102
P a g e  | 1 Electrical Machines Notes Dr. AF BATI Page 1 ELECTRICAL MACHINES REFERENCES:  1. D. BROWN & E. P. HAMILTON  ELECTROMECHANICAL  ENERGY CONVERSION”  MACMILLAN,  NY 1984. 2. H. COTTON  ADVANCED ELECTRICAL TECHNOLOGY  PITMAN,  LONDON 1967. 3. A. R. DANIELS  INTRODUCTION TO ELECTRICAL MACHINES” MACMILLAN,  LONDON 1976. 4. A. DRAPER  ELECTRICAL CIRCUITSINCLUDING MACHINES” LONGMAN,  LONDON 1972.  5. A. DRAPER  ELECTRICAL MACHINES   2 ND  EDITION,  LONGMAN ,LONDON.  6. A. E. FITZGERALD,  D. E. HIGGINBOTTOM ,& A. GABRIEL  BASIC ELECTRICAL ENGINEERING”  5 TH  ED. MCGRAWHILL, NY 1981. 7. A. E. FITZGERALD,  C. KINGSLEY,  & S. D. UMANS  ELECTRICAL  MACHINERY”,  4 TH  ED. MCGRAWHILL, TOKYO 1983. 8. J. HINDMARSH  ELECTRICAL  MACHINES  AND THEIR APPLICATIONS”  4 TH  ED. PERGAMON,  OXFORD 1984.  9. E. HUGHES  ELECTRICAL TECHNOLOGY”  LONGMANS,  LONDON.  10. G. MCPHERSON”  AN INTRODUCTION TO ELECTRICAL MACHINES AND TRANSFORMERS”  WILEY,  NY 1981. 11. S. A. NASAR  ELECTRIC MACHINES  AND ELECTROMECHANICS”  MCGRAWHILL(SCHAUM),  NY 1981. 12. S. A. NASAR & L. E. UNNEWEHR  ELECTROMECHANICS  AND ELECTRIC MACHINES”,  2 ND  ED. WILEY,  NY 1983. 13. J. ROSENBLATT  & M. H. FRIEDMAN “DIRECT AND ALTERNATING CURRENT MACHINERY”  2 ND  ED. MERRILL,  COLOMBUS OHIO 1984.  14. Theraja Bl , Theraja Ak  ELECTRICAL  TECHNOLOGY”  . 15. A. S. LANGSDORF  THEORY OF ALTERNATING CURRENT MACHINERY  2 ND  ED. MCGRAWHILL,  NY 1955. DC MACHINES ONLY : 16. A. E. CLAYTON & N. M. HANCOCK  THE PERFORMANCE  AND DESIGN OF DIRECT CURRENT MACHINES”  3 RD  ED. PITMAN,  LONDON 1959. 17. M. G. SAY & E. O. TAYLOR  DIRECT CURRENT MACHINES   PITMAN,  LONDON 1980. 

Electrical Dc Machines Dr Af-bati

Embed Size (px)

Citation preview

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    1/102

    P a g e |1

    Electrical Machines Notes Dr. AF BATI Page 1

    ELECTRICAL MACHINES

    REFERENCES:

    1. D.BROWN&E.P.HAMILTONELECTROMECHANICAL ENERGYCONVERSIONMACMILLAN,

    NY1984.

    2. H.COTTONADVANCEDELECTRICALTECHNOLOGYPITMAN,LONDON1967.

    3. A.R.DANIELSINTRODUCTIONTOELECTRICALMACHINESMACMILLAN,LONDON1976.

    4. A.DRAPERELECTRICALCIRCUITS INCLUDINGMACHINESLONGMAN,LONDON1972.

    5. A.DRAPERELECTRICALMACHINES2NDEDITION,LONGMAN,LONDON.

    6. A.E.FITZGERALD,D.E.HIGGINBOTTOM,&A.GABRIELBASICELECTRICALENGINEERING

    5THED.MCGRAWHILL,NY1981.

    7. A.E.FITZGERALD,C.KINGSLEY,&S.D.UMANSELECTRICALMACHINERY,4TH

    ED.

    MCGRAWHILL,TOKYO1983.

    8. J.HINDMARSHELECTRICALMACHINESANDTHEIRAPPLICATIONS4THED.PERGAMON,

    OXFORD1984.

    9. E.HUGHESELECTRICALTECHNOLOGYLONGMANS,LONDON.

    10.G.MCPHERSONANINTRODUCTIONTOELECTRICALMACHINESANDTRANSFORMERS

    WILEY,NY1981.

    11.S.A.NASARELECTRICMACHINESANDELECTROMECHANICS MCGRAWHILL(SCHAUM),

    NY1981.12.S.A.NASAR&L.E.UNNEWEHRELECTROMECHANICSANDELECTRICMACHINES,2

    NDED.

    WILEY,NY1983.

    13.J.ROSENBLATT&M.H.FRIEDMANDIRECTANDALTERNATINGCURRENTMACHINERY2ND

    ED.MERRILL,COLOMBUSOHIO1984.

    14.Theraja Bl, Theraja Ak ELECTRICALTECHNOLOGY .

    15.A.S.LANGSDORFTHEORYOFALTERNATINGCURRENTMACHINERY2ND

    ED.MCGRAW

    HILL,NY1955. DCMACHINESONLY:

    16.A.E.CLAYTON&N.M.HANCOCKTHEPERFORMANCEANDDESIGNOFDIRECTCURRENT

    MACHINES3RDED.PITMAN,LONDON1959.

    17.M.G.SAY&E.O.TAYLOR DIRECTCURRENTMACHINESPITMAN,LONDON1980.

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    2/102

    P a g e |2

    Electrical Machines Notes Dr. AF BATI Page 2

    CHAPTER1: PRINCIPLEOFOPERATION

    1.1 SOMEBASICRULES

    Righthandscrewrule(crossproductoperationinvectoralgebra)

    A1XA2=A3

    A1,A2,andA3arevectors.RotateRHfingersfromthedirectionofthefirstvector,A1,tothe

    directionofthesecondvector,A2, throughthesmallangle(

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    3/102

    P a g e |3

    Electrical Machines Notes Dr. AF BATI Page 3

    1.2Singleconductor

    Consider astraightconductormovingatauniformspeed u inauniformmagneticfieldB, and

    carryingacurrent I. Let

    L= activelength(i.e.lengthofconductorsegmentimmersedinthefield);

    Fm=appliedmechanicalforce,[N].

    u & B give E=B.L.u and I&B give Fd=B.I.L

    E.I=(B.L.u).I=(B.I.L).u= Fd.u E.I=Fd.u=Pc=conversionpower

    Note:Becausethespeed u isconstant,FdandFm mustbeequalandopposite(otherwisethere

    wouldbeaccelerationordeceleration).

    E.I iselectricalpower ,andFd.u(Fm.u) is mechanicalpower.

    I indirectionof E; Fdoppositeto u. I oppositeto E;Fdin Directionof u.

    Generationaction. Motoraction

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    4/102

    P a g e |4

    Electrical Machines Notes Dr. AF BATI Page 4

    V=E I.R V=E+ I.R

    t

    SF

    t

    WP

    mm

    in

    =

    = Pin=V.I=(E+I.R).I

    =Fd.u=Pc =E.I+I2.R=Pc+Pcu

    Pcu=copperlosses

    Pout=V.I= (EI.R).I Pout=t

    SF

    t

    Wmm

    =

    =E.II2.R=Pc Pcu =Fd.u= Pc

    =Pin Pcu Pin= Pout + Pcu

    Pin Pout= Pcu Pin Pout = Pcu

    1.3 Wireloop

    Considernowawirelooprotatingatauniformspeedinamagneticfield B. Conductors a

    and b aretheactivepartsoftheloop;theremainingpartsareend connectionsandleads.

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    5/102

    P a g e |5

    Electrical Machines Notes Dr. AF BATI Page 5

    Fda=Fdb zeroresultantforce Td=developedtorque

    i indirectionofe;Td opposesrotation i opposese;Tdaidsrotation

    Generatoraction. Motoraction.

    KVL: e=ea + eb=loopemf

    1.4Sliprings

    Slip ringsandbrushesmaybeusedtomake electricalcontactwitharotatingloop.Sliprings

    rotatewithloop,whilebrushesarestationarytogiveslidingcontact.Aslipringandabrushfor

    eachterminal.

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    6/102

    P a g e |6

    Electrical Machines Notes Dr. AF BATI Page 6

    Theinducedemfisalternating,andthedevelopedtorqueoscillates(aboutthevertical

    position).Clearly,slipringsarenotsuitablefor dc machines(theyareusedin ac machines).

    1.5Commutator

    Acommutatorisaconductingringsplitintosegments;eachsegmentiselectricallyconnectedtooneterminaloftheloop.Itismountedontheshaft,butiselectricallyinsulatedfromit.The

    brushesarestationaryandmakeslidingcontactwiththesegments.

    A2isalwayspositive;A1isalwaysnegative: >>>et isalwayspositive,& Td isalways

    CW(whendirectcurrentsuppliedtobrushes),butemf&current withinlooposcillate.

    Although et and Td arenowunidirectional(i.e.remaininthesamedirectionorsense),theydo

    notrepresentsteady dc operationbecausetheyfluctuate:eachismaximumwhentheloopis

    inposion 0 ,and zerowhenitisinposion2.

    1.6Multipleloops

    Moreuniform dc operationisachievedbyusinganumberofloopsdisplacedfromeachother

    inspace.Theemfsadd(seriesconnection),andthedevelopedtorquesaideachother.Asthe

    numberofloopsisincreased,ideal dc operationisapproached.

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    7/102

    P a g e |7

    Electrical Machines Notes Dr. AF BATI Page 7

    2loops 4loops

    1.7 Magneticcircuit

    Themagneticfieldmaybeobtainedbymeansofpermanentmagnets(PM),or,more

    commonly,bymeansofelectromagnets(fieldcoilswithironcores).

    Permanentmagnet electromagnet practicalconstruction

    (withsoftironextension)

    Thevalueoftheresultingfluxisdeterminedbythemmf(magneticmotiveforce)(ofthePMor

    electromagnet)andthemagneticreluctanceinthepathoftheflux.Ironhasveryhighmagnetic

    permeability,sothatitistheairgapinthepathofthefluxthatlimitsitsvalue.Theairgapmust

    thereforebemadeshorttoincreasetheeffectiveflux.Theairgapcannotbeavoided

    completely(why?).

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    8/102

    P a g e |8

    Electrical Machines Notes Dr. AF BATI Page 8

    Aircore cylindricalironcore slottedironcore(armature)

    1.8Multiplepoles

    A dc machinecanhave2,4,6,8,. Poles(anevennumberwhy?)

    2p=numberofpoles;(i.e.p=numberofpole

    pairs)

    Onerevoluon=360mechanicaldegrees;

    Onepolepair=360electricaldegrees;

    Electricalangle=p X mechanicalangle;

    Polepitch=180o

    electrical=360o

    mech/2p .

    Eacharmatureloopisplacedoveronepole

    pitch.Electrically,everythingrepeatsaftertwo

    polepitches.

    1.9loopemf

    D=diameterofthearmature[m];

    L=activelengthofarmature[m];

    n=rotationalspeed[rps=revolutionpersecond];

    u=speed=Dn[m/s];

    r=angularspeed=2n [rad/s].

    Ap=armaturesurfaceareacorrespondingtoonepolepitch=DL/2p [m2].

    =fluxperpole[wb=weber];totalmagneticfluxthroughpoleface:sameforallpoles;

    B=airgapfluxdensity[T=tesla=wb/m2];normalfieldatarmaturesurface;

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    9/102

    Bav=ave

    =ApB.

    Theactu

    below.Twireloo

    ea=B.L.u

    Theaver

    Ea=Bav.

    Stator(fi

    Airgap

    Motion>

    Rotor

    (armatu

    El

    rageairgap

    dA ; Bav=

    alairgapfl

    heaverage

    ;theinstan

    (ea(t)h

    ageemfind

    .u (const

    ld)

    >>>

    B

    e)

    ectrical Mac

    fluxdensit

    /Ap

    xdensityB

    apfluxdentaneousem

    sthesame

    ucedinside

    antoveralt

    ines Notes

    [T].

    isdistribute

    sityBav iscfis

    waveshape

    ais

    rnatepole

    daroundth

    nstantove

    asB)

    pitches)

    Dr. AF

    eperiphery

    apolepitc

    ATI

    ofthearm

    h.Consider

    P a g

    P

    tureassho

    sideaof

    e |9

    age 9

    n

    he

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    10/102

    P a g e |10

    Electrical Machines Notes Dr. AF BATI Page 10

    Averagecommutatedemf

    Wireloop: Eloop=Ea+Eb=2Bav.L.u=2.D.L.n.Bav=(2.D.L.n)(/Ap)

    =4p.n.=(2P.r.)/ (=/t=2/(1/2pn))

    Conductor (onesideofloop):

    Econ=1/2.Eloop=Bav.L.u=.D.L.n.Bav=2p.n.=(P.r.)/

    Coil (N=numberofturns=numberofloopsinseries):

    Ecoil=NxEloop=2N.Bav.L.u=2.D.L.N.n.Bav=4p.N.n.=(2P.N.r.)/ (=N/t)

    1.10looptorque

    Theinstantaneousforceonsideais

    fa=B.Ia.L

    Thenormalfield B variesoverapolepitch,andhence fa

    alsovaries.Theaverageforceonsidea is

    Fa= Bav.Ia.L

    Bav,andhence Fa,areconstantoverapolepitch

    correspondingtoagivenpole.Moreover,becauseof

    commutation, Iareversesoverthenextpolepitchsothat

    Faremainsinthesamesensearoundtheaxisofthe

    armature.Theresultantforceduetoallarmature

    conductorsiszero,butthereisdevelopedtorquebecause

    allforcesactinthesamesensearoundtheaxis.

    Averagedevelopedtorque

    Wireloop Tloop=Fa.D/2 +Fb.D/2=D/2(Bav.Ia.L +Bav.Ib.L )=D.L.I.Bav [Nm]

    Where Ia=Ib, >>>> Tloop=D.L.I(/Ap)=2p.I./

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    11/102

    P a g e |11

    Electrical Machines Notes Dr. AF BATI Page 11

    Coil (Nturns): Tcoil=NXTloop=D.L.N.I.Bav=2p.N.I./

    Forconstantrotationalspeed n,andassumingnofriction,thedevelopedtorqueisequalto

    theappliedmechanicaltorque.

    1.11Conversionpower

    A dcmachinemayrunasageneratororasamotor.Ineachofthetwomodesofoperation,

    thereisinducedemfanddevelopedtorque(givenbytheequaonsofsecon1.9and1.10).

    Whatdeterminesthemode(generatorormotor)isthedirectionalrelationshipbetween E,and

    I,andbetween Td and n:

    Generatormode: I with E, Td opposite n;

    Motormode : I opposite E, Td with n.

    Recallthecoilequaonsofsecon 1.9 and1.10; E=Ecoil and Td=Tcoil, wecanwrite

    E.I=(4p.N.n.).I=4p.N.r..I/2=(2p.N.I./).r=Td.r

    Thisrepresentselectromechanicalenergyconversion.Theconversionpowerisdefinedas

    Pc= E.I = Td.r { E.I ontheelectricalside Td.r onthemechanicalside

    Generatoraction

    R=resistanceofthecoil

    Tm=mechanicaldrive

    torque

    Mech i/p: Pin=r.Td=Pc

    Electo/p: Pout=V.I=(EI.R).I=E.II2.R= Pc Pcu

    >>>>Pout= Pin Pcu

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    12/102

    P a g e |12

    Electrical Machines Notes Dr. AF BATI Page 12

    Motoraction

    Electi/p: Pin=V.I=(E+I.R).I=E.I+I2.R =Pc+Pcu

    Mech o/p: Pout=r.Td= Pc

    >>>>>Pout=: Pin Pcu

    Moregenerally, Pout=: Pin losses

    Wherethelossesinclude(inadditiontocopperlosses)mechanicallosses(frictionandwindage),

    andironlosses(hysteresisandeddycurrent).

    Example 1:

    Giventhattheairgapfieldisdistributedsinusoidallywithamaximumfluxdensityof Bm. Show

    that =Bm.D.L/p and Bav=2.Bm/

    Solution: Bav=1/ B .sin d=cos

    =

    =Bav.Ap=

    ...

    ..

    Tutorial1:

    Giventhattheairgapfieldisdistributedasshowninfig.1 overapolepitch yp.Showthat

    = Bm.D.L/p and Bav=.Bm where =

    Bm

    0

    ya

    yp

    Fig.1

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    13/102

    P a g e |13

    Electrical Machines Notes Dr. AF BATI Page 13

    Example2:

    Thearmatureofa dc machineis 80cmlongandhasadiameterof50cm.Themaximumair

    gapfluxdensityis1.5T.Thepolearccovers70%ofthepolepitch.Thearmaturespeedis500

    rpm.

    (a) If themachinehas2poles,findthefluxperpoleandtheaverageairgapfluxdensitywhen

    thefielddistribuonis(i)sinusoidal ,(ii)asinfig.1ofT.1.

    (b)Repeatpart aforasixpolemachine.

    Forallcasesofparts aandb,findtheaverageemf,developedtorque,andconversion

    powerforafullpitchwirelooponthearmature&carrying9A.current.

    Solution:

    a(i) Sinusoidalfielddistribution

    Bav=

    =.

    =0.955T

    =Bav.Ap=0.955X . .

    =0.6 Wb.

    Eloop=4p.n.=4X1X =20 Volts

    Tloop= .I.= 2x9x0.6/ =3.437 N.m

    Pc=r.Tloop=2 XX 3.437 =180Was

    a(ii)fielddistribuonasinfig.1

    Bav=.Bm=

    .Bm=0.7X1.5=1.05T

    = .Bm.D.L/p= 0.66 Wb.

    Eloop=4.p.n.=22Volts

    Tloop= .I.= 3.78 N.m

    Pc=r.Tloop=198Was

    b(i)when2p=6

    =0.2Wb.

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    14/102

    P a g e |14

    Electrical Machines Notes Dr. AF BATI Page 14

    Eloop=20 Volts

    Tloop=3.437 N.m

    Pc=180 Watts

    b(ii)

    =0.22 Wb.

    Eloop=22 Volts

    Tloop=3.78 N.m

    Pc=198 Was

    Tutorial2:

    Thearmatureofa4pole dc machineisrotangat840rpm.Thearmaturelengthand

    diameterare40cm and 30cmrespecvely.Thefluxperpoleis65mWb.Fora5turnfull

    pitchedarmaturecoil:

    a.Findtheaverageemfinducedinthecoil.

    b.Whatcurrentmustflowthroughthecoilifitistodevelopatorqueof8.0N.m?whatis

    theresultingconversionpower?

    Answer(36.4V,7.25A.;264W.)

    CHAPTER2: construction

    Electrical machinesareessentiallyelectricalandmagneticcircuitscoupledtoeachotherto

    develop emfsandtorques.Actualmachinescanvarygreatlyindetails.

    2.1Materials

    a.Iron:highmagneticpermeability>>minimizereluctanceofmagneticcircuit>>highworking

    fields.

    Highgradesteel(e.g.siliconsteels)for magneticcores.Lowergradesteels(e.g.castiron,cast

    steel,mildsteel)forconstructionalparts.Relativepermeabilityofthelinearpartofthe

    magnetization(BH)curveisoftheorderof1000,andishigherforhighergradesteels.

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    15/102

    P a g e |15

    Electrical Machines Notes Dr. AF BATI Page 15

    Saturationlimitsmaximumfluxdensityin

    ironto 2Torless;theresulngaverage

    gapfluxdensityisthenaround0.8 T for

    practicalindustrialmachines.

    b.copper: highelectricconductivity>>>

    minimizeresistanceofelectriccircuits>>

    highworkingcurrents.Aluminumis

    seldomusedbecauseofspacelimitations;

    (whyissilvernotusedeitheraslongasits

    resistivityisthelowest?)

    c.Air:airgapinpathoffluxnecessaryto

    allowmotion.

    d.Insulatingmaterials:theyarenecessarytoinsulateconductorsfromeachotherandfrom

    adjacentironparts(whicharealsoconducting).

    Theeconomicfactor: machinesaregenerallydesignedtoyieldtherequiredperformanceat

    minimumcost.

    Cost: costofmaterials+costofmanufacture.

    Requiredperformance:describedintermsofoperatingvoltage,current,power,torque,speed,

    efficiency,weight,volume,reliability,temperaturerise,function,noise,pollution,etc.

    2.2 Losses

    Powerlossesin dc machinesinclude: copperlosses(I2.Rlossesinconductors);ironlosses(

    hysteresis&eddycurrents);frictionandwindage.Alllossesareundesirablebecausethey

    representwastedpower,andcausethetemperaturetorise.

    Materialsretaintheirdesiredproperties(electrical,magnetic,andmechanical)withinspecific

    temperaturelimits.Temperatureriseismostcriticaltoinsulatingmaterials:theirinsulation

    capabilitydeterioratesatsufficientlyhightemperatures(around100o

    C,dependingonthe

    particularinsulator),andultimatelybreaksdowncausingshortcircuitsandpossiblytotalmachinefailure.Tolimittemperaturerise,themachinedesignmustminimizelosses,and

    provideforefficientoperation.

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    16/102

    Inge

    dissi

    mad

    Chan

    buta

    Thes

    inth

    ofst

    0.51

    toge

    insul

    Stac

    El

    neral,heat

    atedonlyt

    larger,whi

    gingmagne

    lsoinironp

    eddycur

    iron.Toli

    ellaminati

    .0mmthic

    her.Thela

    tedsurfac

    ingfactor=

    ectrical Mac

    isgenerate

    roughitss

    chmeanst

    ticfieldsind

    arts.Asiron

    entsdisto

    ittheselos

    ns(instead

    withinsula

    inationsar

    swillbein

    ines Notes

    ctual DC

    throughth

    rface.Toi

    atmachine

    uceemfsn

    hasarelati

    tthefieldd

    ses,andthe

    ofsolidste

    edfacets(

    estackedin

    hewayofc

    0.90.97

    Machine

    evolumeo

    provecooli

    sbecomebi

    otonlyinc

    velysmallr

    istribution

    resultingt

    l);thesear

    paperorsui

    thedirecti

    irculatingc

    Dr. AF

    thecondu

    ngofsuch

    gger.

    ppercondu

    sistivity,cu

    nd,morei

    mperature

    puncheds

    tablecoan

    noftheind

    rrents.

    ATI

    tororiron

    arts,theirs

    ctors(whic

    rrentswillc

    portant,yi

    rise,somec

    heets(orst

    g)stackeda

    uced emfs

    P a g e

    Pa

    ore,butca

    urfacesmu

    isdesirabl

    irculateinit

    eld I2.R los

    oresarem

    mpings)ar

    ndbolted

    othatthe

    |16

    ge 16

    be

    tbe

    ),

    .

    es

    de

    und

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    17/102

    MAI

    2.3S

    Yoke

    Pole

    areu

    reluc

    airg

    Field

    coils.

    arec

    2.4R

    The

    form

    mea

    El

    PARTSOF

    ator(field): lowergra

    :coreands

    suallylamin

    tanceofth

    p;and(iii)

    coils:provi

    i.e. 2orm

    onnectedt

    otor (armarmatureis

    acylinder

    sofaspide

    ectrical Mac

    DC MAC

    desteel;su

    hoes;high

    ated(fluxfl

    airgap(by

    rovidemec

    ethemmf

    recoilson

    getherelec

    ture)

    adeofhig

    rdrum.Itis

    rforlarger

    ines Notes

    INE(seefig

    portspole

    radesteel.

    uctuationd

    increasingi

    hanicalsup

    forthemai

    achpole.

    rically.

    gradeste

    mountedo

    achines).I

    reonpage

    ;returnpat

    Polecore

    etorotati

    sarea);(ii)

    ortforthe

    workingfl

    hecoilsof

    llaminatio

    ntheshaft(

    tmayhave

    Dr. AF

    previousp

    hforflux;e

    ayormay

    garmature

    improveflu

    fieldcoils.

    x.Therem

    nesetarei

    spunched

    directlyfor

    radialanda

    ATI

    ge)

    closesmac

    otbelamin

    slots).Pole

    densitydis

    ybemore

    enticalto

    ndstacked

    smallmachi

    xialventilati

    P a g e

    Pa

    hine.

    ated.Poles

    shoes(i)re

    tributionin

    hanonese

    achother,

    togetherto

    nes,andby

    onductsfo

    |17

    ge 17

    hoes

    uce

    the

    of

    nd

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    18/102

    P a g e |18

    Electrical Machines Notes Dr. AF BATI Page 18

    Cooling.Thearmaturewindingsareplacedinslotsaroundthearmatureperiphery.The

    conductorsareheldinplacebywedges,orbybandswrappedaroundthearmature.The

    slotsaresometimesskewedtoreducenoise.

    2.5Airgap

    Theairgapisthespacebetweenstatorandrotorneededtoallowrelativemotionbetween

    them(i.eitismechanicallynecessary).Magnetically,it introducesahighreluctanceinthepathoftheworkingflux(mostofthefieldmmfisconsumedintheairgap);itisthereforemadeas

    shortaspossible,typically0.55.0mm.Thearmaturesurfaceandthepoleshoesfacing it

    requireprecisemachiningtoavoidasymmetryandvibration.

    2.6Commutator

    Thefunctionofthecommutatoristointerfacebetweenthealternatingcurrentsandemfs in

    therotatingarmaturecoilsontheoneside,andthedirectcurrentandvoltageatthemachine

    terminals.Itismadeupofcoppersegmentsinsulatedfromeachotherandmountedonthe

    shaft(i.eitrotateswiththerotor)inacylindricalform.Vringsholdthebarsinplace.Theleadsofeacharmaturecoilareconnectedtorisers(eachofthetwoleadsofacoilgoestoadifferent

    commutatorsegment).

    Brushesarecarbonorgraphiteblocksmountedin stationaryholderswithspringpressureto

    maintain goodelectricalcontact withtherotatingcommutatorsegments.Thebrusheswear

    outwithtimeandmustbereplacedregularly.

    Thecommutatorisacriticalpartofthemachine: from brushes, carbonfillingsanddirt

    accumulatecausingcurrentleakagebetweensegments.Intermittentcontactbetweenbrushes

    andsegmentsoftenleadstosparking,whichmaybecomequiteserious.

    2.7Mechanicalitems

    Shaft;spider;bearings(withgreasepackorlubricationsystem).

    Bolts;clamps,spacers,brackets.

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    19/102

    Enclosur

    eye;bas

    Terminal

    2.8Smal

    Verysm

    annular

    Themag

    machine

    armatur

    Thecurr

    threear

    El

    e(frame);v

    .

    box;shaft

    l(miniaturell dc moto

    agnetthat

    net fitswit

    shownmay

    mayhave

    ntexcited

    aturecoils

    ectrical Mac

    ntilationw

    ountedfa

    )machinesrsareoen

    maybecro

    inasteelh

    bereplace

    hreeslots(

    fieldshown

    tothethre

    ines Notes

    indows,lifti

    ;brushgea

    madewith

    ssmagnetiz

    usingwhic

    byPMs(a

    andthreet

    mayberepl

    segmentc

    g

    r;etc.

    PMfields.T

    edasshow

    hprovidest

    textracost)

    eeth)assho

    acedbyaP

    ommutator;

    Dr. AF

    e2polem

    ,oritmay

    heyoke.Th

    .Forsuch

    wn,oritm

    M.Notecar

    alsonotet

    ATI

    achinesho

    beradially

    steelbloc

    iniaturem

    yhave five

    efullythec

    elocation

    P a g e

    Pa

    nhasan

    magnetize

    sinthe4p

    chines,the

    slotsandt

    nnectiono

    fthebrush

    |19

    ge 19

    .

    ole

    eth.

    the

    es.

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    20/102

    P a g e |20

    Electrical Machines Notes Dr. AF BATI Page 20

    2.9Machineratings

    The nameplateofamachineservestoidentifythemachine.

    Itgivesratedvoltage,current,power,speed,andpossiblyother

    datausefultotheuser.Themachineratingsarethevaluesof

    thevariousparametersforwhichthemachinewillrun

    continuouslywithoutoverheatingorotherdamage.Inpractice,theratingscanbeexceededfor

    shortperiods.If,however,theratings are exceededforconsiderableperiodsoftime,there

    maybepermanentdamage, particularlytoinsulation.

    Machinesareusuallymanufacturedinstandardframesizes.They alsocomeindifferent

    enclosurestosuitvariousenvironmentalconditionsandduties(e.g.dripproof,splashproof,

    andsubmersible).

    Allmaterialsaresubjecttophysicallimitations,i.e.limits beyondwhichtheynolongerretain

    theirdesiredphysicalcharacteristics.Properdesignanduseofmachines(andindeedall

    apparatus)shouldensurethatnoneoftheconstituent materials exceedsitsphysical

    limitationsundernormaloperatingconditions.

    Toselectanappropriatemachineforhissystem,theusermustknowclearlytherequirements

    ofthatapplication(e.g.speed,voltage,power,etc.)andtheconditionsunderwhichthe

    machinewillberunning.Hewillthenbeabletoselectthemosteconomicalmachinethat

    meetstheserequirementsandconditions.

    Chapter3: Armaturewindings

    The coils onthearmatureareconnectedtoeachotherandtothe commutatorsegmentsto

    formwhatiscalledanarmature winding.

    3.1Coildetails

    Coilsides:activepartsofcoil;placedinsideslots.

    Coilspan:separationbetweenthetwocoilsidesalongthearmaturesurface(i.e.thearc

    coveredbythecoil).

    Fullpitchedcoil:coilspanexactlyequaltopolepitch.

    Chordedorshortpitchedcoil:coilspanslightlyless(orpossiblymore)thananexactpolepitch.

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    21/102

    P a g e |21

    Electrical Machines Notes Dr. AF BATI Page 21

    Allsectionsofthecoilareinsulated:fromeachother,fromadjacentcoils,andfromcoreiron.

    Thelevelofinsulationatanypointisdeterminedbythepotentialdifferencebeinginsulated.

    Coilsdesignedforlowvoltageandhighcurrenthavefewturnsoflargesections;conversely,

    coilsforhighvoltageandlowcurrenthavemanyturnsofsmallsections.Largemachineshave

    fewturns/coil,possiblyonlyone,madeofpreformedcopperbars.Smallmachinescoilsare

    madeofmanyturnsofflexiblewirewoundandbenttoshape.

    3.2Twolayerwindings

    Machinewindingaremadeintwolayers:foreachcoil,onecoilsideisplacedinthetophalfof

    itsslot(toplayer),andthesecondcoilsideisplaced inthebottomhalfofitsslot(bottom

    layer).Thismakesiteasytoarrangeendconnections(front&back)inaregularmanner;all

    coilsarethenidenticalsothatthewindingissymmetricalandcompact.Thereareatleasttwo

    coilsidesineachslot,oneinthetoplayerandoneinbottomlayer.Inlargemachines,there

    maybe2,3,4,etc.coilsidesperslot.

    Forexample,ifwehave 3coilsides/slot/layer and2turns/coil then:

    Numberofconductors/slot/layer=3X2=6

    Conductors/slot=2X6=12 (also,wecansay6 coilsides/slot)

    3.3 Somenumbers

    C=totalnumberofcoilsonarmature; N=numberofturnsineachcoil;

    NC=totalnumberofloops; Z=totalnumberofarmatureconductors=2NC

    2C=Z/N=totalnumberofcoilsides; S=totalnumberofslotsinarmature;

    Z/S=2NC/S=numberofconductors/slot; 2C/S=numberofcoilsides/slot;

    NC/S=numberofconductors/slot/layer; C/S=numberofcoilsides/slot/layer;

    S/2P=numberofslots/pole=polepitchmeasuredinslots.

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    22/102

    P a g e |22

    Electrical Machines Notes Dr. AF BATI Page 22

    3.4Interconnectionofcoils

    Allthecoilsonthearmatureareconnectedtogethertoformasingleclosedcircuit(calledthe

    armaturewinding): startingwithanycoil,itsendisconnectedtothebeginningofasecondcoil;

    theendofthesecondcoilisconnectedtothebeginningofathirdcoil,andsoon.Thisis

    repeateduntilthelastcoil,Cthcoil,isreached;itsendisconnectedtothebeginningofthefirst

    coil,sothatthecircuitisclosed.Theinterconnectionsbetweenthecoilsaremadeonthe

    commutator:thesecondleadofthe1st

    coilandthefirstleadofthe2nd

    coilaresoldered

    togetherontheriserofonecommutatorsegment;thesecondleadofthe2nd

    coilandthefirst

    leadofthe3rd

    coilaresolderedtogetherontheriserofanothercommutatorbsegment;finally,

    thesecondleadofthelast(Cth)coilandthefirstleadofthe1st

    coilaresoldered totheriserof

    onecommutatorsegment.

    1 2 3 C1 C Coils

    Commutatorsegments

    Afulllineindicatesacoilsidelyinginthetoplayer,andadashedlineindicatesacoilsidelying

    inthebottomlayer.Arrowsoncoilsidesmaybetakentoindicatedirectionofeitherinduced

    emforcurrent.

    Itshouldberememberedthat

    Totalnumberofcommutatorsegments=totalnumberofcoils=C

    3.5Windingschemes

    Armaturecoilsmaybeinterconnectedaccordingtooneoftwoschemes,givingrisetotwo

    typesofarmaturewindings,lapandwave.

    yC=commutatorpitch=numberofcommutatorsegmentsadvancedfromthefirstcoilleadto

    thesecond(sameforallcoils).

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    23/102

    3.5.1La

    In lapwi

    leadfro

    connect

    yC=1

    Thewin

    thefirst

    choiceo

    3.5.2W

    Inwave

    approxi

    segment

    yC=(C

    Aftertra

    theinitia

    (retrogr

    El

    Lap

    Windingndings,the

    side a is

    dtosegme

    ingisconti

    oil.Alapw

    progressiv

    Progressi

    YC=1

    vewindinindings,th

    ately two

    s orcoils, i

    )/P >>>>

    ersingallp

    lone,eithe

    ssive).

    ectrical Mac

    inding

    twocoilen

    connectedt

    nt x1.Th

    ueduntilal

    indingcanb

    orretrogr

    e

    etwocoile

    olepitches

    e. C/2p).T

    C=p.yC1

    olepairs,th

    theoneju

    ines Notes

    dsareconn

    ocommuta

    s

    lcoilsaretr

    emadeto

    ssivewindi

    Re

    dsarecon

    apart(whe

    he commu

    ewindings

    tafterit(p

    wa

    ctedtoadj

    torsegmen

    aversedup

    tanynumb

    gshasnos

    trogressive

    C=1

    ectedtoc

    reapolepi

    atorpitchi

    ouldretur

    rogressive)

    Dr. AF

    ewinding

    acentcom

    x,thenth

    tothelastc

    erofcoilsa

    ignificante

    mmutator

    chisnow

    then

    toacomm

    ,ortheone

    ATI

    utatorseg

    eleadfrom

    oilC, which

    ndpoles, C

    fect.

    egmentsth

    easuredin

    utatorsegm

    justbefore

    P a g e

    Pa

    ents;i.e. i

    side b is

    thenclose

    and 2p.Th

    atare

    numberof

    entadjacen

    it

    |23

    ge 23

    the

    on

    e

    tto

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    24/102

    Thewin

    Unliketh

    poles:in

    integer.

    belefto

    notconn

    El

    ingisconti

    elapwindi

    theabove

    Ifawave

    t;formech

    ectedelect

    yC

    ectrical Mac

    ueduntilal

    g,thewav

    quation,th

    indingisto

    anicalbalan

    ically).

    ines Notes

    lcoilsaretr

    windingca

    valuesof

    beplacedo

    ce,dummy

    aversedwit

    nnotbema

    and pm

    nanunsuit

    coilsarepl

    Dr. AF

    hthelastc

    detofitjus

    stbesucht

    blearmatu

    cedinthes

    ATI

    ilclosingon

    anynumbe

    hat yC tur

    re,somecoi

    positions(

    P a g e

    Pa

    thefirstco

    rofcoilsan

    souttobe

    lpositions

    dummycoi

    |24

    ge 24

    il.

    d

    an

    ust

    lsare

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    25/102

    Electrical Mac ines Notes Dr. AF ATI

    P a g e

    Pa

    |25

    ge 25

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    26/102

    Electrical Mac ines Notes Dr. AF ATI

    P a g e

    Pa

    |26

    ge 26

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    27/102

    Electrical Mac ines Notes Dr. AF ATI

    P a g e

    Pa

    |27

    ge 27

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    28/102

    Electrical Mac ines Notes Dr. AF ATI

    P a g e

    Pa

    |28

    ge 28

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    29/102

    Electrical Mac ines Notes Dr. AF ATI

    P a g e

    Pa

    |29

    ge 29

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    30/102

    Electrical Mac ines Notes Dr. AF ATI

    P a g e

    Pa

    |30

    ge 30

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    31/102

    Electrical Mac ines Notes Dr. AF ATI

    P a g e

    Pa

    |31

    ge 31

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    32/102

    Electrical Mac ines Notes Dr. AF ATI

    P a g e

    Pa

    |32

    ge 32

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    33/102

    Electrical Mac ines Notes Dr. AF ATI

    P a g e

    Pa

    |33

    ge 33

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    34/102

    Electrical Mac ines Notes Dr. AF ATI

    P a g e

    Pa

    |34

    ge 34

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    35/102

    Electrical Mac ines Notes Dr. AF ATI

    P a g e

    Pa

    |35

    ge 35

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    36/102

    Electrical Mac ines Notes Dr. AF ATI

    P a g e

    Pa

    |36

    ge 36

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    37/102

    Electrical Mac ines Notes Dr. AF ATI

    P a g e

    Pa

    |37

    ge 37

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    38/102

    Electrical Mac ines Notes Dr. AF ATI

    P a g e

    Pa

    |38

    ge 38

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    39/102

    P a g e |39

    Electrical Machines Notes Dr. AF BATI Page 39

    3.6Parallelpaths

    Fromtheprevioussection,itcanbeseenthatthearmaturecoilsformaclosedwindingthatis

    tappedbythebrushesatcertainpoints. Ineffect,thebrushesdividesthewindingintoa

    numberofparallelpathseachofwhichiscomposedofanumberofcoilsinseries.Theterminal

    currentisdividedamongtheparallelpaths.Atanymomentduringoperation,thereare short

    circuitedcoils;thesearenotincludedinthepaths.Thecircuitdiagramsforthelapandwave

    windingsareshownbelow.Ineachcase,the terminalvoltageisequaltothevoltageofthe

    individualparallelpaths.

    Fromthesequencediagraminpage29 forthelapwdg.,itcanbeseen thatallthebrushesare

    necessary:ifanybrushisremoved,therewillbeopposingemfsinseries(whichwouldcancel

    out).Thusthenumberofbrushesisequaltothenumberofpoles,andhencethenumberof

    parallelpathsisalsoequaltothenumberofpoles:

    Lapwdg: 2a=2p,>>> a=p ,2a=numberofparallelpaths; a=numberofpairsofparallel paths

    Fromthesequencediagraminpage36forthewavewdg,ontheotherhand,itcanbeseenthat

    onlytwobrushesarereallynecessary;alternate brushesareconnectedtoeachotherinternally

    throughshortcircuitedcoils.Thus2brushesmaybedisconnectedandremovedwithout

    affectinginducedemfsandcurrents.Inotherwords,thebrushesdividethewdgintotwo

    parallelpathsonly:

    Wavewdg: 2a=2, >>>>>a=1.

    Theextrabrushesmayberemoved,butinpractice,theyaresometimeskepttoobtainbetter

    currentdistributionoverthecommutator.

    Generalsymbolicrepresentation

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    40/102

    P a g e |40

    Electrical Machines Notes Dr. AF BATI Page 40

    3.7Comparisonoflapandwavewindings

    Alapwdghas2pparallelpathsandmusthave2pbrushes(orbrushgroups).Awavewdghas

    twoparallelpathsandrequiresonlytwobrushes(orbrushgroups),butitcanhave2pbrushes.

    Alapwdgcanbemadetofitanynumberofcoilsandpoles.Awavewdgcanbefittedonlyifthenumberofcoilsandpolesyieldanintegercommutatorpitch yC(=(C 1)/p).

    Abrushonalapwdggenerallyshortcircuitsonecoilduringcommutation.Inawavewdg

    havingonlytwobrushes,eachbrushshortcircuits p coilsinseries;inawavewdghaving 2p

    brushes,acoilisshortcircuitedbytwobrushesinseries.

    Assumenowthatagivenwdgcanbeconnectedineitherlaporwave.Thecoilemfandcurrent

    arethesameinbothcases. Thelapconnectedwdgwillhaveahighterminalcurrentandalow

    terminalvoltage,whilethewaveconnectedwdgwillhavealowterminalcurrentandahigh

    terminalvoltage(for2p

    4).Thetwowdgswillhavethesamepower.

    Conversely,assumeamachineistohaveaspecifiedterminalvoltageandaspecifiedterminal

    current.Ifitisconnectedinlap,itwillhavealow currentpercoil,andahighvoltagepercoil;

    thereforeeachcoilwillhavemanyturnsofsmallcrosssection,andahigherlevelofinsulation

    isneeded.Ifitisconnectedinwave,itwillhaveahighcurrentpercoilandalowvoltageper

    coil;thereforethecoilswillhaverelativelyfewturnsandlargesections,andarelativelylower

    levelofinsulationisneeded.Inthisrespect,wavewdgsarebetterthanlapwdgsbecausethey

    allowforbettercoolingofwdgs,andbecausetheyhavehigherspacefactors(spacefactor=

    copperarea/totalslotarea).Ingeneral,wavewdgsareusedinalmostallmachinesupto50KW,andinallhighvoltagemachines.Lapwdgsareusedmostlyinlargemachineshavinglow

    voltage/highcurrentratings.

    3.8Equalizers

    Inlapwdgs,eachpathisassociatedwithapairofpoles.Thusifthereisasymmetryinthe

    magneticcircuit(duetowearofbearings,oreccentricityofshaft),theemfsinducedinthe

    pathswillnotallexactlyequaltoeachother.Unequalemfsconnectedinparallelgiveriseto

    circulatingcurrentsthatcanbequitelarge, causingheavyandunnecessaryheating.

    Toreducethiseffect ,pointsthatshouldhavethesamevoltageareconnectedtoeachotherby

    meansofequalizers(orequalizingconnections, orequalizingrings). Suchpointsarelocated

    twopolepitchesapart.Eachequalizingringisconnectedto p points in alternate paths.

    Inthewavewdg,thereareonly twopathsthroughthearmature.Thecoilsofeachpathare

    distributeduniformlyaroundthearmature,andhencecoverallpolepairs. Anyasymmetryin

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    41/102

    P a g e |41

    Electrical Machines Notes Dr. AF BATI Page 41

    themagneticcircuitwillhavethesameeffectonbothpaths,sothatthetwoinduced emfs

    willbeidentical.Thuswavewdgsdonotrequireequalizers,whichisanotheradvantageofwave

    wdgs.

    I

    R IC R V Atnoload I=0and IC=

    E1 E2

    3.9Multiplexwindings

    Thelapandwavewdgsdescribedsofararecalledsimpleorsimplexwdgs.Duplexwdgsare

    composedoftwosimplexwdgsinterleavedaroundthearmature,andconnectedsoastohave

    twiceasmanyparallelpaths:

    Duplexlap wdg: 2a=4p Duplexwavewdg: 2a=4

    a=2p a=2

    similarly,theremaybetriplexwdgs,andsoon. Suchmultiplexwdgs are rarelyused.

    3.10Armaturecalculations

    Considerasymmetricalwdgcomposedof 2a idencalparallelpaths.Ithas

    C/2a coils/path, Ip

    C/a coilsides/paths, Ip VA

    Z/2a=NC/a conductor/path Rp

    Let Ep

    Ep=inducedemfineachpath;

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    42/102

    P a g e |42

    Electrical Machines Notes Dr. AF BATI Page 42

    Ip=currentflowingthrougheachpath; brush IA

    Rp=resistanceofeachpath. Rpp VA

    Alsolet EA

    VA=armatureterminalvoltage;

    IA=armatureterminalcurrent; Theveninequivalent forarmaturewdg

    EA=armatureemf=Theveninequivalent emf forarmaturewinding;

    Rpp=Theveninequivalentresistanceforarmaturewinding;

    RA=totaleffectivearmatureresistance.

    Applying KVL:

    Generator: VA=EA IA.RA

    Motor : VA=EA + IA.RA

    3.10.1Armatureresistance

    Singleloop: Rloop=

    Where =resistivityofcopperattheworkingtemperature; IA IA

    lm=meanlengthofasingleloop; RA RA

    A=crosssectionalareaoftheconductor. VA VA

    coil Rcoil=NxRloop=

    EA EA

    Path Rp=XRcoil=

    =

    Winding:Rpp=Rp=

    =

    Generator Motor

    Commonsymbolicrepresentationofarmaturewinding

    Effectivearmatureresistance: RA=Rpp +Rbrushes+Rcontact;

    Rbrushes istheresistanceofthecarbonbrushes.Rcontactistheresistanceofthe

    brush/commutatorcontactsurface;itisnonlinear,andisusuallytakenasequivalenttoa

    constantvoltdrop(forexample 1volt).

    G M

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    43/102

    P a g e |43

    Electrical Machines Notes Dr. AF BATI Page 43

    3.10.2 Armatureemf

    Theaveragecoilemfderivedinsecon1.9isthesameforallarmaturecoils.Thus,foreach

    path

    Ep= XEcoil= n.

    Butallpathsareinparallelwitheachother,sothatthearmatureemfisequaltotheindividual

    pathemfs:

    EA=Ep=XEcoil=

    n.=Ke.n. (Ke=

    =

    )

    Analternativeexpressioncanbeobtainedintermsofr (=2.n):

    EA=(Ke/2)r.=K.r. (K=Ke/2=

    =)

    3.10.3Torque

    Accordingto KCL,theterminalcurrent IA isthesumofallpathcurrents:

    IA=2aXIp >>>>>> Ip=IA/2a

    Apathiscomposedofcoilsinseries,sothatthepathcurrent Ipflows throughtheindividual

    coils:

    Icoil=Ip

    Theaveragecoiltorquewasderivedinsecon1.19:

    Tcoil= N.Icoil.=

    N.Ip.=

    .IA.

    Thetotalarmaturetorqueisthesumofallcoiltorquesactinginthesamedirectionandaiding

    eachother:

    T=CXTcoil=

    .IA.=K.IA. (K==

    asbefore)

    3.10.4 Conversionpower

    Theconversionpowercorrespondingtoelectromechanicalenergyconversioninthemachineis

    givenby:

    Ontheelectricalside:PC=EA.IA

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    44/102

    P a g e |44

    Electrical Machines Notes Dr. AF BATI Page 44

    Onthemechanicalside::PC=r.T

    Notethat PC=EA.IA=(k.K.IA. ).r= r.T

    Using Pin todenoteinputpowertothearmature,and Pout todenoteoutputpowerfromthe

    armature,wehave:

    Generator : Pin=r.T=PC , Pout=VA.IA=EA.IA IA2.RA= PC PCu

    Motor : Pin=VA.IA=EA.IA + IA2.RA= PC + PCu , Pout=r.T=PC

    PCu isthetotalcopperloss(orohmicloss)inthearmature.

    Example3:

    A6polemachinehas53slotswith 8conductors/slot.Thefluxperpoleis50mWb,andthe

    speedis420rpm.Calculate:

    1.Thenumberofturnspercoil;

    2.Ecoil,EA;

    3.Tcoil, T;

    4.conversionpower,Ifthewindingis (a)simplelapwinding;

    (b)simplewavewinding.

    Assumearmaturecurrenttobe IA=50A.

    Solution:(a)simplelapwinding

    2a=2p=6, C=53, Z=53x8=424 conductors, 2C=Z/N=2 X53=106 >N=424/106=4turns/coil

    Ecoil=NxEloop=4X4p.n.=16X3X(420/60)X50X103

    =16.8 V.

    EA=Ep=(C/2a).Ecoil=53X16.8/6=148.4 V.

    Or EA=

    n.=148.4 V.

    Tcoil=N X Tloop=4 X.IA.=3.183 N.m

    T=C.Tcoil=53X3.183=168.7 N.m

    Pc=EA.IA=148.4X50=7420 W.

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    45/102

    P a g e |45

    Electrical Machines Notes Dr. AF BATI Page 45

    .(b)Simplewavewinding

    2a=2, Ecoil=16.8 V.

    EA=Ep=53X16.8/2=445.2 V.

    Tcoil=N.Tloop=.IA.=9.549 N.m

    T=C.Tcoil=506.11 N.m

    Pc=EA.IA=22260 W.

    Tutorial3:

    A6pole,1500rpm dc machineislapwoundwith 732 acveconductors,eachcarrying 20A.

    Thefluxperpoleis 30 mWb.(a)find IA,EA, T andPc.

    .(b)Repeatpart(a)ifthemachineisreconnectedinsimplewave.

    Example4:

    A10polesimplelapwoundgeneratorisratedat 110V., 600A., and750rpm.Ithasa

    windingresistanceof 7.2 m,andiswoundin 163 slots with4 coilsides/slot and 2

    turns/coil.Assumeabrush voltagedropof1.5V.(a)findtheratedloadpower, (b)findthe

    resistance, emf, andterminalvoltagepercoilandperturn, and(c)findthedevelopedtorque

    andfluxperpole.

    Solution:

    Pout=VA.IA=110x600=66KW

    2a=2p=10

    RP=RA x10=72m

    Coilsides=S X coilsides/slot

    2C=163 X 4=652 coilsides

    C=326 coils

    Coils/path=32.6

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    46/102

    P a g e |46

    Electrical Machines Notes Dr. AF BATI Page 46

    Rcoil=

    /=72/32.6=2.2 m

    EA=VA +IA.RA +Vbrushes=110 +600 X0.0072 +2 x1.5=117.32 V.=Ep

    Ecoil=

    /=117.32/32.6=3.55 V.=4pNn>>>>>=7.1mWb.

    Vcoil=Ecoi IP.Rcoil=3.417V.

    Vturn=Eturn IP.Rturn=1.78 60X1.1X103

    =1.714 V.

    T=K.IA.= .IA.=5x326X2X600 X7.1X10

    3/5=884 N.m

    Tutorial4:

    Repeat thesamerequirementinEx.4,ifthefluxandspeedarekeptthesame,forwave

    winding.

    CHAPTER 4 THEMAINFIELD

    The operation of dc machines is based ontheinteractionbetweenthearmatureconductors

    andtheairgapfield,whichresultsininducedemfanddevelopedtorque.Themainfieldisthe

    fieldproducedbythefieldcoils(orPMs)onthestator.

    Tobeabletostudythemainfield byitself,weshallassumethereisnoarmaturecurrent,i.e.

    themachineisoperatingatnoload.

    4.1Mainfielddistribution

    Ifthefieldcoilsactalone(i.e.nocurrentinarmatureconductors),thefluxin the dc machine

    willhavethegeneralpattern ,suchthat mostofthefluxinthepolecorescrossestheairgapto

    linkthearmaturewindings;thisistheusefulfluxperpole .However,someofthefluxlines

    completetheirpathswithoutlinkingthearmaturewdg; thisistheleakageflux.

    Theusefulflux isproducedbythemmfofthefieldcoils.The mmfperpole Mf isthesumof

    themmfsofallcoilsplacedononepole(whichmaybeone,ortwo,ormore).Thus

    Mf= Nf.IF ampereturn/pole

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    47/102

    P a g e |47

    Electrical Machines Notes Dr. AF BATI Page 47

    Ifyoufollowthelinesoftheusefulflux,youwillfindthatthepathoftheusefulfluxis

    composedofthefollowingpartsinseries: statoryoke ,polecore, poleshoes,airgap,

    armatureteeth,andarmature core. As aseriescircuit,theoverallreluctanceisdominatedby

    thehighestreluctances inthepath,whichare(a)theairgap,and(b)armatureteeth(when

    saturated).

    ThefigureontheLHSshowsthefluxdistributionalloverthemachine,whilethefigureonthe

    RHSshowsthefluxdensitydistributionintheairgap,i.e.theeffectivefieldseenbythearmatureconductors.Thecurveissmoothifthearmaturesurfaceisassumedtobesmooth;in

    fact,armatureslotsintroducearipplethatmovesalongthecurveasthearmaturerotates;we

    shallneglecttheslottingeffect.Amuchmoreseriousdistortionofthemainfieldiscausedby

    armaturereaction.

    4.2Fieldexcitation

    Themainfieldmaybeproducedbymeansofpermanentmagnets(PMDC),orbymeansofcoils

    placed onthepoles(woundpole).PMsare compact(smallsize),requirenosupplyforthe

    field,andareeconomicalinoperation(noohmiclosses);however,theyareveryexpensive.Woundpolemachinesaremuchcheaper,andallowcontrolofthefield;theyaremuchmore

    commonlyused.

    Fieldcoilsinwoundpolemachinesmaybeconnectedinvariousways.Theymaybedividedas

    follows:

    Separatelyexcited:fieldcoilssuppliedfromseparatesource.

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    48/102

    P a g e |48

    Electrical Machines Notes Dr. AF BATI Page 48

    Self excited:fieldcoilsareconnectedwiththearmature.Theymaybeinparallel(shuntfield),

    orinseries.Compoundmachineshavebothshuntandseriesfields.

    Shuntfieldcoilsaremadeofmanyturnsofthinwire;theyaredesignedtocarryacurrentmuch

    smaller(lessthan10%)thanthearmaturecurrent IA.Theshuntfieldcurrentmaybecontrolled

    byconnectingavariableresistor(rheostat)inserieswiththecoils.

    Seriesfieldcoilsaremadeofjustafewturnsofthickwire;theycarrythearmaturecurrent IA

    (inshortshuntcompoundmachines,theseriesfieldcurrentdiffersfromthearmaturecurrent

    byanamountequaltotheshuntfieldcurrent,whichissmall).Theseriesfieldcurrentmaybe

    controlledbyplacingavariableresistorinparallelwiththecoils.

    Compoundmachinesmaybeconnectedinlongshuntorinshort shunt.Thereisnomajor

    differencebetweenthetwotypesofconnection.Theshuntandseriescoilsmayproducefields

    thataideachother,andcompoundingissaidtobecumulative;conversely,theshuntandseries

    fieldsmayopposeeachother,andthecompoundingisthensaidtobedifferential.Ingeneral,

    theshuntfieldissubstantiallygreaterthantheseriesfield,andhencedominates.

    Fromtheabove,itshouldbeclearthattheresistanceofshuntfieldcoilsisquitelarge,while

    thatofseriesfieldcoils isquitesmall.Moreover,controlofthefieldcurrentresultsincontrol

    oftheinducedemf,andhencecontrolofgeneralmachineoperation.

    Some specialpurpose dc machineshavemorethantwosetsoffieldcoils;eachsetofcoilsis

    fedfromadifferentcontrollingsignal,sothatmotoroperationisdeterminedbytheoverall

    combinationofcontrollingsignals.Suchmotorsarecommonlyusedincontrolapplications.

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    49/102

    P a g e |49

    Electrical Machines Notes Dr. AF BATI Page 49

    4.3Themagnetization curve

    Inwoundpolemachines,thefluxis producedbythefieldexcitation, i.e.bythemmf ofthe

    fieldcoils.The magnetizationcurveistherelationshipbetweenthefluxperpole andthe

    mmf perpole Mf producingit.

    Mf isappliedtoamagnetic circuit composedoftheairgap reluctanceinserieswiththe

    reluctance ofironparts(assumingtheleakagefluxisnegligible).Theairgapreluctanceis

    constant,butthereluctanceofironpartsincreasesastheyenterintosaturation.

    Atlowexcitation(sayMf1),theironisunsaturatedsothatitspermeabilityisveryhigh,andits

    reluctance isnegligiblerelativetothatoftheairgap;themmfdropintheironisnegligible,

    and practicallyalltheapplied mmf Mf1istakenupindrivingtheflux 1acrosstheairgap.At

    higherexcitation(say Mf2),ironpartsbegin tosaturatesothattheirpermeabilitygoesdown

    andtheirreluctance goesup;themmfdropintheironisnolongernegligiblerelativetothe

    mmfdropintheairgap.Theappliedmmf Mf2 dividesbetweentheairgapandtheiron

    accordingtotheratiooftheirreluctances(similartovoltagedivisioninelectriccircuits).Asthe

    excitationisincreasedfurther(to,say,Mf3),theironpartsaredrivenfurtherintosaturationso

    thattheyconsumealargerproportionoftheapplied mmf Mf3;indeed,themmfdropiniron

    maybecome greaterthanthemmfdropintheairgap.Armature

    teethsaturatefirst,followedbythepoles,andthenthearmature

    coreandyoke.

    Therelationshipbetweenthefluxperpole andthemmfdrop

    intheairgap(whichislessthanMf)islinear; itisrepresentedbytheairgaplineinfig.4.4. Atlowexcitaon,themagnezaon

    curvefollowstheairgapline.Asexcitationincreases,the

    machinebeginstosaturate, andthecurvemovesawayfromthe

    line(kneeofthecurve).Atheavyexcitation,themachineiswell

    intosaturation,andthecurveiswellawayfromtheline.Itis

    notedthatatzerofieldexcitation,thereissomeremanent

    magnetism( duetohysteresisintheiron)sothattheflux is

    notzero.

    Now,fromchapter3,wehave

    EA=Ke.n.=K.r. and T=K.IA.

    WhereKe and K areconstantsdependingonmachineparameters.If isknown,then EA may

    becomputedforagivenspeed n, and T maybecomputed foragiven IA. However,ifitisthe

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    50/102

    P a g e |50

    Electrical Machines Notes Dr. AF BATI Page 50

    fieldexcitation Mf thatisknown,wemustfirstfind fromthemagnetizationcurve; the

    procedureisgraphicalbecausethereisnoreadyformula giving interms of Mf.

    Atagivenconstantspeed no

    EAo=Ke.no.

    Sothattheverticalaxisofthemagnetizationcurvemaybescaledintermsof EAo insteadof .

    If,moreover,onlyonefieldwinding(i.e.onesetoffieldcoils)isexcited,then

    Mf=Nf.If

    Where Nf and If correspondtothewdgexcited; since Nf is constant,thehorizontalaxisof

    themagnetizationcurvemaybescaledintermsof If insteadof Mf. Theseformsof the

    magnezaoncurveareshowninfig.s4.5and4.6respecvely. Thelastformofthe

    magnetizationcurve(EA

    x If)canbeobtainedexperimentallybythesimpletestshownin

    fig.4.8: themachineisdrivenatconstantspeed no; thefieldcurrent If isvaried,andthe

    correspondingvaluesof emf EAo arerecorded.Ifthetestisperformedatratedspeed,the

    resultingmagnetizationcurveiscalledtheopencircuitcharacteristic(OCC).

    To obtainthemagnezaoncurveatdifferentspeedsasinfig.4.7,weneedtoperformthe

    (opencircuit)testonlyonceat,say,no;atagivenvalueoffieldcurrent,say Ifo,wehave

    EA1=ke.n1. =Ke.no.(n1/no)=EAo(n1/no)

    Thustheemf valuesat n1 areobtainedbymultiplyingthecorresponding emf values atnoby

    thespeedratio (n1/no).

    Ifthe OCC isavailable,themagnetization curve EA vs. Mf maybe obtainedif Nfisknown,

    andthemagnetizationcurve vs. Mf maybeobtainedif Ke or K isknown.

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    51/102

    P a g e |51

    Electrical Machines Notes Dr. AF BATI Page 51

    Testtomeasure OCC;machinedrivenatconstant

    speed no

    Chapter5 Armature Reaction

    Whenamachineisloaded, currentswillflowinthearmaturecoils,andanarmaturefieldisset

    up.Thisarmaturereactiondistortsthefielddistributioninthemachine,andresultsinsome

    adverseeffectsthatmustbetreatedforsatisfactoryoperation.

    5.1Armaturefield

    Whenthemachineisloaded,currentflowsinthearmatureconductors,andtendstosetupamagnecfieldasshowninfig.5.1.The armaturemaybeviewedasasinglecoilactinginthe

    qaxis ; mostofthefluxfollowsthepathcomposedof :armteeth,airgap,poleshoes,and

    armcore. Noteinparticularthatthearmfieldisperpendiculartothemainfield showninfig.

    4.1 andrepeatedhereinfig.5.3, whichactsinthedaxis.Thearmature mmf isdistributed

    alongtheairgapasshowninfig.5.2(withtheactualslotsapproximatedbyaconnuousbelt

    ofcurrent).Thearm mmf Ma peaksattheqaxisandiszeroatthedaxis; itspeakvalueis

    Mam= .

    .

    =

    .IA=

    .IA

    Thearm mmf tendstosetuptheairgapfluxdensitydistribuonshowninfig.5.2 ;although

    the mmf ismaximumattheqaxis,thefluxdensityisseentofallbecauseofthelarge

    reluctancethereresultingfromthelongairpath.

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    52/102

    P a g e |52

    Electrical Machines Notes Dr. AF BATI Page 52

    Fig.5.3

    Fig.5.4Resultantfluxdistribuon

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    53/102

    P a g e |53

    Electrical Machines Notes Dr. AF BATI Page 53

    Fig.5.5Airgapfluxdensitydistribution

    MF:mainfield;

    AF:armaturefield;

    RF:resultantfield

    5.2Resultantfield

    Fig.5.1 showsthearm fieldbyitself,whilefig.5.3showsthemainfieldbyitself. Notethatthe

    mainfield actsalongthedaxis,whilethearmfieldactsalongtheqaxis.Inthearmcoreand

    poleshoes,thetwofieldsareperpendiculartoeachother.Intheairgap,however,thearm

    fieldaidsthemainfieldoverahalfpolepitch,andopposesitoverthenexthalfpolepitch.

    Superpositionofthetwofieldsyieldstheresultantfluxdistribuonshowninfig.5.4;thisisthe

    actualdistributioninthemachinewhenbotharmatureandmainfieldsarepresent,i.e both

    armandfieldwdgsareexcited.Notehowarmaturereactionhasdistortedthefielddistribution;

    note,inparticular,howthemagneticneutralaxisisnowshiftedfromtheqaxis(ormechanical

    neutralaxis,orbrushaxis).Theairgapfluxdensityisstrengthenedinonepoletipand

    weakenedintheotherpolep,asshowninfig.5.5.thezerocrossingofthefluxdensitywave

    isnowshiftedfromtheqaxis.

    Thedireconsofmainfield andarmcurrentsinfig.5.4 correspondto(a)generatoroperaon

    forCWarmrotation,orto(b)motoroperationforCCWarmrotation; thisiseasilyverifiedby

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    54/102

    P a g e |54

    Electrical Machines Notes Dr. AF BATI Page 54

    nongthatthetorqueonthearmconductorsisCCW.Itisthusseen,fromfig.5.4 or 5.5,that

    thefluxispulledinthedirectionofrotationforgeneratoroperation,andinthedirection

    oppositetorotationformotoroperation; thustheshiftinthemagneticneutralaxisisinthe

    directionofrotationforgeneratoroperation,andinthedirectionoppositetorotationfor

    motoroperation.

    5.3Demagnetizingeffect

    Thearmreactionactsontheqaxisandisthereforegenerallyperpendicularto(orin

    quadraturewith)themainfieldwhichactsonthedaxis;itisthuscalledcrossmagnetizing

    armaturereaction.Foralinearmagneticcircuit,thecrossmagarmreactionhasnoeffecton

    ,theusefulfluxperpole:thearm mmf inonehalfpolepitchisequalandoppositetothearm

    mmfintheotherhalf;thereforeitaddsandsubtractsequalamountstothemainfluxwhich

    thusremainsunchanged.Itfollowsthattheaverage emf EA=k.r. andtheaveragetorque

    T=K.IA. areunaffectedbycrossmag AR because itselfisunaffected.However,becauseofthe distortionoftheairgapfluxdensity,fig.5.5,theinstantaneous emf andtorqueareno

    longerthesameforallconductorsunderthepoleface.

    Butthemagneticcircuitisactuallynonlinearbecauseitincludesironpartswhichtendto

    saturateathighfields. Inthehalfpolepitchwherethearm mmf aidsthemainfield,theiron

    parts(armteethandpoletips)aredrivendeeplyintosaturationsothattheincreaseinflux

    densitythereislessthanthedecreaseinfluxdensityintheotherhalfpolepitch(wherearm

    mmfopposesmainfieldsothatironpartsaredrivendownthekneeofthemagcurveintothe

    linearpart).Thismeansthatthepeaksofthedistortedfluxdensitywavearechippedoffas

    shownbydoedcurvesinfig.5.5.Italsomeansthatthereisanetdecreasein ;i.e.cross

    magnetizing ARhasademagnetizingeffect.Thedecreasein resultsinreductionofthe

    average emf EA andaveragetorque T.

    Clearly,then,theeffectivemagnetizationcurveonload(IA>0)liessomewhatbelowtheOCC(IA=0), and

    islowerforhigherarmaturecurrents; seefig.5.6.Thecurvesmergewiththe OCCattheairgapline

    becausethereisnosaturationatlowexcitation.

    Thereductionintheusefulfluxdueto AR isanonlinearfunctionof both fieldandarmature mmfs,

    andhenceoffield andarmature currents, If andIA. Thedemagnetizingeffectof AR maybe

    represented asareductionininduced emf, E ,or as areductionineffectivefieldcurrent, If;

    seefig. 5.7.At afieldcurrent If andzero armcurrent IA=0,wehave

    VA=EA and EA=EAoc then VA=EA=EAoc

    Atthesamefieldcurrent If,butwithanonload arm current IA 0, wehave

    VA=EA IA.RA and EA=EAoc E >>>>>VA=(EAoc E ) IA.RA

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    55/102

    P a g e |55

    Electrical Machines Notes Dr. AF BATI Page 55

    Or VA=EAoc(IA.RA E )

    Thuswemayview EAocastheinducedemf,and E asavoltagedropthatsubtractsfromthearm

    resistancedrop IA.RAformotoroperation, andaddsto it forgeneratoroperation.Alternatively,we

    mightview AR as areductionineffectivefieldmmf: atafieldcurrent If and anarm current IA, the

    effectivefieldcurrentis

    If=If If

    Onthe OCC,If givestheactual induced emf EA, while If givesthe emf EAocwhich wouldbeinduced

    whentheloadisremoved.

    Fig.5.6Effectofloadonmagnezaoncurve. Fig.5.7Representaonof

    Demagnetizingeffectofarmature

    Reaction.

    Exercise

    The OCC ofa dc machinerunningat 800 rpmisgiveninthetablebelow. Plotit,(a)onthesame

    graph,plotthecurvesat600rpmandat1000rpm.(b)ifeachfieldcoilhas630turns, plotthe

    magnetizationcurves EAvs. Mf .(c)ifthemachineiswavewoundwith6poles,andhas46 armature

    coilsof 3turnseach,plotthe magnetizationcurveas vs. Mf.(d)at800 rpm,esmatethe mmf

    dropsintheairgap andintheironwhentheemf is 50,100,150,200,250,and00 volts.(e)whatisthe

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    56/102

    P a g e |56

    Electrical Machines Notes Dr. AF BATI Page 56

    residual(orremanent) fluxperpole? (f) whatistheinduced emf whenthefieldcurrentis5.5A. and

    thespeedis 1500rpm?.

    If

    (amps)

    0 .3 .5 1 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10

    EA

    (volts)

    8 28 46 94.5 143 175 195.5 211 224 24.5 248.5 251.5 265 276.5 286 294 302

    The dc machine whose OCC isgiven intheabovetable hasawdg resistance of 75m and a

    constant brushcontactdropof1.5V. Themag curvesatdifferentarmatureloadings and constant

    speed 800 rpm arelistedinthetablegivenbelow.Plotthesecurves, togetherwiththe OCC.Overthefieldcurrentrangeshownhere.(a)determine E , and If whenthearmcurrentis80A andthe

    fieldcurrentis 8A.(b)determinetheterminalvoltagewhenthefieldcurrentis7A andthearmcurrent

    is 60A, and themachineisoperangasagenerator.(c)repeat partb formotoroperaon.(d)ifthe

    machineisoperangasageneratorwithterminalvoltage 260 V andarmaturecurrent 100A, fi

    If 3.5 4 4.5 5 6 7 8 9 10

    EA IA=

    100

    217 225.5 232.5 239.5 252 262.5 270.5 277 283

    IA=

    80

    219 228 235.5 243 256 267 275.5 283 290

    IA=

    60

    221 230.5 238.5 246.5 260 271.5 280.5 288.5 296

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    57/102

    P a g e |57

    Electrical Machines Notes Dr. AF BATI Page 57

    5.4Effectsofarmaturereaction

    Thedistortionofthefielddueto AR hasanumberofadverse(bad)effects:

    (1)Demagnezingeffectasdiscussedinsecon5.3:asarmcurrentincreases,theuseful

    fluxperpoledecreases,andhencetheinduced emfanddevelopedtorquedecrease.(2)Shiftofthemagneticneutralaxisfromthebrushaxismeansthatcoilsidesofcoils

    undergoingcommutationaresubjectedtononzerofluxdensity,sothatanonzeroemf

    isinducedinthem.

    (3)AR concentratesthefluxatonepolep,fig.5.5.Althoughtheaverage emf is

    approximatelythesame(slightlyreduced fig.5.6),theinstantaneous emf isincreasedfor

    coils whosesidesarepassingunderthesetips;theincrease canbequitelarge,especiallyif

    themachineisoverloaded(large IA).Thesecoilsareconnectedtocommutatorsegments

    thatarenearthebrusheswheretheairishighlyionizedduetonormalsparking.Highinter

    segmentvoltageappliedtoionizedaircancausebreakdownoftheair(arcingbetween

    segments). Thismaycausefurtherionizationandfurtherarcing; inseverecasesitmay

    resultintotalflashoverfrombrushtobrush.Theheatfromthearccandamagethebrushes

    andmeltholesinthecommutator.

    Clearly,then, AR canhaveseriousconsequencesthatlimittheoperationalconditionsof

    themachine.Thedesignandconstructionofthemachinemustthereforeaimatreducing

    armaturereaction:

    (1)Machinesaredesignedtohaveastrongmainfieldsothatrelativedistortiondueto AR

    remainssmall.

    (2)Themachineisdesignedtohaveahighreluctanceinthepathofthearmaturecrossflux

    (armteeth,airgap,poleshoesseefig.5.1).

    Thismaybedonebyconstrucngpoleswithalternatelaminaonsasinfig.5.9:withthe

    amountofironinthepoletipsreduced,thefluxdensityisincreased,andthetipsaredriven

    quicklyintosaturation,andhencehighreluctance.Alternatively,theairgapunderpoletips

    ismadelongerbyusingpoleswitheccentricpolefacesasinfig.5.9(orchamferedfaces).

    Theincreasedreluctancealsoreducethemainflux,butthereductionismuchsmallerthan

    thereductioninthearmaturecrossflux.

    (3)Toavoidflashovertheinstantaneousvoltagebetweencommutatorsegmentsmustnot

    exceed3040volts. Machinesarethereforedesignedtohaveanaveragevoltagebetween

    segmentsnotexceeding2030volts.

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    58/102

    P a g e |58

    Electrical Machines Notes Dr. AF BATI Page 58

    (4)In somemachines,thepoleshoesaremadewithslotsinwhichanaddionalwindingis

    placed,fig.5.10.Thecurrentsinthesepolefacewdgsorcompensatingwdgsare

    arrangedtoflowindirectionsoppositetothoseofarmatureconductors,sothattheir

    mmfs canceloutunderthepolefaceasshowninfig.5.10.

    Compensangwdgsareconnectedinserieswiththearmature,fig.5.11,sothat

    cancellationoccursforallloads(asIAincreases, AR willincrease,butsowillthe

    compensatingwdg mmf also).

    Forfullcompensation,wemust have

    (Nc).IA=(

    ).IA >>>>>> Nc=.Z/4pa=.NC/2pa

    Where Nc=compensatingwindingconductorsperpole, and =polearc/polepitch.

    Computing Nc inthisway,itisunlikelytocomeoutaninteger;asmallerintegernumberisusedbecause6070%compensangisusuallysufficient.Compensangwdgsarevery

    expensivetoinstall; theyareeconomicallyjustifiedonlyinverylargemachines,andin

    somespecialpurposemachines.

    Fig.5.8 VA=EAIA.RA Alternatepolelaminations Eccentricpoleface

    Fig.5.9methodsofincreasingreluctanceatpoleps

    Fig.5.10compensangeffectofpolefacewdg Fig.5.11dcM/CwithCW

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    59/102

    P a g e |59

    Electrical Machines Notes Dr. AF BATI Page 59

    5.5Brushshift

    Sometimes brushesarenotintheexactneutralposition(qaxis).Suchbrushshiftmaybe(a)

    unintentional:incorrectpositioninginmanufacture,orpoorbrushfit,etc., oritmaybe(b)intentional:inveryoldmachinesandinsomeverysmallmachines,brushesareshiftedto

    improvecommutation.Withthebrushesthusshifted,thearmfieldisnolongerinstrict

    quadraturewiththemainfield(i.e.daxis), fig.5.12. The daxiscomponentofthearmfield

    mayoppose(demagnetizing)oraid(magnetizing)themainfield; thisdependsonthedirection

    ofbrushshiftrelativetorotation, and onthemodeofoperation,generatingormotoring;see

    fig.5.12.

    Totestforcorrectpositioningofbrushes,themachineisrotatedinbothdirectionsasaloaded

    generator;iftheload,speed,andfieldexcitationarethesameforbothdirectionsof rotation,

    theterminalvoltagewillbethesameifthebrushesarecorrectlyplaced.If,however,the

    brushesarenotattheexactneutralposition,theterminalvoltagewill differforthetwo

    directionsofrotation.

    Fig.5.12Effectofbrushshi.MF:mainfield;AF:armaturefield;Ad & Aq=direct&quadrature

    componentsofarmaturefield.

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    60/102

    P a g e |60

    Electrical Machines Notes Dr. AF BATI Page 60

    CHAPTER6 Commutation

    Thecommutatorisacharacteristicfeatureof dc machines.Itspurposeistomatchthe

    alternatingcurrentsandvoltagesofthearmature coilstothedirectcurrentandvoltageofthe

    brushesasalready explainedinchapters1and3.However,thecommutaonprocessisquite

    complicated, andgivesrisetosecondaryeffectsthatplacelimitsontheoverallperformance

    ofthemachine.

    6.1Theprocessofcommutation

    Fig.6.1showsageneralarmcoil C movingtotherightasitrotateswiththearmature;itis

    connectedtocommutatorbars a and b whichmovewithit.(a)whenthecoilsidesareunder

    thepoles, thecoilispartofacertainarmaturepathandcarriesapathcurrent Ia

    Ia =

    (b)Asthecoilsidesapproachtheqaxis(orbrushaxis),therewillbeaninstant t1 atwhich

    thebrushcontacts bars a and b simultaneously;thusstartstheshortcircuitofthecoilby

    thebrush.(c)Thecoilcontinuestobeshortcircuitedbythebrush; itissaidtobeundergoing

    commutation.(d)As coilsidesmoveawayfromtheqaxis,therewillbeaninstant t2 at

    which bar b breaks contact withthebrushsothattheshortcircuitends.(e)Coilsidesmove

    underpoles,and thecoilisnowpartofadifferentpath; thecoilcurrentis Ia again,butina

    directionoppositetotheoriginalone.

    Clearly,then, thecoilisshortcircuitedforaninterval Tc

    Tc=t2 t1

    Duringthisinterval,thecoilcurrentchangesfrom Ia to Ia ; i.e. itreversesor

    commutates. Asshowninfig.6.2, thechangeincurrentmustfollowsometimecurvefrom

    thepoint(t1,Ia) tothepoint(t2,Ia). Depending onvariousconditionsthatwillbeexplainedin

    latersecons,wemayhavelinearcommutaon (curve1), overcommutaon(curve2),or

    undercommutation(curve3).

    TocalculatetheSCinterval(orcommutationinterval),let uc denotethespeedofthebars;thus

    uc=2rcn

    where rc istheradiusatthecommutatorsurface.Fromfig.6.3,itisseenthattheleadingedge

    ofbar a moves from x1 at t1 to x2 at t2;

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    61/102

    P a g e |61

    Electrical Machines Notes Dr. AF BATI Page 61

    Thus

    uc =

    Therefore

    Tc=

    y (

    (yo=

    Asexpected,thelengthofthe SC interval,Tc, isdeterminedbythespeedofrotationn, the

    relativedimensions of barsand

    brush,andthenumber ofcommutator

    bars.

    Fig.6.3aidtocalculate Tc

    Fig.6.1Theprocessofcommutaon>>

    Fig.6.2 Reversalofcurrentincoil

    undergoingcommutation

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    62/102

    P a g e |62

    Electrical Machines Notes Dr. AF BATI Page 62

    6.2Equivalentcircuitofcommutatingcoil

    During commutating,thecoil SC current is circulatesinapath composedof: thecoilitself,

    risers, bars,contactsurfaces,andbrush(seefig.6.4). Asimplified equivalent circuitisshown

    infig.6.5with :

    Rc=coilresistance;

    Ec=rotaonal emfincoil=2N(B.L.u)

    Lc=selfinductanceofcoil;

    r1=contactresistancebetweenbrushandtrailingbar;

    r2=contactresistancebetweenbrushandleadingbar.

    Thecircuitoffig.6.5involvesthefollowingsimplificaons:

    1. theresistanceofriser,bar,andbrushisnegligiblew.r.tcontactresistance;

    2. mutualinductancewithadjacentcoilsisneglected;

    3. brushassumedtoshortcircuitonecoilatatime.

    Notethatlowercasesymbolsareusedforquantitiesthataretimevaryingduring Tc;these

    are ec,is,i1,i2, r1,and r2;indeed,isandpossibly ecreverseduring Tc. Also notethat

    from KCL

    i1=Ia is andi2=Ia+ is

    sothat

    i1 + i2=2Ia

    asexpected.

    Theterminalvoltageofthecoil vc isgiven by

    Vc=ec isRc Lc(dis/dt)

    Therotational emf ecissmallbecausefieldissmallaroundtheqaxis(see,forexample,fig.

    5.5). Lc(dis/dt)iscalledthereactancevoltage;itisinducedbythechangein is.

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    63/102

    P a g e |63

    Electrical Machines Notes Dr. AF BATI Page 63

    Fig.6.4currentdistribuoninbrushand Fig.6.5Equivalentcircuitforbrush

    Commutatingcoil. Andcommutating coil.

    Figure6.6, Fig.6.7 , & Fig.6.8

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    64/102

    P a g e |64

    Electrical Machines Notes Dr. AF BATI Page 64

    6.3Linearcommutation(resistancecommutation)

    Insmallmachines,thecoilvoltage vcis smallerthan thecontactdrops i1r1andi2r2. If we

    assumethat vcisnegligibly small,then theequivalent circuit offig.6.5 reducestothatoffig.

    6.6.Inthiscase,r1and r2 areinparallel sothatbycurrentdivision

    1

    2

    2

    1

    r

    r

    i

    i=

    Ifwefurtherassumethat r1 and r2 arelinearresistances(whichinfacttheyarenot),then

    1

    2

    2

    1

    A

    A

    r

    r=

    Wherethecontactareas A1 and A2 aredefinedinfig. 6.7. Thus

    2

    1

    2

    1

    A

    A

    i

    i=

    i.e.thecurrentdivisionbetweenbarsisindirectproportion totheirrespective contactareas.

    Ifintheaboveexpressionwesubstitutefori1 and i2intermsof Ia and is(seesecon6.2),

    andrearrange, weget

    is= ab

    IA

    AA.

    12

    (derivethisequation?)

    asthecommutatorslidesagainstthebrushatconstantspeed, A1 increaseslinearlywithtime,

    while A2decreases linearlywithtime. Thus is varies linearly from Ia at t1 to Ia at t2 ,

    and we havelinear commutaon asincurve 1of fig.6.2 .Linear commutaonis also

    called resistance commutation because thecurrentvariation iscontrolled bythecontact

    resistances r1 and r2(seefirstequationinthissection).

    Notethatwe derivedlinearcommutationasanapproximation based ontwoassumptions:

    negligible vc andlinearcontactresistances.Theseassumptionsdonotgenerallyholdin

    practicesothatweseldom havelinear commutation. Commutationapproacheslinearityin

    smallmachineswheretheseassumptionsareapproximatelytrue.

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    65/102

    P a g e |65

    Electrical Machines Notes Dr. AF BATI Page 65

    6.4 Reactancevoltage

    Reactancevoltageisthevoltageinducedinthecoilduetothetimevariationof is;itappears

    across Lc intheequivalentcircuitoffig.6.5 ,andisequal to Lc(dis/dt). Reactance voltage

    hasagreateffectoncommutationprocess, sothatlinearcommutation(whichisbasedon

    neglectingreactancevoltage)isusuallytobeachievedinpractice.Theroleofreactancevoltage

    inthecommutationprocessmaybedescribedqualitatively as follows:

    Thereactancevoltageisinducedbythechangeofcoilcurrentfrom Ia to Ia. According to

    Lenzslaw,thereactancevoltagewillbeinducedinsuchawayastoopposewhatiscausing it,

    i.e. itopposesthechangeincurrent. Therefore thereactancevoltageretardsordelaysthe

    changeincurrent.

    DuetoRV,then,thecurrenttendstofollowacurveabovethatoflinearcommutation,for

    examplecurve3infig.6.2; thegreaterthecoilinductance Lc,thehigherthecurve.

    Ifcurrentreversalisnotcomplete(i.e.currenthasnotreached Ia)whenbar b breaks

    contactwiththebrush at t2, thecurvewillbeasshowninfig.6.8. This resultsinsparking

    whichisexplainedasfollows:

    At t2 thecoil current attempts tojump to Ia almostinstantaneously.Thisresultsinvery

    high RV(why?),whichcausesbreakdownintheair.Thearcprovides apathbetween brush

    andbar b throughwhichcurrentflowstocompleteitsreversal to Ia.

    Sparkingisharmfulbecauseitcausesheatingandhencewearofbothbrushandcommutator

    bars. It becomesmoresevereasloadincreases(asthearmaturecurrent IAincreases, sodoes

    thepathcurrent Ia).

    Treatmentofsparking

    Insomesmallmachines,theresistivecontactdropismuchgreater thanthe RV sothat

    sparkingislimitedbytheeffectofresistancecommutation, i.e.commutationapproachesthe

    linearcase.

    Inlargermachines,someadditionalmeansmustbefoundtolimitsparking,i.e.tocounterthe

    effectof RV whichistheprimecauseofsparkingasexplainedabove.Modernmachinesuseinterpoles,whileoldermachines(andsomesmallmachines)usebrushshift; thesetwo

    methods areexplainedinthefollowingsections:

    6.5Interpoles (commutatingpoles,compoles)

    Nearlyallintegralhorsepowermachineshaveinterpoles(IP). IParenarrowpoleswithlargeair

    gapplacedbetweenmainpolesasinfig.6.9.Theircoilsareconnectedinserieswiththe

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    66/102

    P a g e |66

    Electrical Machines Notes Dr. AF BATI Page 66

    armaturesothatthe IP fieldisproportionaltoarm current IA(thelargeairgapprevents

    saturationintheiron).The IP field actsoncommutatingcoilsattheqaxis.

    The IP mmf Miisgivenby

    Mi=NiIA

    Where Ni isthenumberofturnsineach IP coil.Thenumberofturns Ni ischosentomake

    the IP mmf some 25% graterthan Mam ,thecrossmagnetizingarmaturemmf attheq

    axis(seesecon 5.1);thus

    Mi=1.25Mam so that Ni=1.25(NC/4pa)

    Inthisway, Mi is madetoservetwopurposes:(1)theaddional 25%neutralizesthe

    commutangcoilflux(whichinducestheRV).Thisisclearinfig6.10 a,b,and c:theIP fieldnot

    onlyreducestheqaxisfieldtozero, butdrivesadditionalfluxinthenegativedirectionto

    neutralize RV.Figs.6.10 d and e show theresultantfieldininterpolemachines,without

    andwithcompensangwindings;comparethemwithfigs5.5and5.10(NB IPstreatarm

    reactionintheqaxis,whilecompensatingwdgstreatarmreactionunderthepoles).

    Asthemachineisloaded,thearmaturecurrent IAincreasessothatarmaturereaction and RV

    increase; butthe IP field is also to IA, andwillincrease automaticallytoneutralize

    armaturereaction(intheqaxis)and RV. IPswillcontinuetodotheirjobproperlyforeither

    modeofoperation,motororgenerator,and for eitherdirectionofrotation,forwardor

    reverse.

    Fig.6.11 showsthegeneralconneconof a dc machine.Notall windingsshownarepresent

    inallmachines. IP orcommutating wdgsarefoundonintegralhorsepowermachines(rated

    power > one hp); compensating wdgs arefoundonlargemachinesand onsomespecial

    machines; manymachineshaveonlyonemainfieldwdg, shuntorseries; compoundmachines

    haveboth.The terminalsofmainfieldwdgs(shuntandseries)areusuallybroughtouttothe

    terminalboxtoallowusermanipulation; theterminalsofcompensatingandcommutating

    wdgsarenotbroughtouttotheterminalboxbecausetheyarepermanentlyconnectedin

    serieswiththearmature.

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    67/102

    P a g e |67

    Electrical Machines Notes Dr. AF BATI Page 67

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    68/102

    P a g e |68

    Electrical Machines Notes Dr. AF BATI Page 68

    6.6Brushshift

    Asecondmethodforimprovingcommutationtolimitsparkingistoshiftthebrushesfromthe

    qaxis . The principle isasfollows:

    Recallfigs.5.4and5.5whichshowhowthemagnecneutralaxis(mna)movesawayfromthe

    qaxisduetoarmreaction.ifnowthebrushesareshiftedinthesamedirection, theywillbein

    aregionwherethearmfieldopposesthemainfield.Atcertain locationthe twofieldscancel

    out; placingthebrushesatthislocationeliminatestherotational emf ec(seefig.6.5). Thisis

    notenough becausetherestillisthe RV.Toneutralize RV,thebrushesareshiftedalittle

    furtherinthesamedirection; thesidesofcommutatingcoilwillthenbesubjectedto asmall

    (butnonzero)fieldthatopposesthecoilflux whichinducesthe RV.Iftheopposingfluxescan

    bemadeequal,the RV iseliminated.

    Asamethodforimprovingcommutation,brushshiftisnotasgoodas IPsbecauseithasthe

    followingdisadvantages:

    1.As theload onthemachinechanges,thearmcurrentIAchangessothat AR andthe mna

    shiftalsochange.Forcorrectoperation,thebrushshiftmustbechangedaccordingly,whichis

    impractical.Inpractice,thebrushesareplacedinapositionthatgivesminimumsparkingatratedload,sothattheremaybeconsiderablesparkingatotherloads.

    2.Fromfig.5.4,itisseenthatthemnashisinthedireconofrotaonforgenerator

    operation,andinthedirectionoppositetorotationformotoroperation.Thusbrushshift

    (whichisinthesamedirectionasthemnashift)cannotbeusedwithmotorsintendedtorunin

    bothdirections,orwithmachinesintendedforvariablemodeofoperation:ifbrushshiftis

    correctforonecase,itisincorrectfortheother!

    3.Brushshi causesdemagnezingarmaturereacon(seefig.5.12).

    Becauseofthesedisadvantages,brushshiftisusedonlyinsmallfractionalhorsepower

    machines(ratedpowerlessthanonehp)whereitisnoteconomicaltouse IPs.Brushshiftwas

    alsousedinoldmachinesbeforetheinventionofIPs.

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    69/102

    P a g e |69

    Electrical Machines Notes Dr. AF BATI Page 69

    CHAPTER7 POWERCONVERSIONANDLOSSES

    Theinputpowertothe dc machine undergoeselectromechanicalconversiontoproducethe

    outputpower;theprocessyieldsanumberoflossesthatappearasheatwhichhasharmful

    effectsontheperformanceofthemachine.

    7.1Powerbalance

    Mostoftheinputpowersuppliedtoa dcmachineisconvertedintousefuloutputpower;the

    reminderoftheinputpowerislossandheat.Theprincipleofconversionofenergyrequires

    totalpowerbalance

    Pin=Pout + LOSSES

    Itissometimesusefultothinkofpowerasflowingthroughthemachine.Powerflowisdivided

    intotwostages,theborderlinebeingtheactualelectromechanicalenergyconversionprocess.

    Pc=EAIA=rTd

    Itisalsocalledtheinternalpowerbecauseitisdefinedwithinthemachine; incontrast,Pinand

    Pout areexternalpowersthatcanbemeasured. EA and Td areinternalquantitiesthatcannotbemeasureddirectly.

    Pin=Pc + LOSS1 and Pc=Pout +LOSS2

    Thetotallossismadeupof 2parts:LOSS1 occursbeforeconversion,andLOSS2 occursaer

    conversion.Clearly

    Pin>Pc>Pout

    Motoroperation

    The inputpoweriselectrical,andtheoutputpowerismechanical.Partoftheinputpoweris

    lostaselectrical(copper)lossesinthewindings,andtheremainder isavailablefor

    electromechanicalenergyconversion; partoftheconvertedpowerislostsupplyingthelosses

    duetorotation, andtheremainderisavailableasamechanicaloutputpowertodrivetheload.

    Notethat

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    70/102

    P a g e |70

    Electrical Machines Notes Dr. AF BATI Page 70

    Pmech>>>> rTL>>>> TLPc >>>>rTpm>rTd >>>>Tpm>Td

    Thatis, theshafttorqueproducedbytheprimemover, Tpm,isgreaterthanthedeveloped

    torqueTd;thedifferenceisthetorqueneededtoovercomefrictionandotheropposing

    torques.

    7.2Losses

    Thelossesofa dc machineareofvarioustypesandoccurindifferentpartsofthemachine.

    Althoughdifferentlossesareproduceddifferently, theyallappearasheat,i.e.theyrepresent

    conversiontounlessthermalenergy.Theheatgeneratedbythelosseshastwomajoreffects:

    (i) Lossesraisethetemperatureinsidethemachine,andthusaffecttheperformanceandlifeofthematerialsofthemachine, particularlyinsulation.Thereforelosses

    determinetheupperlimitsonmachinerating.

    (ii) Losses areawasteofenergy,andenergycostsmoney;thereforelossesresultina

    wasteofmoney(intheoperatingcostofthemachine).

    Lossescannotbeeliminated,buttheycanbereducedbyproperdesign; thedesignmust

    alsoprovideforventilationtodispersetheheatgenerated.Thuslosseshaveasignificant

    effectontheinitialcostofthemachine.

    Thecostofwastedenergyinitem(ii)aboveisimportantwithindustrialmotorswherethe

    powersinvolvedarequitehigh;itisnotimportantwithsmallcontrolmotorswherethe

    powersinvolvedareverysmall.However,thetemperatureriseinitem(i)isimportantfor

    allmotors.

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    71/102

    P a g e |71

    Electrical Machines Notes Dr. AF BATI Page 71

    Electricallosses

    Electricallossesarealsocalledcopperlosses,windinglosses,I2Rlosses,andohmiclosses.

    copper lossesoccurinallwindingsduetoflowofcurrentthroughthem;theyare

    LOSSarm=IA2

    RA=armaturecircuitcopperloss

    LOSSser=IS2RS=seriesfieldwindingcopperloss

    LOSSsh=If2Rf=shuntfieldwindingcopperloss

    IncomputingLOSSarm,RAincludestheresistancesofcommutatingandcompensating

    windings(ifpresent).Theseriesfieldcurrent ISmayormaynotbeequaltothearmature

    currentIA.

    Thecopperlossinagivenwdgisproportionaltothesquareofthecurrentinthatwdg; if

    thecurrentisdoubled,thecopperlossincreasesfourtimes. LOSSarm andLOSSserdepend

    onarmaturecurrent, andhencetheydependontheloadonthemachine(IA increases

    withload). LOSSshdependsontheterminalvoltage,andvarieswithitssquare.

    Theaboveexpressionscanbeusedtocalculate copperlossesusingmeasuredvaluesof

    windingresistances.Thewdgresistancemustbeatthecorrectwdgtemperature;ifthe

    temperatureatwhichthelossisrequiredisnotknown, itisassumedtobe 75oC.ifthe

    wdgresistanceisknown(saybymeasurement)atatemperature T1,itcanbefoundata

    differenttemperatureT2 from

    RR

    T 234.5T 234.5

    Thebrushcontactlossisalsoanelectrical loss.Sincethebrushcontactdrop Vb is

    approximately constantoverawiderangeofarmaturecurrents, thelossisproportionalto

    thearmaturecurrentitself(andnotitssquareasinwdglosses):

    Losscontact=IAVb

    Magneticlosses

    Magneticlossesarealsocalledironlossesorcorelosses.Theyresultfromhysteresisand

    eddycurrentsincoressubjectedtovaryingmagnetization,i.e.mainlyinthearmatureteeth

    andcore,butalsointhepoleshoes(duetoarmatureslotting).

    Ironlossesaredistributedinthecoresincomplicatedpatterns, sothattherearenosimple

    formulaethatgivetheirvaluesaccurately.Itisknown,however,thatironlossesdependon

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    72/102

    P a g e |72

    Electrical Machines Notes Dr. AF BATI Page 72

    themagnetizationlevel(fluxdensity)inthecores,andonthefrequencywithwhichit

    alternates, f=pn.

    Forthehysteresisloss,wehave

    LOSShyst fBx

    max

    Wheretheconstantofproportionalityisdeterminedbythevolumeofthecoreandits

    magneticcharacteristic(hysteresisloop).Thesteinmetzexponent x dependsonthetypeof

    ironused,andrangesfrom1.5 to 2.5(usuallyaround 2);itisanempiricalconstant

    (obtainedfromexperienceanttesting,notfromelectromagnetictheory).Fortheeddy

    currentloss,wehave

    LOSSeddy f2B

    2max(laminationthickness)

    2

    Wheretheconstantofproportionalityisdeterminedbythevolumeofthecoreandits

    electricalcharacteristics(resistivity).Clearly,thinlaminationsreduceeddycurrentlosses.

    The armatureisalwayslaminated,andthepoleshoesareusuallylaminated.Ifamotoris

    tobedrivenfromamodernsolidstatecontrolledrectifier,allcoresmustbe

    laminated(includingpolesandyoke).

    Mechanicallosses

    Mechanicallossesarisefromfrictionandwindage(frictionwithair)duringrotation.They

    dependonthespeedofrotation,eachtypeofmechanical lossbeingproportionaltosome

    power of n. Bearingfrictionlossdependsonthetypeofbearingusedandontheviscosityofthelubricant; improperlubrication(toolittleortoomuch)increasetheloss.

    Brushfrictionlossisproportionaltotheareaofcontactandtothebrushpressure; italso

    dependsonthebrushandcommutatormaterials,theirstateofpolish,andthetemperature

    atthecontactsurface;itisoftenthelargestfrictionloss.Windagelossesarisefrommoving

    theairaroundthearmature(airfriction);theydependontheshapeoftherotatingsurface

    (smoothorrough).Ventilationlossisanadditionalwindagelossduetofansandvent ducts

    usedtocoolthemachine.

    Strayload

    loss

    Strayloadlossesareadditionallossesthatoccurinthemachinewhenloaded,andcannot

    beincludedwiththeconventionallosseslistedabove.Theyinclude:

    additionalcorelossresultingfromarmaturereactiondistortion;

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    73/102

    P a g e |73

    Electrical Machines Notes Dr. AF BATI Page 73

    copperlossduetoshortcircuitcurrentduringcommutation(incommutatingcoils,

    commutatorsegments,andbrushes);

    nonuniformcurrentdistributioninlargearmatureconductors.

    Strayloadlossesaresmallanddifficulttocalculate.Theymaybeneglectedforsmallmachines,andareusuallyassumed1%ofoutputforlargemachines.

    7.3Classificationoflosses

    Table7.1Classificaonoflossesin dc machines.

    Loss type rotational With

    load

    dependence

    Armaturecircuitcopperloss elect No variable IA2

    Seriesfieldcopperloss elect No variable IA2

    Shuntfieldcopperloss elect No constant Vt2

    Brushcontactloss elect No variable Ia

    Hysteresisloss mag Yes constant fBx

    max

    Eddycurrentloss mag Yes constant f2B

    2max

    Frictionloss mech Yes constant powerofn

    Windageloss mech Yes constant powerofn

    Strayloadloss Elect&mech Yes variable indeterminate

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    74/102

    P a g e |74

    Electrical Machines Notes Dr. AF BATI Page 74

    Table7.2Typical valuesof dc machinelossesforindustrialmotorsintherange1100KW;

    lowerpercentagelossesareforthehigherratedmotors.

    losses Percentofrated

    power

    Armaturecctelectricalloss

    Shuntfieldelectricalloss

    Rotationallosses

    36%

    15%

    315%

    Table7.3Typicalefficienciesofindustrialmotors.

    Ratedpower KW efficiency

    1

    50

    500

    5000

    75%

    90%

    94%

    97%

    Constantandvariablelosses

    Constantlossesarelossesthatdonotchangeastheloadonthemachinechanges;theyare

    independentofarmaturecurrent,andincludemechanicallosses,corelosses,andshuntfield

    windingloss.Variablelossesare lossesthatincreaseastheloadonthemachineincreases;they

    areelectricallossesincludingarmaturecircuitcopperloss,seriesfieldloss,andbrushcontact

    loss.Copperlossesincreasewith I2

    A,whilebrushcontactlossincreasewith IA itself.Wemay

    thereforewrite

    LOSSEStotal=Ko+K1IA+K2I2

    A

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    75/102

    P a g e |75

    Electrical Machines Notes Dr. AF BATI Page 75

    ThefirsttermontheRHSrepresentsconstantlosses,whilethesecondandthirdterms

    representvariablelosses.Atfullload,constantlossesare420%,andvariablelossesare36%;

    seetable7.2.

    Remark

    Strayloadlossesareindeterminatefunctionsofarmaturecurrentandspeed.Theycomplicate

    classification,butaresmallenoughtobeneglectedinmostcases.

    7.4Measurementoflosses

    Thereareanumberofpracticalteststomeasure thevariousmachinelosses.Inmostcases,a

    giventestyieldsthesumoftwoormorelossestogether;sometimesthecomponentlossescan

    beseparatedbyfurthertesting.

    Intesting,itisquiteeasytomeasureelectricalquantities(resistance,voltage,andcurrent)and

    speed,somewhatdifficulttomeasuretorque,andquitedifficulttomeasuremagnetic

    quantities(fluxandfluxdensity).Powersaredetermined,ontheelectricalside,bytheproduct

    ofvoltageandcurrent,andonthemechanicalsidebytheproductoftorqueandangularspeed.

    Inaloadtest,themachineisloadedatagivenspeedandfieldexcitation(i.e.fieldcurrent);the

    inputandoutputpowersaremeasured.Thetotallossatthatspeed,excitation,andloadcan

    beobtainedfrom

    LOSSEStotal=Pin Pout

    Thetotallosscanbeseparatedintoelectricalandrotationallossesbycalculating I2R products

    inthevariouswindingsusingwdgcurrentsmeasuredduringtheloadtestand(hot)wdg

    resistancesmeasuredpreviously.Withtheelectricallossesthuscalculated,therotationallosses

    areobtainedfrom

    LOSSrotational=LOSSEStotal LOSSelec

    Loadtestsforlarge machinesareimpracticalintestlabs:theyrequireverylargeloads,and

    wastelargeamountsofenergy.Thereareotherteststhatyieldthelossesindividually.

    Inanoloadtest,themachineisdrivenbyasuitableprimemover(possiblyanothermachine)

    withitsterminalsopencircuited(i.e.itoperatesasunloadedgenerator).Theinputpowerto

    thetestmachineismeasuredmechanically(torqueandspeed),orelectricallybymeasuringthe

    inputpowertothedrivemotorandsubtractingitslosses(whichmustthereforebeknown).If

    thetestmachineisunexcitedthen Pin=LOSSmech.Ifthetestmachineisthenexcitedbutleft

    unloadedweget Pin=LOSSrot;thecorelossisobtainedfrom

  • 5/26/2018 Electrical Dc Machines Dr Af-bati

    76/102

    P a g e |76

    Electrical Machines Notes Dr. AF BATI Page 76

    LOSScore=LOSSrot LOSSmech

    (Exercise:suggestatestforseparatingthebrushfrictionloss).

    Ifnosuitabledrive(primemover)isavailable,rotationallossesmaybeobtainedbyrunningthe

    machineasamotorwithnoexternalload;thisistherunninglighttest,orSwinburnetest.

    The inputpowerwillmainlygotorotationallosses,buttherewillalsobe alittlecopperloss

    (why?).Thecopperlossmaybecomputedandsubtractedfromtheinputpowertoyield

    rotationallosses.Intherunninglighttest,rotationallossescannotbeseparatedinto

    mechanicalandcorelosses(why?).

    Asseenfromtheabovetests,itisalwayspossibletodeterminecopperlossesfromthe

    measured valuesofwdgcurrentsduringthetests,andpreviouslymeasuredwdgresistances.

    Windingresistancesaremeasuredbystandardmethods(voltmeterammeter,Wheatstone

    bridge,etc.);thewdgtemperaturesmustbemonitoredatthetimeofresistancemeasurement(why?),orthemeasurementismadewiththemachinehot(forexampledirectlyafteraload

    test).

    Thenoloadandrunninglighttestsdeterminemachinelosseswithoutloadingit.Othertests

    havebeendevisedtooperatethemachineatfullloadconditionswithoutrequiringanexternal

    load.

    Anexampleofsuchtestsistheoppositiontest(KappHopkinsontest)whichrequirestwo

    identicalmachines.Themachinesarecoupledmechanically,andconnectedinparallelwith

    eachothertothemains.Byincreasing theexcitationforonemachineanddecreasingitforthe

    other,thefirstwilloperateasagenerator,andthesecondasamotor:thegeneratorsupplies

    themotorelectrically,whilethemotordrivesthegeneratormechanically;thepowerinput

    fromthemainssuppliesthelossestokeepthesystemrunning.Bysuita