24
連星中性子星合体からの電磁波 仏坂健太 (京都大学) 共同: 大川博督(CENTRA)、久徳浩太郎(UWM)谷口敬介(東大)、田中雅臣、和南城伸也(国立天文台)木内建太、柴田大、関口雄一郎、長倉洋樹(京大基研)井岡邦仁(KEK)

連星中性子星合体からの電磁波 - Kavli IPMU-カブリ数物連携 ...member.ipmu.jp/masamune.oguri/rironkon2013/talks/07...cusp of the “tear drop” and from the equatorial

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 連星中性子星合体からの電磁波 - Kavli IPMU-カブリ数物連携 ...member.ipmu.jp/masamune.oguri/rironkon2013/talks/07...cusp of the “tear drop” and from the equatorial

連星中性子星合体からの電磁波

仏坂健太  (京都大学)  

共同: 大川博督(CENTRA)、久徳浩太郎(UWM)、       谷口敬介(東大)、田中雅臣、和南城伸也(国立天文台)、       木内建太、柴田大、関口雄一郎、長倉洋樹(京大基研)、       井岡邦仁(KEK)  

Page 2: 連星中性子星合体からの電磁波 - Kavli IPMU-カブリ数物連携 ...member.ipmu.jp/masamune.oguri/rironkon2013/talks/07...cusp of the “tear drop” and from the equatorial

重力波天文学に向けて

Advanced  LIGO Advanced  Virgo KAGRA

GW コンパクト連星合体  (中性子星やブラックホール)  

2017〜 2016〜 2015,  16〜

GW

予想イベントレート(連星中性子星)

第一世代  (IniDal  LIGO,  Virgo)                 第二世代    (Advanced  LIGO,  Virgo,  KAGRA)

0.0002  〜 0.02  /yr                                                  0.2  〜  400  /yr

Abadie  et  al  (2010)

(これまで) (数年後)

Page 3: 連星中性子星合体からの電磁波 - Kavli IPMU-カブリ数物連携 ...member.ipmu.jp/masamune.oguri/rironkon2013/talks/07...cusp of the “tear drop” and from the equatorial

重力波ー電磁波観測

•  第二世代重力波望遠鏡時代の宇宙物理学

ü 多数の銀河(〜数100Mpc)までカバーする。  

検出閾値付近のイベントが多い➡電磁波で確認➡発見の手助け

重力波源の電磁波による追観測が重要!!

電磁波で母銀河、距離を決定➡  GW-­‐photon伝播の物理

ü 波源の位置決定が苦手。  

波源は中性子星?ブラックホール?または?➡電磁波から示唆

ü 重力波から合体時刻、天体の質量はわかるだろう。  

Page 4: 連星中性子星合体からの電磁波 - Kavli IPMU-カブリ数物連携 ...member.ipmu.jp/masamune.oguri/rironkon2013/talks/07...cusp of the “tear drop” and from the equatorial

重力波から粗い位置情報  ➡電磁波の観測戦略が必要

ü  有望な電磁波対応天体の予想

1. 連星中性子星合体に付随する確率が高い。  

2. 現在、または将来の望遠鏡で観測可能。  

3. 他の天体現象と区別可能。

ü  いつ、どの波長で観測すべきか?

Page 5: 連星中性子星合体からの電磁波 - Kavli IPMU-カブリ数物連携 ...member.ipmu.jp/masamune.oguri/rironkon2013/talks/07...cusp of the “tear drop” and from the equatorial

30  

 28    26    

-­‐2                                          0                                          2                                          4                                            6                                          8                                      10

log(L)  [e

rg/s]  

Log  

Luminosity

(erg/s/Hz)  

log(t)  [s]

Merger  remnant     (radio)

Kilonova  /Macronova  (NIR)

 Extended  Emission  (X)

GRB  A[erglow  (X)

Merger  Breakout  (X)

GRB  A[erglow  (visible)

GRB  a[erglow                  (radio)

GRB  (X~γ) 52    

50    

48    

46    

44    

42    

log(Lν)  [erg/s/Hz

]  

Merger  Breakout  (radio)

予想光度曲線 Refs:  Nakar  (2007)  

               Norris  &  Bonnell  (2006)                  Sari,  Piran,  Narayan  (1998)  

               Li  &  Paczynski  (1998)                  Nakar  &  Piran  (2012)  

               Kyutoku,  Ioka,  Shibata  (2012)                  Kelley,  Mandel,  Ramirez-­‐Ruiz  (2012)  

Nakamura  et  al  (2013)

明るさ

時間

Page 6: 連星中性子星合体からの電磁波 - Kavli IPMU-カブリ数物連携 ...member.ipmu.jp/masamune.oguri/rironkon2013/talks/07...cusp of the “tear drop” and from the equatorial

30  

 28    26    

-­‐2                                          0                                          2                                          4                                            6                                          8                                      10

log(L)  [e

rg/s]  

Log  

Luminosity

(erg/s/Hz)  

log(t)  [s]

Merger  remnant     (radio)

Kilonova  /Macronova  (NIR)

 Extended  Emission?  (X)

GRB  A[erglow  (X)

Merger  Breakout  (X)

GRB  A[erglow  (visible)

GRB  a[erglow                  (radio)

GRB  (X~γ) 52    

50    

48    

46    

44    

42    

log(Lν)  [erg/s/Hz

]  

Merger  Breakout  (radio)

予想光度曲線(4π)

時間

明るさ

Page 7: 連星中性子星合体からの電磁波 - Kavli IPMU-カブリ数物連携 ...member.ipmu.jp/masamune.oguri/rironkon2013/talks/07...cusp of the “tear drop” and from the equatorial

30  

 28    26    

-­‐2                                          0                                          2                                          4                                            6                                          8                                      10

log(L)  [e

rg/s]  

Log  

Luminosity

(erg/s/Hz)  

log(t)  [s]

Merger  remnant     (radio)

Kilonova  /Macronova  (NIR)

 Extended  Emission??  (X)

GRB  A[erglow  (X)

Merger  Breakout  (X)

GRB  A[erglow  (visible)

GRB  a[erglow                  (radio)

GRB  (X~γ) 52    

50    

48    

46    

44    

42    

log(Lν)  [erg/s/Hz

]  

Merger  Breakout  (radio)

予想光度曲線(4π,環境非依存)

時間

明るさ

Page 8: 連星中性子星合体からの電磁波 - Kavli IPMU-カブリ数物連携 ...member.ipmu.jp/masamune.oguri/rironkon2013/talks/07...cusp of the “tear drop” and from the equatorial

At  peak  luminosity  (diffusion  Dme  =  expansion  Dme)

Kilonova(理論的に予言)        

ü  Kilonovaとは?    Li  &  Paczynsky  (1998)  連星中性子星合体  =>  質量の数%が放射性元素として宇宙空間に放出される。  ⇒ 放射性元素の崩壊により、等方に明るく輝く。  

⇒ 有望な電磁波対応天体

Nova  <  Kilonova  <  Supernova

t ~ 5days M0.01Msun

!

"#

$

%&

12 v0.1c!

"#

$

%&−12 κ10cm2g−1!

"#

$

%&

12

L ~ 5×1040erg / s f10−6#

$%

&

'(

M0.01Msun

#

$%

&

'(

12 v0.1c#

$%

&

'(−12 κ10cm2g−1#

$%

&

'(

−12

Hydrodynamics Microphysics  

Page 9: 連星中性子星合体からの電磁波 - Kavli IPMU-カブリ数物連携 ...member.ipmu.jp/masamune.oguri/rironkon2013/talks/07...cusp of the “tear drop” and from the equatorial

Kilonovaはどんな風に光るか?

エジェクタ中の光の伝播を解く。  ※放射性崩壊による加熱を取り入れる。  

NS-­‐NS  合体  BH-­‐NS  合体   質量放出を計算

Kilonovaの光度曲線とスペクトルを求める  

数値相対論  シミュレーション  

輻射輸送  シミュレーション  

2010  年まではとても単純なモデルしかなかった。  ➡電磁波対応天体として観測するためには、もっと詳細な計算が必要

Page 10: 連星中性子星合体からの電磁波 - Kavli IPMU-カブリ数物連携 ...member.ipmu.jp/masamune.oguri/rironkon2013/talks/07...cusp of the “tear drop” and from the equatorial

数値相対論シミュレーション:赤道面の質量放出

300  km  x  300  km                                                                  2400  km  x  2400  km

Model  :  1.2Msun  –  1.5Msun,    EOS=APR

log(density  g/cc)

Hotokezaka  et  al.  (2013)

Page 11: 連星中性子星合体からの電磁波 - Kavli IPMU-カブリ数物連携 ...member.ipmu.jp/masamune.oguri/rironkon2013/talks/07...cusp of the “tear drop” and from the equatorial

300  km  x  300  km                                                                  2400  km  x  2400  km

Model  :  1.2Msun  –  1.5Msun,    EOS=APR

log(density  g/cc)

質量放出  :  Mej  〜  0.01Msun,  v  〜  0.2c

数値相対論シミュレーション:赤道面の質量放出 Hotokezaka  et  al.  (2013)

Page 12: 連星中性子星合体からの電磁波 - Kavli IPMU-カブリ数物連携 ...member.ipmu.jp/masamune.oguri/rironkon2013/talks/07...cusp of the “tear drop” and from the equatorial

300  km  x  150  km                                                                  2400  km  x  1200  km

Model  :  1.2Msun  –  1.5Msun,    EOS=APR

log(density  g/cc)

(x-­‐z  plane) 数値相対論シミュレーション:子午面の質量放出

Page 13: 連星中性子星合体からの電磁波 - Kavli IPMU-カブリ数物連携 ...member.ipmu.jp/masamune.oguri/rironkon2013/talks/07...cusp of the “tear drop” and from the equatorial

300  km  x  150  km                                                                  2400  km  x  1200  km

Model  :  1.2Msun  –  1.5Msun,    EOS=APR

log(density  g/cc)

(x-­‐z  plane)

NS-­‐NS  Ejecta  は比較的球に近い

数値相対論シミュレーション:子午面の質量放出

Page 14: 連星中性子星合体からの電磁波 - Kavli IPMU-カブリ数物連携 ...member.ipmu.jp/masamune.oguri/rironkon2013/talks/07...cusp of the “tear drop” and from the equatorial

2

4

6

8

10

11 12 13 14 15

Mes

c/10-3

Msu

n

R1.35 [km]

結果:エジェクタの質量と中性子星状態方程式

中性子星半径

エジェクタ質量

Systematics of dynamical mass ejection, nucleosynthesis, and radioactively powered electromagnetic signals 9

10 11 12 13 14 15 160

0.002

0.004

0.006

0.008

0.01

0.012

Mej

ecta

[Msu

n]

R1.35 [km]11 12 13 14 15

0.005

0.01

0.015

0.02

Mej

ecta

[Msu

n]

R1.35 [km]

10 11 12 13 14 15 160.31

0.32

0.33

0.34

0.35

0.36

|v1|+

|v2| [

c]

R1.35 [km]11 12 13 14 15

0.315

0.32

0.325

0.33

0.335

0.34

0.345

|v1|+

|v2| [

c]

R1.35 [km]

Fig. 3.— Amount of unbound material for 1.35-1.35 M! mergers (top left) and 1.2-1.5 M! mergers (top right) for different EoSscharacterized by the corresponding radius R1.35 of a nonrotating NS. Red crosses denote EoSs which include thermal effects consistently,while black (blue) symbols indicate zero-temperature EoSs that are supplemented by a thermal ideal-gas component with Γth = 2 (Γth = 1.5)(see main text). Small symbols represent EoSs which are incompatible with current NS mass measurements (Demorest et al. 2010). Circlesdisplay EoSs which lead to the prompt collapse to a black hole. The lower panels display the sum of the maxima of the coordinate velocitiesof the mass centers of the two binary components as a function of R1.35 for symmetric (bottom left) and asymmetric (bottom right)binaries.

ima of the coordinate velocities of the mass centers ofthe two asymmetric binary components. As in the sym-metric case the two stars collide with a higher impactvelocity if the initial radii of the NSs are smaller.Due to the asymmetry the dynamics of the merger pro-

ceeds differently from the symmetric case (see Fig. 4).Prior to the merging the less massive binary componentis deformed to a drop-like structure with the cusp point-ing to the 1.5 M! NS (top panels). After the stars beginto touch each other, the lighter companion is stretchedand a massive tidal tail forms (middle left panel). Thedeformed 1.2 M! component is wound around the moremassive companion (middle panels). Also in the case ofasymmetric mergers the majority of the ejecta originatesfrom the contact interface of the collision, i.e. from thecusp of the “tear drop” and from the equatorial surfaceof the more massive companion, where the impact ab-lates matter (see top panels). Some matter at the tipof the cusp directly fulfills the ejecta criterion (top rightpanel), while the majority obtains an additional pushby the interaction with the asymmetric, mass-shedding

central remnant and the developing spiral arms (middleright and bottom panels). A smaller amount of ejecta ofroughly 25 per cent originates from the outer end of theprimary tidal tail (particles in the lower part of the topright panel). A part of this matter becomes unbound bytidal forces (at the tip of the tidal tail in the middle leftpanel) and the other fraction by an interaction with thecentral remnant (middle left panel).Figure 5 displays the distribution of the ejecta in a

plane perpendicular to the binary orbit for the symmetricmerger (left panel) compared to the asymmetric merger(right panel) for the last timesteps shown in Fig. 2 andFig. 4, respectively. A considerable fraction of the ejectedmatter is expelled with large direction angles relative tothe orbital plane. For a timestep about 5 ms later theejecta geometry is visualized (azimuthally averaged) inFig. 6 excluding the bound matter. For both mergersthe outflows exhibit a (torus or donut-like) anisotropywith an axis ratio of about 2:3. The velocity fields alsoshow a slight dependence on the direction.

Hotokezaka  +  (2013)

Bauswain  +  (2013)

Mtot  =  2.7Msun

If  HMNS  is  formed

ü  エジェクタ質量:0.001    –  0.01Msun  ü  状態方程式によって桁で異なる。

Page 15: 連星中性子星合体からの電磁波 - Kavli IPMU-カブリ数物連携 ...member.ipmu.jp/masamune.oguri/rironkon2013/talks/07...cusp of the “tear drop” and from the equatorial

多核種の崩壊のHeaDng  rate

This value of the effective temperature implys that the kilonova emission can be observed

in near-infrared band. Note that the above description of the compact binary merger

ejecta is so simple. In order to obtain more realisitic ejecta structure, ejecta mass, and

velocity profile, we need to perform numerical-relaticvity simulations of NS–NS and BH–

NS mergers. Furthermore, the microphysics play crucial role to understand kilonova

emissions such as the heating rate of the radioactive decays and the opacity of the ejecta.

In the next subsection, we briefly discuss the heating rate and opacity. In Chap. 7,

we focus on the ejecta properties for NS–NS mergers based on the results of numerical

relativity simulations.

3.3.2 Microphysics in NS–NS Merger Ejecta

r-process nucleaosysnthesis

The lifetime τ of a radioactive particle can be obtained by

1

τ(Q)=

∫ Q

mec2

! |Mfi|2dρf (Q, Ee)

dEedEe, (3.16)

where Q is the total energy of the decay, Mfi is the matirx elements of the decay, Ee is

the energy of the electron, and ρf is the density of state of released particles. Here, we

suppose that the matrix elemets do not depend on the energy and their form |Mfi|2 =

(g2V + 3g2

A)/V 2, where V is the volume, and gV and gA. Because an electron and neutrino

are ejected at the β-decay, the density of state can be written in the form

dρf (Q,Ee) =4πp2

e

(2π!)3

dpe

dEe

4πp2ν

(2π!)3

dpν

dQV 2dEe, (3.17)

where pe and pν are the momentum of an electron and neutrino, respectively. Note that

the factor V 2 is cancelled out with the same factor in the matrix elements. Assuming

Q ! mec2, the lifetime of the particle with Q can be described as

1

τ(Q)≈ 1

!7c6

(g2

V + 3g2A

) Q

60π3≈ 1

1600s−1

(Q

1MeV

)5

(3.18)

This dependence of the lifetime of the β-decay energy is called the Sargent’s law.

Now we consider the heating rate of a statistical ensemble of β-decays. The heating

rate per unit mass is given by

ε(t) =

∫ ∞

0

Qf(Q)

τ(Q)exp(−t/τ(Q))dQ, (3.19)

where f(Q) is the distribution function. One supposes that flat distribution function

f(Q) ≈ f0 for Q ≤ Qmax, where Qmax is the upper limit of the distribution. Substituting

τ(Q) = t0Q−5 into Eq. (3.19), one can obtain the heating rate as

ε(t) =β0

t0

(t

t0

)−1.4

, (3.20)

19

ベータ崩壊:原子核=>原子核+電子+ニュートリノ

終状態数の足し上げ

rate of the radioactive decays and the opacity of the ejecta. In the next subsection, we

briefly discuss the heating rate and opacity. In Chap. 7, we focus on the ejecta properties

for NS–NS mergers based on the results of numerical relativity simulations.

3.2.2 Microphysics in NS–NS Merger Ejecta

Decay of r-process elements

The β-decay lifetime τ of a radioactive particle can be obtained by

1

τ(Q)=

∫ Q

mec2

! |Mfi|2dρf (Q, Ee)

dEedEe, (3.16)

where Q is the total energy of the decay, Mfi is the matrix elements of the decay, Ee is

the energy of the electron, and ρf is the density of state of released particles. Here, we

suppose that the matrix elemets do not depend on the energy and their form |Mfi|2 =

(g2V + 3g2

A)/V 2, where V is the volume, and gV and gA. Because an electron and neutrino

are ejected at the β-decay, the density of state can be written in the form

dρf (Q,Ee) =4πp2

e

(2π!)3

dpe

dEe

4πp2ν

(2π!)3

dpν

dQV 2dEe, (3.17)

where pe and pν are the momentum of an electron and neutrino, respectively. Note that

the factor V 2 is cancelled out with the same factor in the matrix elements. Assuming

Q ! mec2, the lifetime of the particle with Q can be described as

1

τ(Q)≈ 1

!7c6

(g2

V + 3g2A

) Q5

60π3≈ 1

1600s−1

(Q

1MeV

)5

(3.18)

This dependence of the lifetime of the β-decay energy is called the Sargent’s law.

Now we consider the heating rate of a statistical ensemble of β-decays (Colgate and

White 1966). The heating rate per unit mass is given by

ε(t) =

∫ ∞

0

Qf(Q)

τ(Q)exp(−t/τ(Q))dQ, (3.19)

where f(Q) is the distribution function. One supposes that flat distribution function

f(Q) ≈ f0 for Q ≤ Qmax, where Qmax is the upper limit of the distribution. Substituting

τ(Q) = t0Q−5 into Eq. (3.19), one can obtain the heating rate as

ε(t) =β0

t0

(t

t0

)−1.4

, (3.20)

where β0 is a constant. For the case that the number of radioactive nuclei is uniformly

distributed in each energy scale, the power of the heating rate is −1.2 (see e.g. Colgate

and McKee 1969). Although the above argument is quite simplified, the behavior of the

heating rate due to the β-decays of r-process elements can be understood as shown in

Fig. 3.3.

24

rate of the radioactive decays and the opacity of the ejecta. In the next subsection, we

briefly discuss the heating rate and opacity. In Chap. 7, we focus on the ejecta properties

for NS–NS mergers based on the results of numerical relativity simulations.

3.2.2 Microphysics in NS–NS Merger Ejecta

Decay of r-process elements

The β-decay lifetime τ of a radioactive particle can be obtained by

1

τ(Q)=

∫ Q

mec2

! |Mfi|2dρf (Q, Ee)

dEedEe, (3.16)

where Q is the total energy of the decay, Mfi is the matrix elements of the decay, Ee is

the energy of the electron, and ρf is the density of state of released particles. Here, we

suppose that the matrix elemets do not depend on the energy and their form |Mfi|2 =

(g2V + 3g2

A)/V 2, where V is the volume, and gV and gA. Because an electron and neutrino

are ejected at the β-decay, the density of state can be written in the form

dρf (Q,Ee) =4πp2

e

(2π!)3

dpe

dEe

4πp2ν

(2π!)3

dpν

dQV 2dEe, (3.17)

where pe and pν are the momentum of an electron and neutrino, respectively. Note that

the factor V 2 is cancelled out with the same factor in the matrix elements. Assuming

Q ! mec2, the lifetime of the particle with Q can be described as

1

τ(Q)≈ 1

!7c6

(g2

V + 3g2A

) Q5

60π3≈ 1

1600s−1

(Q

1MeV

)5

(3.18)

This dependence of the lifetime of the β-decay energy is called the Sargent’s law.

Now we consider the heating rate of a statistical ensemble of β-decays (Colgate and

White 1966). The heating rate per unit mass is given by

ε(t) =

∫ ∞

0

Qf(Q)

τ(Q)exp(−t/τ(Q))dQ, (3.19)

where f(Q) is the distribution function. One supposes that flat distribution function

f(Q) ≈ f0 for Q ≤ Qmax, where Qmax is the upper limit of the distribution. Substituting

τ(Q) = t0Q−5 into Eq. (3.19), one can obtain the heating rate as

ε(t) =β0

t0

(t

t0

)−1.4

, (3.20)

where β0 is a constant. For the case that the number of radioactive nuclei is uniformly

distributed in each energy scale, the power of the heating rate is −1.2 (see e.g. Colgate

and McKee 1969). Although the above argument is quite simplified, the behavior of the

heating rate due to the β-decays of r-process elements can be understood as shown in

Fig. 3.3.

24

rate of the radioactive decays and the opacity of the ejecta. In the next subsection, we

briefly discuss the heating rate and opacity. In Chap. 7, we focus on the ejecta properties

for NS–NS mergers based on the results of numerical relativity simulations.

3.2.2 Microphysics in NS–NS Merger Ejecta

Decay of r-process elements

The β-decay lifetime τ of a radioactive particle can be obtained by

1

τ(Q)=

∫ Q

mec2

! |Mfi|2dρf (Q,Ee)

dEedEe, (3.16)

where Q is the total energy of the decay, Mfi is the matrix elements of the decay, Ee is

the energy of the electron, and ρf is the density of state of released particles. Here, we

suppose that the matrix elemets do not depend on the energy and their form |Mfi|2 =

(g2V + 3g2

A)/V 2, where V is the volume, and gV and gA. Because an electron and neutrino

are ejected at the β-decay, the density of state can be written in the form

dρf (Q,Ee) =4πp2

e

(2π!)3

dpe

dEe

4πp2ν

(2π!)3

dpν

dQV 2dEe, (3.17)

where pe and pν are the momentum of an electron and neutrino, respectively. Note that

the factor V 2 is cancelled out with the same factor in the matrix elements. Assuming

Q ! mec2, the lifetime of the particle with Q can be described as

1

τ(Q)≈ 1

!7c6

(g2

V + 3g2A

) Q5

60π3≈ 1

1600s−1

(Q

1MeV

)5

(3.18)

This dependence of the lifetime of the β-decay energy is called the Sargent’s law.

Now we consider the heating rate of a statistical ensemble of β-decays (Colgate and

White 1966). The heating rate per unit mass is given by

ε(t) =

∫ ∞

0

Qf(Q)

τ(Q)exp(−t/τ(Q))dQ, (3.19)

where f(Q) is the distribution function. One supposes that flat distribution function

f(Q) ≈ f0 for Q ≤ Qmax, where Qmax is the upper limit of the distribution. Substituting

τ(Q) = t0Q−5 into Eq. (3.19), one can obtain the heating rate as

ε(t) =β0

t0

(t

t0

)−1.4

, (3.20)

where β0 is a constant. For the case that the number of radioactive nuclei is uniformly

distributed in each energy scale, the power of the heating rate is −1.2 (see e.g. Colgate

and McKee 1969). Although the above argument is quite simplified, the behavior of the

heating rate due to the β-decays of r-process elements can be understood as shown in

Fig. 3.3.

24

Sargent’  law

rate of the radioactive decays and the opacity of the ejecta. In the next subsection, we

briefly discuss the heating rate and opacity. In Chap. 7, we focus on the ejecta properties

for NS–NS mergers based on the results of numerical relativity simulations.

3.2.2 Microphysics in NS–NS Merger Ejecta

Decay of r-process elements

The β-decay lifetime τ of a radioactive particle can be obtained by

1

τ(Q)=

∫ Q

mec2

! |Mfi|2dρf (Q, Ee)

dEedEe, (3.16)

where Q is the total energy of the decay, Mfi is the matrix elements of the decay, Ee is

the energy of the electron, and ρf is the density of state of released particles. Here, we

suppose that the matrix elemets do not depend on the energy and their form |Mfi|2 =

(g2V + 3g2

A)/V 2, where V is the volume, and gV and gA. Because an electron and neutrino

are ejected at the β-decay, the density of state can be written in the form

dρf (Q,Ee) =4πp2

e

(2π!)3

dpe

dEe

4πp2ν

(2π!)3

dpν

dQV 2dEe, (3.17)

where pe and pν are the momentum of an electron and neutrino, respectively. Note that

the factor V 2 is cancelled out with the same factor in the matrix elements. Assuming

Q ! mec2, the lifetime of the particle with Q can be described as

1

τ(Q)≈ 1

!7c6

(g2

V + 3g2A

) Q5

60π3≈ 1

1600s−1

(Q

1MeV

)5

(3.18)

This dependence of the lifetime of the β-decay energy is called the Sargent’s law.

Now we consider the heating rate of a statistical ensemble of β-decays (Colgate and

White 1966). The heating rate per unit mass is given by

ε(t) =

∫ ∞

0

Qf(Q)

τ(Q)exp(−t/τ(Q))dQ, (3.19)

where f(Q) is the distribution function. One supposes that flat distribution function

f(Q) ≈ f0 for Q ≤ Qmax, where Qmax is the upper limit of the distribution. Substituting

τ(Q) = t0Q−5 into Eq. (3.19), one can obtain the heating rate as

ε(t) =β0

t0

(t

t0

)−1.4

, (3.20)

where β0 is a constant. For the case that the number of radioactive nuclei is uniformly

distributed in each energy scale, the power of the heating rate is −1.2 (see e.g. Colgate

and McKee 1969). Although the above argument is quite simplified, the behavior of the

heating rate due to the β-decays of r-process elements can be understood as shown in

Fig. 3.3.

24

rate of the radioactive decays and the opacity of the ejecta. In the next subsection, we

briefly discuss the heating rate and opacity. In Chap. 7, we focus on the ejecta properties

for NS–NS mergers based on the results of numerical relativity simulations.

3.2.2 Microphysics in NS–NS Merger Ejecta

Decay of r-process elements

The β-decay lifetime τ of a radioactive particle can be obtained by

1

τ(Q)=

∫ Q

mec2

! |Mfi|2dρf (Q, Ee)

dEedEe, (3.16)

where Q is the total energy of the decay, Mfi is the matrix elements of the decay, Ee is

the energy of the electron, and ρf is the density of state of released particles. Here, we

suppose that the matrix elemets do not depend on the energy and their form |Mfi|2 =

(g2V + 3g2

A)/V 2, where V is the volume, and gV and gA. Because an electron and neutrino

are ejected at the β-decay, the density of state can be written in the form

dρf (Q,Ee) =4πp2

e

(2π!)3

dpe

dEe

4πp2ν

(2π!)3

dpν

dQV 2dEe, (3.17)

where pe and pν are the momentum of an electron and neutrino, respectively. Note that

the factor V 2 is cancelled out with the same factor in the matrix elements. Assuming

Q ! mec2, the lifetime of the particle with Q can be described as

1

τ(Q)≈ 1

!7c6

(g2

V + 3g2A

) Q5

60π3≈ 1

1600s−1

(Q

1MeV

)5

(3.18)

This dependence of the lifetime of the β-decay energy is called the Sargent’s law.

Now we consider the heating rate of a statistical ensemble of β-decays (Colgate and

White 1966). The heating rate per unit mass is given by

ε(t) =

∫ ∞

0

Qf(Q)

τ(Q)exp(−t/τ(Q))dQ, (3.19)

where f(Q) is the distribution function. One supposes that flat distribution function

f(Q) ≈ f0 for Q ≤ Qmax, where Qmax is the upper limit of the distribution. Substituting

τ(Q) = t0Q−5 into Eq. (3.19), one can obtain the heating rate as

ε(t) =β0

t0

(t

t0

)−1.4

, (3.20)

where β0 is a constant. For the case that the number of radioactive nuclei is uniformly

distributed in each energy scale, the power of the heating rate is −1.2 (see e.g. Colgate

and McKee 1969). Although the above argument is quite simplified, the behavior of the

heating rate due to the β-decays of r-process elements can be understood as shown in

Fig. 3.3.

24

ε(t)∝ t−1.2仮定:Qが各スケールに一様に分布

核反応計算:和南城さんのトーク

Colgate  and  White  (1966)

Page 16: 連星中性子星合体からの電磁波 - Kavli IPMU-カブリ数物連携 ...member.ipmu.jp/masamune.oguri/rironkon2013/talks/07...cusp of the “tear drop” and from the equatorial

輻射輸送計算:重力波源としてのKilonova  

(1)可視(赤)〜近赤外で一週間ほど増光する  (2)4〜10m  クラスの望遠鏡が必要

可視光

近赤外  

Radiative Transfer Simulations for NS Merger Ejecta 9

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

u band200 Mpc

NSM-allAPR4 (soft)H4 (stiff)

4m8m

1.2 + 1.51.3 + 1.4

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

g band200 Mpc

1m

4m

8m

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

r band200 Mpc

1m

4m

8m

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

i band200 Mpc

1m

4m

8m

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

z band200 Mpc1m

4m

8m

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

J band200 Mpc

4m

space

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

H band200 Mpc

4m

space

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

K band200 Mpc

4m

space

Fig. 8.— Expected observed ugrizJHK-band light curves (in AB magnitude) for model NSM-all and 4 realistic models. The distanceto the NS merger event is set to be 200 Mpc. K correction is taken into account with z = 0.05. Horizontal lines show typical limitingmagnitudes for wide-field telescopes (5σ with 10 min exposure). For optical wavelengths (ugriz bands), “1 m”, “4 m”, and “8 m” limitsare taken or deduced from those of PTF (Law et al. 2009), CFHT/Megacam, and Subaru/HSC (Miyazaki et al. 2006), respectively. ForNIR wavelengths (JHK bands), “4 m” and “space” limits are taken or deduced from those of Vista/VIRCAM and the planned limits ofWFIRST (Green et al. 2012) and WISH (Yamada et al. 2012), respectively.

Radiative Transfer Simulations for NS Merger Ejecta 9

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

u band200 Mpc

NSM-allAPR4 (soft)H4 (stiff)

4m8m

1.2 + 1.51.3 + 1.4

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

g band200 Mpc

1m

4m

8m

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

r band200 Mpc

1m

4m

8m

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

i band200 Mpc

1m

4m

8m

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

z band200 Mpc1m

4m

8m

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

J band200 Mpc

4m

space

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

H band200 Mpc

4m

space

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

K band200 Mpc

4m

space

Fig. 8.— Expected observed ugrizJHK-band light curves (in AB magnitude) for model NSM-all and 4 realistic models. The distanceto the NS merger event is set to be 200 Mpc. K correction is taken into account with z = 0.05. Horizontal lines show typical limitingmagnitudes for wide-field telescopes (5σ with 10 min exposure). For optical wavelengths (ugriz bands), “1 m”, “4 m”, and “8 m” limitsare taken or deduced from those of PTF (Law et al. 2009), CFHT/Megacam, and Subaru/HSC (Miyazaki et al. 2006), respectively. ForNIR wavelengths (JHK bands), “4 m” and “space” limits are taken or deduced from those of Vista/VIRCAM and the planned limits ofWFIRST (Green et al. 2012) and WISH (Yamada et al. 2012), respectively.

Radiative Transfer Simulations for NS Merger Ejecta 9

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

u band200 Mpc

NSM-allAPR4 (soft)H4 (stiff)

4m8m

1.2 + 1.51.3 + 1.4

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

g band200 Mpc

1m

4m

8m

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

r band200 Mpc

1m

4m

8m

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

i band200 Mpc

1m

4m

8m

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

z band200 Mpc1m

4m

8m

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

J band200 Mpc

4m

space

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

H band200 Mpc

4m

space

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

K band200 Mpc

4m

space

Fig. 8.— Expected observed ugrizJHK-band light curves (in AB magnitude) for model NSM-all and 4 realistic models. The distanceto the NS merger event is set to be 200 Mpc. K correction is taken into account with z = 0.05. Horizontal lines show typical limitingmagnitudes for wide-field telescopes (5σ with 10 min exposure). For optical wavelengths (ugriz bands), “1 m”, “4 m”, and “8 m” limitsare taken or deduced from those of PTF (Law et al. 2009), CFHT/Megacam, and Subaru/HSC (Miyazaki et al. 2006), respectively. ForNIR wavelengths (JHK bands), “4 m” and “space” limits are taken or deduced from those of Vista/VIRCAM and the planned limits ofWFIRST (Green et al. 2012) and WISH (Yamada et al. 2012), respectively.

Radiative Transfer Simulations for NS Merger Ejecta 9

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

u band200 Mpc

NSM-allAPR4 (soft)H4 (stiff)

4m8m

1.2 + 1.51.3 + 1.4

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

g band200 Mpc

1m

4m

8m

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

r band200 Mpc

1m

4m

8m

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

i band200 Mpc

1m

4m

8m

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

z band200 Mpc1m

4m

8m

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

J band200 Mpc

4m

space

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

H band200 Mpc

4m

space

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

K band200 Mpc

4m

space

Fig. 8.— Expected observed ugrizJHK-band light curves (in AB magnitude) for model NSM-all and 4 realistic models. The distanceto the NS merger event is set to be 200 Mpc. K correction is taken into account with z = 0.05. Horizontal lines show typical limitingmagnitudes for wide-field telescopes (5σ with 10 min exposure). For optical wavelengths (ugriz bands), “1 m”, “4 m”, and “8 m” limitsare taken or deduced from those of PTF (Law et al. 2009), CFHT/Megacam, and Subaru/HSC (Miyazaki et al. 2006), respectively. ForNIR wavelengths (JHK bands), “4 m” and “space” limits are taken or deduced from those of Vista/VIRCAM and the planned limits ofWFIRST (Green et al. 2012) and WISH (Yamada et al. 2012), respectively.

Radiative Transfer Simulations for NS Merger Ejecta 9

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

u band200 Mpc

NSM-allAPR4 (soft)H4 (stiff)

4m8m

1.2 + 1.51.3 + 1.4

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

g band200 Mpc

1m

4m

8m

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

r band200 Mpc

1m

4m

8m

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

i band200 Mpc

1m

4m

8m

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

z band200 Mpc1m

4m

8m

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

J band200 Mpc

4m

space

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

H band200 Mpc

4m

space

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

K band200 Mpc

4m

space

Fig. 8.— Expected observed ugrizJHK-band light curves (in AB magnitude) for model NSM-all and 4 realistic models. The distanceto the NS merger event is set to be 200 Mpc. K correction is taken into account with z = 0.05. Horizontal lines show typical limitingmagnitudes for wide-field telescopes (5σ with 10 min exposure). For optical wavelengths (ugriz bands), “1 m”, “4 m”, and “8 m” limitsare taken or deduced from those of PTF (Law et al. 2009), CFHT/Megacam, and Subaru/HSC (Miyazaki et al. 2006), respectively. ForNIR wavelengths (JHK bands), “4 m” and “space” limits are taken or deduced from those of Vista/VIRCAM and the planned limits ofWFIRST (Green et al. 2012) and WISH (Yamada et al. 2012), respectively.

Radiative Transfer Simulations for NS Merger Ejecta 9

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

u band200 Mpc

NSM-allAPR4 (soft)H4 (stiff)

4m8m

1.2 + 1.51.3 + 1.4

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

g band200 Mpc

1m

4m

8m

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

r band200 Mpc

1m

4m

8m

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

i band200 Mpc

1m

4m

8m

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

z band200 Mpc1m

4m

8m

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

J band200 Mpc

4m

space

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

H band200 Mpc

4m

space

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

K band200 Mpc

4m

space

Fig. 8.— Expected observed ugrizJHK-band light curves (in AB magnitude) for model NSM-all and 4 realistic models. The distanceto the NS merger event is set to be 200 Mpc. K correction is taken into account with z = 0.05. Horizontal lines show typical limitingmagnitudes for wide-field telescopes (5σ with 10 min exposure). For optical wavelengths (ugriz bands), “1 m”, “4 m”, and “8 m” limitsare taken or deduced from those of PTF (Law et al. 2009), CFHT/Megacam, and Subaru/HSC (Miyazaki et al. 2006), respectively. ForNIR wavelengths (JHK bands), “4 m” and “space” limits are taken or deduced from those of Vista/VIRCAM and the planned limits ofWFIRST (Green et al. 2012) and WISH (Yamada et al. 2012), respectively.

短波長                                長波長

Tanaka  &  KH  2013  Kasen  et  al,  2013  Barnes  &  Kasen  2013  Grossman  et  al  2013  

Page 17: 連星中性子星合体からの電磁波 - Kavli IPMU-カブリ数物連携 ...member.ipmu.jp/masamune.oguri/rironkon2013/talks/07...cusp of the “tear drop” and from the equatorial

2013年、夏、Kilonovaの発見

ショートガンマ線バースト  GRB  130603Bの後に、            “Kilonova”の初めての観測に成功。  

Tanvir  et  al.,Nature,2013  Berger  et  al.,  ApJ,  2013  de  Ugarte  PosDgo  et  al,  2013

ü ショートガンマ線バーストがコンパクト連星合体起源である傍証  ü  R-­‐process  の起源に迫る (地球質量の数10倍の金が生産)    ü 重力波源の電磁波対応天体の最有力候補  ü 初めて数値相対論の結果と観測を比べれるようになった  

和南城さんトーク、関口さんポスター

Page 18: 連星中性子星合体からの電磁波 - Kavli IPMU-カブリ数物連携 ...member.ipmu.jp/masamune.oguri/rironkon2013/talks/07...cusp of the “tear drop” and from the equatorial

観測: short  GRB  130603B

Figure 9: Light curves of GRB 130603B, indicated detections with dots and upper limits (3-�) with arrows. V -band photometry has been scaled and plotted together with the g-band. The vertical lines indicate the times whenspectra were obtained. Dotted lines indicate the light curve fits to a power law temporal decay from 0.3 to 3 daysafter the burst. We include data from the literature [21, 22]. The dashed blue line is the expected r-band lightcurve of a supernova like SN1998bw, the most common template for long GRBs after including an extinction ofAV = 0.9 magnitude. The most constraining limits indicate that any supernova contribution would be at least 100times dimmer than SN 1998bw in the r-band, once corrected of extinction (blue dashed-dotted line).

2.2 Spectral energy distribution of the afterglow and extinction

In this section we aim to fit the X-ray to optical/NIR SED using the method followed in [23, 24] to derive the

extinction in the line of sight of the GRB and determine some spectral parameters. The procedure is briefly

explained below.

The flux calibrated spectrum has been analysed after removing wavelength intervals affected by telluric lines

and strong absorption lines. We then rebinned the spectrum in bins of approximately 8 A by a sigma-clipping

algorithm. To check the flux calibration of the X-shooter spectrum, we compare the continuum with the flux

densities obtained from the extrapolation of the photometry at the time of the spectrum (mid time around 8.56 hr).

We include the X-ray spectrum from the X-ray telescope (XRT) on board Swift. We used XSELECT (v2.4) to

26

de  Ugarte  PosDgo  et  al  2013

光度

時間

ガンマ線バースト残光(X-­‐ray)

Swi[  XRT

赤外増光  ハッブル宇宙望遠鏡

Page 19: 連星中性子星合体からの電磁波 - Kavli IPMU-カブリ数物連携 ...member.ipmu.jp/masamune.oguri/rironkon2013/talks/07...cusp of the “tear drop” and from the equatorial

Page 8 of 16

Figure 1 HST imaging of the location of SGRB 130603B. The host is well resolved

and displays a disturbed, late-type morphology. The position (coordinates RAJ2000 = 11

28 48.16, DecJ2000 = +17 04 18.2) at which the SGRB occurred (determined from

ground-based imaging) is marked as a red circle, lying slightly off a tidally distorted

spiral arm. The left-hand panel shows the host and surrounding field from the higher

resolution optical image. The next panels show in sequence the first epoch and second

epoch imaging, and difference (upper row F606W/optical and lower row F160W/nIR).

The difference images have been smoothed with a Gaussian of width similar to the psf,

to enhance any point-source emission. Although the resolution of the nIR image is

inferior to the optical, we clearly detect a transient point source, which is absent in the

optical.

u Hubble  Space  Telescope  imaging

可視  (r-­‐band)  

     

近赤外  (H-­‐band)  

9  days  a[er  the  burst                         30  days                          

The  host  galaxy

Tanvir  et  al.,Nature,2013  Berger  et  al.,  ApJ,  2013  

GRB  130603Bに付随した赤外増光

Page 20: 連星中性子星合体からの電磁波 - Kavli IPMU-カブリ数物連携 ...member.ipmu.jp/masamune.oguri/rironkon2013/talks/07...cusp of the “tear drop” and from the equatorial

Radiative Transfer Simulations for NS Merger Ejecta 9

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

u band200 Mpc

NSM-allAPR4 (soft)H4 (stiff)

4m8m

1.2 + 1.51.3 + 1.4

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

g band200 Mpc

1m

4m

8m

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

r band200 Mpc

1m

4m

8m

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

i band200 Mpc

1m

4m

8m

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

z band200 Mpc1m

4m

8m

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

J band200 Mpc

4m

space

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

H band200 Mpc

4m

space

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

K band200 Mpc

4m

space

Fig. 8.— Expected observed ugrizJHK-band light curves (in AB magnitude) for model NSM-all and 4 realistic models. The distanceto the NS merger event is set to be 200 Mpc. K correction is taken into account with z = 0.05. Horizontal lines show typical limitingmagnitudes for wide-field telescopes (5σ with 10 min exposure). For optical wavelengths (ugriz bands), “1 m”, “4 m”, and “8 m” limitsare taken or deduced from those of PTF (Law et al. 2009), CFHT/Megacam, and Subaru/HSC (Miyazaki et al. 2006), respectively. ForNIR wavelengths (JHK bands), “4 m” and “space” limits are taken or deduced from those of Vista/VIRCAM and the planned limits ofWFIRST (Green et al. 2012) and WISH (Yamada et al. 2012), respectively.

Radiative Transfer Simulations for NS Merger Ejecta 9

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

u band200 Mpc

NSM-allAPR4 (soft)H4 (stiff)

4m8m

1.2 + 1.51.3 + 1.4

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

g band200 Mpc

1m

4m

8m

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

r band200 Mpc

1m

4m

8m

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

i band200 Mpc

1m

4m

8m

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

z band200 Mpc1m

4m

8m

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

J band200 Mpc

4m

space

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

H band200 Mpc

4m

space

20

21

22

23

24

25

26

27 0 5 10 15 20

Obs

erve

d m

agni

tude

Days after the merger

K band200 Mpc

4m

space

Fig. 8.— Expected observed ugrizJHK-band light curves (in AB magnitude) for model NSM-all and 4 realistic models. The distanceto the NS merger event is set to be 200 Mpc. K correction is taken into account with z = 0.05. Horizontal lines show typical limitingmagnitudes for wide-field telescopes (5σ with 10 min exposure). For optical wavelengths (ugriz bands), “1 m”, “4 m”, and “8 m” limitsare taken or deduced from those of PTF (Law et al. 2009), CFHT/Megacam, and Subaru/HSC (Miyazaki et al. 2006), respectively. ForNIR wavelengths (JHK bands), “4 m” and “space” limits are taken or deduced from those of Vista/VIRCAM and the planned limits ofWFIRST (Green et al. 2012) and WISH (Yamada et al. 2012), respectively.

ハッブル宇宙望遠鏡の観測日

Page 21: 連星中性子星合体からの電磁波 - Kavli IPMU-カブリ数物連携 ...member.ipmu.jp/masamune.oguri/rironkon2013/talks/07...cusp of the “tear drop” and from the equatorial

結果: 数値相対論+輻射輸送 vs 観測データ

The Astrophysical Journal Letters, 777:L1 (5pp), 2013 ??? Hotokezaka et al.

20

22

24

26

28

30 0.1 1 10

Mag

nitu

de (

AB

)

Rest-frame days after GRB 130603B

SLy(Mej=0.02)H4(Mej=0.004)

rH

20

22

24

26

28

30 0.1 1 10

Mag

nitu

de (

AB

)

Rest-frame days after GRB 130603B

MS1(Mej=0.07)H4(Mej=0.05)

APR4(Mej=0.01)r

H

Figure 3. Predicted light curves for NS–NS and BH–NS models. Left panel: NS–NS models. The dashed, solid, and dot-dashed curves show the H-band light curvesfor the models: SLy (Q = 1.0,Mej = 0.02 M!), H4 (Q = 1.25,Mej = 4 × 10−3 M!), respectively. The total mass of the progenitor is fixed to be 2.7 M!. The upper,middle, and lower curves for each model correspond to the high-, fiducial- and low-heating models. Right panel: BH–NS models. The dashed, solid, and dot-dashedcurves show the models MS1 (Mej = 0.07 M!), H4 (Mej = 0.05 M!), and APR4 (Mej = 0.01 M!), respectively. Here only the fiducial-heating models are shown.The thin and thick lines denote the r and H-band light curves. Here we set (Q,χ ) = (3, 0.75). The observed data (filled circles), upper limits (triangles), and the lightcurves (dashed lines) of the afterglow model of GRB 130603B in r and H-band are plotted (Tanvir et al. 2013; de Ugarte Postigo et al. 2013). The observed pointin the r-band at 1 days after the GRB is consistent with the afterglow model. The key observations for an electromagnetic transient are the observed H-band data at7 days after the GRB, which exceed the H-band light curve of the afterglow model, and the upper limit in H-band at 22 days after the GRB. These data suggest theexistence of an electromagnetic transient associated with GRB 130603B.(A color version of this figure is available in the online journal.)

(Q = 1.0, Mej = 0.02 M!) and H4 (Q = 1.25, Mej =4 × 10−3 M!) for reference. Here the total mass of the progen-itor is chosen to be Mtot = 2.7 M!. We plot three light curvesderived with the fiducial- (the middle curves), high- (the uppercurves), and low-heating models (the lower curves). We expectthat the realistic light curves may lie within the shaded regions.For the NS–NS models, the computed r-band light curves arefainter than 30 mag. The right panel of Figure 3 shows the lightcurves of the BH–NS merger models, MS1 (Mej = 0.07 M!),H4 (Mej = 0.05 M!), and APR4 (Mej = 0.01 M!) with(Q,χ) = (3, 0.75). For these cases, we employ the fiducial-heating model. Note that the r-band light curves of the BH–NSmodels reach ∼27 mag, which implies that the light curves ofthe BH–NS models are bluer than those of the NS–NS models.This is because the energy from radioactive decay is depositedinto a small volume for the BH–NS models (see Tanaka et al.2013 in details). As shown in Figure 6 of Kasen et al. (2013, seealso Figure 15 of Tanaka & Hotokezaka 2013), the opacity ofr-process elements depends strongly on the temperature, andthus the time after the merger. The small bumps in theH-band light curves of BH–NS models are caused by this time-dependent opacity.

Uncertainties are expected to be associated with the differencein the morphology between the models of the same progenitortype but different masses and spins. Moreover, the light curvesmay depend on the viewing angle. However, these uncertaintiesare not large enough to significantly affect our results (seeTanaka & Hotokezaka 2013; Tanaka et al. 2013 for details).

We now translate these results into the progenitor models asQ, χ , and EOS.

Q1 NS–NS models. The NS–NS models for GRB 130603B shouldhave ejecta of mass !0.02 M!. This is consistent with thatderived by Berger et al. (2013). This value strongly constrainsthe NS–NS models because the amount of ejecta is at most∼0.02 M! for an NS–NS merger within the plausible mass rangeof the observed NS–NS systems (Ozel et al. 2012). Specifically,as shown in Figure 2, such a large amount of ejecta can be

obtained only for the soft EOS models in which a hypermassiveneutron star with a lifetime of !10 ms is formed after themerger. For the stiff EOS models, the amount of ejecta is atmost 4 × 10−3 M!. Thus we conclude that the ejecta of theNS–NS models with soft EOSs (R1.35 " 12 km) are favored asthe progenitor of GRB 130603B.

BH–NS models. The observed data in the H-band is consistentwith the BH–NS models which produce the ejecta of ∼0.05 M!in our fiducial-heating model. Such a large amount of ejectacan only be obtained with the stiff EOSs (R1.35 ! 13.5 km) forthe case of χ = 0.75 and 3 # Q # 7 as shown in Figure 2.For the soft EOS models, the total amount of ejecta reachesonly 0.01 M! as long as χ # 0.75, which hardly reproducesthe observed near-infrared excess. Thus the models with stiffEOSs are favored for the BH–NS merger models as long as0.5 # χ # 0.75 and 3 # Q # 7 is the progenitor model ofGRB 130603B. It is worth noting that any BH–NS models with

Q2χ # 0.5 and Q $ 7 are unlikely to reproduce the observednear-infrared excess.

5. DISCUSSION AND CONCLUSION

We explored possible progenitor models of the electromag-netic transient associated with the Swift short GRB 130603B.This electromagnetic transient may have been powered by theradioactive decay of r-process elements, a so called kilonova/macronova. We analyzed the dynamic ejecta of NS–NS andBH–NS mergers for the progenitor models of this event. Tocompute the expected light curves, we carried out radiativetransfer simulations using density and velocity structures ob-tained from numerical-relativity simulations with several totalmasses, mass ratios, and EOSs. Depending on these quantities,the total amount of ejecta mass varies by orders of magnitude10−4 M! to 10−2 M! for the NS–NS models and 10−5 M! to10−1 M! for the BH–NS models.

For both NS–NS and BH–NS models, we found that there areprogenitor models that can reproduce the observed near-infrared

4

NS-­‐NS  merger BH-­‐NS  merger

Ejecta  x-­‐z  plane

Hotokezaka  et  al.,  ApJL,  (2013)  

Kilonova Kilonova

観測に合うモデル  NS-­‐NS  merger  (So[  EOS)                           BH-­‐NS  merger  (SDff  EOS)    

Page 22: 連星中性子星合体からの電磁波 - Kavli IPMU-カブリ数物連携 ...member.ipmu.jp/masamune.oguri/rironkon2013/talks/07...cusp of the “tear drop” and from the equatorial

まとめと今後

ü 重力波源の電磁波対応天体の同定が重要  

ü ショートガンマ線バーストGRB  130603Bに赤外線増光が付随  

 ü 今後、kilonovaの確定のため、より詳細なスペクトルが必要  

ü 重力波源の電磁波対応天体としてのKilonova  

数値相対論+輻射輸送から予想された“Kilonova”と極めて類似    

ショートガンマ線バーストのコンパクト連星合体起源の証拠  状態方程式がわかれば、NS-­‐NS  or  BH-­‐NSを区別できる可能性あり

  r-­‐process  elementの吸収係数が必須                               

4m-­‐  10mクラスの追観測できる望遠鏡が必要

Page 23: 連星中性子星合体からの電磁波 - Kavli IPMU-カブリ数物連携 ...member.ipmu.jp/masamune.oguri/rironkon2013/talks/07...cusp of the “tear drop” and from the equatorial

GRB130603B:NS-­‐NS合体  or  BH-­‐NS合体?

The Astrophysical Journal Letters, 777:L1 (5pp), 2013 ??? Hotokezaka et al.

0.01

0.1

1

10

0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

Mej

/10-2

Msu

n

Mtot/2R1.35

NS-NS models

APR4SLy

ALF2H4

MS1

0.01

0.1

1

10

0.13 0.14 0.15 0.16 0.17 0.18 0.19M

ej/1

0-2M

sun

MNS/R1.35

BH-NS models

APR4ALF2

H4MS1

ALF2(7,0.5)H4(7,0.5)

MS1(7,0.5)

Figure 2. Ejecta masses as a function of the compactness of the neutron star, which is defined by GMtot/2R1.35c2 and GMNS/R1.35c

2 for NS–NS and BH–NS models,respectively. Left panel: NS–NS models. Each point shows the ejecta mass for the equal mass cases. Error bars denote the dispersion of the ejecta masses due tothe various Q. Right panel: BH–NS models. The filled and open symbols correspond to the models with (Q, χ ) = (3–7, 0.75) and (7, 0.5), respectively. The blueshaded region in each panel shows the ejecta masses allowed in order to reproduce the observed near-infrared excess of GRB 130603B, 0.02 ! Mej/M! ! 0.07 and0.02 ! Mej/M! ! 0.1 for the NS–NS and BH–NS models, respectively. The lower and upper bounds are imposed by hypothetical high- and low-heating models,respectively.(A color version of this figure is available in the online journal.)

as a hypermassive neutron star with a lifetime of !10 ms isformed after the merger. More massive NS–NS mergers resultin hypermassive neutron stars with a lifetime of "10 ms or inblack holes. For such a case, the ejecta mass decreases withincreasing Mtot because of the shorter duration of mass ejection.

BH–NS ejecta. Tidal disruption of a neutron star results inanisotropic mass ejection for a BH–NS merger (Kyutoku et al.2013). As a result, the ejecta is concentrated near the binaryorbital plane as shown in Figure 1, and it is shaped like a diskor crescent.

The amount of ejecta for the BH–NS models is smaller formore compact neutron star models with fixed values of χ and Qas shown in Figure 2. This is because tidal disruption occurs ina less significant manner. This dependence of the BH–NS ejectaon the compactness of neutron stars is opposite to the case ofthe NS–NS ejecta.

More specifically, the amount of ejecta is

5 × 10−4 " Mej/M! " 10−2 (soft EOSs),

4 × 10−2 " Mej/M! " 7 × 10−2 (stiff EOSs), (2)

for χ = 0.75 and 3 # Q # 7. For χ = 0.5, the ejecta mass issmaller than that for χ = 0.75. Only the stiff EOS models canproduce large amounts of ejecta more than 0.01 M! for χ = 0.5and Q = 7.

For both NS–NS and BH–NS merger models, winds drivenby neutrino/viscous/nuclear-recombination heating or the mag-netic field from the central object might provide ejecta in addi-tion to the dynamic ejecta (Dessart et al. 2009; Wanajo & Janka2012; Kiuchi et al. 2012; Fernandez & Metzger 2013). However,it is not easy to estimate the amount of wind ejecta, because itdepends strongly on the condition of the remnant formed afterthe merger. In this Letter, we focus only on the dynamic ejecta.

3. RADIATIVE TRANSFER SIMULATIONSFOR THE EJECTA

For the NS–NS and BH–NS merger models described inSection 2, we perform radiative transfer simulations to obtain

the light curves of the radioactively powered emission fromthe ejecta using the three-dimensional, time-dependent, multi-frequency Monte Carlo radiative transfer code (Tanaka &Hotokezaka 2013). For a given density structure of the ejectaand elemental abundances, this code computes the emissionin the ultraviolet, optical, and near-infrared wavelength rangesby taking into account the detailed r-process opacities. In thisLetter, we include r-process elements with Z $ 40 assuming thesolar abundance ratios by Simmerer et al. (2004). More detailsof the radiation transfer simulations are described in Tanaka &Hotokezaka (2013); Tanaka et al. (2013).

The heating rate from the radioactive decay of r-processelements is one of the important ingredients of radiative transfersimulations. As a fiducial-heating model, we employ the heatingrate computed with the abundance distribution that reproducesthe solar r-process pattern (see Tanaka et al. 2013 for moredetail). Heating is due to β-decays only, which increase atomicnumbers from the neutron-rich region toward the β-stabilityline without changing the mass number A. This heating rate is inreasonable agreement with those from previous nucleosynthesiscalculations (Metzger et al. 2010; Goriely et al. 2011; Grossmanet al. 2013) except for the first several seconds.

We note that quantitative uncertainties could exist in theheating rate as well as in the opacities. As an example, theheating rate would be about a factor 2 higher if the r-processabundances of A ∼ 130 (or those produced with the electronfraction of Ye ∼ 0.2) were dominant in the ejecta (Metzgeret al. 2010; Grossman et al. 2013). To take into account suchuncertainties, we also consider the cases in which the lightcurves of mergers are twice and half as luminous (high- and low-heating models; only explicitly shown for the NS–NS modelsin Figure 3) as those computed with the fiducial-heating model.

4. LIGHT CURVES AND POSSIBLEPROGENITOR MODELS

The computed light curves and observed data in r andH-band are compared in Figure 3. The left panel of Figure 3shows the light curves of the NS–NS merger models SLy

3

Compactness  of  NS

Ejecta  m

ass

Compactness  of  NS

NS-­‐NS BH-­‐NS 観測点を    説明できる領域  

Hotokezaka  et  al  (2013)

Page 24: 連星中性子星合体からの電磁波 - Kavli IPMU-カブリ数物連携 ...member.ipmu.jp/masamune.oguri/rironkon2013/talks/07...cusp of the “tear drop” and from the equatorial

Kilonova研究の進展                                                    流体計算       核反応  opacity  (cm^2/g) Li  &  Paczynski  (1998)     0.01Msun,  0.3c                            f  ~  10^-­‐3                                                                  grey  κ  =  0.2    Metzger  +  (2010)                                          -­‐                                                      network  cal.  f~10^-­‐6                              grey    κ  =  0.1    Roberts  +  (2011)  Goriely  +  (2011)                        Hydro.    (Newton)                  network  cal.                                                            grey  κ=0.1  Korobkin  +  (2012)      Hotokezaka  +  (2013)        Hydro.  (GR)  +  EOSs                                -­‐                                                                                                  -­‐  Bauswein  +  (2013)                Hydro.  (CF)  +  EOSs                network  cal.                         -­‐                    Kasen  +  (2013)                                        -­‐                                                                                    -­‐                                                                        単一元素 Nd  κ~10  Tanaka    &  KH  (2013)            Hydro.  (GR)                                                    -­‐                                                                   多元素(低イオン化状態)                                                                                                                                                                                                                                                                                                              κ~10      Grossman  +  (2013)                Hydro.  (Newton)                    network  cal.                                            κ=10  &  κ=1    

Tanvir  +  (2013)  &  Berger  +  (2013)      “Kilonova”発見、Short  GRB13603B  (z  =  0.356)      

ニュートリノ効果  Wind  成分

今後 核分裂   R-­‐process元素  オパシティーの計算