EE221 Lect 1 Ver1

Embed Size (px)

Citation preview

  • 8/2/2019 EE221 Lect 1 Ver1

    1/47

    1

    EE221 Electronics -II

    Lecture 1

    EE221 Spring 2012

  • 8/2/2019 EE221 Lect 1 Ver1

    2/47

  • 8/2/2019 EE221 Lect 1 Ver1

    3/47

    EE-221 ELECTRONICS -II

    EE221 Spring 20123

    TEXT:Microelectronic Circuits Sixth Edition,by Sedra, Smith OxfordUniversity Press

    REFERENCEFundamentals of Microelectronics, by Behzad Razavi, John Wiley & Sons Inc

  • 8/2/2019 EE221 Lect 1 Ver1

    4/47

    EE-221 ELECTRONICS -II

    EE221 Spring 20124

  • 8/2/2019 EE221 Lect 1 Ver1

    5/47

    OV DS V v

    RECALL: NMOS Essential Relationships

    Channelno: tnGS V v

    )21

    ( 2'

    = DS DSOV n D vvv L

    W k i RegionTriodein NMOS

  • 8/2/2019 EE221 Lect 1 Ver1

    6/47

    OV DS V v

    RECALL: NMOS Essential Relationships

    Channelno: tnGS V v

    RegionSaturationin NMOS( ) 121

    2' DSOV n D vv LW

    k i +=

    tnGD V v

  • 8/2/2019 EE221 Lect 1 Ver1

    7/47

    RECALL: PMOS Essential Relationships

    Channel;no: tpSG V v

    OV SD V v

    )21

    ( 2'

    =SDSDOV p D vvv L

    W k i RegionTriodeinPMOS

  • 8/2/2019 EE221 Lect 1 Ver1

    8/47

    21

    2'

    OV p D v LW

    k i

    =

    RECALL: NMOS Essential Relationships

    SaturationinPMOS

    SDSG DG vvv =

    Channel;no: tpSG V v

  • 8/2/2019 EE221 Lect 1 Ver1

    9/47

    RECALL: BJT Circuits at DC

    Cut-off Mode

    EBJ >> ReverseBiased

    CBJ >> ReverseBiased

  • 8/2/2019 EE221 Lect 1 Ver1

    10/47

    BJT Circuits at DC

    Active Mode

    EBJ >> ForwardBiased

    CBJ >> ReverseBiased

  • 8/2/2019 EE221 Lect 1 Ver1

    11/47

    BJT Circuits at DC

    Saturation Mode

    EBJ >> ForwardBiased

    CBJ >> ForwardBiased

  • 8/2/2019 EE221 Lect 1 Ver1

    12/47

    Typical CMOS Parameters

    Parameters NMOS PMOS NMOS PMOS NMOS PMOS NMOS PMOS NMOS PMOS

    15 15 9 9 6 6 4 4 2.7 2.7

    2.3 2.3 3.8 3.8 5.8 5.8 8.6 8.6 12.8 12.8

    550 250 500 180 460 160 450 100 400 100

    127 58 190 68 267 93 387 86 511 1280.7 -0.7 0.7 -0.8 0.5 -0.6 0.5 -0.5 0.4 -0.4

    5 5 3.3 3.3 2.5 2.5 1.8 1.8 1.3 1.3

    25 20 20 10 5 6 5 6 5 6

    0.2 0.2 0.4 0.4 0.3 0.3 0.37 0.33 0.36 0.33

    0.8 m 0.5 m 0.25 m 0.18 m 0.13 m

    (nm)

    (fF/ )

    (A / )

    (V)

    (V)

    /m)

    (fF/ )

    ( cm / V.s)

    EE221 Spring 2012

  • 8/2/2019 EE221 Lect 1 Ver1

    13/47

    Typical Parameters for BJT

    Parameters NPN Lateral PNP NPN Lateral PNP

    500 900 2 2

    200 50 100 50

    130 50 35 30

    50 60 8 18

    0.35ns 30ns 10ps 650ps

    1pF 0.3pF 5fF 14fF0.3pF 1pF 5fF 15fF

    200 300 400 200

    Standard HV Process Advanced LV Process

    (

    (V)

    (V)

    (A/A)

    (A)

    EE221 Spring 2012

  • 8/2/2019 EE221 Lect 1 Ver1

    14/47

    Comparison of MOSFET &BJT

    EE221 Spring 2012

    Students to thoroughly read and understand all parameterslisted in the table mentioned below:

    SEDRA & SMITH 5 Ed Table 6.3

    SEDRA & SMITH 6 Ed Table 7.A.3

    The student to work to understand Examples 6.1 and 6.2and attempt EXERCISE 6.1 and 6.2

  • 8/2/2019 EE221 Lect 1 Ver1

    15/47

    The Basic MOSFET / BJT Cell

    EE221 Spring 2012

  • 8/2/2019 EE221 Lect 1 Ver1

    16/47

    Active Loaded MOSFET / BJT Cell

    EE221 Spring 2012

    In IC technology it is difficult to implement resistances with

    precise values. A very high load resistance is effectively implemented in the

    drain (collector) loop; thus higher gain is achieved.

  • 8/2/2019 EE221 Lect 1 Ver1

    17/47

    Active Loaded MOSFET / BJT Cell

    EE221 Spring 2012

    POINTS TO NOTE

    The MOSFET is biased to operate in Saturation Region. The BJT is biased to operate in Active region. Current = and =

  • 8/2/2019 EE221 Lect 1 Ver1

    18/47

    CE Amplifier with Current-Source Load

    r Rin =

    omvo r g A =oo r R

    =Assume IdealCurrent Source soLoad Resistanceis infinite

    o

    vo

    A

    A

    astoreferredbeWill

    GAININTRINSICtoreferredisit

    gainpossiblemaximumtheis

  • 8/2/2019 EE221 Lect 1 Ver1

    19/47

    CE Amplifier with Current-Source Load

    r Rin =

    omvo r g A =

    oo r R=

    (A) ............T

    C m V

    I g =

    (B) ............C

    Ao I

    V r =

    T

    Aom V

    V r g A ==0

  • 8/2/2019 EE221 Lect 1 Ver1

    20/47

    Typical Parameters for BJT

    Parameters NPN Lateral PNP NPN Lateral PNP

    100V-130V 5V-35V

    25 25

    4000-5200 200-1400

    Standard HV Process Advanced LV Process

    (V)

    (mV)

    (V / V)

    EE221 Spring 2012

  • 8/2/2019 EE221 Lect 1 Ver1

    21/47

    CS Amplifier with Current-Source Load

    =in R

    omvo r g A=

    oo r R =

    Assume IdealCurrent Source soLoad Resistanceis infinite

    o

    vo

    A

    A

    astoreferredbeWill

    GAININTRINSICtoreferredisit

    gainpossiblemaximumtheis

  • 8/2/2019 EE221 Lect 1 Ver1

    22/47

    CS Amplifier with Current-Source Load

    2OV

    Ao V

    V A =

    2

    OV

    Ao

    V

    LV A

    =

    (A) ............2 / OV

    Dm V

    I g =

    (B).......I) / (2 D LW C g oxnm =

    (C) .........V A

    D D

    Ao

    I

    L

    I

    V r

    ==

    D

    oxn Ao

    I

    LW C V A

    ) / )((2 =

  • 8/2/2019 EE221 Lect 1 Ver1

    23/47

    Typical CMOS Parameters

    0.8 m 0.5 m 0.25 m 0.18 m 0.13 mParameters NMOS NMOS NMOS NMOS NMOS

    0.7 0.7 0.5 0.5 0.4

    5 3.3 2.5 1.8 1.3

    25 20 5 5 520 10 1.25 0.9 0.65

    0.96 0.6 0.33 0.1 0.033

    21 16.7 3.8 9 19.7

    (V)

    /m)

    (V)

    (V)/2 (V)

    (V /V)

    EE221 Spring 2012

    The value of for new technologies is in the range of 0.15Vto 0.3V ( is 0.075V 0.15V)

    The numerator quantity is both process dependent and devicedependent and is steadily decreasing ( = )

    For a given technology can be increased by using a longerMOSFET and lower ( but this also deceases the amplifierBW )

  • 8/2/2019 EE221 Lect 1 Ver1

    24/47

    Effect of Output Resistance of Current-

    Source Load

    I V r Ao

    22

    =

    2])[)((21

    tpG DDox p V V V LW

    C I = I

  • 8/2/2019 EE221 Lect 1 Ver1

    25/47

    Effect of Output Resistance of Current-

    Source Load

    I V r Ao

    22

    =

    2])[)((21

    tpG DDox p V V V LW

    C I =

    Q2&Q1forsameisAssume21

    Aomv V r g A =

    )||( 211 oomi

    ov r r gv

    v A =

    ov A A 21

    Therefore=

  • 8/2/2019 EE221 Lect 1 Ver1

    26/47

    Effect of Output Resistance of Current-

    Source Load (Print Version)

    I

    V r Ao

    22

    =

    2])[)((2

    1tpG DDox p V V V

    L

    W C I =

  • 8/2/2019 EE221 Lect 1 Ver1

    27/47

  • 8/2/2019 EE221 Lect 1 Ver1

    28/47

    Example 7.2 & 7.3 S&S 6EdSec6.5.2 Ex 6.8 S&S 5Ed

    A practical circuit implementation ofthe common-source amplifier isshown in figure on the left. Here the

    current-source transistor Q2 is theoutput transistor of a current mirrorformed by Q2 and Q3 and fed with areference current I-ref.

    Assume that Q2 and Q3 arematched. Also assume that I-ref is astable, well-predicted current that isgenerated with a special circuit onthe chip.

    Determine the Voltage TransferCharacteristic (VTC), that is,versus .

  • 8/2/2019 EE221 Lect 1 Ver1

    29/47

    Example 7.2

    The Current Mirror appears as a

    Load in the drain of the transistorQ1.

  • 8/2/2019 EE221 Lect 1 Ver1

    30/47

    Example 7.2

  • 8/2/2019 EE221 Lect 1 Ver1

    31/47

    Current Mirror (PMOS)

    1 / 12 / 2

    shown thatbecanIt 2

    = LW LW

    I I REF D

    EE221 Spring 2012

    thenandIf 22121 REF D I I L LW W ===

  • 8/2/2019 EE221 Lect 1 Ver1

    32/47

    Current Mirror (PMOS)

    (A) ............)(33

    21 2'

    3 t SGn D V V LW

    k I

    =

    (B) ............ 3 REF D I I =

    (C) ............)(

    2

    2

    2

    1 2'2 t SGn D V V

    L

    W k I

    =

    (D) ............ 3 / 32 / 2

    32

    = LW LW

    I I D D

    (E) ............ 3 / 32 / 2

    2

    =

    LW LW I I REF D

    EE221 Spring 2012

  • 8/2/2019 EE221 Lect 1 Ver1

    33/47

    NMOS CCS (Hidden Slide)

    EE221 Spring 2012

  • 8/2/2019 EE221 Lect 1 Ver1

    34/47

    NMOS Current Mirror (Hidden Slide)

    1 / 12 / 2

    shown thatbecanIt 2

    = LW LW

    I I REF D

    EE221 Spring 2012

    thenandIf 22121 REF D I I L LW W ===

  • 8/2/2019 EE221 Lect 1 Ver1

    35/47

    (A) ............)(11

    21 2'

    1 t GSn D V V LW

    k I

    =

    (B) ............ 1 RV V V I I GSSS DD REF D +==

    (C) ............)(

    2

    2

    2

    1 2'2 t GSn D V V

    L

    W k I

    =

    (D) ............ 1 / 12 / 2

    12

    = LW LW

    I I D D

    (E) ............ 1 / 12 / 2

    2

    =

    LW LW I I REF D

    EE221 Spring 2012

    NMOS Current Mirror (Hidden Slide)

  • 8/2/2019 EE221 Lect 1 Ver1

    36/47

    Example 7.2

    l

  • 8/2/2019 EE221 Lect 1 Ver1

    37/47

    Example 7.2

    E l 7 2

  • 8/2/2019 EE221 Lect 1 Ver1

    38/47

    Example 7.2

    NOTE that will have drain current equal to only when= =

    Q2 operates in saturation as long as = or (Max output voltage)

    E l 7 2

  • 8/2/2019 EE221 Lect 1 Ver1

    39/47

    Example 7.2

  • 8/2/2019 EE221 Lect 1 Ver1

    40/47

    Recall: MOSFET Voltage Gain

    (Animated Version)

  • 8/2/2019 EE221 Lect 1 Ver1

    41/47

    Recall: MOSFET Voltage Gain (Print Version)

    ll OS l G i

  • 8/2/2019 EE221 Lect 1 Ver1

    42/47

    Recall: MOSFET Voltage Gain

    (Print Version)

    Example 7 2

  • 8/2/2019 EE221 Lect 1 Ver1

    43/47

    Example 7.2

    =

    Example 7 2 (Hidden Slide)

  • 8/2/2019 EE221 Lect 1 Ver1

    44/47

    Example 7.2 (Hidden Slide)

    Example 7 2

  • 8/2/2019 EE221 Lect 1 Ver1

    45/47

    Example 7.2

    Do Example 7.3Do Example 7.3

    Increasing the Gain of the Basic Cell

  • 8/2/2019 EE221 Lect 1 Ver1

    46/47

    Increasing the Gain of the Basic Cell

    Increasing the Gain of the Basic Cell

  • 8/2/2019 EE221 Lect 1 Ver1

    47/47

    Increasing the Gain of the Basic Cell