48
El Colegio de la Frontera Sur Evaluando la eficacia de un área protegida costera ante el cambio del uso del suelo; la Reserva de la Biosfera Pantanos de Centla, México. Tesis presentada como requisito parcial para optar al grado de Maestra en Manejo de Recursos Naturales y Desarrollo Rural Con orientación en Manejo y Conservación de Recursos Naturales Por Mayra Isabel de la Rosa Velázquez 2016

El Colegio de la Frontera Sur · 2018. 11. 6. · El Colegio de la Frontera Sur Villahermosa, Tabasco; 29 de febrero de 2016 Las personas abajo firmantes, miembros firmantes del jurado

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • El Colegio de la Frontera Sur

    Evaluando la eficacia de un área protegida costera ante el

    cambio del uso del suelo; la Reserva de la Biosfera

    Pantanos de Centla, México.

    Tesis

    presentada como requisito parcial para optar al grado de Maestra en Manejo de Recursos Naturales y Desarrollo Rural

    Con orientación en Manejo y Conservación de Recursos Naturales

    Por

    Mayra Isabel de la Rosa Velázquez

    2016

  • El Colegio de la Frontera Sur

    Villahermosa, Tabasco; 29 de febrero de 2016

    Las personas abajo firmantes, miembros firmantes del jurado examinador de:

    Mayra Isabel de la Rosa Velázquez

    Hacemos constar que hemos revisado y aprobado la tesis titulada: “Evaluando la

    eficacia de un área protegida costera ante el cambio del uso del suelo; la Reserva

    de la Biosfera Pantanos de Centla, México”.

    Para obtener el grado de Maestra en Ciencias en Recursos Naturales y Desarrollo

    Rural

    Nombre Firma

    Director Dr. Alejandro Espinoza Tenorio ____________________

    Asesor Dr. Miguel Ángel Díaz Perera ____________________

    Asesor Dr. Alejandro Ortega Argueta ____________________

    Asesor M. en C. Rodimiro Ramos Reyes _____________________

    Sinodal adicional Dra. María Azahara Mesa Jurado _____________________

    Sinodal adicional M. en C. Armando Hernández de la Cruz _____________________

    Sinodal suplente Dr. Everardo Barba Macías _____________________

  • DEDICATORIA

    A mis padres: Flor y Gilberto, por el cariño, apoyo incondicional y sus ánimos

    para superarme día a día. A mis hermanas: Anabel y Sucely, las quiero.

    A ti Ember Naín que me has dado tu amor y comprensión en todo momento.

    Gracias por ser parte de mi vida.

    Te amo.

  • AGRADECIMIENTOS

    Al Consejo Nacional de Ciencia y Tecnología (CONACYT) por la beca otorgada para los

    estudios de maestría en el Colegio de la Frontera Sur unidad Villahermosa.

    Al Dr. Alejandro Espinoza Tenorio por su confianza, compromiso y acompañamiento

    durante dos años; persona de quien he aprendido tanto académica y personalmente. Lo

    recordaré con mucho afecto. Gracias.

    A los integrantes del comité tutelar: Dr. Miguel Ángel Díaz Perera, Dr. Alejandro Ortega

    Argueta y M. en C. Rodimiro Ramos Reyes, por sus recomendaciones precisas que en

    gran medida contribuyeron al cumplimiento de los objetivos de investigación.

    A los sinodales: Dra. María Azahara Mesa Jurado, M. en C. Armando Hernández de la

    Cruz y Dr. Everardo Barba Macías, por las observaciones y comentarios que

    enriquecieron la tesis.

    Al personal técnico y administrativo de la Comisión Nacional de Áreas Naturales

    Protegidas responsable de la Reserva de Biosfera Pantanos de Centla; por los espacios

    de análisis y retroalimentación ofrecidos durante el desarrollo de la investigación.

    A la Dra. Ileana Espejel Carbajal por el tiempo dedicado a la revisión de la tesis y

    observaciones tan acertadas.

    Al personal del Laboratorio de Análisis de Información Geográfica y Estadística (LAIGE)

    de El Colegio de la Frontera Sur unidad San Cristóbal, por su apoyo en el análisis del

    material geográfico y trabajo de gabinete.

    A quienes cordialmente participaron en las entrevistas: ejidatarios, miembros de la

    sociedad civil , investigadores, académicos y servidores públicos relacionados al manejo

    de la Reserva Pantano de Centla, así como aquellas personas que hicieron posible

    directa o indirectamente el cumplimiento de los objetivos planteados en la investigación.

    A mis amigas Michelle, Gisela y Doris con quienes compartí grandes momentos durante

    este tiempo, haciendo amena mi estancia en Tabasco.

    A Oscar Leonel por sus consejos, anécdotas y conversaciones optimistas.

  • TABLA DE CONTENIDO

    Capítulo I: Introducción __________________________________________________ 1

    1.1. Evaluación de la Eficacia de Manejo (EM) ______________________________ 1

    1.2. Eficacia de las Áreas Protegidas costeras. El caso de la Reserva Pantanos de Centla (Tabasco). ______________________________________________________ 3

    Capítulo II. Artículo sometido a publicación __________________________________ 5

    Capitulo III. Conclusiones generales ______________________________________ 29

    Literatura citada ______________________________________________________ 30

    Anexos _____________________________________________________________ 32

  • RESUMEN

    Aunque las Áreas Protegidas costeras son estrategias de conservación con alta

    aceptación internacional, el cambio de uso de suelo amenaza su eficacia para proteger

    los recursos naturales. En la Reserva de la Biosfera Pantanos de Centla (Tabasco,

    México) este proceso se ha amplificado por el crecimiento de asentamientos humanos y

    de infraestructura de desarrollo rural, alteraciones en la cuenca captadora y presencia del

    sector petrolífero. Se identificaron los factores que promovieron el cambio de uso de suelo

    y sus interacciones dentro de la RBPC y en su zona de contexto (10 km) previo decreto

    (1990) y hasta 2014. Con la clasificación supervisada de imágenes Landsat se estimaron

    los valores de transformación de la reserva y se diseñó una entrevista semiestructurada

    para dos grupos de actores claves (micro y macro escala), con ello se evaluaron a)

    diseño, b) procesos de manejo e c) integridad ecológica. Se encontró que en la RBPC

    disminuyeron coberturas objeto de conservación como las selvas bajas inundables y la

    vegetación hidrófila, mientras que se duplicó el uso agropecuario dentro de las zonas de

    manejo restringido y zonas núcleo. Además cuatro políticas públicas externas a la reserva

    (energética, agropecuaria, de desarrollo e hídrica), propician la presencia de cuatro

    amenazas (acceso, expansión agropecuaria, construcción de infraestructura hidráulica e

    incendios) que actúan de manera similar dentro y fuera de la reserva. Los hallazgos

    sugieren que la eficacia ante el cambio de uso de suelo se ha visto obstaculizada por

    desafíos compartidos con los esfuerzos de conservación en México (presupuesto

    insuficiente, manejo centralizado y desarticulación gubernamental), además de criterios

    espaciales empleados en el diseño de la reserva y esfuerzos de manejo no consolidados.

    Los aportes de esta investigación son útiles para el manejo adaptativo de la reserva y

    consolidar su papel en la protección costera.

    Palabras claves: zona costera, políticas públicas, cambio de uso de suelo, manejo

    eficaz, Tabasco.

  • 1

    Capítulo I: Introducción

    Las Áreas Protegidas (AP) son estrategias de conservación in situ consideradas una de

    las principales respuestas ante la crisis y deterioro ambiental a nivel mundial (Bonet-

    García et al. 2015). Como espacios geográficos gestionados legalmente, o bajo otros

    medios, buscan conservar el capital natural, los servicios ecosistémicos y los valores

    culturales a largo plazo (UICN 2015).

    Debido a su papel en la conservación, para 2020 entre las metas del Plan Estratégico

    para la Diversidad Biológica se busca incrementar el número de AP a nivel mundial y que

    al menos el 30% en cada país realicen un manejo eficaz (Uffe-Bignoli et al. 2014).

    Sin embargo, la tendencia de pérdida de biodiversidad mundial por procesos de

    transformación paisajística como el cambio de uso de suelo han obstaculizado el

    cumplimiento de estas metas internacionales y llevado a cuestionar la eficacia de las AP

    (Andam et al. 2008; Rodríguez-Rodríguez and Martínez-Vega 2013).

    Por ello, diversas agencias internacionales han desarrollado metodologías y enfoques

    para evaluar la Eficacia de Manejo (EM) de AP (Stoll-Kleemann 2010) y así fortalecer el

    papel de las AP a través de ajustes en el manejo, reducir la incertidumbre de

    financiamiento, identificar necesidades futuras, optimizar fuentes económicas y personal

    de trabajo (Pomeroy et al. 2005).

    1.1. Evaluación de la Eficacia de Manejo (EM)

    En términos generales, la Eficacia de Manejo (EM) representa el grado de alcance de

    objetivos y metas de conservación establecidas en un AP (Dudley et al. 2004; Hockings

    et al. 2004). Según Ervin (2003a) tres elementos resultan claves para evaluar la EM: 1)

    el diseño, 2) los procesos de manejo y 3) la integridad ecológica.

    En primer lugar, el diseño de una AP debe asegurar la representatividad biológica y

    persistencia de los ecosistemas, tomando en cuenta el tamaño, extensión, alineación de

    los límites del AP y número de endemismos a proteger (Margules and Pressey 2000).

    Además debe de considerar el contexto geográfico, socioeconómico y político sobre el

    cual el AP está inmersa (por ejemplo la tenencia de tierras, líneas de acceso disponible,

    importancia biológica, grado de vulnerabilidad de los recursos naturales y la política

  • 2

    ambiental externa), ya que puede guiar los criterios de selección y priorizar los elementos

    a conservar.

    En segundo lugar, los procesos de manejo comprenden aquellos esquemas de

    investigación, planificación, monitoreo y evaluación destinados a alcanzar los objetivos

    de conservación en el corto plazo (Ervin 2003b). Además de reconocer al AP como un

    sistema con relaciones intra e inter específicas que busca construir una identidad basada

    en los valores, objetivos y prioridades comunes entre los diferentes actores (Arceo and

    Granados-Barba 2010). Aunque a nivel de sitio es frecuente disponer de documentos

    operativos con las estrategias de manejo u otros instrumentos de respuesta ante

    amenazas específicas, el impacto de las estrategias suelen valorarse a partir del grado

    de integridad ecológica alcanzado por los ecosistemas bajo protección (Margules and

    Pressey 2000; Ervin 2003b).

    En este sentido la integridad ecológica refleja la capacidad de los ecosistemas para

    resistir a las perturbaciones producidas por acción del ambiente o presión antropogénica

    y mantener los diferentes elementos (comunidades, poblaciones o especies) en rangos

    de variación aceptable (Parrish et al. 2003). Aspectos como la composición biológica,

    interacciones bióticas y procesos ecológicos, régimen ambiental y estructura del paisaje

    son atributos ecológicos claves que demuestran la severidad y extensión de amenazas

    (actuales o emergentes) sobre los valores biofísicos y socio ecológicos del AP.

    Es posible evaluar también la eficacia del AP desde un enfoque de gestión que aborde

    aspectos relacionados con el presupuesto para acciones de conservación, el área bajo

    decreto hasta la viabilidad poblacional de especies a conservar a largo plazo (Hockings

    et al. 2000). Sin embargo, frecuentemente los resultados obtenidos en cualquier marco

    de EM resultan aislados y responden a problemáticas o intereses particulares de quienes

    administran el AP, carecen de relación con otros indicadores y desplazan posibles causas

    – efecto entre las acciones de manejo y la eficacia del AP (Ervin 2003a). Por ello resultan

    especialmente importantes las evaluaciones que hagan énfasis en las interrelaciones que

    guardan entre y con los diversos indicadores disponibles para un AP (Bruner et al. 2001;

    Jepson and Noord 2002).

  • 3

    1.2. Eficacia de las Áreas Protegidas costeras. El caso de la Reserva Pantanos

    de Centla (Tabasco).

    México posee una diversidad de sistemas costeros distribuidos en cerca de 11,000 km2

    de línea de costa (De la Lanza Espino et al. 2012) así como una amplia red de AP (41

    AP hasta 2015) (CONANP 2015) que contribuyen a la protección del capital natural

    costero del país.

    Sin embargo, las AP costeras enfrentan amenazas como la sobre explotación de recursos

    naturales, eutrofización acuática por el vertimiento de aguas residuales, crecimiento

    irregular de asentamientos humanos, exploración de fuentes energéticas (petróleo y gas)

    y procesos de cambio de uso de suelo, las cuales alteran la conectividad e intercambio

    de materia y energía entre ambientes terrestres y marinos y generan unidades

    paisajísticas aisladas (Marenzi et al. 2006).

    En particular, el cambio de uso de suelo suele amplificarse en áreas sujetas

    históricamente a esfuerzos masivos de producción agropecuaria e iniciativas de

    crecimiento poblacional o energético (Vaca et al. 2012). Tal es el caso de la Reserva de

    Biosfera Pantanos de Centla en Tabasco, México, la cual enfrenta desafíos particulares

    para alcanzar un manejo eficaz. A pesar de su decreto como área de conservación federal

    y el esquema de zonificación estricto (SEMARNAT 2000), en las últimas dos décadas

    (1990 -2000) ha experimentado elevadas tasas de transformación en coberturas

    naturales como las selvas bajas inundables y comunidades hidrófitas asi como un

    incremento notable en superficie agropecuaria (Figueroa and Sánchez-Cordero 2008;

    Guerra-Martínez and Ochoa-Gaona 2008).

    La reducción de cobertura natural refleja la presión extractiva de los recursos naturales y

    un marcado proceso de cambio de uso de suelo al interior de la RBPC, incluso en zonas

    de protección restringida y en zonas núcleos. Ante este escenario es de suponer

    deficiencias en el manejo y la actuación de factores externos (naturales, sociales y

    políticos) cuyo alcance sobrepasan los esfuerzos de conservación al interior del AP y su

    área de contexto.

  • 4

    Hipótesis

    Si una política ambiental como la Reserva de la Biosfera Pantanos de Centla ha sido un

    instrumento de conservación eficaz entonces es de esperarse que los procesos de

    cambio intensivo en el uso de suelo previo decreto de la Reserva hayan sido mitigados.

    Objetivo general

    Identificar los factores y procesos que han influido en la eficacia de la Reserva de la

    Biosfera Pantanos de Centla a partir del estado del paisaje y del proceso de gestión

    ambiental llevada a cabo durante el periodo 1990 – 2014.

    Objetivos específicos

    a) Identificar la tasa de cambio de uso de suelo en la RBPC para el periodo 1990 –

    2014.

    b) Identificar los principales actores sociales y eventos políticos y ambientales que han

    influido en la RBPC.

    c) Identificar los factores de presión institucional y política que contribuyen a la

    transformación del paisaje en la RBPC.

  • 5

    Capítulo II. Artículo sometido a publicación

    Assessing the efficacy of a coastal protected area facing land-use change, the Pantanos de

    Centla Biosphere Reserve, Mexico.

    Mayra Isabel de la Rosa Velázquez ([email protected]), Alejandro Espinoza-Tenorio, Miguel Ángel Díaz Perera. Alejandro Ortega Argueta, Rodimiro Ramos Reyes, Ileana Espejel.

    Abstract: Protected areas (PAs), which are important tools in the preservation of coastal zones,

    are continuously threatened by rapid environmental degradation. To identify the factors

    influencing the efficacy of coastal PAs in the face of such challenges, we estimated the changes

    in land cover that have occurred within the Pantanos de Centla Biosphere Reserve (PCBR) and

    its area of context since its founding. Based on these results, we interviewed two groups of key

    actors (macro- and microscale) to assess the a) ecological integrity, b) design and c) management

    of the reserve. We found that the amount of land cover under conservation, such as low-flooded

    forests and hydrophytic vegetation, decreased but that agricultural use doubled, even in the core

    and restricted management areas. Four public policy sectors were implicated in these changes

    through their promotion of four types of threats both inside and outside of the reserve. Challenges

    shared with other conservation efforts in Mexico and the particularities of coastal areas,

    combined with inadequate reserve design criteria and ineffective management practices, impeded

    the efficacy of PCBR in resisting land-use change. The contributions of this study are particularly

    applicable to strengthening the adaptive management of PAs and reinforcing them as instruments

    for coastal area conservation.

    Keywords: coastal area, public policy, land-use change, effective management, protected areas.

    1. Introduction

    Protected areas (PAs) are one of the main tools for maintaining biodiversity in situ internationally

    (Chape et al. 2005; Jones et al. 2011), and as of 2014, 15% of the land surface and 2% of the

    ocean surface were under protection (Uffe-Bignoli et al. 2014). Although the primary goal is to

    increase the percentage of protected ecosystems globally (Bertzky et al. 2012; Uffe-Bignoli et al.

    2014), at least 30% of the existing PAs should also be under effective management by 2020

    (Stoll-Kleemann 2010).

  • 6

    Several issues must be analyzed to determine if PAs are accomplishing their conservation

    objective to preserve natural resources (Dudley et al. 2004), and these include the budget for

    conservation, the area under decree and even the long-term population viability of protected

    species (Hockings et al. 2002; Hull et al. 2011).The assessment of the efficacy of PA

    management has become a priority for conservation around the world (Pomeroy et al. 2005; Ren

    et al. 2015) because it generates schemes for learning, transparency and accountability within an

    adaptive planning process (Hockings et al. 2000). Moreover, it is possible to address recurring

    challenges in PA management, such as logistical and budgetary shortfalls, the lack of scientific

    information and the lack of institutional coordination in decision making (Pomeroy et al. 2005).

    It is especially important to assess the efficacy of PAs in coastal areas because they are

    transitional ecosystems with high ecological richness (Carr et al. 2003; Stojanovic & Farmer

    2013) whose ecosystem services are essential for human welfare and global economic

    development (Glavovic et al. 2015). However, efforts to conserve these zones are threatened by

    population growth and the search for energy resources, which, among other outcomes, result in

    land-use change (Martínez et al. 2007; Klein et al. 2008). Coastal land-use change is a multi-

    causal threat, and its speed of transformation and effects alter ecosystem structure, function and

    services (Andam et al. 2008; Kolb et al. 2013). All of these adverse processes tend to reduce the

    carrying capacity of coastal ecosystems and compromise their resilience (Glavovic et al. 2015), a

    key element in mitigating the expected effects of global warming (Harley et al. 2006).

    In Mexico, 10% of the coast is protected by 95 federal PAs (CONANP 2015), the majority of

    which were hastily designated in the 1990s (Espinoza-Tenorio et al. 2011), and their efficacy is

    frequently questioned because they were designed without accounting for particular coastal

    features (Micheli 2002; Ortiz-Lozano et al. 2009b). The Pantanos de Centla Biosphere Reserve

    (PCBR) is a representative case because it was created in 1992 to conserve the second most

    important system of marine-influenced freshwater wetlands in Latin America (Barba-Macías et

    al. 2014). However, increasing anthropogenic activities and natural disturbance events, such as

    fires (Guerra-Martínez & Ochoa-Gaona 2008; Figueroa & Sánchez-Cordero 2008; García -

    Hidalgo 2014), have led to intense deterioration of the plant cover within the reserve, making

    land-use change the primary threat to the PCBR (Pers. Com., Director of the PCBR). The

  • 7

    objective of this study was to determine the efficacy of the PCBR in protecting priority areas with

    natural land cover against land-use change.

    1.1 Pantanos de Centla Biosphere Reserve

    The PCBR covers 302,706 ha of the municipalities of Centla, Jonuta and Macuspana in Tabasco,

    and includes the alluvial plain of the Grijalva–Usumacinta Delta, which is formed by two of the

    largest rivers in Mexico (33% of the country´s fresh water) (CONAGUA 2014) (Fig. 1). This

    area has a particularly low elevation and homogeneous topography (7 to -1 m.a.s.l.) that favor the

    presence of mangrove forests, emergent hydrophyte communities (submerged and floating) and

    low-flooded logwood (Haematoxylum campechianum) and oxhorn bucida (Bucida buceras)

    forests, which have restricted distributions and are used for at least 12 traditional purposes by the

    Chontal Mayans (Maimone-Celorio et al. 2006). Given their biological wealth, PCBR wetlands

    are included in the North American Wetlands Conservation Act and the Ramsar Convention in

    addition to being recognized as an Important Bird and Biodiversity Area (IBA).

    The administration of the PCBR is the responsibility of the National Commission of Protected

    Natural Areas (Comisión Nacional de Áreas Naturales Protegidas - CONANP), a decentralized

    agency of the Secretary of the Environment and Natural Resources (Secretaría de Medio

    Ambiente y Recursos Naturales - SEMARNAT). The management program is the guiding

    instrument for the maintenance of the reserve, and it established two core areas: one to preserve

    the natural capital and a second buffer zone for the sustainable use of ecosystem resources

    (SEMARNAT 2000). The buffer zone is divided into four subzones that allow different levels of

    exploitation: restricted, intensive, special and wildlife management (DOF 2014).

    Since its establishment, the PCBR has faced several threats, such as an increase in extensive

    agricultural activities (SEMARNAT 2000) and the illegal exploitation of low-flooded and

    mangrove forests (Romero-Gil et al. 2000). Because the PCBR is located in a hydrocarbon

    extraction area, on 1951 before the creation the PCBR it established oil fields with wells,

    collection stations, discharge lines and pipelines inside the core and buffer zones (Romero-Gil et

    al. 2000).

    The increase in human settlements within the PCBR represents an additional threat; between

    1995 and 2010, the estimated number of settlements with less than 2,500 inhabitants increased by

    20% (Díaz et al. 2012), especially along the bank of the Usumacinta River, on the coastline, and

  • 8

    in areas surrounding lagoons (Guerra-Martínez & Ochoa-Gaona 2008). Currently, there are 77

    highly marginalized villages with an average of 16.93 inhabitants each.

    2. Methodology

    The study was divided in two phases: a) a quantitative spatial analysis to assess the change in

    land use and vegetation cover in the PCBR and its area of context and b) a series of qualitative

    interviews with key stakeholders to identify the factors involved in the land-use change.

    2.1 Temporal analysis of land-use change

    Landsat images from 1990 and 2014 were used in this multi-temporal analysis, and IDRISI

    Selva® software was used for atmospheric correction and the creation of image mosaics. The

    methodology described in Figueroa and Sánchez-Cordero (2008) was employed to assess the

    efficacy of the PA, and a 10-km buffer zone surrounding the borders of the PCBR polygon was

    established as the area of context. The marine water values were discarded to avoid

    overestimation.

    Land-use categories were established from a supervised classification of a color composite image

    using the maximum likelihood estimation rule proposed by Chuvieco (2008). Training areas were

    defined using ArcGis 9® and based on visual criteria (observable size, shape, color, texture and

    pattern) and information from the literature regarding land use in Tabasco and the vegetation of

    the PCBR (Gama-Campillo et al. 2006; Novelo 2006). These training sites were validated using

    284 GPS coordinates (20 coordinates within the area of study) recorded between October and

    November of 2014 and in July of 2015. A 3x3-m filter was applied to each of the resulting

    classifications to match cover types and remove isolated patches (Berlanga-Robles et al. 2010).

    Values for net changes, losses and gains corresponding to each year were obtained using the

    Land Change Modeler module in IDRISI®, and the confidence level for each classification was

    calculated from the kappa statistic using the ErrMat command. Finally, raster classifications were

    transformed to vector format to estimate the land cover changes and to create vector maps.

    2.2 Interviews and information coding

    To identify the factors involved in land-use change within the PCBR, a script for a semi-

    structured interview was designed based on the results of the temporal analysis (Appendices I and

    II) and the elements proposed by Ervin (2003a) to assess PA efficacy: 1) ecological integrity

  • 9

    based on threat prevalence, the reach of specific stressors and landscape stability over time; 2)

    design criteria related to the size and extent of the PA, its biological representativeness,

    representative ecosystems and spatial location; and 3) adoption of management processes at the

    site level, which is defined by the correlation between threats and the implemented management

    practices. The script was sent by email in advance of the interview, and the face-to-face

    conversation was recorded using a mobile device. Additionally, a field journal was kept

    throughout the entire project.

    Two groups of stakeholders were interviewed (Table 1). One group consisted of social actors

    with a macroscale vision, meaning personnel with knowledge, involvement and experience with

    the management of the reserve, which enabled a broad analysis of the dynamics of the reserve

    and its area of context. This group included members of the federal, state and local governments

    (AG=government actor), academics (AI=academic actor), civil society organizations (AC=civil

    actor) and members of the advisory board of the PA, some of which were involved in its design

    and establishment. The second group (microscale) was formed by direct consumers of the natural

    resources, authorities and community leaders of the PCBR (INF=local informant). In both cases,

    the number of social actors was determined using the snowball technique (Noy 2008).

    Additionally, a workshop was organized by CONANP for the design and review of the PCBR’s

    strategies to adapt to climate change, and land-use change was specifically addressed.

    Atlas.ti7® software was used to analyze the interview results with axial coding based on a library

    of 16 initial codes (sentences or words referring to specific attributes) (Saldaña 2013). The

    information was read repeatedly, and substantiation (c.f.; citation frequency) and density (n.r.;

    number of relations) codes were used to identify information patterns known as families and

    super codes (Friese 2011). A total of 14 codes, distributed between four analysis groups, were

    identified based on the land-use change data, the analysis of 18 source documents and the

    transcriptions of macroscale interviews, and the principle of theoretical saturation (Arias-

    Valencia & Giraldo-Mora 2011) was applied to complete the data collection and identify

    repetitive information. In addition, six Tabasco Government Reports (1994–2000) as well as

    technical reports from CONANP were analyzed. Finally, the initial results were presented to the

    PCBR technical team to more deeply address the issues facing the reserve.

  • 10

    3. Results

    Five dominant land uses were identified within the area of study (Table 2), and the most

    extensive and temporally stable cover was the hydrophytic vegetation, which only lost 2.8% of its

    area since the application of the decree although a portion was allocated to agriculture (36,501

    ha) and low-flooded forests (20,122 ha). In contrast, the most transformed cover was the low-

    flooded forest, with 12% of its extent converted to hydrophytic vegetation (36,181 ha) and

    agricultural use (13,704 ha). The extent of bodies of water increased (4.3%), whereas mangrove

    forest cover was reduced by 0.45%.

    The area devoted to agriculture doubled and replaced 16,209 ha of hydrophytic vegetation and

    2,376 ha of low-flooded forests; this transition was even observed in the core and restricted

    management areas (Fig. 2). The greatest change was registered in core area I, where 33% of the

    hydrophytic vegetation was removed, and the buffer zone experienced the greatest loss of low-

    flooded forest, which was similar to the loss in the area of context.

    3.1 Drivers of change

    Land-use changes within the PCBR were found to be related to four public policy sectors

    (energy, agriculture and rural and water development) that drive changes (Fig. 3a) in four threats

    to the reserve: 1) Construction of infrastructure (c.f.=11; n.r.=5), 2) Expansion of the agricultural

    frontier (c.f.=7; n.r.=16), 3) Easy access to the reserve (c.f.=7; n.r.=9) and 4) Fires (c.f.=5;

    n.r.=5).

    Oil activity was the most frequently cited driver of change (c.f.=28) but not the one with the

    highest number of relations (n.r.=11). The importance of this energy activity is due to the

    extraction and transport of hydrocarbons, which are even performed within the core areas (AC-1)

    and, recently, within the area of context defined by the Project for the Exploration and

    Incorporation of the Coastline Reserves of Terrestrial Tabasco and the Strategic Natural Gas

    Project (AG-1; AI-1; AC-1).

    The impact of the oil sector increased when combined with other drivers of change, such as

    policies promoting rural development (c.f.=13; n.r.=10). This was the case for the PCBR in the

    1990s, when the oil boom and the Ejido allowance created by the Program for the Certification of

    Ejido Land Rights and the Titling of Urban House Plots (Programa de Certificación de Derechos

  • 11

    y Titulación de Solares - PROCEDE) facilitated the increase in human settlements, both in the

    area of study (AI-3, 4; AC-1; INF-6, 7) and the area of contex (AG-1).

    Agricultural development is an important part of the government strategy to reduce poverty in the

    PCBR communities (AG-1, 3), making it an important driver of change (c.f.=18; n.r.=3). In

    Tabasco, agricultural policy consists of technical assistance and microcredits (between 1994 and

    2000, 10 agricultural programs were implemented with a total investment of ~11,354,875 USD)

    to maintain livestock throughout most of the year by, for example, planting flood-tolerant grasses

    (e.g., Echinochloa polystachya and Urochloa mutica). In this way, agricultural activities are used

    as strategies to promote family subsistence and create sources of income (AI-2; INF-1, 5). In the

    Centla Municipality, the Livestock Support Program (Programa de Fomento Ganadero -

    PROGAN) and the Farmers Direct Support Program (Programa de Apoyos Directos al Campo -

    PROCAMPO) took up 167,753 ha and 12,517 ha, respectively, during the first quarter of 2015

    (AG-2).

    The PCBR has also been influenced by water policy (n.r.=4; c.f.=4) since 2000, when the

    Comprehensive Water Program of Tabasco promoted the construction of embankments, dams

    and channels within the PA as well as dredging and riverbed widening within the area of context

    to reduce the adverse effects of floods. Since 2012, social demand has called for embankment

    construction in the buffer area to create elevated surfaces during floods, to reduce economic

    losses in the livestock sector, and to provide surface area for subsistence agriculture during the

    dry season (AI-1; AG-3; INF-3). Consequently, as of the first quarter of 2015, almost 150

    platforms between 200 and 5000 m2 have been built within core area I, and the construction of

    100 embankments has been planned by the city government of Frontera for 2016 (AG-4).

    3.2. Efficacy of the reserve

    3.2.1 Ecological integrity

    Oil activity involves building access lines to reach exploration points or maintain the physical

    infrastructure (Fig. 3b); therefore, the growth of this industry led to the loss and fragmentation of

    the natural cover and the modification of water patterns (INF-2). The generation of roadways to

    maintain oil infrastructure and connect villages has also facilitated the establishment of new

  • 12

    human settlements, so the majority of the population is located dispersed and near highways and

    channels.

    The extension of the agricultural surface area has several impacts, such as setting fires and filling

    bodies of water to expand the agricultural frontier. These activities have led to the generation of

    agricultural spaces following the deforestation of low-flooded forests, particularly logwood

    (Haematoxylum campechianum), as well as the removal of hydrophytic vegetation (AC-1).

    Although the size of the livestock parcels within the PCBR (between five and 10 ha) is currently

    smaller than that of the plots within the area of context (30 ha) (INF-5), the displacement of plant

    cover and the subsequent cultivation of pastures is ongoing.

    Agriculture and the illegal hunting of wild fauna (especially Trachemys scripta and Staurotypus

    triporcatus) lead to fires whose frequency, number and spatial distribution (along roads and

    riversides) have had great impacts on forests, particularly the paurotis palm (Acoelorrhaphe

    wrightii) and Mexican palmetto (Sabal mexicana). Between 1993 and 2001, 14 fires were

    reported within the PCBR that affected approximately 4,090 ha, particularly the northeast portion

    of the buffer area during the dry season (Rullán et al. 2009). Occasionally, fires are started to

    access bodies of water for fishing (INF-6).

    The modification of water flow has led to the removal of riparian vegetation, but most

    importantly, it has altered flood patterns, which has affected housing and reduced the amount of

    space and food available to livestock (INF-2, 3, 5). This has resulted in increased debt for

    landowners because they must rent summer pasture outside of the reserve (AC-1). The

    production and distribution of embankments has altered surface runoff (water flow retention and

    diversion) (AG-3) and edaphic features (retention and sedimentation rates), which has reduced

    the flooded area and occasionally promotes the contamination of bodies of water.

    3.2.2 Zoning design

    The PCBR was designed in accordance with the international context at the time of its creation;

    i.e., the state complied with the commitments established at the United Nations Conference on

    Environment and Development held in Rio in 1992. As a result, the zoning of the reserve took

    into account criteria for the representativeness of the hydrophytic vegetation (AI-2, 3; AC-1), but

    several factors limited its efficacy (Fig. 3c). First, the cartographic methods used in the design led

  • 13

    to a 5,600 ha overlap with the Laguna de Términos PA in Campeche State (AG-1; AI-1, 4; AC-

    1). In addition, areas of hydrophytic vegetation under similar degrees of conservation were

    excluded as core areas because of the limited and vague spatial information available and the lack

    of access to remote areas, which prevented field verification (AI-5).

    Another factor was the definition of the core areas using highways and the Usumacinta River as

    references, which generated contradictions because both routes provide access to areas with

    species under special protection (AC-1). Furthermore, the presence of oil infrastructure in the

    core areas revealed that zoning was designed “at a desk” without field validation of the spatial

    arrangement of the zones and the possible effects of oil operations (AG-1).

    3.2.3 Management practices

    Five instruments were identified for the management of the PCBR (Fig. 3d): 1) the management

    program, 2) specific conservation programs, 3) collaboration and negotiation of agreements, 4)

    auxiliary management tools and 5) the legal environmental framework. The management

    program served as the primary guiding tool (c.f.=9), although for the people involved in its

    development (AI-4; AC-1), it still presents contradictions, such as allowing the extraction of

    hydrocarbons within the reserve. However, PCBR administrators regarded the administrative

    rules raised in the management plan as effective given that the oil industry is restricted at the

    clean and mantenence of the infrastructure recorded in 1951; without have stablish oil fields after

    the foundation de PCBR. Regarding the conservation programs, the Temporary Employment

    Program (Empleo Temporal - PET) and the Conservation Program for Sustainable Development

    (Conservación para el Desarrollo Sostenible - PROCODES) stood out as their structures and

    budgets originated from agreements between CONANP and other government bodies. For

    example, the collaboration agreements between CONANP and forest management authorities

    (the National Forest Commission and the State Commission for the Prevention and Combat of

    Forest and Farm Fires) established between 2011 and 2015 strengthened the environmental

    contingencies of the Community Vigilance Program (Programa de Vigilancia Comunitaria -

    PROVICOM) and PROCODES (AG-1, 3; AI-8). The combination of efforts generated a greater

    number of actions against the illegal extraction of flora and fauna and a decrease in the number of

    fires within the PCBR.

  • 14

    However, the efficacy of the management of the PCBR depends on external administrative

    features such as 1) the priority level of conservation on the government agenda (AG-1; AI-4),

    leading to an insufficient budget (AI-1; AG-4) and vulnerability to international influence (AI-3,

    4; AC-1); 2) centralized management (AG-1, 3), leading to a lack of institutional coordination

    (AG-1; AG-3); and 3) the failure to implement the legal framework (AC-1) (Fig. 3). These

    elements lead to unfavorable evaluations of PCBR programs, especially those promoting

    agricultural activities (AI-2). The PCBR is still perceived at the state and local level as a space

    under federal administration, which impedes cross-sectoral actions between the three levels of

    government (AG-3, AI-1).

    Locally, there is heightened social indifference towards fire prevention because the economic

    benefits of these initiatives did not meet family needs (INF-2) and did not correspond to the

    number of working days or the extent of land being conserved. There is also resistance to field

    assessments of the results of these actions and suspicion of land expropriation (INF-5). Those

    who previously applied for CONANP programs (INF-1, 2, 3, 5) indicated that the selection of

    beneficiaries lacked transparency and that the budget and number of programs were insufficient

    compared to the number of applicants (INF-5).

    The Annual Operational Program and the national guidelines, including the terms of reference for

    national programs regarding PAs (AG-1, 3), were used as auxiliary instruments because they

    support the operation and administration of the PCBR. Although the legal framework was

    recorded at the lowest frequency (c.f.=2), it was mentioned by the heads of state and local

    environmental departments (AG-3, 4), who acknowledged the importance of the State Law of

    Protection and the accompanying regulations in clarifying the role and degree of participation of

    government authorities in the management of the PCBR.

    4. Discussion

    The land-use change values indicated that the area of context and the PCBR polygon, the buffer

    area in particular, were subjected to similar landscape degradation processes. These results are in

    agreement with previous studies reporting a high degree of access to the land cover of the PCBR

    under conservation(Guerra-Martínez & Ochoa-Gaona 2008), meaning that 82% of the reserve

  • 15

    suffered some form of land-use change due to the increase in the agricultural surface area

    (Figueroa & Sánchez-Cordero 2008).

    The loss of forest cover within the PCBR was consistent with national trends; the forest and

    hydrophytic vegetation (including mangroves) declined at an annual rate of 0.76%, whereas the

    pasture (1.72%) and agricultural (21%) land cover increased between 1976 and 2000 (Velázquez

    & Mas 2002). Southeastern Mexico is facing a scenario of drastic transformation with significant

    deforestation, and in regions such as the Grijalva-Usumacinta watershed, agricultural and forestry

    uses (2,863,151 ha) exceed the total surface area of low-flooded forests (972,071 ha) (Sánchez-

    Hernández et al. 2013).

    4.1. PCBR conservation targets

    Hydrophytic vegetation is still the dominant natural cover within the PCBR, which, in addition to

    being an indicator of the success of the PCBR, could reflect the recovery potential of aquatic

    communities (Barba- Macias et al. 2006; Soto-Galera et al. 2010). The removal of a third of the

    acuatic vegetation indicates the loss of a structurally complex habitat (Montalvo-Urgel et al.

    2010) and lower quality ecological services generated by this type of wetland (Barbier et al.

    2011) because the availability of nursery areas and food for commercially important species

    (Mendoza-Carranza et al. 2010) and avifauna (Córdova-Avalos et al. 2009) is diminished. Some

    species of hydrophytic vegetation (e.g., Vallisneria americana) regulate the distribution of exotic

    species that are potentially harmful to the natural biota of the PCBR (Albarran-Melze et al. 2009;

    Rangel-Ruiz et al. 2011).

    Within the PCBR, the loss of flooded forests (12%) was consistent with that of other scenarios in

    the country but lower than the loss recorded in neighboring PAs. The deforestation rate of Los

    Tuxtlas BR (Veracruz) was 28% (Durand & Lazos 2008), and the Laguna de Términos PA

    (Campeche) registered a 31% transition from tropical forests and pasture occupation above 200%

    (Soto-Galera et al. 2010). The fact that 12% of the extent of this type of forest was converted to

    hydrophytic vegetation may be due to hydrological changes generated by the implementation of

    hydrocarbon and water policies in the buffer area.

    In this study, mangrove loss values within the PCBR were minimal, and this may be related to

    additional conservation measures in the reserve, such as participation in the Ramsar Convention

    and the establishment of a national legal environmental framework (SEMARNAT 2003, 2010).

  • 16

    Another possibility may be that the scale of the PA does not reflect the current extractive pressure

    on the mangroves because harbor construction and the expansion of the agricultural frontier have

    generated isolated mangrove fragments (1,683 fragments) (Guerra-Martínez & Ochoa-Gaona

    2008).

    4.2. Efficacy of coastal PAs

    The challenge faced by PAs is that they are units within larger landscapes where different types

    of interests, sociocultural perceptions and various natural dynamics converge (Marenzi et al.

    2006; Plieninger et al. 2015). Likewise, the land-use change in the PCBR was perceived as an

    inherently damaging environmental process that impacts all PAs regardless of management

    category, type of protected ecosystem or geographical location (AG-1, 3; AI-4). Although BRs

    stand out because of their conservation zoning strategy (Halffter 2011) and their goal of long-

    term social involvement (Chape et al. 2005; MEA 2005; Stoll-Kleemann 2010; Jones et al. 2011),

    they have been implemented under different contexts and types of land tenure (Coetzer et al.

    2014). Thus, land-use change and environmental transformation persist.

    Although the legal environmental framework requires the definition of the area of context of the

    PCBR (SEMARNAT 2010; DOF 2014), an official designation is lacking, so its role as an

    efficacy indicator is questionable. The identification of an area of context or interaction

    represents the starting point for responding to land-use change (DeFries et al. 2010) because it

    broadens the concept of the buffer area in the traditional zoning scheme and acknowledges that

    the landscape responds significantly to human use (needs and decisions) through its own

    biological dynamism (species movements, water regime) (DeFries et al. 2007). Likewise, the

    formation of conservation islands is reduced, and the status of the PA can be monitored relative

    to the surrounding landscape (DeFries et al. 2010).

    The PCBR has a heterogeneous landscape that is highly vulnerable to geomorphological coastal

    processes (fluvial and marine erosion, accretion), and it requires areas of influence or context to

    protect its natural resources. Moreover, an analysis based on the landscape would make it

    possible to identify patterns in threats to biodiversity, guide economic, staffing and infrastructure

    resources toward conservation and improve the understanding of landscape interactions with

    external drivers of change (Margules & Pressey 2000). This analysis is crucial for the PCBR

  • 17

    given the initiatives to construct harbor infrastructure within the Centla Municipality to enable

    the transportation of massive amounts of hydrocarbons to the rest of the country.

    The spatial context of the zoning has preserved a form of unidirectional management focused on

    the conservation of natural resources at the expense of an ecosystem focus (Ortiz-Lozano et al.

    2009a). As a result, similar biological units are discarded, and a “do not touch” perspective based

    on social exclusion over local livelihoods prevails. Although the administration of reserves

    requires local participation (Ellis & Porter-Bolland 2008), social actors are often excluded from

    decision making, harming perceptions of use and the shared responsibility for resource

    conservation (Durand & Lazos 2008).

    5. Final considerations

    For some actors, the similar transformation trend in the PCBR and the area of context is an

    indicator of the failure of the reserve (AI-4) and indicates the vulnerability of the PA to external

    policies (AG-4). According to this perspective, it is plausible that greater governmental

    promotion of agriculture would result in almost 60% of the PCBR to have pastures by 2037,

    leading to the extinction of the hydrophytic vegetation (Typha sp.) and a reduction in mangrove

    forests and logwood (Reyes et al. 2004).

    Nonetheless, it would be imprecise to state that the PCBR has not been successful in reducing

    land-use change. The data show that land-use change was lower compared to other coastal

    regions and that social involvement in the administration of the reserve was higher. The PCBR

    has an opportunity to harmonize conservation and the use of natural resources by introducing

    adaptive management schemes employing landscape ecological criteria to create a more rational

    design (Henareh-Khalyani et al. 2013) in addition to generating or integrating key information at

    the site level (threat maps, the natural conditions inside and outside of the PA, the socioeconomic

    context and the relationships between actors) to guide decision making over the landscape

    (selection of priority areas, zoning, transformation).

    To achieve effective management, those who manage the PCBR should promote social

    participation, ensure the integration of interests and socioenvironmental perspectives regarding

    the PCBR, reduce the discretionary handling of information that prevails in certain sectors and

    enforce specific efforts, such as the new management program. The program should search for

  • 18

    effective inclusion and governance mechanisms and local institutions (Porter-Bolland et al. 2012)

    and promote “win–win” or “low loss and high gain” alternative management approaches and

    economic strategies (DeFries et al. 2007, 2010). In this way, communities would be conservation

    stewards, and the local dependence on external agricultural projects would be reduced. Updating

    the management program would be an ideal opportunity to include these new concepts but also

    reduce the risk of non-conservation policies introducing or enhancing threats. Finally, a future

    research portfolio could identify areas with species or features that are not widely represented in

    the network or PA polygon and that could increase the resistance of the natural system and fill the

    conservation gaps that have been identified since 1990.

    Acknowledgements

    The authors thank the National Council of Science and Technology for the fellowship for

    postgraduate studies in the Colegio de la Frontera Sur, the personnel of the Laboratory for the

    Analysis of Geographic Information and Statistics (Laboratorio de Análisis de Información

    Geográfica y Estadística - LAIGE) at ECOSUR, and all of the anonymous interviewees.

    Literature cited

    Albarran-Melze, C., J. Rangel-Ruiz, and J. Gamboa- Aguilar. 2009. Distribución y abundancia de Melanoides tuberculata (Gastropoda: Thiaridae) en la Reserva de la Biosfera Pantanos de Centla, Tabasco, México. Acta Zoológica Mexicana 25:93–104.

    Arias-Valencia, M. M., and C. V. Giraldo-Mora. 2011. El rigor científico en la investigación cualitativa. Investigación y Educación en Enfermería 29:500–514.

    Barba- Macias, E., J. Rangel-Mendoza, and R. Ramos- Reyes. 2006. Clasificacion de los humedales de Tabasco mediante sistemas de informacion geografica. Universidad y Ciencia 22:101–110.

    Barba-Macías, E., F. Valadez, M. Pinkus, and J. Pinkus, M. 2014. Revisión de la problemática socioambiental de la Reserva de la Biósfera Pantanos de Centla, Tabasco. Investigación y Ciencia 60:51–58.

    Barbier, E. B., S. D. Hacker, C. Kennedy, E. W. Koch, C. Adrian, B. R. Silliman, D. Hacker, C. Stier, and W. Koch. 2011. The value of estuarine and coastal ecosystem services. Ecological Monographs 81:169–193.

    Berlanga-Robles, C. A., C. R. R. García, B. J. López, and A. Ruiz-Luna. 2010. Patrones de cambio de coberturas y usos del suelo en la región costa norte de Nayarit (1973-2000). Investigaciones Geográficas, Boletin del Instituto de Geografía, UNAM 72:7–22.

    Bertzky, B., C. Corrigan, J. Kemsey, S. Kenney, C. Ravilious, C. Besancon, and N. Burgess. 2012. Protected Planet Report 2012. IUCN,Gland, Switzerland y UNEP-WCMC.Cambridge,United Kingdom.

    Carr, M. H., Neigel.E.J., J. A. Stes, S. Andelman, R. R. Warner, and L. J. Largier. 2003.

  • 19

    Comparing marine and terrestrial ecosystems : Implications for the design of coastal marine

    reserves. Ecological Applications 13:90–107.

    Chape, S., J. Harrison, M. Spalding, and I. Lysenko. 2005. Measuring the extent and effectiveness of protected areas as an indicator for meeting global biodiversity targets. Philosophical Transaction: Biological Sciencies 360:443–455.

    Chuvieco, E. 2008. Teledetección ambiental. (S. A. Editorial Ariel, editor), 3th edition. Barcelona, España.

    Coetzer, K. L., E. T. F. Witkowski, and B. F. N. Erasmus. 2014. Reviewing Biosphere Reserves globally: Effective conservation action or bureaucratic label? Biological Reviews 89:82–104.

    CONAGUA. 2014. (Comisión Nacional del AGUA). Estadísticas del agua en México. Available from http://www.conagua.gob.mx/CONAGUA07/Publicaciones/Publicaciones/EAM2014.pdf.

    CONANP. 2015. (Comisión Nacional de Áreas Naturales Protegidas). Reservas de Biosfera. Available from http://www.conanp.gob.mx/que_hacemos/reservas_biosfera.php (accessed June 1, 2015).

    Córdova-Avalos, A., J. Alcántara-Carbajal, R. Guzmán-Plazola, G. Mendoza-Martínez, and V. González-Romero. 2009. Desarrollo de un índice de integridad biológica avifaunístico para dos asociaciones vegetales de la Reserva de la Biosfera Pantanos de Centla, Tabasco. Universidad y Ciencia 25:1–22.

    DeFries, R., A. Hansen, B. L. Turner, R. Reid, and J. Liu. 2007. Land use change around protected areas: Management to balance human needs and ecological function. Ecological Applications 17:1031–1038.

    DeFries, R., K. K. Karanth, and S. Pareeth. 2010. Interactions between protected areas and their surroundings in human-dominated tropical landscapes. Biological Conservation 143:2870–2880.

    Díaz, M., P. Marín - Olán, and J. L. Capdepont. 2012. Diagnóstico socioproductivo de la Reserva de la Biosfera Pantanos de Centla. Comisión Nacional de Áreas Naturales Protegidas. Tabasco,México.

    DOF. 2014. Ley General de Equilibrio Ecológico y Protección al Ambiente. México,D.F. Available from http://www.diputados.gob.mx/LeyesBiblio/pdf/148_090115.pdf (accessed April 20, 2005).

    Dudley, N., M. Hockings, and S. Stolton. 2004. Options for guaranteeing the effective management of the World’s Protected Areas. Journal of Environmental Policy & Planning

    6:131–142.

    Durand, L., and E. Lazos. 2008. The local perception of tropical deforestation and its relation to conservation policies in Los Tuxtlas Biosphere Reserve, Mexico. Human Ecology 36:383–394.

    Ellis, E. A., and L. Porter-Bolland. 2008. Is community-based forest management more effective than protected areas? A comparison of land use/land cover change in two neighboring study areas of the Central Yucatan Peninsula, Mexico. Forest Ecology and Management 256:1971–1983.

  • 20

    Ervin, J. 2003a. Protected area assessments in perspective. BioScience 53:819–822.

    Ervin, J. 2003b. Rapid assessment of protected area management effectiveness in four countries. BioScience 53:833–841. Available from http://bioscience.oxfordjournals.org/cgi/doi/10.1641/0006-3568(2003)053[0833:RAOPAM]2.0.CO;2.

    Espinoza-Tenorio, A., I. Espejel, M. Wolff, and A. Zepeda-Domınguez. 2011. Contextual factors influencing sustainable fisheries in Mexico. Marine Policy 35:345–350.

    Figueroa, F., and V. Sánchez-Cordero. 2008. Effectiveness of natural protected areas to prevent land use and land cover change in Mexico. Biodiversity and Conservation 17:3223–3240.

    Friese, S. 2011. Using ATLAS . ti for analyzing the financial crisis data. Forum: Qualitative Social Research 12:1–39.

    Gama-Campillo, M. L. et al. 2006. Programa de Ordenamiento Ecológico del Estado de Tabasco. Tabasco, México. Available from http://www.semarnat.gob.mx/archivosanteriores/temas/ordenamientoecologico/Documents/documentos decretados/poet_tabasco.pdf.

    García -Hidalgo, G. 2014. Evaluación de cambio y uso del suelo de la Reserva de la Biosfera Pantanos de Centla, Tabasco. Periodo 1984-2013.MS thesis. Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco,México.

    Glavovic, B. et al. 2015. Living on the margin in the Anthropocene: Engagement arenas for sustainability research and action at the ocean–land interface. Current Opinion in Environmental Sustainability 14:1–17. Available from http://dx.doi.org/10.1016/j.cosust.2015.06.003.

    Guerra-Martínez, V., and S. Ochoa-Gaona. 2008. Evaluación del programa de manejo de la Reserva de la Biosfera Pantanos de Centla en Tabasco, México. Universidad y Ciencia 24:135–146.

    Halffter, G. 2011. Reservas de la Biosfera: Problemas y oportunidades en México. Acta Zoológica Mexicana 27:177–189.

    Harley, C. D. G., A. Randall Hughes, K. M. Hultgren, B. G. Miner, C. J. B. Sorte, C. S. Thornber, L. F. Rodriguez, L. Tomanek, and S. L. Williams. 2006. The impacts of climate change in coastal marine systems. Ecology Letters 9:228–41.

    Henareh-Khalyani, A., A. L. Mayer, C. R. Webster, and M. J. Falkowski. 2013. Ecological indicators for protection impact assessment at two scales in the Bozin and Marakhil protected area, Iran. Ecological Indicators 25:99–107. Available from http://dx.doi.org/10.1016/j.ecolind.2012.09.011.

    Hockings, M., S. Stolton, and N. Dudley. 2000. Evaluating effectiveness: A framework for assessing management of protected areas. IUCN, Gland, Switzerland and Cambridge,UK.

    Hockings, M., S. Stolton, and N. Dudley. 2002. Evualting effectiveness. A summary for park managers and policy makers. IUCN, Gland, Switzerland and Cambridge,UK. Available from https://portals.iucn.org/library/sites/library/files/documents/WPC-005.pdf.

    Hockings, M., S. Stolton, and N. Dudley. 2004. Management effectiveness: assessing management of protected areas? Journal of Environmental Policy & Planning 6:157–174.

  • 21

    Hull, V. et al. 2011. Evaluating the efficacy of zoning designations for protected area management. Biological Conservation 144:3028–3037. Available from http://dx.doi.org/10.1016/j.biocon.2011.09.007.

    Jones, J. P. G. et al. 2011. The why, what, and how of global biodiversity indicators beyond the 2010 target. Conservation Biology 25:450–457. Available from http://dx.doi.org/10.1111/j.1523-1739.2010.01605.x.

    Klein, C. J., A. Chan, L. Kircher, A. J. Cundiff, N. Gardner, Y. Hrovat, A. Scholz, B. E. Kendall, and S. Airamé. 2008. Striking a balance between biodiversity conservation and socioeconomic viability in the design of Marine Protected Areas. Conservation Biology 22:691–700. Available from 10.1111/j.1523-1739.2008.00896.x.

    Kolb, M., J.-F. Mas, and L. Galicia. 2013. Evaluating drivers of land-use change and transition potential models in a complex landscape in Southern Mexico. International Journal of Geographical Information Science 27:1804–1827.

    Maimone-Celorio, M., M. Aliphat, D. Martínez-Carrera, B. Ramírez-Valverde, J. Valdéz-Hernández, and A. Macías-Laylle. 2006. Manejo tradicional de humedales tropicales y su análisis mediante sistemas de información geográfica (SIGs): el caso de la comunidad Maya - Chontal de Quintín Arauz, Centla, Tabasco. Universidad y Ciencia 22:27–49.

    Marenzi, A. R. C., L. C. Gerhardinger, R. C. Marenzi, and L. C. Gerhardinger. 2006. Landscape Ecology and effects of habitat fragmentation on biodiversity of coastal environments : Case study of Morraria da Praia Vermelha, SC, Brazil. Journal of Coastal Research 2004:1156–1160.

    Margules, C. R., and R. L. Pressey. 2000. Systematic conservation planning. Nature 405:243–253.

    Martínez, M. L., A. Intralawan, G. Vázquez, and O. Pérez-Maqueo. 2007. The coasts of our world : Ecological, economic and social importance. Ecological Economics 63:254–272.

    MEA. 2005. Ecosystems and human well- being: Biodiversity synthesis. Washingtong D.C.

    Mendoza-Carranza, M., D. J. Hoeinghaus, A. M. Garcia, and Á. Romero-Rodriguez. 2010. Aquatic food webs in mangrove and seagrass habitats of Centla Wetland, a Biosphere reserve in Southeastern Mexico. Neotropical Ichthyology 8:171–178.

    Micheli, J. 2002. Política ambiental en México y su dimensión regional. Region y Sociedad 1:129–170.

    Montalvo-Urgel, H., A. J. Sánchez, R. Florido, and A. A. Macossay-Cortez. 2010. Lista de crustáceos en troncos hundidos en el humedal tropical Pantanos de Centla, al sur del Golfo de México. Revista Mexicana de Biodiversidad 81:121 – 131.

    Novelo, A. R. 2006. Plantas acuáticas de la Reserva de la Biosfera Pantanos de Centla. (ENDESU, editor), 1st. edition. México,D.F.

    Noy, C. 2008. Sampling knowledge: The hermeneutics of snowball sampling in qualitative research. International Journal of Social Research Methodology 11:327–344.

    Ortiz-Lozano, L., A. Granados-Barba, and I. Espejel. 2009a. Ecosystemic zonification as a management tool for marine protected areas in the coastal zone : Applications for the

    Sistema Arrecifal Veracruzano National Park , Mexico. Ocean & Coastal Management 52:317–323. Available from http://dx.doi.org/10.1016/j.ocecoaman.2009.03.004.

  • 22

    Ortiz-Lozano, L., A. Gutiérrez-Velázquez, and A. Granados-Barba. 2009b. Marine and terrestrial protected areas in Mexico : Importance of their functional connectivity in conservation management. Ocean & Coastal Management 52:620–627.

    Parrish, J. D., D. P. Braun, and R. S. Unnasch. 2003. Are we conserving what we say we are? Measuring ecological integrity within protected areas. BioScience 53:851–860.

    Plieninger, T., T. Kizos, C. Bieling, L. Le Dû-blayo, M. Budniok, M. Bürgi, and L. Carole. 2015. Exploring ecosystem-change and society through a landscape lens : recent progress in European landscape research. Ecology and Society 20:5.

    Pomeroy, R. S., L. M. Watson, J. E. Parks, and G. A. Cid. 2005. How is your MPA doing? A methodology for evaluating the management effectiveness of marine protected areas. Ocean & Coastal Management 48:485–502.

    Porter-Bolland, L., E. a. Ellis, M. R. Guariguata, I. Ruiz-Mallén, S. Negrete-Yankelevich, and V. Reyes-García. 2012. Community managed forests and forest protected areas: An assessment of their conservation effectiveness across the tropics. Forest Ecology and Management 268:6–17. Available from http://dx.doi.org/10.1016/j.foreco.2011.05.034.

    Rangel-Ruiz, L. J., J. Gamboa Aguilar, M. García Morales, and O. M. Ortíz Lezama. 2011. Tarebia granifera (Lamarck, 1822) en la región hidrológica Grijalva-Usumacinta en Tabasco, México. Acta Zoológica Mexicana 27:103–114.

    Ren, G., S. S. Young, L. Wang, W. Wang, Y. Long, R. Wu, J. Li, J. Zhu, and D. W. Yu. 2015. Effectiveness of China’s national forest protection program and nature reserves.

    Conservation Biology 29:1368–1377. Available from http://doi.wiley.com/10.1111/cobi.12561.

    Reyes, E., J. W. Day, A. L. Lara-Domínguez, P. Sánchez-Gil, D. Z. Lomelí, and A. Yáñez-Arancibia. 2004. Assessing coastal management plans using watershed spatial models for the Mississippi delta, USA, and the Usumacinta–Grijalva delta, Mexico. Ocean & Coastal Management 47:693–708.

    Romero-Gil, J. C., A. G. Muñiz, C. A. Bautista-Jiménez, and P. H. Pérez-Alejandro. 2000. Caracterización de la Reserva de la Biósfera Pantanos de Centla. Universidad y Ciencia 15:7–12.

    Rullán, C. D., E. A. Olthoff, L. Gama, E. Pérez - Sánchez, and A. Galindo -Acántara. 2009. Discriminación de umbrales de áreas quemadas mediante imágenes Landsat TM, en la Reserva de la Biosfera Pantanos de Centla. KUXULKAB 15:37–44.

    Saldaña, J. 2013. The Coding Manual for Qualitative Researchers. Discourse, 2nd edition. SAGE Publications.

    Sánchez-Hernández, R., J. Mendoza-Palacios, J. De la Cruz Reyes, J. Mendoza Martínez, and R. Ramos- Reyes. 2013. Mapa de erosión potencial en la cuenca hidrológica Gijalva-Usumacinta, México mediante el uso de SIG. Universidad y Ciencia 29:153–161.

    SEMARNAT. 2000. Programa de manejo Reserva de la Biosfera Pantanos de Centla. Instituto Nacional de Ecología, México,D.F.

    SEMARNAT. 2003. (Secretaría de Medio Ambiente y Recursos Naturales). Norma Oficial Mexicana. NOM-022-SEMARNAT-2003. Available from http://www.profepa.gob.mx/innovaportal/file/3281/1/nom-022-semarnat-2003.pdf.

  • 23

    SEMARNAT. 2010. (Secretaría de Medio Ambiente y Recursos Naturales).Norma Oficial Mexicana. NOM-059-SEMARNAT-2010. Protección ambiental-Especies nativas de México de flora y fauna silvestres-Categorias de riesgo y especificaciones para su inclusión, exclusión o cambio. L. Available from http://dof.gob.mx/nota_detalle.php?codigo=5173091&fecha=30/12/2010.

    Soto-Galera, E., J. Piera, and P. López. 2010. Spatial and temporal land cover changes in Terminos Lagoon Reserve, Mexico. Revista de Biología Tropical 58:565–575.

    Stojanovic, T. A., and C. J. Q. Farmer. 2013. The development of world oceans & coasts and concepts of sustainability. Marine Policy 42:157–165.

    Stoll-Kleemann, S. 2010. Evaluation of management effectiveness in protected areas: Methodologies and results. Basic and Applied Ecology 11:377–382.

    Uffe-Bignoli, D. et al. 2014. Protected Planet Report 2014. UNEP-WCMC:Cambridge,UK.

    UICN. 2015. (Unión Internacional para la Conservación de la Naturaleza).Áreas protegidas. ¿Qué son y para qué sirven? Available from https://www.iucn.org/es/sobre/trabajo/programas/areas_protegidas_/copy_of_aires_protegees___quest_ce_que_cest___quelle_est_leur_utilite___13012012_1127/.

    Velázquez, A., and J. F. Mas. 2002. Patrones y tasas de cambio de uso del suelo en México. Gaceta Ecológica 62:21–37.

  • 24

    Figures

    Figure 1. Spatial localization of the Pantanos de Centla Biosphere Reserve, Tabasco (Source:

    mapping by author based on CONANP, 2015).

  • 25

    Figure 2. Land-use changes within the Pantanos de Centla Biosphere Reserve by a) zoning and b) area of

    context. Negative values represent losses. Source: author.

  • 26

    Figure 3. Drivers of land-use change within the Pantanos de Centla Biosphere Reserve. Source: author. The

    width of the lines represents the degree of substantiation of the code.

  • 27

    Tables

    Table 1. Social actors interviewed and their institution and years of experience (AG=Government

    actor, AI=Academic actor, AC=Civil actor, INF=Local informant).

    Identification Position/Institution Experience

    /Geographical area

    Key actors: macroscale

    AG-1 Director of PCBR/CONANP 10 years, Federal

    AG-2 Director of the Sustainable Rural Development Centre/SAGARPA 6 years, Federal

    AG-3 Head of the Department of Natural Protected Areas/SERNAPAM >10 years, State

    AG-4 Director of the Department of Sustainable Development/Centla Town Government

    3 years, Local

    AI-1 Researcher and President of Tabasco Biologist Society/Member of PCBR Advisory board

    >10 years, State

    AI-2 Coastal resources management researcher/ECOSUR >10 years, Federal

    AI-3 CCGSS Researcher >10 years, State

    AI-4 Environmental education researcher/UJAT >20 years, State

    AC-1 Civil Society and Member of PCBR Advisory board >20 years, State

    AC-2 Civil Society and Member of PCBR Advisory board >10 years, State

    Key actors: microscale Age

    INF-1 Ejido Commissioner/Core area I 50 years, Local

    INF-2 Community monitoring committee/Core area I 40 years, Local

    INF-3 Municipal representative/Core area I >30 years Local

    INF-4 Municipal representative/Core area I 50 years, Local

    INF-5 Former Municipal representative/Core area I 50 years, Local

    INF-6 Ejido member/Tourism cooperative partner/Core area I 45 years, Local

    INF-7 Ejido member/Fisherman/Core area II >60 years, Local

    INF-8 Tourism cooperative partner/Core area >40 years, Local

    INF-9 Tourism cooperative partner/UMA Technician/ Core area >40 years, Local

    INF-10 Municipal representative/Core area 45 years, Local

    CCGSS=Centro del Cambio Global y la Sustentabilidad en el Sureste: Centre for Global Change and Sustainability in the Southeast; CONANP=Comisión Nacional de Áreas Naturales Protegidas: National Commission of Natural Protected Areas; ECOSUR=El Colegio de la Frontera Sur; PCBR=Pantanos de Centla Biosphere Reserve; SAGARPA=Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación: Secretariat of Agriculture, Livestock, Rural Development, Fisheries and Food;

  • 28

    SERNAPAM=Secretaría de Energía, Recursos Naturales y Protección Ambiental: Secretary of Energy, Natural Resources and Environmental Protection; UJAT=Universidad Juárez Autónoma de Tabasco; UMA=Unidad de Manejo Ambiental: Environmental Management Unit

    Table 2. Land-use change within the Pantanos de Centla Reserve between 1990 (rows) and 2014

    (columns) between categories. Shaded areas represent areas with no change. For example, 36,181

    ha of low-flooded forest were converted to hydrophytic vegetation.

    1990 2014

    HV MG BW LFF AGR Total (ha)

    HV 101.972 1.115 6.956 20.122 36.501 166.666

    MG 2.409 5.743 96 3.716 78 12.038

    BW 1.385 86 16.338 374 1.557 19.741

    LFF 36.181 3.514 8.450 11.813 13.704 73.662

    AGR 16.209 201 1.083 2.376 11.385 31.253

    Total (ha) 158.156 10.658 32.923 38.399 63.224 303.360

    Net change -8.510 -1.380 + 13.182 -35.263 + 31.971

    % of the total area -2.8% -0.45% 4.3% -12% 10%

    AGR=Agricultural use; BW=Bodies of water; MG=Mangrove; HV=Hydrophytic vegetation; LFF=Low-flooded forests.

  • 29

    Capitulo III. Conclusiones generales

    1. En dos décadas (1990 -2014) en la RBPC, la cobertura natural que se redujo en

    mayor porcentaje fue la selva baja inundable (12%), en cambio el uso

    agropecuario incrementó su valor casi el doble en comparación al registrado previo

    decreto. La zona de contexto mostró un comportamiento de deterioro ambiental

    similar al registrado al interior del polígono de la RBPC ya que en ambas zonas se

    redujo cerca del 10% de selvas bajas e incrementó la superficie agropecuaria.

    2. Se identificaron cuatro motores de cambio (políticas energéticas, agropecuarias

    de desarrollo rural e hídricas) a cargo de instancias estatales y federales que han

    influido negativamente sobre los esfuerzos de conservación en la RBPC.

    3. Las principales amenazas al interior de la RBPC fueron la facilidad de acceso, la

    expansión de frontera agropecuaria, la ocurrencia de incendios y la construcción

    de infraestructura hidráulica; las cuales modifican los patrones hídricos y conllevan

    a la fragmentación y pérdida de coberturas naturales.

    4. El manejo eficaz y la mitigación del cambio de uso de suelo en la RBPC enfrenta

    desafíos asociados al contexto nacional como son la diferencia de presupuesto

    asignado por cada sector, un manejo centralizado, el desajuste temporal en el

    programa de manejo y la no alineación de objetivos entre políticas

    gubernamentales. Además a nivel local existe una participación social incipiente

    en la conservación.

  • 30

    Literatura citada

    Andam KS, Ferraro PJ, Pfaff A, Sanchez-Azofeifa GA, Robalino J a. 2008. Measuring the effectiveness of protected area networks in reducing deforestation. Proc Natl Acad Sci U S A 105:16089–16094.

    Arceo P, Granados-Barba A. 2010. Evaluating sustainability criteria for a marine protected area in Veracruz, Mexico. Ocean Coast Manag 53:535–543. [accessed 2015 Oct 6]. http://www.sciencedirect.com/science/article/pii/S0964569110000815

    Bonet-García FJ, Pérez-Luque AJ, Moreno-Llorca R a., Pérez-Pérez R, Puerta-Piñero C, Zamora R. 2015. Protected areas as elicitors of human well-being in a developed region: A new synthetic (socioeconomic) approach. Biol Conserv 187:221–229.

    Bruner AG, Gullison RE, Rice RE, Fonseca GAB. 2001. Effectiveness of parks in protecting tropical biodiversity. Science (80- ) 291:125–128.

    CONANP. 2015. (Comisión Nacional de Áreas Naturales Protegidas). Reservas de Biosfera. Áreas Protegidas Decretadas. [accessed 2015 Jun 1]. http://www.conanp.gob.mx/que_hacemos/reservas_biosfera.php

    Dudley N, Hockings M, Stolton S. 2004. Options for guaranteeing the effective management of the World’s Protected Areas. J Environ Policy Plan 6:131–142.

    Ervin J. 2003a. Protected area assessments in perspective. Bioscience 53:819–822.

    Ervin J. 2003b. Rapid assessment of protected area management effectiveness in four countries. Bioscience 53:833–841.

    Figueroa F, Sánchez-Cordero V. 2008. Effectiveness of natural protected areas to prevent land use and land cover change in Mexico. Biodivers Conserv 17:3223–3240.

    Guerra-Martínez V, Ochoa-Gaona S. 2008. Evaluación del programa de manejo de la Reserva de la Biosfera Pantanos de Centla en Tabasco, México. Univ y Cienc 24:135–146.

    Hockings M, Stolton S, Dudley N. 2000. Evaluating effectiveness: A framework for assessing management of protected areas. IUCN, Gland, Switzerland and Cambridge,UK.

    Hockings M, Stolton S, Dudley N. 2004. Management effectiveness: assessing management of protected areas? J Environ Policy Plan 6:157–174.

    Jepson P, Noord H Van. 2002. A review of the efficacy of the protected area system of East Kalimantan Province, Indonesia. Nat Areas J 22:28–42.

    De la Lanza Espino G, Pérez MAO, Pérez JLC. 2012. Diferenciación hidrogeomorfológica de los ambientes costeros del Pacífico, del Golfo de México y del Mar Caribe. Investig Geográficas, Bol del Inst Geogr UNAM 81:33–50.

    Marenzi ARC, Gerhardinger LC, Marenzi RC, Gerhardinger LC. 2006. Landscape Ecology and effects of habitat fragmentation on biodiversity of coastal environments :

  • 31

    Case study of Morraria da Praia Vermelha, SC, Brazil. J Coast Res 2004:1156–1160.

    Margules CR, Pressey RL. 2000. Systematic conservation planning. Nature 405:243–253.

    Parrish JD, Braun DP, Unnasch RS. 2003. Are we conserving what we say we are? Measuring ecological integrity within protected areas. Bioscience 53:851–860.

    Pomeroy RS, Watson LM, Parks JE, Cid GA. 2005. How is your MPA doing? A methodology for evaluating the management effectiveness of marine protected areas. Ocean Coast Manag 48:485–502.

    Rodríguez-Rodríguez D, Martínez-Vega J. 2013. Results of the implementation of the System for the Integrated Assessment of Protected Areas (SIAPA) to the protected areas of the Autonomous Region of Madrid (Spain). Ecol Indic 34:210–220.

    SEMARNAT. 2000. Programa de manejo Reserva de la Biosfera Pantanos de Centla. México,D.F.: Instituto Nacional de Ecología.

    Stoll-Kleemann S. 2010. Evaluation of management effectiveness in protected areas: Methodologies and results. Basic Appl Ecol 11:377–382.

    Uffe-Bignoli D, Burgess ND, Bingham, H. B, E.M.S. de L, M.G. D, M., Bertzky B, Milam AN, Martinez-Lopez J, Lewis E, Eassom A, et al. 2014. Protected Planet Report 2014. UNEP-WCMC:Cambridge,UK.

    UICN. 2015. (Unión Internacional para la Conservación de la Naturaleza).Áreas protegidas. ¿Qué son y para qué sirven?

    Vaca RA, Golicher DJ, Cayuela L, Hewson J, Steininger M. 2012. Evidence of Incipient Forest Transition in Southern Mexico. PLoS One 7:42309.

  • 32

    Anexos 1. Guion de entrevista para actores claves de la Reserva de la Biosfera Pantanos

    de Centla (RBPC).

    Procedimiento previo: a) Propósito de la entrevista: Identificar personas o agrupaciones en la localidad que representen actores claves

    por su injerencia en el cambio del uso del suelo de la RBPC. b) La entrevista será insumo para la tesis “Evaluando la eficacia de manejo de un área protegida costera ante el

    cambio del uso del suelo; la reserva de la Biosfera Pantanos de Centla ante el cambio de uso de suelo” a cargo de Ing. Mayra I. de la Rosa y dirigida por el Dr. Alejandro Espinoza Tenorio de Ecosur Villahermosa.; contacto: [email protected] ; [email protected]

    c) Lectura de ley de protección de datos personales: Con base al artículo 38 de la Ley de Información Estadística y Geográfica “Toda información se mantendrá con carácter estrictamente CONFIDENCIAL” y su uso es sólo para fines estadísticos.

    d) Llamado a respuestas breves, cuando sea el caso de preferencias cerradas (sí o no).

    Fecha: |____|___ / |____|___ / 2015 Día Mes Año

    Número de entrevista

    Nombre del entrevistado

    Lugar de la entrevista

    1. Perfil del informante

    1.1. Sexo: H (1) M (2) 1.2. Edad: _____ 1.3. ¿Dónde nació? (1) Es originario del lugar (2) Otro lugar ¿Dónde? __________________ 1.4 ¿Cuánto tiempo lleva viviendo en el lugar? _______________ años 1.5. Grado de estudios

    1. Primaria 7. Licenciatura

    2. Secundaria 8. Especialización

    3. Técnica o comercial 9. Posgrado

    4. Bachillerato 10. Ninguno

    5. Normal 11. Otro

    1.6. ¿Tiene dependientes económicos? Si (1) No (2)

    1.6.1. ¿Cuántos?_____________

    1.7. ¿Habla alguna lengua indígena? Si (1) No (2) En caso de no, pasar a 2.1 1.7.1 ¿Cuál o cuáles?

    1) Chontal

    2) Chol

    3) Otro (Especifique) _____________________

    EL COLEGIO DE LA FRONTERA SUR U N I D A D V I L L A H E R M O S A

  • 2. Participación

    2.1. ¿Ud. pertenece o ha pertenecido a algún comité en la ranchería o el ejido? Si (1) No (2)

    En caso de No, pasar a 2.3 2.1.1 En caso de Sí ¿Cuál?

    1) Salud

    2) Educación

    3) Infraestructura

    4) Partido político

    5) Otro (Especifique) _____________________

    2.2. ¿Cuál es o fue su cargo?

    1. Presidente

    2. Tesorero

    3. Secretario

    4. Otro (Especifique) ________________________

    2.3. ¿Pertenece o ha pertenecido a algún grupo productivo organizado? Si (1) No (2) En caso de No, pasar a Módulo 3 2.3.1 En caso de Sí ¿Cuál?

    1. De afinidad (deportes, club)

    2. De prestación de servicios (cooperativas, sociedades)

    3. De comercio

    4. De producción agrícola, ganadera o pecuaria.

    5. Otro (Especifique) _________________________

    2.4. ¿Cuál es o fue su cargo?

    1. Presidente

    2. Tesorero

    3. Secretario

    4. Otro (Especifique) _________________________

    3. Actividades productivas y de subsistencia

    3.1. ¿Con qué actividad(es) obtiene Ud. sus ingresos económicos?

    1. Ganadería

    2. Agricultura

    3. Acuicultura

    4. Pesca

    5. Apicultura

    6. Comercio

    7. Otro (Especifique) _____________________

    3.2 Valor económico, extensión superficial y tiempo de ocupación

    Actividad

    3.2.1 ¿Cuántas hectáreas ocupa?

    3.2.2 ¿Renta hectáreas?

    3.2.3 En

    caso de Si. ¿Cuántas hectáreas

    renta?

    3.2.4.¿ Cuánto tiempo le dedica a la actividad? (Meses)

    3.2.5 ¿El producto

    obtenido es de autoconsumo?

    Si (1) No (2) Si (1) No(2) 1. Ganadería 2. Agricultura 3. Acuicultura 4. Pesca 5. Apicultura 6. Comercio 7. Otro

    3.3 Me puede decir ¿Si en los últimos años (2000 a la fecha) ha cambiado los usos que le ha(n) dado al suelo (actividades

    productivas, áreas en descanso y bosques)? Si (1) No (2) En caso de No, pasar a 3.5

  • 3.3.1 En caso de sí: ¿Cuáles?

    3.3.2. ¿Ha ampliado el número de parcelas, extensión, tipo de cultivo?

    3.4 ¿Por qué decidió cambiar?

    1) Baja producción

    2) Costo y precio de venta

    3) Programa de apoyo del gobierno

    4) Fenómeno natural

    5) Otro (Especifique) _____________________

    3.5. En la localidad ¿Hay alguna persona o grupo organizado dedicado a la producción de un cultivo? En caso de no, pasar a 3.6

    3.5.1 ¿Cómo se llama? ____________________________________________________________

    3.6. En la localidad ¿Hay alguna persona o grupo organizado en la producción ganadera? En caso de no, pasar a 4 3.6.1 ¿Cómo se llama? __________________________________________________________

    4. Conocimiento institucional y apoyos gubernamentales

    4.1. ¿Con qué dependencias de gobierno federal, estatal o municipal se han relacionado para mejorar la producción

    (agrícola o ganadera)?

    4.2. Del año 2000 a la fecha, ha recibido algún apoyo gubernamental que haya motivado:

    Factores de amenaza Si No 4.3.1En caso de sí: ¿Cuál fue el apoyo? (Nombre del programa)

    4.3.2 ¿Quién lo dio?

    1 Cambiar o mejorar los tipos de cultivo

    2 Aumentar la ganadería 3 Construir o mejorar viviendas

    4 Sembrar árboles (Reforestar) o conservar 5 Prevenir incendios

    6 Construir o modificar los canales o camellones

    7 Otro

    4.4. De los programas de apoyo que mencionó, ¿Cuál considera que resulta prioritario a realizar en la localidad?

    5. Despedida

    5.1. ¿Para terminar, aceptaría Ud. ser entrevistado nuevamente para profundizar en algunos de los temas tratados?

    Si (1) No (2)

    MUCHAS GRACIAS

    Datos para contacto: _______________________________________________________Teléfono, e- mail, etc.

    _____________________________________________________________

    Nombre y firma del entrevistado

    Año A ( Cobertura inicial) B ( Cobertura final)

  • 2. Entrevista a profundidad sobre factores y procesos de cambio de uso del suelo en la Reserva de la Biosfera Pantanos de Centla.

    Nombre del entrevistado

    I. Introducción

    Las Áreas Naturales Protegidas (ANP) son instrumentos para la conservación de biodiversidad con

    amplia aceptación internacional. En México existen 176 ANP, de ellas, la categoría de Reservas

    de la Biosfera tiene la mayor cobertura nacional (24% superficie total) (CONANP, 2014). Las

    Reservas de la Biosfera se caracterizan por un esquema de zonificación que distingue zonas núcleo

    y zonas de amortiguamiento; en la primera se busca preservar el capital natural, mientras que la

    segunda tiene el objetivo de aprovechar los ecosistemas de manera sustentable y así satisfacer las

    necesidades de los habitantes a largo plazo (LGEEPA, art. 47BIS).

    La Reserva de la Biosfera Pantanos de Centla (RBPC) protege al segundo sistema estuarino más

    importante de América Latina (Barba-Macías et al., 2014), y tiene dos zonas núcleo y una zona de

    amortiguamiento que en conjunto cubren 302,706 ha (12% de la cubierta de humedales del país).

    Entre los ecosistemas que conserva la RBPC se encuentra comunidades hidrófitas emergentes,

    a) Propósito de la entrevista: Identificar procesos ambientales, políticos o sociales que promuevan el cambio de uso de suelo y cobertura vegetal en la RBPC.

    e) Explicar que la entrevista será insumo para la tesis “Evaluando la eficacia de manejo de un área protegida costera ante el cambio del uso del suelo; la reserva de la Biosfera Pantanos de Centla ante el cambio de uso de suelo” a cargo de Ing. Mayra I. de la Rosa y dirigida por el Dr. Alejandro Espinoza Tenorio de Ecosur Villahermosa; contacto: [email protected] ; [email protected]

    b) Lectura de ley de protección de datos personales: Con base al artículo 38 de la Ley de Información Estadística y Geográfica “Toda información se mantendrá con carácter estrictamente CONFIDENCIAL” y su uso es sólo para fines estadísticos.

    Fecha: |____|___ / |____|___ / 2015 Día Mes Año

    Número de entrevista

    EL COLEGIO DE LA FRONTERA SUR U N I D A D V I L L A H E R M O S A

  • sumergidas y flotantes, bosques de manglar y selvas bajas inundables, principalmente de especies

    maderables como el tinto (Haematoxylum campechianum) y puckté (Bucida buceras).

    Desde su creación en 1992, la conservación de los ecosistemas de la RBPC ha enfrentado

    constantes amenazas provenientes de actividades agropecuariasi, la creación de vías de

    comunicación, el crecimiento y establecimiento de asentamientos humanos, incendios forestales y

    exploración petrolera, entre otros (SEMARNAT 2000). Estas presiones antropogénicas se han

    mantenido y han promovido elevadas tasas de cambio de uso de sueloii y la reducción y

    fragmentación de coberturas naturales en la RBPC (Guerra-Martínez 2003);García -Hidalgo,

    2014).

    I. Cambios en las coberturas naturales

    Como parte de la presente investigación se identificó el cambio de uso de sueloiii de la RBPC y su

    zona de contexto (10 km alrededor de su polígono) antes del decreto de la reserva (1990) y en el

    2014 (Anexo I). A partir de este análisis se determinó que la cobertura con mayor transformación

    ha sido las selvas bajas inundables (Cuadro 1), ya que se ha perdido cerca del 87% de la extensión

    estimada antes de la creación ANP. Estos valores coinciden con los encontrados por Guerra-

    Martínez y Ochoa-Gaona (2006), quienes incluso señalaron que la tasa de cambio en selvas bajas

    inundables de la RBPC (-39.4% año-1) ha sido más acelerada que la de otros estados del sureste

    (ejemplo: Campeche= -.54% año-1 y Quintana Roo= -.33% año-1).

    1990

    2014

    Vegetación hidrófita

    Manglar Cuerpos de Agua

    Selvas Bajas Inundables

    Agropecuario (ha) Total

    Vegetación hidrófita 101,972 1,115 6,956 20,122 36,501 166,666

    Manglar 2,409 5,743 96 3,716 78 12,038 Cuerpos de Agua 1,385 86 16,338 374 1,557 19,741 Selvas Bajas Inundables 36,181 3,514 8,450 11,813 13,704 73,662 Agropecuario 16,209 201 1,083 2,376 11,385 31,253 Total (ha) 158,156 10,658 32,923 38,399 63,224 303,360

    Cuadro 1. Matriz de cambio de uso de suelo de la RBPC y su zona de influencia (1990–2014). Los valores en columnas indican cambios entre periodos (1990 y 2014) y los valores en filas indican cambios entre clases.

    Sin cambios en el periodo de estudio tiempo

    Cambios de una cobertura natural a otra

    Coberturas naturales a zonas agropecuarias

  • La mayor cobertura natural de la RBPC es la vegetación hidrofita (52%), la cual es la clase con

    menor cambio (2%) en las dos últimas décadas, aunque cedió 36,501 ha para uso agropecuario. La

    pérdida de 1648 ha de manglar (11% de la extensión de 1990) reflejan que la presión de

    transformación se ha mantenido sobre este ecosistema.

    Por otra parte se detectó una expansión notoria de zonas agropecuarias a p