12
2 寄  稿 JTEKT Engineering Journal No. 1006 (2009) 最近 20 年のトライボロジー研究 基礎と応用 Study of Tribology in the Past Twenty Years — Fundamentals and Applications — The representative research results in the past 20 years at my laboratory are introduced as follows, (1)Static friction coefficient changes by the shape of contact area. (2)Different wear modes are classified in one diagram as Wear Map by introducing indexes of severity of contact. (3)Repeated sliding friction at self-mated SiC and Si 3 N 4 in water generates friction coefficient below 0.01. Micro texture on contact surfaces generates friction coefficient in the order of 0.0001. (4)Tribocoating of indium on the surface of SUS440C disk generates friction coefficient below 0.05 against Si 3 N 4 pin in high vacuum. (5)N 2 gas supply at the contacts of Si 3 N 4 /CNx and CNx/CNx in air generate friction coefficient in the order of 0.001. (6)Tribolayer formed by tribo-chemical reaction changes friction and wear drastically. Key Words: micro-slip, wear map, water lubrication, tribo-coating, N 2 -gas lubrication, tribolayer 1.はじめに ギリシャ語の Tribos を語源とする「Tribology」を 日本語に直訳すれば「摩擦学」とするのが妥当である. それは摩擦の結果として生じる摩擦熱,摩擦音,摩耗お よび潤滑を含み,摩擦帯電,摩擦発ガス,摩擦電子放射 等を含む. 摩擦は自然界の多数の現象に深く関与し,工業界の接 触面の技術に深く関わる.それ故に摩擦の基礎を理解し, 応用への展開の形を知ることは工業製品の「開発,性能 向上,信頼性確保,生産性向上」のために重要である. このような観点から,本文においては筆者がこれまで 20 年間に大学の研究室において若手研究者および学 生達と共に行った研究成果の代表例を紹介する. 2.摩擦と摩耗の微視機構 2.1 接触面内ミクロ滑りの発生と伝播 図1(a) では W の荷重下の弾性変形により円形接触 加藤康司 Prof. Koji KATO 日本大学工学部 機械工学科 教授 工学博士 面が形成されている.下部の球形試片に摩擦力 F が徐々 に加えられて,F の増加に伴い試片の弾性変形量 d 摩擦係数 l F/W が増加している. l の増加に伴い,円形接触面の中では円周辺から中 心に向かって緑色で示されたミクロ滑りが伝播拡大して いる.この「ミクロ滑りが接触面全域に伝播」したとこ ろで巨視的滑りが発生し,その時の l の 値(l s 0.85)が静止摩擦係数になる. 図1(b) では円形接触面の中央に 2 個の点欠陥が存在 する.この場合ミクロ滑りはそれらの欠陥の周囲から発 生し外周に向かって伝播する.一方で外周から別のミク ロ滑りが中心に向かって伝播する.両者が合体したとこ ろで巨視的滑りが発生し,静止摩擦係数は l s 0.69 なる. 図2では 4 種類の異なる接触面形状におけるミクロ 滑りの発生と伝播を示している.三角形の場合にミクロ 滑りは最も早く接触面全域を覆い,l s 0.32 の最小値 を示す.

ENGINEERING JOURNAL No - eB Catalogeb-cat.ds-navi.co.jp/jpn/jtekt/tech/ej/img/no1006/1006...ギリシャ語のTribosを語源とする「Tribology 」を 日本語に直訳すれば「摩擦学」とするのが妥当である.

Embed Size (px)

Citation preview

2

JTEKT Engineering Journal No. 1006 (2009)

20

Study of Tribology in the Past Twenty Years

Fundamentals and Applications

The representative research results in the past 20 years at my laboratory are introduced as follows,(1)Static friction coeffi cient changes by the shape of contact area.(2)Different wear modes are classifi ed in one diagram as Wear Map by introducing indexes of severity of

contact.(3)Repeated sliding friction at self-mated SiC and Si3N4 in water generates friction coeffi cient below 0.01.

Micro texture on contact surfaces generates friction coeffi cient in the order of 0.0001.(4)Tribocoating of indium on the surface of SUS440C disk generates friction coefficient below 0.05

against Si3N4 pin in high vacuum.(5)N2 gas supply at the contacts of Si3N4/CNx and CNx/CNx in air generate friction coeffi cient in the order

of 0.001.(6)Tribolayer formed by tribo-chemical reaction changes friction and wear drastically.

Key Words: micro-slip, wear map, water lubrication, tribo-coating, N2-gas lubrication, tribolayer

1

TribosTribology

20

2

2.1(a)W

Prof. Koji KATO

FF d l F/Wl

lls

0.85(b) 2

ls 0.69

4

ls 0.32

20

3JTEKT Engineering Journal No. 1006 (2009)

W=7.85N

0.60.50.40.30.20.100 0.1 0.2 0.3 0.50.4

F

FW

W

F

l(=/) ls0.85()

dmm

F

F

F

ls0.49()ls0.48()

ls0.32()

dx

x

1

The effect of shape of contact area on micro-slip andstatic friction coefficient

l0.29l0.29l0.30l0.29

2mm 2mm 2mm 2mm

2.2Wear Map

Type1Mode

Cutting modeWedge modePloughing mode 3 Dp f 2

(b)0.6

0.5

0.4

0.3

0.2

0.1

0

1.00.80.60.40.20f

l() =

(a)SEM

(Cutting)

(Wedge forming)

(Ploughing)

: W: F: H: R: a: h

DP = =R H2W

12

Rp p 2H2W 1

f

Dp

DP = =R H2W

12

Rp p 2H2W 1

2

Abrasive wear map of metals

ha

ha

F

FW

F

W

=l

l

x,d

W

F

W =7.85N

ls= 0.85

(a)

F

W(b)

ls= 0.69

1

Micro-slip in contact area corresponding to the increasein friction force and the static friction coefficient

l0.22 l0.85l0.70l0.502mm2mm2mm2mm

l0.30l0.172mm2mm

l0.69l0.482mm2mm

20

4 JTEKT Engineering Journal No. 1006 (2009)

l Pmaxd KIc

c v W Hv

DTs

DTs

k q c

ScSeverity of Contact

vHWVkqcSc,t= ( )

cl

KIC

Sc,m= ( )

(110l)Pmaxd

20

15

10

5

0103 102 101 100

3

Wear map of ceramics describing mild and severe wear

(a3)

Es

Hs

Ys

(b)

(c)

4

7

6

5

4

3

21

7

6

5

4

3

21

Hf/Hs

Yf/Ys

3210

(d)

(a2)

Ef/Es2l0.25

/ t/a

45

Wear map of delamination of hard coatings

(a1)

20m

4m

2m

4

3

2

1

0

Z/a

0.00 1.601.200.800.40

wrvm/Pmax

l0.70l0.50l0.25

t/a0.5X/a0.0Ef/Es2.0

2 Scm Sct

3

2.3

SEM1.6 104 1

DDx

R101 /pass

20

5JTEKT Engineering Journal No. 1006 (2009)

10

0

20

2 4 6 8 (104)Passage Number of Ball

(Passes)

Amount of Plastic FlowDDx (m)

Relation between surface flow, number of friction passes and contact pressure

6.0Mpa26.5Mpa45.1Mpa63.5Mpa

20mIndentation

0.52m/s

2.5

0

5.0

20 40 60 80 100

104

Contact pressure (MPa)

Flow RateR (m/Pass)

20mIndentation

Rough Surface(4m Rmax)

RxRy

R0.52m/s

10

The relationship between surface flow rate andcontact pressure

3

3.111 SiC Si3N4

10nm 0.0112

Si3N4 6H2O 3SiO2 4NH3SiC 2H2O SiO2 CH4SiO2 2H2O Si(OH)4

104 l 0.15

S10C (0.1 wt.% C steel)Rmax4mPm9.8MPaV0.52m/sAlkylnaphtalene(2835 at cst 38)

Flow wear

(a) (b)

(c) (d)

FrictionalDirection

1.6103 Passes 8103 Passes

1.6104 Passes 4.8104 Passes

6

Generation process of a flow wear particle of steel byrepeated friction

0.25m/s; 26.5MPa

3.2104 Passes 0Pass 4.8104 PassesFrictional Direction

10m(a) (b) (c)

Simulation of flow wear process by the change ofVickers indentation mark in repeated friction

S10C (0.1 wt.% C steel)Alkylnaphtalene (2835 cst at 38)

Rmax0.4mPm9.8MPaV0.52m/s

(a) (b)

SEM6

SEM images of flow wear particles of steel generated in oil

20

6 JTEKT Engineering Journal No. 1006 (2009)

14121086420

1.2

1.0

0.8

0.6

0.4

0.2

0

Sliding contact in waterLoad5NSliding velocity120mm/s

Frictioncoefficientl

l< 0.01

Water

Sliding cycles N104 cycles

SiC / SiC

Si3N4 / Si3N4

SiC / SiCSi3N4 / Si3N4

11SiC/SiCSi3N4/Si3N4

Reduction in friction coefficient of SiC/SiC and Si3N4/Si3N4 by repeated friction in water

Si3N4 Pin/Si3N4 DiskSliding in waterLoad W5N

Sliding Velocity v120mm/sSliding cycles N87 500 cycles

12Si3N4Si3N4

Smooth wear surfaces on Si3N4 pin and Si3N4 diskformed by repeated friction in water

3.2

13 SiC

14

Wc15Wc h/ d rWcoWcWc/Wco 2.0 2.5h/d 0.01 0.02r 516

1718 l

Wc17 l 0.0001

20mm

13SiC10

Micro-pits formed on SiC disk surfacePit diameter: 150mPit depth : 34m

WcWcWcoWc

0

0.01

0.02

0.03

0.04

Friction coefficient l

SiC/SiCRotational speed n1 200min1LubricantPurified waterSupply rate60ml/min

0 500 1 000 1 500Load WN

2 000 2 500 3 000 3 500

14Wc10

The effect of size and area ratio of micro-pits on critical seizure load

Untexturedu150, 2.8%, Depth 3-4mu150, 22.5%, Depth 3-4mu350, 4.9%, Depth 3-4m

20

7JTEKT Engineering Journal No. 1006 (2009)

4

19

20

21

104

Si3N4 SUS440C22 SUS440C In TEM 400nm23 EDX SiCrOIn24 TEM In

SiC (CIP)

35040RSPCLP

3.4-82.7-7.92.6-7

7.74.94.0

Lower specimenUpper specimen10mm

100m 500m

Material

Textures name

Pit diameterd (m)

Pit depthh (m)

Pit area ratior (%)

SiC (CIP) SiC (CIP)

RSP(RectangularSmall Pit)

CLP(Circular Large Pit)

CLRSP(Circular Large

and Rectangular Small Pit)

350 40

500m

16SiC11

Three pit patterns formed on SiC disk surface

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

CLRSPCLPRSPNo texture

Stable friction coefficient

s Lubricantrefined waterSupply rate60ml/minTemperature14-20

*Under detection limit

173SiC/SiC11

The effect of three pit patterns on friction coefficients ofSiC/SiC in water

0

1 000

2 000

3 000

4 000

5 000

CLRSPCLPRSPNo texture

Critical load WcN

Lubricantrefined waterSupply rate60ml/minTemperature14-20

183SiC/SiCWc11

The effect of three pit patterns on critical seizure loadWc of SiC/SiC in water

2.02.51.52.01.01.50.51.0

Wc/Wco

0

0.01

0.02

0.03

0.04

0 5 10 15 20 25

Depth-diameter ratio / d

h

rPit area ratio %

SiC cylinder/SiC diskPit diameter d50-650mPit depth h1.916.6mLubricantPurified water

15h/dr(%)Wc/WcoWco10

The relationship among depth/diameter ratio h/d andarea ratio r(%) of pits on disc surface and the normalizedcritical seizure load Wc/Wco

20

8 JTEKT Engineering Journal No. 1006 (2009)

Tribo-coating process Friction test

Load

(1min) (12min) 104106 (10 cycles)

19Tribo-coating12

Friction assisted coating lubrication (Tribo-coating): Vapor-deposition of soft metal In for a few minutes justbefore and after initiation of sliding

0 21 30

0.2.

0.4

0.6

0.8

1

Number of cycles104 cycles

Pin/DiskSi3N4/ SUS440cLubricantInH2nm/minth1-2minP1.3GPav24mm/sVR106Pa

Evaporation

Friction coefficientl

2012

The effect of interval tribo-coating

0

0.1

0.2

0.3

1050 15

Friction coefficientl

Number of cycles103 cycles

Range of friction coefficientobtained with soft metal films

Pin/DiskSi3N4/SUS440CP1GPav22mm/secVR106Pa In (Tribo-coating)

In (Vapor deposition)Ag (Ion-plating)Pb (Ion-plating)

2113

The lower friction and longer life of Tribo-coating film incomparison with films by vapor-deposition and ion plating

Carbon film (overcoat)

Tribo-layer

Si3N4 pin

(a) (b)

22InSiTEM14

TEM image of tribo-layer on Si disk surface formed bytribo-coating of In

100nm 10nm

(a)

(b)

Counta.u.

Counta.u.

In

In

Cr

Cr

Cr

Cr

CuFe

Fe

Si

Si

O

O

0 1 2 3 4 5 6 7 8 9 10X-ray EnergykeV

0 1 2 3 4 5 6 7 8 9 10X-ray EnergykeV

23SiEDX14

Compositions in tribo-layer on Si disk surface analyzedby EDX

(b)22(b)Black points in Fig. 22(b)

(a)22(a)Matrix in Fig. 22(a)

(b)Matrix

(a)Nano-particle

24TEM14

TEM image of tribo-layer

2.5nm

20

9JTEKT Engineering Journal No. 1006 (2009)

0.00.20.40.60.81.0

10 0001 000100Number of cycles N,

x103 cycles

101

N2 at 50th cycle

O2

Friction

coefficientl

Load1NSliding speed0.21-0.27m/sTemperature20-24HumidityRH 20-40%

100m 100m

10 cycles 10 000 cycles

l= 0.005

28CNx/CNxO250N217

The change in friction coefficient of CNx/CNx bysupplying N2 gas after initial 50 cycles in O2 gas

5N2

Si3N4 CNx25267N2 0.0127 0.7 N2 0.02

dry airO2 dry airO2 50 100 N2ws28 O2 50 CNx/CNxN2l 0.00529lwsl 0.05l 5 10 8mm3/Nm

0

0.1

0.2

0.3

0.4

0.5

0.16

0.36

0.030.0090.05

VacuumAir N2 CO2 O2

PinSi3N4 ball (r4.0mm)Disk100nm CNx/SiNormal load100mNMaximum contact pressure200MPaSliding speed4mm/s

Si3N4

Si3N4CNx

(1x105 Pa) (2x104 Pa) (7.4x104 Pa) (7.4x104 Pa) (7.4x104 Pa)

Friction coefficientl

25Si3N4/CNx15

The effect of gas environment on friction of Si3N4/CNx

0

0.1

0.2

0.3

0.4

0.5

N2VacuumAir ArHe

(4x103 Pa) (1.0x105 Pa)

0.35

0.14

0.01

0.20

0.31

Friction coefficientl

Disk100nm CNx/SiPinSi3N4 ball (r4.0mm)Normal load750mNPmax400MPaV0.26m/s

(1.0x105 Pa)

26Si3N4/CNx16

The effect of gas environment on friction of Si3N4/CNx

0.0

0.2

0.4

0.6

0.8

1.0

14121086Number of cycles103 cycles

420

0L/min 1.2L/min 4.8L/minN2 N2Air

DiskCNx (100nm)/Si3N4PinSi3N4 ball (r4mm)Normal load200mNRotary speed250min1 (0.4m/s)

Friction coefficientl

Air

27Si3N4/CNxN216

The effect of blowing N2 gas to the contact on frictionof Si3N4/CNx in air

20

10 JTEKT Engineering Journal No. 1006 (2009)

012345

0

Air O2 N2 O2 N2Air N2From1st cycle

From1st cycle

Load1NSliding speed0.21-0.27m/s (250min1)Temperature20-24HumidityRH 20-40%Gas flow rate2.0L/min. (2.10cc/mm2s)Inner radius of tube4.5mm

Steady state

friction coefficientl

Specific wear amount

Wsx10

7 mm3 /Nm

0.1

0.2

0.3

100 cycles(400mN)

50 cycles

29CNx/CNxdry airO2N2lws(mm3/Nm)17

The values of friction coefficient l and wear ratio ws (mm3/Nm) at CNx/CNx in dry air, O2, N2 and combination of gases

6

ZDDPZinc Dialkyl Dithio Phosphate 60

ZDDP PAOPoly-Alpha Phosphate30

31TEM 200nm ZnFePCSOCr31 EDX 200nm

Steel Cylinder

TEM Analysis

LoadWear Track

Plate(1082mm)Lubricant1%ZDDPin PAO (80)

7 mm stroke@7 Hz

Cylinder (66mm,bearing steel)

Iron Oxide Plate

R-O S S O-R

S SP P

R-O O-R R:-CH-CH2-CH-CH3CH3

CH3

ZDDP : 4-methyl-2-pentanol

Zn

1.0mm

l

0 1 000 2 000 3 000

0.20

0.15

0.10

0.05

0.00

Timesec.

30ZDDPPAO18

Out look of surface layer on oxidized steel plate formed by friction against steel cylinder in oil (PAO) containing ZDDP

Upper Layer

Middle Layer

Bottom Layer

Tribofilm

R-O S S O-RS SP P

R-O O-R R:-CH-CH2-CH-CH3CH3

CH3

ZDDP : 4-methyl-2-pentanol

Zn

40nm

Iron Oxide Layer

TEM Cross Section PhotographNear the Surface

Carbon Layer(For protection)

31400nmTEMEDX Depth Profile18

TEM image of tribo-layer (400nm) on friction surface of steel plate and depth profiles of elements by EDX

20

11JTEKT Engineering Journal No. 1006 (2009)

1

2Si3N4SiCSi3N4tribo-chemical wear

(Si3N4)

7.7mm 7.1mm1.0m 0.01m500m 0.14m

180min

Si3N4 Si3N4

34Magnetic fluid grinding of ceramic balls

34 Si3N4 40 100

1990

Si3N4 2223

35

Si3N4 SUS440C /

121314

7

32 1995

Shrink-Fitter 100

19

33

X-Y 2000

2021

100

32/Laser microscope using shrink fitter forceramicspolymer/metal shrink fitting

XY Stage driven by Ultrasonic Motorfor LSI of 0.15m line width

Electron BeamLithography System

X-Y stage

33X-Y

Totally ceramic X-Y stage driven by ultrasonic wave forelectron beam lithography

20

12 JTEKT Engineering Journal No. 1006 (2009)

In

Pt heater Au wire

Membrane area Siwafer

SiO2

5mm

35In

A ball bearing with micro-evaporators of In for space application

8

35 20 25 20

21

Si3N4 SiCSi3N4/SUS440C InSi3N4/CNX N2 15

J. Liu, K. Oba, K. Kato and H. Inooka: Partial Slip Visual izat ion at Contact Surface with the Correlation Method, Visualization Society of Japan, 15199547-53.

K. Hokkirigawa and K. Kato: Abrasive Wear Diagram, Proceedings of Eurotrib85, 419851-5.

K. Adachi, K. Kato and N. Chen: Wear Map of Ceramics, Wear 203/2041997291-301.

D. F. Diao, K. Kato and K. Hayashi: The Local Yield Map of Hard Coating under Sliding Contact, Thin Films in Tribology: Proceedings of the 19th Leeds-Lyon Symposium on Tribology, Leeds, UK, 1991, D. Dowson et al. Editors, Tribology Series, 251992Elsevier, 419-427.

K. Kato: Microwear Mechanisms of Coatings, Surface and Coating Technology, 76-771995, 469-474.

T. Akagaki and K. Kato: Plastic Flow Process of Surface Layers in Flow Wear under Boundary Lubricated Conditions, Wear, 1171987, 179-196.

T. Akagaki and K. Kato: Simulation of Flow Wear in Boundary Lubr icat ion Us ing a Vickers Indentation Method, STLE Tribology Transactions, 311988, 311-316.

M. Chen, K. Kato and K. Adachi: The Diff erence in Running-in Period and Friction Coeffi cient between Self-mated Si3N4 and SiC under Water Lubrication, Tribology Letters, 112001, 23-28.

20

13JTEKT Engineering Journal No. 1006 (2009)

M. Chen, K. Adachi and K. Kato: Friction and Wear of Self-mated SiC and Si3N4 Sliding in Water, Wear, 2502001, 246-255.

X. Wang, K. Kato, K. Adachi and K. Aizawa: Loads Carrying Map for the Surface Texture Design of SiC Thrust Bearing Sliding in Water, Tribology International, 362003, 189-197.

K. Adachi, K. Otsuka, X. Wang and K. Kato: Eff ects of Surface Texture on Water Lubrication Properties of Advanced Ceramics, Journal of the Japan Society for Abrasive Technology, 502006, 107-110.

K. Kato, H. Furuyama and M. Mizumoto: The Fundamental Properties of Tribo-Coating Films in Ultra High Vacuum, Proceedings of the Japan International Tribology Conference Nagoya, 1990, 11990, 261-266.

K. Adachi and K. Kato: Reliable Design of Space System in Tribology Viewpoint, Proceedings of the 22nd International Symposium on Space Technology and Science, 1,2000, 593-598.

K. Adachi and K. Kato: In-situ and On-demand Lubrication by Tribo-coating for Space Applications, Journal of Engineering Tribology, IMechE, to be published.

N. Umehara, M. Tatsuo and K. Kato: Nitrogen Lubricated Sliding between CNx Coatings and Ceramic Balls, Proceedings of the International Tribology Conference Nagasaki, 2000, 2,2001, 1007-1012.

K. Kato, N. Umehara and K. Adachi: Friction, Wear and N2-lubrication of Carbon Nitride Coatings: a Review, Wear, 254,2003, 1062-1069

K. Adachi, T. Wakabayashi and K. Kato: The Eff ect of Sliding History on the Steady State Friction Coeff icient between CNx-coating Under N2 Lubrication, Proceedings of the 31st Leeds-Lyon Symposium on Tribology, 2004, Leeds, UK, D. Dowson et al.Editors, Tribology and Interface Engineering Series, 48, Elsevier,2005, 673-677.

K. Ito, J. M. Martin, C. Minfray and K. Kato: Formation Mechanism of a Low Friction ZDDP Tribofilm on Iron Oxide, STLE Transactions, 50, 2007, 1-6.

I. Nitta, K. Kigoshi and K. Kato: Study of the Fitting Strength between Ceramic and Metal Elements with the Use of a Shrink Fitter at Elevated Temperature (Proposal of the Shrink-Fit Method with the Use of a Shrink Fitter and Experimental Results), JSME International Journal Series 3, 32

1989, 632-639. T. Honda and K. Kato: The Infl uence of Ultrasonic Shape on Frict ion and Wear Properties in Ultrasonic Drive, JaST, 411996, 178-184.

K . Adach i , K . Kato and Y . Sasatan i : The Micromechanism of Friction Drive with Ultrasonic Wave, Wear, 1941996, 137-142.

N. Umehara and K. Kato: A Study on Magnetic Fluid Grinding1st Report, the Effect of the Floating Pad on Removal Rate of Si3N4 BallsTransactions of the JSMEC, 541988, 1599-1604.

N. Umehara and K. Kato: Principles of Magnetic Flu id Gr ind ing o f Ceramic Ba l l s , J . Appl . Electromagnetics in Materials, 11990, 37-43.