69
Component A B C D 27.315 ### ### ### 239.65 405.6 23362 31.150 ### ### ### 63.25 126.2 5581 27.143 ### ### ### 20.35 33.2 904 C p Constant Tb (K) Tc (K) DH vap (kJ/kmol) NH3 N2 H2

Energy Balance - Ammonia(Baru)

Embed Size (px)

DESCRIPTION

Plant Design

Citation preview

Page 1: Energy Balance - Ammonia(Baru)

ComponentA B C D

27.315 2.38E-02 1.71E-05 ### 239.65 405.6 23362 -45900

31.150 ### 2.68E-05 ### 63.25 126.2 5581 0

27.143 9.27E-03 ### 7.65E-09 20.35 33.2 904 0

Cp ConstantTb (K) Tc (K) DHvap

(kJ/kmol)DHf

(kJ/kmol)

NH3

N2

H2

Page 2: Energy Balance - Ammonia(Baru)

B.2.1 Energy Balance around Mixer, M-1

Operating condition :

Stream Phase

1 25.00 298.15 60.00 Vapor2 25.00 298.15 60.00 Vapor3 -22.81 250.34 59.97 Vapor

18 -41.86 231.30 59.97 Vapor

Assumption :1. Adiabatic compressing (no heat loss in process of compressing)2. Reference temperature : 25 °C 3. Energy consume calculated as follow :

Q =

=

where Q = Heat duty

where

Component

1 380.1200 0.0000 0 0.0000

2 1140.3000 0.0000 0 0.0000

18 46.0400 -2313.3687 -45900 -2219743.4957

849.6100 -1954.0110 0 -1660147.3229

2572.0000 -1923.3943 0 -4946970.2288

Total -8826861.0474

Temperature (°C)

Temperature (K)

Pressure (atm)

Qoutlet stream - Qinlet stream

ΣΔHk(out) - ΣΔHk(in)

ΣΔHk(out) = Σnk(out)Hf,k(out) + Σnk(out) ∫Cp,kdT

ΣΔHk(in) = Σnk(in)Hf,k(in) + Σnk(in) ∫Cp,kdT

nk = flowrate of component k

Hf,k = heat of formation for component k at Treference

Stream (inlet)

Flowrate (kmole/hr)

òCpdT (kJ/kmole)

DHf (kJ/kmole)

DHV (kJ/hr)

N2

H2

NH3

N2

H2

M-1123 4

Stream 1

Stream 2

Stream 3

Stream 18

M-1

Page 3: Energy Balance - Ammonia(Baru)

Component

3 46.0400 -1668.1522 -45900 -2190037.7270

1230.5000 -1396.4576 0 -1718341.0159

3712.4000 -1377.1397 0 -5112493.2706

Total -9020872.0135

Heat duty (kJ/hr) = -194010.97 kJ/hr

Stream (outlet)

Flowrate (kmole/hr)

òCpdT (kJ/kmole)

DHf (kJ/kmole)

DHV (kJ/hr)

NH3

N2

H2

Page 4: Energy Balance - Ammonia(Baru)

A B C D T (K)

31.150 -1.356E-02 2.679E-05 -1.168E-08 298.1500

27.143 9.27E-03 -1.38E-05 7.65E-09 298.1500

27.315 2.38E-02 1.71E-05 -1.18E-08 231.2950

31.150 -1.36E-02 2.68E-05 -1.17E-08 231.2950

27.143 9.27E-03 -1.38E-05 7.65E-09 231.2950

Page 5: Energy Balance - Ammonia(Baru)

A B C D T (K)

27.315 2.38E-02 1.71E-05 -1.18E-08 250.3400

31.150 -1.36E-02 2.68E-05 -1.17E-08 250.3400

27.143 9.27E-03 -1.38E-05 7.65E-09 250.3400

Page 6: Energy Balance - Ammonia(Baru)

298.15

298.15

298.15

298.15

298.15

To (K)

Page 7: Energy Balance - Ammonia(Baru)

298.15

298.15

298.15

To (K)

Page 8: Energy Balance - Ammonia(Baru)

B.2.2 Balance around Compressor, C-2

Operating condition :

Stream Phase

3 -22.81 250.34 59.97 Vapor4 108.15 381.30 172.74 Vapor

Assumption :1. Adiabatic compressing (no heat loss in process of compressing)2. Reference temperature : 25 °C 3. Energy consume calculated as follow :

Q =

=

where Q = Heat duty

where

Component

3 46.0400 -1668.1522 -45900 -2190037.7270

1230.5000 -1396.4576 0 -1718341.0159

3712.4000 -1377.1397 0 -5112493.2706

Total -9020872.0135

Component

4 46.0400 3069.8481 -45900 -1971900.1954

1230.5000 2426.8046 0 2986183.0846

3712.4000 2411.0888 0 8950925.9232

Total 9965208.8123

Heat duty (kJ/hr) = 18986080.83 kJ/hr

Temperature (°C)

Temperature (K)

Pressure (atm)

Qoutlet stream - Qinlet stream

ΣΔHk(out) - ΣΔHk(in)

ΣΔHk(out) = Σnk(out)Hf,k(out) + Σnk(out) ∫Cp,kdT

ΣΔHk(in) = Σnk(in)Hf,k(in) + Σnk(in) ∫Cp,kdT

nk = flowrate of component k

Hf,k = heat of formation for component k at Treference

Stream (inlet)

Flowrate (kmole/hr)

òCpdT (kJ/kmole)

DHf (kJ/kmole)

DHV (kJ/hr)

NH3

N2

H2

Stream (outlet)

Flowrate (kmole/hr)

òCpdT (kJ/kmole)

DHf (kJ/kmole)

DHV (kJ/hr)

NH3

N2

H2

E-11 2

Stream 3 Stream 4

C-2

Page 9: Energy Balance - Ammonia(Baru)

A B C D T (K)

27.315 2.38E-02 1.71E-05 -1.18E-08 250.3400

31.150 -1.36E-02 2.68E-05 -1.17E-08 250.3400

27.143 9.27E-03 -1.38E-05 7.65E-09 250.3400

A B C D T (K)

27.315 2.38E-02 1.71E-05 -1.18E-08 381.3000

31.150 -1.36E-02 2.68E-05 -1.17E-08 381.3000

27.143 9.27E-03 -1.38E-05 7.65E-09 381.3000

Page 10: Energy Balance - Ammonia(Baru)

298.15

298.15

298.15

298.15

298.15

298.15

To (K)

To (K)

Page 11: Energy Balance - Ammonia(Baru)

E-13-02

Operating condition :

Stream Phase

F 960.00 1233.15 44.00 VaporE 380.00 653.15 44.00 Vapor

Assumption :1. Reference temperature : 25 °C 2. Energy consume calculated as follow :

Q =

=

where Q = Heat duty

where

Component

E-13-20 CH4 442.5204 -45900

all vapor 3057.8185 29197.5995 0

7083.5874 27917.5582 0

H20 32436.2726 35957.0056 -242000CO 2361.1958 29523.0589 -110620

CO2 427.64331048 46440.8344 -393770

O2 0 30899.5404 0

Total

Temperature (°C)

Temperature (K) Pressure (atm)

Qoutlet stream - Qinlet stream

ΣΔHk(out) - ΣΔHk(in)

ΣΔHk(out) = Σnk(out)Hf,k(out) + Σnk(out) ∫Cp,kdT

ΣΔHk(in) = Σnk(in)Hf,k(in) + Σnk(in) ∫Cp,kdT

nk = flowrate of component k

Hf,k = heat of formation for component k at Treference

Stream (inlet)

Flowrate (kmole/hr)

òCpdT (kJ/kmole)

DHf (kJ/kmole)

N2

H2

X-1

12

Stream 4 Stream 5

X-3

Page 12: Energy Balance - Ammonia(Baru)

Component

E-13-20 CH4 442.5204 16149.5545 -45900all vapor N2 3057.8185 10511.7756 0

H2 7083.5874 10374.4796 0H20 32436.2726305561 12501.6925 -242000CO 2361.1958035839 10579.2619 -110620

CO2 427.64331048 15465.6845 -393770O2 0 10980.8273 0

Total

Heat Duty = -993038540.3651 kJ/hr

Stream (outlet)

Flowrate (kmole/hr)

òCpdT (kJ/kmole)

DHf (kJ/kmole)

Page 13: Energy Balance - Ammonia(Baru)

A B C

-20311686.4133 19.251 5.21E-02 1.20E-05

89280959.4453 31.150 -1.36E-02 2.68E-05

197756463.6329 27.143 9.27E-03 -1.38E-05

-6683266741.1123 32.243 1.92E-03 1.06E-05

-191485757.1109 30.869 -0.01285 2.7892E-05

-148532994.2070 19.795 0.073436 -5.602E-05

0.0000 28.106 -3.68E-06 1.7459E-05

-6756559755.7652

= heat of formation for component k at Treference

DHV (kJ/hr)

Stream 5

Page 14: Energy Balance - Ammonia(Baru)

A B C-13165179.0830 19.251 5.21E-02 1.20E-05

32143101.7277 31.150 -1.36E-02 2.68E-05

73488532.8203 27.143 9.27E-03 -1.38E-05

-7444069670.6570 32.243 0.001924 1.06E-05-236215771.0849 30.869 -0.01285 2.79E-05-161779309.8534 19.795 0.073436 -5.6E-05

0.0000 28.106 -3.68E-06 1.75E-05-7749598296.1302

DHV (kJ/hr)

Page 15: Energy Balance - Ammonia(Baru)

D T (K)

-1.13E-08 1233.1500 298.15-1.17E-08 1233.1500 298.15

7.65E-09 1233.1500 298.15

-3.60E-09 1233.1500 298.15-1.272E-08 1233.1500 298.15

1.7153E-08 1233.1500 298.15

-1.065E-08 1233.1500 298.15

To (K)

Page 16: Energy Balance - Ammonia(Baru)

D T (K)

-1.13E-08 653.1500 298.15-1.17E-08 653.1500 298.157.65E-09 653.1500 298.15-3.6E-09 653.1500 298.15

-1.27E-08 653.1500 298.151.72E-08 653.1500 298.15-1.07E-08 653.1500 298.15

To (K)

Page 17: Energy Balance - Ammonia(Baru)

B.2.4 Balance around Reactor, R-4

Operating condition :

Stream Phase

5 380.00 653.15 44.00 Vapor6 430.00 703.15 44.00 Vapor

Note that the heat of reaction is automatically incuded in calculating the stream enthalpyAssumption :

2. Energy consume calculated as follow :

Q =

=

where Q = Heat duty

where

Component

E-13-20 CH4 442.5204 16149.5545 0

all vapor 3057.8185 10511.7756 0

7083.5874 0

H20 32436.2726 12501.6925 -242000CO 2361.1958 10579.2619 -110620

CO2 427.64331048 15465.6845 -393770

O2 0 10980.8273 0

Total

Component

R-14-01 CH4 44.2520 12043.4070 0

all vapor 3057.8185 11847.9631 0

Temperature (°C)

Temperature (K) Pressure (atm)

Qoutlet stream - Qinlet stream

ΣΔHk(out) - ΣΔHk(in)

ΣΔHk(out) = Σnk(out)Hf,k(out) + Σnk(out) ∫Cp,kdT

ΣΔHk(in) = Σnk(in)Hf,k(in) + Σnk(in) ∫Cp,kdT

nk = flowrate of component k

Hf,k = heat of formation for component k at Treference

Stream (inlet)

Flowrate (kmole/hr)

òCpdT (kJ/kmole)

DHf (kJ/kmole)

N2

H2

Stream (Outlet)

Flowrate (kmole/hr)

òCpdT (kJ/kmole)

DHf (kJ/kmole)

N2

R-11 2

Stream 5 Stream 6

R-4

Page 18: Energy Balance - Ammonia(Baru)

8736.4245 14365.7384 0

H20 30783.4356 12130.0295 -242000CO 708.3587 17924.5785 -110620

CO2 2080.480372989 12621.3452 -393770O2 0 0.0000 0

Total

Heat Duty = 30220861.6159 kJ/hr

H2

Page 19: Energy Balance - Ammonia(Baru)

Note that the heat of reaction is automatically incuded in calculating the stream enthalpy

A B C

7146507.3303 19.251 5.21E-02 1.20E-05

32143101.7277 31.150 -1.36E-02 2.68E-05

0.0000 27.143 9.27E-03 -1.38E-05

-7444069670.6570 32.243 1.92E-03 1.06E-05

-236215771.0849 30.869 -0.01285 2.7892E-05

-161779309.8534 19.795 0.073436 -5.602E-05

0.0000 28.106 -3.68E-06 1.7459E-05

-7802775142.5372

A B C19.251 5.21E-02 1.20E-05

532945.3297 31.150 -1.36E-02 2.68E-05

36228920.5205 27.143 9.27E-03 -1.38E-05

= heat of formation for component k at Treference

DHV (kJ/hr)

DHV (kJ/hr)

Page 20: Energy Balance - Ammonia(Baru)

125505188.2085 32.243 1.92E-03 1.06E-05

-7076187427.3938 30.869 -0.01285 2.7892E-05

-65661612.0481 19.795 0.073436 -5.602E-05

-792972295.5381 28.106 -3.68E-06 1.7459E-05

0.0000-7772554280.9214

Page 21: Energy Balance - Ammonia(Baru)

D T (K)

-1.13E-08 653.1500 298.15-1.17E-08 653.1500 298.15

7.65E-09 653.1500 298.15

-3.60E-09 653.1500 298.15-1.272E-08 653.1500 298.15

1.7153E-08 653.1500 298.15

-1.065E-08 653.1500 298.15

D T (K)

-1.13E-08 703.1500 298.15-1.17E-08 703.1500 298.157.65E-09 703.1500 298.15

To (K)

To (K)

Page 22: Energy Balance - Ammonia(Baru)

-3.60E-09 703.1500 298.15-1.272E-08 703.1500 298.151.7153E-08 703.1500 298.15-1.065E-08 703.1500 298.15

Page 23: Energy Balance - Ammonia(Baru)

B.2.5 Balance around Expander, E-5

Operating condition :

Stream Phase

Input 430.00 703.15 44.00 VaporOutput 215.00 488.15 44.00 Vapor

Assumption :1. Adiabatic expending (no heat loss in process of expanding)2. Reference temperature : 25 °C 3. Energy consume calculated as follow :

Q =

=

where Q = Heat duty

where

Component

R-14-01 CH4 44.2520 18978.2663 0

all vapor 3057.8185 12043.4070 0

8736.4245 11847.9631 0

H20 30783.4356 14365.7384 -242000CO 708.3587 12130.0295 -110620

CO2 2080.4803729887 17924.5785 -393770

O2 0 12621.3452 0

Total

Component

R-14-01 CH4 44.2520 7771.5860 0

Temperature (°C)

Temperature (K) Pressure (atm)

Qoutlet stream - Qinlet stream

ΣΔHk(out) - ΣΔHk(in)

ΣΔHk(out) = Σnk(out)Hf,k(out) + Σnk(out) ∫Cp,kdT

ΣΔHk(in) = Σnk(in)Hf,k(in) + Σnk(in) ∫Cp,kdT

nk = flowrate of component k

Hf,k = heat of formation for component k at Treference

Stream (Inlet)

Flowrate (kmole/hr)

òCpdT (kJ/kmole)

DHf (kJ/kmole)

N2

H2

Stream (Outlet)

Flowrate (kmole/hr)

òCpdT (kJ/kmole)

DHf (kJ/kmole)

E-1

12

Input Output

E-14-01

Page 24: Energy Balance - Ammonia(Baru)

all vapor 3057.8185 5564.9317 0

8736.4245 5530.1093 0

H20 30783.4356 6541.9409 -242000CO 708.3587 5584.8619 -110620

CO2 2080.4803729887 7779.0204 -393770O2 0 5732.4316 0

Total

Heat Duty = -342088698.6135 kJ/hr

N2

H2

Page 25: Energy Balance - Ammonia(Baru)

A B C

839827.0035 19.251 5.21E-02 1.20E-05

36826552.5660 31.150 -1.36E-02 2.68E-05

103508834.5676 27.143 9.27E-03 -1.38E-05

-7007364626.1915 32.243 1.92E-03 1.06E-05

-69766231.5459 30.869 -0.01285 2.7892E-05

-781939022.6231 19.795 0.073436 -5.602E-05

0.0000 28.106 -3.68E-06 1.7459E-05

-7717894666.2235

A B C343908.5339 19.251 5.21E-02 1.20E-05

= heat of formation for component k at Treference

DHV (kJ/hr)

DHV (kJ/hr)

Page 26: Energy Balance - Ammonia(Baru)

17016551.0839 31.150 -1.36E-02 2.68E-05

48313382.3524 27.143 9.27E-03 -1.38E-05

-7248207991.4365 32.243 1.92E-03 1.06E-05

-74402558.2032 30.869 -0.01285 2.7892E-05

-803046657.1676 19.795 0.073436 -5.602E-05

0.0000 28.106 -3.68E-06 1.7459E-05

-8059983364.8370

Page 27: Energy Balance - Ammonia(Baru)

D T (K)

-1.13E-08 703.1500 298.15-1.17E-08 703.1500 298.15

7.65E-09 703.1500 298.15

-3.60E-09 703.1500 298.15-1.272E-08 703.1500 298.15

1.7153E-08 703.1500 298.15

-1.065E-08 703.1500 298.15

D T (K)

-1.13E-08 488.1500 298.15

To (K)

To (K)

Page 28: Energy Balance - Ammonia(Baru)

-1.17E-08 488.1500 298.15

7.65E-09 488.1500 298.15

-3.60E-09 488.1500 298.15-1.272E-08 488.1500 298.151.7153E-08 488.1500 298.15-1.065E-08 488.1500 298.15

Page 29: Energy Balance - Ammonia(Baru)

Operating condition :

Stream Phase

Input 215.00 488.15 44.00 VaporOutput 230.00 503.15 44.00 Vapor

Assumption :1. Reference temperature : 25 °C 2. Estimated η = 0.383. Energy consume calculated as follow :

Q =

=

where Q = Heat duty

where

Component

R-14-01 CH4 44.2520 7771.5860 0

all vapor 3057.8185 5564.9317 0

8736.4245 5530.1093 0

H20 30783.4356 6541.9409 -242000CO 708.3587 5584.8619 -110620

CO2 2080.480372989 7779.0204 -393770

O2 0 5732.4316 0

Total

Temperature (°C)

Temperature (K) Pressure (atm)

Qoutlet stream - Qinlet stream

ΣΔHk(out) - ΣΔHk(in)

ΣΔHk(out) = Σnk(out)Hf,k(out) + Σnk(out) ∫Cp,kdT

ΣΔHk(in) = Σnk(in)Hf,k(in) + Σnk(in) ∫Cp,kdT

nk = flowrate of component k

Hf,k = heat of formation for component k at Treference

4. For component Hydrogen (H2) and Nitrogen (N2), heat of vaporization

at operating temperature is assumed 0 kJ/hr because Toperating > Tc

Stream (Inlet)

Flowrate (kmole/hr)

òCpdT (kJ/kmole)

DHf (kJ/kmole)

N2

H2

Input Output

X-6

Page 30: Energy Balance - Ammonia(Baru)

Component

R-14-01 CH4 44.2520 8471.3421 0

all vapor 3057.8185 6008.7578 0

9373.9473 5969.3061 0

H20 30145.9127 7072.2178 -242000CO 70.8359 6031.9129 -110620

CO2 2718.003239956 8446.8093 -393770O2 0 6198.8796 0

Total

Heat Duty = -2142791.3419 kJ/hr

Stream (Ounlet)

Flowrate (kmole/hr)

òCpdT (kJ/kmole)

DHf (kJ/kmole)

N2

H2

Page 31: Energy Balance - Ammonia(Baru)

A B C D

343908.5339 19.251 5.21E-02 1.20E-05 -1.13E-08

17016551.0839 31.150 -1.36E-02 2.68E-05 -1.17E-08

48313382.3524 27.143 9.27E-03 -1.38E-05 7.65E-09

-7248207991.4365 32.243 1.92E-03 1.06E-05 -3.60E-09

-74402558.2032 30.869 -0.01285 2.7892E-05 -1.272E-08

-803046657.1676 19.795 0.073436 -5.602E-05 1.7153E-08

0.0000 28.106 -3.68E-06 1.7459E-05 -1.065E-08

-8059983364.8370

= heat of formation for component k at Treference

) and Nitrogen (N2), heat of vaporization

DHV (kJ/hr)

Page 32: Energy Balance - Ammonia(Baru)

A B C D

374874.1722 19.251 5.21E-02 1.20E-05 -1.13E-08

18373690.8234 31.150 -1.36E-02 2.68E-05 -1.17E-08

55955960.9754 27.143 9.27E-03 -1.38E-05 7.65E-09

-7082112412.7591 32.243 1.92E-03 1.06E-05 -3.60E-09

-7408588.5694 30.869 -0.01285 2.7892E-05 -1.272E-08

-1047309680.8214 19.795 0.073436 -5.602E-05 1.7153E-08

0.0000 28.106 -3.68E-06 1.7459E-05 -1.065E-08

-8062126156.1789

44.25204 CH430145.91 H2O70.83587 CO9373.947 H2 2718.003 CO2

0 O2

3057.818 N2

DHV (kJ/hr)

Page 33: Energy Balance - Ammonia(Baru)

T (K)

488.1500 298.15

488.1500 298.15

488.1500 298.15

488.1500 298.15488.1500 298.15

488.1500 298.15

488.1500 298.15

To (K)

Page 34: Energy Balance - Ammonia(Baru)

T (K)

503.1500 298.15

503.1500 298.15

503.1500 298.15

503.1500 298.15503.1500 298.15503.1500 298.15503.1500 298.15

To (K)

Page 35: Energy Balance - Ammonia(Baru)

B.2.9 Balance around Expander, E-9

Operating condition :

Stream Phase

11 230.00 503.15 44.00 Vapor12 99.00 372.15 44.00 Mixture

Assumption :1. Adiabatic expending (no heat loss in process of expanding)2. Reference temperature : 25 °C 3. Estimated η = 0.384. Energy consume calculated as follow :

Q =

=

where Q = Heat duty

where

Component Flowrate (kmole/hr)

R-14-01 CH4 44.2520 8471.3421 0

all vapor 3057.8185 6008.7578 0

9373.9473 5969.3061 0

H20 30145.9127 7072.2178 -242000

CO 70.8359 6031.9129 -110620

CO2 2718.00323995638 8446.8093 -393770

O2 0 6198.8796 0Total

ComponentFlowrate (kmole/hr)

Temperature (°C)

Temperature (K) Pressure (atm)

Qoutlet stream - Qinlet stream

ΣΔHk(out) - ΣΔHk(in)

ΣΔHk(out) = Σnk(out)Hf,k(out) + Σnk(out) ∫Cp,kdT

ΣΔHk(in) = Σnk(in)Hf,k(in) + Σnk(in) ∫Cp,kdT

nk = flowrate of component k

Hf,k = heat of formation for component k at Treference

5. For component Hydrogen (H2) and Nitrogen (N2), heat of vaporization

at operating temperature is assumed 0 kJ/hr because Toperating > Tc

Stream (Ounlet)

òCpdT (kJ/kmole)

DHf (kJ/kmole)

N2

H2

Stream (outlet)

òCpdT (kJ/kmole)

E-1

12

Stream 11 Stream 12

E-9

Page 36: Energy Balance - Ammonia(Baru)

ComponentLiquid Vapor

4. Energy consume calculated as follow :CH4 0.0000 44.2520 8471.3421

0.0000 3057.8185 6008.7578

0.0000 9373.9473 5969.3061

H20 29542.9944470581 602.918254 7072.2178CO 0 70.83587411 6031.9129

CO2 0 2080.480373 8446.8093

O2 0 0 6198.8796

Component

CH4 8185 -11231.6471 0

5581 -10314.9061 0

904 -3134.9945 0

H20 40683 40739.3272 -8.14E+09CO 6046 -10857.9594 0

CO2 17166 -14316.8804 0O2 6824 -10834.4473 0

Total -8.14E+09

Heat Duty= -926912639.4517

Stream (outlet)

òCpdT (kJ/kmole)

N2

H2

DHvap(Tb) (kJ/kmole)

DHvap(T) (kJ/kmole)

DHL (kJ/hr)

N2

H2

Page 37: Energy Balance - Ammonia(Baru)

A B C D

374874.1722 19.251 5.21E-02 1.20E-05 -1.13E-08

18373690.8234 31.150 -1.36E-02 2.68E-05 -1.17E-08

55955960.9754 27.143 9.27E-03 -1.38E-05 7.65E-09

-7082112412.7591 32.243 1.92E-03 1.06E-05 -3.60E-09

-7408588.5694 30.869 -0.01285 2.7892E-05 -1.272E-08

-1047309680.8214 19.795 0.073436 -5.602E-05 1.7153E-08

0.0000 28.106 -3.68E-06 1.7459E-05 -1.065E-08

-8062126156.1789

= heat of formation for component k at Treference

) and Nitrogen (N2), heat of vaporization

DHV (kJ/hr)

DHf (kJ/kmole)

Page 38: Energy Balance - Ammonia(Baru)

A B C D

0 19.251 5.21E-02 1.20E-05 -1.13E-08

0 31.150 -1.36E-02 2.68E-05 -1.17E-08

0 27.143 9.27E-03 -1.38E-05 7.65E-09

-242000 32.243 1.92E-03 1.06E-05 -3.60E-09

-110620 30.869 -0.01285 2.7892E-05 -1.272E-08

-393770 19.795 0.073436 -5.602E-05 1.7153E-08

0 28.106 -3.68E-06 1.7459E-05 -1.065E-08

flowrate

T (K) liquid

31371605.771484 111.65 190.6 372.1500 0.0000

18373690.823439 77.35 126.2 372.1500 0.0000

55955960.975368 20.35 33.2 372.1500 0.0000

-141642248.25518 373.15 647.3 372.1500 29542.9944-7408588.569384 81.65 132.9 372.1500 0

-801657335.56119 194.65 304.2 372.1500 00 90.15 154.6 372.1500 0

-845006914.81546

DHf (kJ/kmole)

DHV (kJ/hr)Tb (K) Tc (K)

Page 39: Energy Balance - Ammonia(Baru)

T (K)

503.1500 298.15

503.1500 298.15

503.1500 298.15

503.1500 298.15

503.1500 298.15

503.1500 298.15

503.1500 298.15

To (K)

Page 40: Energy Balance - Ammonia(Baru)

T (K)

503.1500 298.15

503.1500 298.15

503.1500 298.15

503.1500 298.15503.1500 298.15

503.1500 298.15

503.1500 298.15

flowrate

vapor

3703.263 8471.342 0

3057.818 6008.758 0

9373.947 5969.306 0

602.9183 7072.218 -24200070.83587 6031.913 -1106202080.48 8446.809 -393770

0 6198.88 0

To (K)

∫Cp ΔHf

Page 41: Energy Balance - Ammonia(Baru)

B.2.8 Balance around Exchanger, X-8

Operating condition :

Stream Phase

9 99.0000 372.1500 44.0000 Mixture11 99.0000 372.1500 44.0000 Mixture

Assumption :1. Reference temperature : 25 °C 2. Estimated η = 0.383. Energy consume calculated as follow :

Q =

=

where Q = Heat duty

where

ComponentFlowrate (kmole/hr)

Liquid Vapor

0 CH4 0.0000 44.2520 2.79E+03

0.0000 3057.8185 2.16E+03

0.0000 9373.9473 2.14E+03

H20 29542.99445 602.918254 2.51E+03CO 0 70.83587411 2.16E+03

CO2 0 2080.480373 2.87E+03

O2 0 0 2.20E+03

Temperature (°C)

Temperature (K)

Pressure (atm)

Qoutlet stream - Qinlet stream

ΣΔHk(out) - ΣΔHk(in)

ΣΔHk(out) = Σnk(out)Hf,k(out) + Σnk(out) ∫Cp,kdT

ΣΔHk(in) = Σnk(in)Hf,k(in) + Σnk(in) ∫Cp,kdT

nk = flowrate of component k

Hf,k = heat of formation for component k at Treference

4. For component Hydrogen (H2) and Nitrogen (N2), heat of vaporization

at operating temperature is assumed 0 kJ/hr because Toperating > Tc

Stream (inlet)

òCpdT (kJ/kmole)

N2

H2

12

X-1

Stream 9 Stream 11

X-8

Page 42: Energy Balance - Ammonia(Baru)

Component

CH4 8185 -11231.6471 0

5581 -10314.9061 0

904 -3134.9945 0

H20 40683 40739.3272 -8278764856CO 6046 -10857.9594 0

CO2 17166 -14316.8804 0O2 6824 -10834.4473 0

Total -8278764856

ComponentFlowrate (kmole/hr)

Liquid Vapor0 CH4 0.0000 44.2520 8471.3421405

0.0000 3057.8185 6008.757846

0.0000 9373.9473 5969.3060932

H20 29542.99445 602.918254 7072.2178166CO 0 70.83587411 6031.9129223

CO2 0 2080.480373 8446.8092748O2 0 0 6198.879581

Component

CH4 8185 -11231.6471 0

5581 -10314.9061 0

904 -3134.9945 0

H20 40683 40739.3272 -8144031881CO 6046 -10857.9594 0

CO2 17166 -14316.8804 0O2 6824 -10834.4473 0

Total -8144031881

Heat Duty = 197236945

DHvap(Tb) (kJ/kmole)

DHvap(T) (kJ/kmole)

DHL (kJ/hr)

N2

H2

Stream (outlet)

òCpdT (kJ/kmole)

N2

H2

DHvap(Tb) (kJ/kmole)

DHvap(T) (kJ/kmole)

DHL (kJ/hr)

N2

H2

Page 43: Energy Balance - Ammonia(Baru)

A B C D

0 19.251 5.21E-02 1.20E-05 -1.13E-08

0 31.150 -1.36E-02 2.68E-05 -1.17E-08

0 27.143 9.27E-03 -1.38E-05 7.65E-09

-242000 32.243 1.92E-03 1.06E-05 -3.60E-09

-110620 30.869 -0.01285 2.7892E-05 -1.272E-08

-393770 19.795 0.073436 -5.602E-05 1.7153E-08

0 28.106 -3.68E-06 1.7459E-05 -1.065E-08

= heat of formation for component k at Treference

) and Nitrogen (N2), heat of vaporization

DHf (kJ/kmole)

Stream 11

Page 44: Energy Balance - Ammonia(Baru)

T (K)

123258.299362448 111.65 190.6 372.1500

6603199.80444289 77.35 126.2 372.1500

20106617.9001382 20.35 33.2 372.1500

-144391900.81765 373.15 647.3 372.1500-7682679.8816589 81.65 132.9 372.1500-813266111.17825 194.65 304.2 372.1500

0 90.15 154.6 372.1500-938507615.87362

A B C0 19.251 5.21E-02 1.20E-05

0 31.150 -1.36E-02 2.68E-05

0 27.143 9.27E-03 -1.38E-05

-242000 32.243 1.92E-03 1.06E-05

-110620 30.869 -0.01285 2.7892E-05

-393770 19.795 0.073436 -5.602E-05

0 28.106 -3.68E-06 1.7459E-05

T (K)

374874.172238171 111.65 190.6 372.1500

18373690.8234388 77.35 126.2 372.1500

55955960.9753684 20.35 33.2 372.1500

-141642248.25518 373.15 647.3 372.1500-7408588.569384 81.65 132.9 372.1500-801657335.56119 194.65 304.2 372.1500

0 90.15 154.6 372.1500-876003646.41471

DHV (kJ/hr)Tb (K) Tc (K)

DHf (kJ/kmole)

DHV (kJ/hr)Tb (K) Tc (K)

Page 45: Energy Balance - Ammonia(Baru)

T (K)

372.1500 298.15

372.1500 298.15

372.1500 298.15

372.1500 298.15372.1500 298.15

372.1500 298.15

372.1500 298.15

To (K)

Page 46: Energy Balance - Ammonia(Baru)

flowrate

liquid vapor

0.0000 44.2520 2785.37 0

0.0000 3057.818 2159.448 0

0.0000 9373.947 2144.947 0

29542.99 602.9183 2511.645 -2420000 70.83587 2162.527 -1106200 2080.48 2866.956 -3937700 0 2195.433 0

D T (K)

-1.13E-08 503.1500 298.15-1.17E-08 503.1500 298.15

7.65E-09 503.1500 298.15

-3.60E-09 503.1500 298.15-1.272E-08 503.1500 298.151.7153E-08 503.1500 298.15-1.065E-08 503.1500 298.15

flowrate

liquid vapor

0.0000 44.2520 8471.342 0

0.0000 3057.818 6008.758 0

0.0000 9373.947 5969.306 0

29542.99 602.9183 7072.218 -2420000 70.83587 6031.913 -1106200 2080.48 8446.809 -3937700 0 6198.88 0

∫Cp ΔHf

To (K)

∫Cp ΔHf

Page 47: Energy Balance - Ammonia(Baru)

B.2.7 Balance around Flash, F-7

Operating condition :

Stream Pressure (atm) Phase

8 99.00 372.15 44.00 Vapor9 65.00 338.15 44.00 Vapor

10 65.00 338.15 44.00 Vapor

Assumption :1. Reference temperature : 25 °C 2. Energy consume calculated as follow :

Q =

=

where Q = Heat duty

where

4. Estimated η = 0.38

ComponentFlowrate (kmole/hr)

Liquid Vapor

0 CH4 0.0000 44.2520 2.79E+03 0 123258.2994

0.0000 3057.8185 2.16E+03 0 6603199.8044

0.0000 9373.9473 2.14E+03 0 20106617.9001

H20 0 602.9182540216 2.51E+03 -242000 -144391900.8177

Temperature (°C)

Temperature (K)

Qoutlet stream - Qinlet stream

ΣΔHk(out) - ΣΔHk(in)

ΣΔHk(out) = Σnk(out)Hf,k(out) + Σnk(out) ∫Cp,kdT

ΣΔHk(in) = Σnk(in)Hf,k(in) + Σnk(in) ∫Cp,kdT

nk = flowrate of component k

Hf,k = heat of formation for component k at Treference

5. For component Hydrogen (H2) and Nitrogen (N2), heat of vaporization

at operating temperature is assumed 0 kJ/hr because Toperating > Tc

Stream (inlet)

òCpdT (kJ/kmole)

DHf (kJ/kmole)

DHV (kJ/hr)

N2

H2

F-1123

Stream 8

Stream 9

Stream 10

F-7

Page 48: Energy Balance - Ammonia(Baru)

CO 0 70.835874107517 2.16E+03 -110620 -7682679.8817CO2 0 2080.4803729887 2.87E+03 -393770 -813266111.1782O2 0 0 2.20E+03 0 0.0000

Total -938507615.8736

ComponentFlowrate (kmole/hr)

Liquid Vapor

CH4 0.0000 44.2520 1467.3003 0

0.0000 3057.8185 1166.9404 0

0.0000 9373.9473 1157.6681 0

H20 0 602.9182540216 1352.343 -242000CO 0 70.835874107517 1167.8585 -110620

CO2 0 2080.4803729887 1521.4177 -393770

O2 0 0 1181.2012 0

Component

CH4 8185 -10380.5837 0 64931.03

5581 -9747.9252 0 3568292

904 -3011.5642 0 10851919

H20 40683 42583.5389 0 -1.45E+08CO 6046 -10243.5874 0 -7753138

CO2 17166 -10998.5522 0 -8.16E+08O2 6824 -10156.8953 0 0

Total 0 -9.54E+08

Heat Duty= -15916721.9476

Stream (outlet)

òCpdT (kJ/kmole)

DHf (kJ/kmole)

N2

H2

DHvap(Tb) (kJ/kmole)

DHvap(T) (kJ/kmole)

DHL (kJ/hr)

DHV (kJ/hr)

N2

H2

Page 49: Energy Balance - Ammonia(Baru)

A B C D T (K)

19.251 5.21E-02 1.20E-05 -1.13E-08 372.1500 298.1531.150 -1.36E-02 2.68E-05 -1.17E-08 372.1500 298.15

27.143 9.27E-03 -1.38E-05 7.65E-09 372.1500 298.15

32.243 1.92E-03 1.06E-05 -3.60E-09 372.1500 298.15

To (K)

Page 50: Energy Balance - Ammonia(Baru)

30.869 -0.01285 2.7892E-05 -1.272E-08 372.1500 298.1519.795 0.073436 -5.602E-05 1.7153E-08 372.1500 298.1528.106 -3.68E-06 1.7459E-05 -1.065E-08 372.1500 298.15

A B C D T (K)

19.251 5.21E-02 1.20E-05 -1.13E-08 338.1500 298.15

31.150 -1.36E-02 2.68E-05 -1.17E-08 338.1500 298.15

27.143 9.27E-03 -1.38E-05 7.65E-09 338.1500 298.15

32.243 1.92E-03 1.06E-05 -3.60E-09 338.1500 298.1530.869 -0.01285 2.7892E-05 -1.272E-08 338.1500 298.1519.795 0.073436 -5.602E-05 1.7153E-08 338.1500 298.15

28.106 -3.68E-06 1.7459E-05 -1.065E-08 338.1500 298.15

flowrateT (K) liquid vapor

111.65 190.6 338.1500 0.0000 44.25204 1467.3 0

77.35 126.2 338.1500 0.0000 3057.818 1166.94 0

20.35 33.2 338.1500 0.0000 9373.947 1157.668 0

373.15 647.3 338.1500 0 602.9183 1352.343 -24200081.65 132.9 338.1500 0 70.83587 1167.859 -110620194.65 304.2 338.1500 0 2080.48 1521.418 -39377090.15 154.6 338.1500 0 0 1181.201 0

To (K)

Tb (K) Tc (K) ∫Cp ΔHf

Page 51: Energy Balance - Ammonia(Baru)

B.2.10 Balance around Flash, F-10

Operating condition :

Stream Phase

12 65.00 338.15 44.00 Vapor13 35.00 308.15 43.97 Mixture14 35.00 308.15 43.97 vapor

Assumption :1. Reference temperature : 25 °C 2. Energy consume calculated as follow :

Q =

=

where Q = Heat duty

where

4. Estimated η = 0.38

Component Flowrate (kmole/hr)

R-14-01 CH4 44.2520 1467.3003 0 64931.0304

all vapor 3057.8185 1166.9404 0 3568291.8506

9373.9473 1157.6681 0 10851919.4116

Temperature (°C) Temperature (K) Pressure (atm)

Qoutlet stream - Qinlet stream

ΣΔHk(out) - ΣΔHk(in)

ΣΔHk(out) = Σnk(out)Hf,k(out) + Σnk(out) ∫Cp,kdT

ΣΔHk(in) = Σnk(in)Hf,k(in) + Σnk(in) ∫Cp,kdT

nk = flowrate of component k

Hf,k = heat of formation for component k at Treference

5. For component Hydrogen (H2) and Nitrogen (N2), heat of vaporization

at operating temperature is assumed 0 kJ/hr because Toperating > Tc

Stream (inlet)

òCpdT (kJ/kmole)

DHf (kJ/kmole)

DHV (kJ/hr)

N2

H2

F-1123

Stream 12

Stream 13

Stream 14

F-10

Page 52: Energy Balance - Ammonia(Baru)

H20 602.918254021595 1352.3430 -242000 -145090865.1726CO 70.835874107517 1167.8585 -110620 -7753138.1142

CO2 2038.87076552896 1521.4177 -393770 -799744167.2905O2 0 1181.2012 0 0.0000

Total -938103028.2846

ComponentFlowrate (kmole/hr)

Liquid Vapor

= CH4 0.0000 44.2520 358.38051 0

0.0000 3057.8185 291.76021 0

0.0000 9373.9473 288.9882 0

H20 602.918254021595 0 336.96082 -242000CO 0 70.835874108 291.82559 -110620

CO2 0 2038.8707655 373.86426 -393770

O2 0 0 294.12727 0

Component

CH4 8185 -9521.5899 0 15859.0689087537

5581 -9198.6749 0 892149.76820625

904 -2895.3539 0 2708960.12583864

H20 40683 44108.9102 -1.72E+08 0CO 6046 -9646.6056 0 -7815192.67314669

CO2 17166 -4856.4990 0 -802083880.427255O2 6824 -9490.9403 0 0

Total -1.72E+08 -806282104.137448

Heat Duty= -40476200.6199

Stream (outlet)

òCpdT (kJ/kmole)

DHf (kJ/kmole)

N2

H2

DHvap(Tb) (kJ/kmole) DHvap(T) (kJ/kmole)

DHL (kJ/hr)

DHV (kJ/hr)

N2

H2

Page 53: Energy Balance - Ammonia(Baru)

A B C D T (K)

19.251 5.21E-02 1.20E-05 -1.13E-08 338.1500 298.1531.150 -1.36E-02 2.68E-05 -1.17E-08 338.1500 298.15

27.143 9.27E-03 -1.38E-05 7.65E-09 338.1500 298.15

To (K)

Page 54: Energy Balance - Ammonia(Baru)

32.243 1.92E-03 1.06E-05 -3.60E-09 338.1500 298.1530.869 -0.01285 2.7892E-05 -1.272E-08 338.1500 298.1519.795 0.073436 -5.602E-05 1.7153E-08 338.1500 298.1528.106 -3.68E-06 1.7459E-05 -1.065E-08 338.1500 298.15

A B C D T (K)

19.251 5.21E-02 1.20E-05 -1.13E-08 308.1500 298.1531.150 -1.36E-02 2.68E-05 -1.17E-08 308.1500 298.15

27.143 9.27E-03 -1.38E-05 7.65E-09 308.1500 298.15

32.243 1.92E-03 1.06E-05 -3.60E-09 308.1500 298.1530.869 -0.01285 2.7892E-05 -1.272E-08 308.1500 298.15

19.795 0.073436 -5.602E-05 1.7153E-08 308.1500 298.15

28.106 -3.68E-06 1.7459E-05 -1.065E-08 308.1500 298.15

flowrateT (K) liquid vapor

111.65 190.6 308.1500 0.0000 44.2520 358.3805

77.35 126.2 308.1500 0.0000 3057.8185 291.7602

20.35 33.2 308.1500 0.0000 9373.9473 288.9882

373.15 647.3 308.1500 602.9183 0 336.960881.65 132.9 308.1500 0 70.83587411 291.8256194.65 304.2 308.1500 0 2038.870766 373.864390.15 154.6 308.1500 0 0 294.1273

To (K)

Tb (K) Tc (K) ∫Cp

Page 55: Energy Balance - Ammonia(Baru)

0

0

0

-242000-110620-393770

0

ΔHf

Page 56: Energy Balance - Ammonia(Baru)

B.2.11 Balance around Mixer, M-11

Operating condition :

Stream Phase

10 35.00 308.15 44.00 Vapor14 35.00 308.15 43.97 vapor15 -23.29 249.86 59.97 Mixture

Assumption :1. Reference temperature : 25 °C 2. Energy consume calculated as follow :

Q =

=

where Q = Heat duty

where

4. Estimated η = 0.38

ComponentFlowrate (kmole/hr)

Liquid VaporOperating condition :CH4 0.0000 44.2520 358.38051 0

0.0000 3057.8185 291.76021 -45900

0.0000 9373.9473 288.9882 0

H20 602.918254 0 336.96082 -242000

Temperature (°C)

Temperature (K)

Pressure (atm)

Qoutlet stream - Qinlet stream

ΣΔHk(out) - ΣΔHk(in)

ΣΔHk(out) = Σnk(out)Hf,k(out) + Σnk(out) ∫Cp,kdT

ΣΔHk(in) = Σnk(in)Hf,k(in) + Σnk(in) ∫Cp,kdT

nk = flowrate of component k

Hf,k = heat of formation for component k at Treference

5. For component Hydrogen (H2) and Nitrogen (N2), heat of vaporization

at operating temperature is assumed 0 kJ/hr because Toperating > Tc

Stream (inlet)

òCpdT (kJ/kmole)

DHf (kJ/kmole)

N2

H2

M-1

12

3

Stream 10

Stream 14

Stream 15

M-11

Page 57: Energy Balance - Ammonia(Baru)

CO 0 70.8358741 291.82559 -110620

CO2 0 2038.87077 373.86426 -393770

O2 0 0 294.12727 0

Component

CH4 8185 -9521.5899 0 15859.069

5581 -9198.6749 0 892149.77

904 -2895.3539 0 2708960

H20 40683 44108.9102 -1.72E+08 0CO 6046 -9646.6056 0 -7815193

CO2 17166 -4856.4990 0 -8.02E+08O2 6824 -9490.9403 0 0

Total -1.72E+08 -8.06E+08

ComponentFlowrate (kmole/hr)Liquid Vapor

0 CH4 0.0000 44.2520 358.38051 0

0.0000 3057.8185 291.76021 0

0.0000 9373.9473 288.9882 0

H20 602.918254 0 336.96082 -242000CO 0 70.8358741 291.82559 -110620

CO2 0 2038.87077 373.86426 -393770O2 0 0 294.12727 0

Component

CH4 8185 -9521.5899 0 15859.069

5581 -9198.6749 0 892149.77

904 -2895.3539 0 2708960

H20 40683 44108.9102 -1.72E+08 0CO 6046 -9646.6056 0 -7815193

CO2 17166 -4856.4990 0 -8.02E+08O2 6824 -9490.9403 0 0

Total -1.72E+08 -8.06E+08

DHvap(Tb) (kJ/kmole)

DHvap(T) (kJ/kmole)

DHL (kJ/hr)

DHV (kJ/hr)

N2

H2

Stream (inlet)

òCpdT (kJ/kmole)

DHf (kJ/kmole)

N2

H2

DHvap(Tb) (kJ/kmole)

DHvap(T) (kJ/kmole)

DHL (kJ/hr)

DHV (kJ/hr)

N2

H2

Page 58: Energy Balance - Ammonia(Baru)

Heat Duty = 0

Page 59: Energy Balance - Ammonia(Baru)

A B C D T (K)

19.251 5.21E-02 1.20E-05 -1.13E-08 308.1500 298.1531.150 -1.36E-02 2.68E-05 -1.17E-08 308.1500 298.15

27.143 9.27E-03 -1.38E-05 7.65E-09 308.1500 298.15

32.243 1.92E-03 1.06E-05 -3.60E-09 308.1500 298.15

To (K)

Page 60: Energy Balance - Ammonia(Baru)

30.869 -0.01285 2.7892E-05 -1.272E-08 308.1500 298.15

19.795 0.073436 -5.602E-05 1.7153E-08 308.1500 298.15

28.106 -3.68E-06 1.7459E-05 -1.065E-08 308.1500 298.15

flowrate

T (K) liquid vapor

111.65 190.6 308.1500 0.0000 44.2520 358.3805 0

77.35 126.2 308.1500 0.0000 3057.8185 291.7602 0

20.35 33.2 308.1500 0.0000 9373.9473 288.9882 0

373.15 647.3 308.1500 602.9183 0 336.9608 -24200081.65 132.9 308.1500 0 70.8358741 291.8256 -110620194.65 304.2 308.1500 0 2038.87077 373.8643 -39377090.15 154.6 308.1500 0 0 294.1273 0

A B C D T (K)

19.251 5.21E-02 1.20E-05 -1.13E-08 308.1500 298.1531.150 -1.36E-02 2.68E-05 -1.17E-08 308.1500 298.15

27.143 9.27E-03 -1.38E-05 7.65E-09 308.1500 298.15

32.243 1.92E-03 1.06E-05 -3.60E-09 308.1500 298.1530.869 -0.01285 2.7892E-05 -1.272E-08 308.1500 298.1519.795 0.073436 -5.602E-05 1.7153E-08 308.1500 298.1528.106 -3.68E-06 1.7459E-05 -1.065E-08 308.1500 298.15

flowrateT (K) liquid vapor

111.65 190.6 308.1500 0.0000 44.2520 358.3805 0

77.35 126.2 308.1500 0.0000 3057.8185 291.7602 0

20.35 33.2 308.1500 0.0000 9373.9473 288.9882 0

373.15 647.3 308.1500 602.9183 0 336.9608 -24200081.65 132.9 308.1500 0 70.8358741 291.8256 -110620194.65 304.2 308.1500 0 2038.87077 373.8643 -39377090.15 154.6 308.1500 0 0 294.1273 0

Tb (K) Tc (K) ∫Cp ΔHf

To (K)

Tb (K) Tc (K) ∫Cp ΔHf

Page 61: Energy Balance - Ammonia(Baru)

Equipment Energy Balance

Bil Process EquipmentHeat Duty (kJ/hr)1 E-14-01 -342088698.612 LTS R-14-02 -2142791.34193 E-14-02 -926912639.454 V-15-01 197236945.025 C-15-01 -15916721.9486 E-15-02 -40476200.627 V-15-02 0

Total -1130300107

Page 62: Energy Balance - Ammonia(Baru)

StreamManual Simulation

Error (%)(kJ/hr) (kJ/hr)

1 0 178430 1002 0 1128300 1003 -9020872.01350509 -2649300 -240.500214 9965208.8123242 17961000 44.51751685 -7444069670.65697 68530000 10962.49776 #REF! 62200000 #REF!7 #REF! 50548000 #REF!8 #VALUE! -19635000 #VALUE!9 #REF! -2472700 #REF!

10 #REF! -17162000 #REF!11 #VALUE! -3326900 #VALUE!12 #VALUE! -5461400 #VALUE!13 #REF! -4395500 #REF!14 #REF! -1065900 #REF!15 #VALUE! -18228000 #VALUE!16 #REF! -269.06 #REF!17 #REF! -18228000 #REF!18 -395600019 -43955020