸型風車(Floating Axis Wind Turbine)は、固

定概念を捨てる事により、低COEを狙う

5. 同概念は、水流タービンにも適用可能

河川流、潮流、海流用、low technology水力

洋上風力で電力貯蔵の必要性が高い(研究中)

49