12
1 微藻生質能源技術 微藻生質能源技術 微藻生質能源技術 微藻生質能源技術 - Micro-Algal Bioenergy Technology 林昀輝 林昀輝 林昀輝 林昀輝 工業技術研究院 工業技術研究院 工業技術研究院 工業技術研究院 能源與環境研究所 能源與環境研究所 能源與環境研究所 能源與環境研究所 2010.04.24 2010生質能源技術推廣研討會 2 Copyright 2008 ITRI 工業技術研究院 Outline Biodiesel in Taiwan Advantages of Micro-algal Biofuel Commercialization Challenges Micro-algae Research at ITRI Concluding Remarks

微藻生質能源技術 - fcu.edu.t · 2011-06-07 · (4) NREL, A Look Back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from Algae (1998) Potential Algal

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 微藻生質能源技術 - fcu.edu.t · 2011-06-07 · (4) NREL, A Look Back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from Algae (1998) Potential Algal

1

微藻生質能源技術微藻生質能源技術微藻生質能源技術微藻生質能源技術−−−− Micro-Algal Bioenergy Technology

林昀輝林昀輝林昀輝林昀輝

工業技術研究院工業技術研究院工業技術研究院工業技術研究院 能源與環境研究所能源與環境研究所能源與環境研究所能源與環境研究所

2010.04.24

2010生質能源技術推廣研討會

2Copyright 2008 ITRI 工業技術研究院

Outline

• Biodiesel in Taiwan• Advantages of Micro-algal Biofuel • Commercialization Challenges• Micro-algae Research at ITRI • Concluding Remarks

Page 2: 微藻生質能源技術 - fcu.edu.t · 2011-06-07 · (4) NREL, A Look Back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from Algae (1998) Potential Algal

2

3Copyright 2008 ITRI 工業技術研究院

Biodiesel in Taiwan

2006 20082007 2009 2010

0.65 6.50

45

100

Biodiesel Target (1,000 kL)

50

Mandatory B2 - 2010.01

Mandatory B1 - 2008.07~ 2009.12

Green County Demo Program2007.07~ 2008.06- B1 in the two demo counties

Biodiesel Fleet Program2006.10~ 2008.06- Public transportation buses fueled by B2 in two cities

Biodiesel 2010: B2 � Current feedstock:Waste cooking oil

� Sustainable feedstock

� Non-food

� Environmental and ecological friendly

� Energy effectiveness

� Cost Competitive

4Copyright 2008 ITRI 工業技術研究院

Advantages of Micro-algal Biofuel

• Effective carbon capture– Can utilize waste CO2 streams– Capture efficiency between 50~80%

in photobioreactors

– 183 ton-CO2 / 100 ton-biomass

• Higher yields than terrestrial plants– Higher oil content, growth rate and

cell density

• Non-food feedstock• Potential for cascade

production– oils, protein, and carbohydrates

Ref: (1) M.E. Huntley and D.G. Redalje, Mitigation and Adaptation Strategies for Global Change 12, (2007) 573–608(2) P. M. Schenk et al., Bioenerg. Res., (2008)(3) Y. Chisti / Biotechnology Advances 25 (2007) 294–306(4) NREL, A Look Back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from Algae (1998)

Potential Algal Oil Yields

*Replacing 5% of diesel consumption in Taiwan requires ~3,000 hectares

93,500 Algae (50 g/m2/day at 50% lipid)*

11,000 Algae (10 g/m2/day at 30% lipid)

5,900 Oil palm

1,900 Jatropha

1,200 Rapeseed/Canola

950 Sunflower

570 Mustard seed

450 Soybean

Oil yield

Liters/hectare-yrCrops

93,500 Algae (50 g/m2/day at 50% lipid)*

11,000 Algae (10 g/m2/day at 30% lipid)

5,900 Oil palm

1,900 Jatropha

1,200 Rapeseed/Canola

950 Sunflower

570 Mustard seed

450 Soybean

Oil yield

Liters/hectare-yrCrops

Page 3: 微藻生質能源技術 - fcu.edu.t · 2011-06-07 · (4) NREL, A Look Back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from Algae (1998) Potential Algal

3

5Copyright 2008 ITRI 工業技術研究院

Land-use Efficiency

Adapted from: 2009_USDOE_National Algal Biofuels Technology Roadmap

The area needed to produce a sufficient amount of biomass to produce liquid fuel to displace all gasoline used in the USA (2006)

Adapted from: Current Opinion in Biotechnology 2008

The amount of land required to replace 50% of the current petroleum distillate consumption using soybean (gray) and algae (green).

6Copyright 2008 ITRI 工業技術研究院

Suitable Area for Algae Growth

•Suitable land for algae farms +/- 37 o of equator•Temperature limit of > 15 ℃ annual average

Page 4: 微藻生質能源技術 - fcu.edu.t · 2011-06-07 · (4) NREL, A Look Back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from Algae (1998) Potential Algal

4

7Copyright 2008 ITRI 工業技術研究院

Biofuel from Micro-Algae

Biomass Harvesting

Processing

Biofuels����biodiesel ����biogas����ethanol ����jet fuel

Reclaimed Water����nutrient recycling

Co-products����feeds����fertilizers����glycerin����others

Waste CO2 & Heat����Power generation����Industrial processing����Wastewater treatment

Impaired Water����Sea water����Brackish water����Wastewater

Sunlight/CO 2(photoautotrophic)

Organic Carbon(heterotrophic)

O2

Algae Production SystemPonds, PBR’s, Hybrid Systems

CO2

8Copyright 2008 ITRI 工業技術研究院

Production of Algae Oil

PhotobioreactorTemp controlLight distribution & intensity controlPredator control

Makeup water CO2 availabilityNutrient supplyStarting species

Growth rateOil content & FA profileResistance to invasion

AlgaeCultivation

LipidRecovery

BiodieselProduction

De-watering methodsLipid extractionPurificationCosts, energy inputEnvironmental issuesValue from residual

biomass

Fatty acid profilesCosts and LCAFuel

characteristicsEnergy densityCarbon numbersCloud pointStabilityConsistency

Page 5: 微藻生質能源技術 - fcu.edu.t · 2011-06-07 · (4) NREL, A Look Back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from Algae (1998) Potential Algal

5

9Copyright 2008 ITRI 工業技術研究院

Cost Target

1 ha10.62€/kg

100 ha4.02€/kg

Target0.4€/kg

Table adapted from: Biofuel from microalgae (Rene H. Wijffels)

The lack of any mass/commercial production of algal oil means its cost is unknown and high

10Copyright 2008 ITRI 工業技術研究院

Challenges

� Continuous cultivation of highly productive oleaginous micro algae in large scale field

• Algal strain selection and improvement

• Photobioreactor• Sources of CO 2 and nutrients• Cost and reliability

� Low cost down stream processing

• Harvest• Drying• Extraction• Water recycling• Energy consumption

� Co-productsTime

Cost

ScaleScal

e-up

and

Cost

Redu

ctio

n

~US$5/kg-biomass

~US$5/kg-biomass

US$0.25/kg?US$0.25/kg?

Page 6: 微藻生質能源技術 - fcu.edu.t · 2011-06-07 · (4) NREL, A Look Back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from Algae (1998) Potential Algal

6

11Copyright 2008 ITRI 工業技術研究院

Current Status of Micro-Algae Biofuel Technology

• NREL’s Aquatic Species Program (1978-1996)– 3,000 strains collected and

screened – 1,000 m2 outdoor test facility:10

g/m2/day biomass overall, 50 g/m2/day peak

– Est. algal oil cost ranges from $61 to $127 per barrel

• Industry moves into demonstration system– Shell, Chevron…– BP?– Others

Ref:National Geographic, 2007.10

GreenFuel Technologies’ photobioreactor system was temporarily shut down in July, 2007 due to increasing cost and technical problems

Photobioreactor in Klötze, Germany; the 700 m3 are distributed in 500 km of tubes and produce up to 100 t algae biomass per year (www.algomed.de)

12Copyright 2008 ITRI 工業技術研究院

Development of Photo-bioreactors

GreenFuel’s 3D Matrix Algae Growth Engineering Scale Unit, “triangle airlift reactor”

Solar Bioreactor (Utah-State University)

Solix Biofuel Inc.(U.S.A)AlgaeLink (Holland)

The worlds largest closed photo-bioreactor in Klötze, near Wolfsburg, Germany

A 1000 L helical tubular photo-bioreactor at Murdoch University, Australia.

Page 7: 微藻生質能源技術 - fcu.edu.t · 2011-06-07 · (4) NREL, A Look Back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from Algae (1998) Potential Algal

7

13Copyright 2008 ITRI 工業技術研究院

Research at ITRI−−−−Isolation of Indigenous Microalgae

Cooperated with Prof. Jane-Yii Wu, Department and Graduate Program of BioIndustry Technology, DaYeh University

14Copyright 2008 ITRI 工業技術研究院

Research at ITRI −−−− Algae Cultivation

0 2 4 6 8 10 120.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Bio

mas

s (g

/L)

Time (days)

■: Chlorella sp. ●: Chlorella minutissima ▲: Dunaliella salina▼: Dunaliella primolecta □: Isochrysis aff. Galbana ○: Nannochloropsis oculata

�: Tetraselmis sp. △: Tetraselmis suecica ▽: Tetraselmis chuii

ConditionWorking Volume: 5 L f/2 mediumTemperature: 25 ±±±± 1 oCLight intensity ~220 µµµµEm-2s-1

• 3 strains of Tetraselmis have higher biomass concentration( 0.51-0.63 g/L), but lower lipid content.

• One liter of sample was withdrew for lipid content and fatty acid composition analysis

Page 8: 微藻生質能源技術 - fcu.edu.t · 2011-06-07 · (4) NREL, A Look Back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from Algae (1998) Potential Algal

8

15Copyright 2008 ITRI 工業技術研究院

Research at ITRI −−−− Lipid Content

Chlore

lla sp

.

Chlore

lla m

inutis

sima

Dunali

ella pr

imole

cta

Dunali

ella sa

lina

Isoch

rysis

aff. g

alban

a

Nanno

chlor

opsis

ocula

ta

Tetras

elmis

chuii

Tetras

elmis

sp.

Tetrase

lmis

suecic

a

Lipid extracted by MeOH/CHCl3 = 1/2(v/v)

0

10

20

30

40

50

60

Lipi

d C

onte

nt (

%)

3 days 6 days 9 days 12 days

• The crude lipid content can be as high as 50%

ConditionFrozen cell was extracted by chloroform/MeOH = 2/1Lipid content was calculated as: %100×

celldriedofWeighr

lipidcrudeofWeight

16Copyright 2008 ITRI 工業技術研究院

Research at ITRI−−−− Composition of Fatty Acid

Procedure

Isochrysis aff. galbana

Chlorella minutissimaLipid (from microalgae)

Saponification

Esterification

GC Analysis

C14:0

C14:0

C16:0

C16:0

C16:1

EPA

DHA

C18:1

C18:1

(Method: CNS 15051)

C18:3

C18:2

C16:1

Page 9: 微藻生質能源技術 - fcu.edu.t · 2011-06-07 · (4) NREL, A Look Back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from Algae (1998) Potential Algal

9

17Copyright 2008 ITRI 工業技術研究院

Research at ITRI−−−− Composition of Fatty Acid

Fatty Acid Composition (%)

UnknownDHAEPAC18:3C18:2C18:1C18:0C16:1C16:0C14:0

37.8 ND4.5 13.4 6.5 12.5 1.0 0.4 22.8 1.1 Tetraselmis suecica

43.2 ND4.8 15.7 6.7 8.3 0.6 0.4 18.9 1.3 Tetraselmis sp.

38.9 ND3.4 15.6 7.9 7.9 0.5 1.1 23.7 1.0 Tetraselmis chuii

7.7 ND9.3 ND1.1 10.9 1.6 26.1 38.4 4.9 Nannochloropsisoculata

29.2 12.2 0.5 5.5 2.0 15.8 0.6 4.5 13.7 16.3 Isochrysis aff.galbana

26.4 NDND19.1 9.7 15.4 2.0 0.6 26.0 0.8 Dunaliella salina

33.7 NDND27.7 3.7 6.7 1.2 0.6 25.7 0.7 Dunaliellaprimolecta

6.6 ND9.0 ND1.4 7.9 1.7 28.3 37.5 7.6 Chlorella minutissima

27.5 NDND11.6 13.3 13.6 2.2 1.4 29.5 1.1 Chlorella sp.

* Sampled from 12th-day cultivation

18Copyright 2008 ITRI 工業技術研究院

Research at ITRI−−−− Comparisons of Outdoor and Indoor

Cultivation• Working volume was 5 L

• Half of the culture was harvested when the OD was reach 2

• Temperature difference can be as high as 20 oC(from 25 to 45oC)

• 3 strains can be survived• The growth rate of

outdoor cultivation was 3/4 of those in indoor cultivation

0 10 20 30 400.5

1.0

1.5

2.0

2.5

Tem

p (O

C)

pH

Cel

l con

c. (

OD

)

time (day)

891011

20

30

40

50

45 oC

25 oC

Red::::OutdoorBlack::::Indoor (temp was controlled between25-30 oC)

Nannochloropsis oculata

Page 10: 微藻生質能源技術 - fcu.edu.t · 2011-06-07 · (4) NREL, A Look Back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from Algae (1998) Potential Algal

10

19Copyright 2008 ITRI 工業技術研究院

Research at ITRI −−−− Composition of the Extract

Oil layerH2O layer

Lipid = Triglyceride ?

Triglycerides were converted to its FAME and analysis by GC

10.0 32.6 18.5 Total Extract (wt%)

5.48.79.8Total Triglyceride Extracted (wt%)

53.7 26.5 53.0FAME Content in Extract (wt%)

SC-CO2Folch methodSoxhlet MethdMethod

20Copyright 2008 ITRI 工業技術研究院

Research at ITRI −−−− Comparison of Triglyceride/FFA Extraction

5.4 wt%Undisrupted algae cell (H2O: 0 wt%)

SC-CO2

12.2 wt%Disrupted algal cell (H2O: 82.4 wt%)

SC-CO2+MEOH

15.7 wt%Disrupted algae cell (H2O: 0 wt%)

SC-CO2

11.3 wt%Disrupted algal cell(Water content 79.2%)

Solvent method

8.7 wt%Undisrupted algae cell (H2O: 0 wt%)

Folch method

9.8 wt%Undisrupted algae cell (H2O: 0 wt%)

Soxhlet Methd

3.4 wt%Undisrupted algae cell (H2O: 68.0 wt%)

SC-CO2

FAMESampleMethods

Page 11: 微藻生質能源技術 - fcu.edu.t · 2011-06-07 · (4) NREL, A Look Back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from Algae (1998) Potential Algal

11

21Copyright 2008 ITRI 工業技術研究院

Research at ITRI −−−− Downstream Process Optimization

Cultivation

�Open Ponds

�Closed Systems

- Photobioreactor

-Vertical Systems (Hanging bag)

Conditioning

�Stressing

Concentration�Centrifuge�Filter Press

Harvesting�Filtration�Flocculation�Gravity Settling

Extraction�Mechanical

- Extruder -High Pressure Homogenizer-Bead Mill- Expeller Press- Steam Explosion

�Chemical- Solvent Extraction- Supercritical Fluid Extraction- Microwave Extraction- Ultrasonic Extraction- Supersonic Extraction

Drying

�No Drying

�Ambient Air

�Heated

1-3 g Biomass/L10-20% lipids

80-90% DM20-40% lipids

95% recovery95% lipids

60-80% DM20-40% lipids

1-3 g Biomass/L20-40% lipids 5-100 g Biomass/L

20-40% lipids

Solvent Revoery

�Distillation (if using solvent)

Biodiesel Production

�Aspen Plus (Process Simulation)�Aspen Process Economic Anlyzer

Downstream Process

Upstream ProcessCultivation

�Open Ponds

�Closed Systems

- Photobioreactor

-Vertical Systems (Hanging bag)

Conditioning

�Stressing

Concentration�Centrifuge�Filter Press

Harvesting�Filtration�Flocculation�Gravity Settling

Extraction�Mechanical

- Extruder -High Pressure Homogenizer-Bead Mill- Expeller Press- Steam Explosion

�Chemical- Solvent Extraction- Supercritical Fluid Extraction- Microwave Extraction- Ultrasonic Extraction- Supersonic Extraction

Drying

�No Drying

�Ambient Air

�Heated

1-3 g Biomass/L10-20% lipids

80-90% DM20-40% lipids

95% recovery95% lipids

60-80% DM20-40% lipids

1-3 g Biomass/L20-40% lipids 5-100 g Biomass/L

20-40% lipids

Solvent Revoery

�Distillation (if using solvent)

Biodiesel Production

Cultivation

�Open Ponds

�Closed Systems

- Photobioreactor

-Vertical Systems (Hanging bag)

Conditioning

�Stressing

Concentration�Centrifuge�Filter Press

Harvesting�Filtration�Flocculation�Gravity Settling

Extraction�Mechanical

- Extruder -High Pressure Homogenizer-Bead Mill- Expeller Press- Steam Explosion

�Chemical- Solvent Extraction- Supercritical Fluid Extraction- Microwave Extraction- Ultrasonic Extraction- Supersonic Extraction

Drying

�No Drying

�Ambient Air

�Heated

1-3 g Biomass/L10-20% lipids

80-90% DM20-40% lipids

95% recovery95% lipids

60-80% DM20-40% lipids

1-3 g Biomass/L20-40% lipids 5-100 g Biomass/L

20-40% lipids

Solvent Revoery

�Distillation (if using solvent)

Biodiesel Production

�Aspen Plus (Process Simulation)�Aspen Process Economic Anlyzer

Downstream Process

Upstream Process

Focus on the advanced technologies for Harvest, cel l disruption and extraction of oil and high value che micals

22Copyright 2008 ITRI 工業技術研究院

0

10

20

30

Ene

rgy

Con

sum

ptio

n (k

W-h

/ kg-

oil)

Energy Consumption-Downstream Process

Reduce the use of L- CO2

Aspen Plus (exp. data and literatures)

Lardon(2009)

70

1

Hexane

90% (w/w)

90

100

L-CO2/SC-CO2

15 % (w/w)

959098Extraction yield(%)

300185Solvent (g)/Biomass (g)

L-CO2/SC-CO2

Hexane/MeOHHexaneSolvent

15 % (w/w)15 % (w/w)95% (w/w)Biomass Conc. before extraction

■:Extraction■:Cell disruption■:Drying ■:Culture/Harvest

Energy content ofBiomass for 1 kg oil

Ref: Life-Cycle Assessment of Biodiesel Production from Microalgae, Lardon et. al. (2009)

Page 12: 微藻生質能源技術 - fcu.edu.t · 2011-06-07 · (4) NREL, A Look Back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from Algae (1998) Potential Algal

12

23Copyright 2008 ITRI 工業技術研究院

Concluding Remarks

• Micro-algae has great potential as biofuel feedstoc k

• To make the process economically viable is more challenge in Taiwan than other areas due to the higher costs of land and labor and more precious water resource

• ITRI will focus on the development of key technologies and collaborate with all sources of relevant government agencies, research organizations, academia, and private sector

24Copyright 2008 ITRI 工業技術研究院

Financial support provided by the Bureau of Energy, MOEA, R.O.C. is acknowledged.

Thank you for your attention.