45
Jämförelse av olika fuktmodeller för dimensionering av KL-trä Comparison of different models of humidity when designing CLT Författare: Joel Andersson Handledare: Michael Dorn Examinator: Björn Johannesson Termin: VT20 Kurskod: 2BY04E Ämne: Byggteknik Nivå: Högskoleingenjör Linnéuniversitet, Fakulteten för teknik Examensarbete i byggteknik

Examensarbete i byggteknik

  • Upload
    others

  • View
    12

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Examensarbete i byggteknik

Jämförelse av olika fuktmodeller

för dimensionering av KL-trä

Comparison of different models of humidity when

designing CLT

Författare: Joel Andersson

Handledare: Michael Dorn

Examinator: Björn Johannesson

Termin: VT20

Kurskod: 2BY04E

Ämne: Byggteknik

Nivå: Högskoleingenjör

Linnéuniversitet, Fakulteten för teknik

Examensarbete i byggteknik

Page 2: Examensarbete i byggteknik
Page 3: Examensarbete i byggteknik

Sammanfattning

KL-trä är ett material som lämpar sig väl för byggnadskonstruktioner, vare sig det rör sig

om flervåningshus eller små stugor. KL-skivorna kan prefabriceras i olika storlekar och

former. Arkitekten kan med stor kreativ frihet skapa spännande former, medan

konstruktören med hjälp av Eurokod 5 kan dimensionera träelementen så att en både

elegant och säker konstruktion kan uppföras.

KL-trä är ofta miljövänligare än exempelvis betong och stål. Med hjälp av CNC-maskiner

kan avancerade moduler skapas med hög precision och prefabricering av träelementen

tillåter snabbt montage på arbetsplatsen. Materialet är lätt och går att bearbeta på

arbetsplatsen med vanliga handverktyg när så behövs.

Trä är ett hygroskopiskt ämne, vilket innebär att dess fuktkvot anpassas efter

omgivningen. Om en byggnad uppförs i sådan miljö att KL-skivorna utsätts för

nederbörd, ökar fuktkvoten i skivan. När fuktkvoten ökar för det med sig en rad

konsekvenser. Dels finns risk för volymförändringar och vridningar, dels minskar träets

hållfasthet och styvhet. Ökad fuktkvot kan även leda till att röta och mögel får fäste,

vilket kan påverka vår hälsa negativt.

När träbyggnader dimensioneras används klimatklasser och lastvarighetsklasser för att ta

hänsyn till hur fukten påverkar hållfastheten och styvheten på kort och lång sikt. De olika

lastvarighetsklasserna behandlar risken för krypning och visko-plastisk deformation.

Klimatklasserna tar hänsyn till fukthalten i träet och är definierade för olika fuktkvoter.

Konstruktören bestämmer klimatklass efter byggnadens användningsvillkor.

När en träbyggnad uppförs kan det göras med eller utan väderskydd. När inget

väderskydd används finns det en risk för att träelementen utsätts för stora mängder vatten

från nederbörd och snö under en tidsperiod som kan uppgå till flera månader.

Fuktkvoterna varierar över KL-skivornas djup och vilka konsekvenserna blir beror på hur

lång tid träet är exponerat för fukt och hur uttorkningen kan ske.

I examensarbetet har två beräkningsmodeller, 1 och 2, utvecklats för att undersöka hur

fukten varierar i en KL-skiva och hur det kan påverka hållfastheten och styvheten. Idén

bakom modellerna var att dela in KL-skivan i många skikt för att på så sätt ta i beaktande

hur fuktkvoten förändras över skivans djup, vilket i sig påverkar hållfastheten i elementet.

Modellerna har tillämpats för att dimensionera ett bjälklag, en vägg och en

anslutningsdetalj. Beräkningsmodellerna jämfördes med varandra och med Eurokod 5 för

att visa på för- och nackdelar.

Resultaten visar att beräkningsmodell 1 ger liknande resultat som Eurokod 5, men med

större noggrannhet eftersom beräkningen tar hänsyn till hur fuktkvoten förändras över

skivans djup. Modell 1 tar även hänsyn till krypning genom att beräkna faktorn 𝑘𝑑𝑒𝑓.

Beräkningsmodell 2 ger detaljerade beräkningar av både böj- och tryckhållfastheten

genom att beräkna hållfastheten för varje halv millimeter av skivan. Modell 2 visar

därigenom hur hållfastheten är beroende av fuktkvoten och framförallt hur fuktkvoten i

de yttersta skikten i skivan är väsentliga för skivans bärande förmåga. Modell 2 går

däremot inte att använda för att beräkna påverkan av krypning.

Page 4: Examensarbete i byggteknik
Page 5: Examensarbete i byggteknik

Abstract

Byggnader konstruerade av KL-trä har blivit allt vanligare i Sverige och i resten av

världen de senaste 20 åren. Trä är en förnyelsebar resurs och materialet tillåter varierad

arkitektur. Eftersom trä är ett hygroskopiskt material, finns det risker med att utsätta

konstruktionen för nederbörd. Vissa forskare menar att väderskydd under

konstruktionstiden är absolut nödvändigt på grund av risk för röta och mögel samt

minskad hållfasthet, medan andra avfärdar dessa risker om det byggs medvetet.

I Eurokod 5 används klimatklasser för att ta hänsyn till fuktens påverkan på hållfastheten

och styvheten i trämaterialet. Det finns tre klimatklasser, varav två av dem har samma

hållfasthetsmodifieringsfaktor för konstruktionsvirke och limträ samt KL-trä.

Dimensioneringen av träkonstruktioner blir därför i viss utsträckning förenklad.

Syftet med detta examensarbete var att visa hur tillverkare, konstruktörer och andra

aktörer kan agera för att på ett mer detaljerat sätt dimensionera KL-trä med avseende på

hur fukt påverkar dess hållfasthet och styvhet. Målet var att utveckla en beräkningsmodell

och undersöka hur dimensionering av KL-trä kan göras på olika sätt samt att analysera de

olika tillvägagångssättens för- och nackdelar.

Slutsatserna som dragits av arbetet är att beräkningsmodellerna kan användas för att

dimensionera KL-trä med hänsyn till hur fuktkvoten varierar över tid och över skivans

djup, förutsatt att aktuella fuktkvoter eller en realistisk uppskattning av fuktkvoter finns

tillgänglig. Modellerna är även intressanta ur ett pedagogiskt perspektiv då de tydligt

åskådliggör hur fuktkvoten påverkar dimensioneringsresultaten för KL-trä.

Nyckelord: KL-trä, fukt, Eurokod 5, klimatklass, lastvarighetsklass, väderskydd,

dimensionering

Page 6: Examensarbete i byggteknik
Page 7: Examensarbete i byggteknik

Abstract

Buildings constructed with CLT have become a more common sight in Sweden and the

rest of the world in the last two decades. Wood is a renewable resource and it invites to

varied architecture. Since wood is a hygroscopic material, there are certain risks with

exposing CLT to precipitation. Some construction sites are therefore protected from

weather, but industry and researchers debate whether this is necessary.

When designing wooden buildings, engineers rely on Eurocode 5 to take into

consideration the effect of humidity on strength and stiffness of CLT elements. Eurocode

5 uses three service classes combined with five load-duration classes for defining the

strength modification factor, whereby two of the three service classes use the same

factors for structural timber, glulam and CLT. The designing procedure of wooden

structures therefore becomes easier to use, but also to some extent simplified.

The purpose of this thesis is to show developers, designers and other actors how a more

detailed way of designing CLT can be done, regarding the effect of humidity on strength

and stiffness. The objective was to develop a calculation program and examine if

designing CLT with respect to humidity could be done in a more thorough way.

The conclusions are that the program delivers results with very high accuracy. However,

the program is dependent on accurately measured or realistic estimated moisture contents.

Additionally, the program has a pedagogic value, since it shows just how much the

strength and stiffness are dependent on the moisture content of the wood.

Key words: CLT, moisture, Eurocode 5, weather protection, service classes, load-duration

classes, design.

Page 8: Examensarbete i byggteknik
Page 9: Examensarbete i byggteknik

Förord

Idén till detta arbete kom från Dr. Michael Dorn, som har varit handledare för

examensarbetet. Arbetet har i dess helhet utförts av Joel Andersson. Genom arbetet har

jag utvecklat stor förståelse för dimensioneringsprocessen och fuktens påverkan på trä.

Michael Dorn har varit till stort stöd, både genom att på lättförståeligt och instruktivt sätt

svara på frågor, men också genom att uppmuntra och visa på sätt att runda motgångar. Ett

stort tack till dig, Michael.

Jag vill även tacka min sambo Sara, som givit mig tid och utrymme att skriva detta

arbete. Det har inte alltid varit lätt att kombinera småbarn och studier under dessa

karantäntider, men du har varit där för mig när jag behövt dig och gett mig utrymme när

jag behövt lugn och ro. Tack!

Joel Andersson

Växjö, 12 juni 2020

Page 10: Examensarbete i byggteknik
Page 11: Examensarbete i byggteknik

Innehållsförteckning

1 Introduktion ................................................................................................... 1

1.1 Bakgrund och problembeskrivning ..................................................................... 1

1.2 Syfte och mål ...................................................................................................... 2

1.3 Avgränsningar ..................................................................................................... 2

2 Teoretiska utgångspunkter ........................................................................... 3

2.1 KL-trä .................................................................................................................. 3

2.1.1 Sammansättning av KL-trä ......................................................................... 3

2.1.2 Fördelar med KL-trä ................................................................................... 3

2.2 Träets egenskaper ................................................................................................ 4

2.2.1 Fuktrelaterade egenskaper ......................................................................... 4

2.2.2 Densitet ....................................................................................................... 5

2.2.3 Reologiska egenskaper ................................................................................ 5

2.2.4 KL-träets egenskaper .................................................................................. 6

2.3 Fukt i trä .............................................................................................................. 6

2.3.1 Nederbörd ................................................................................................... 6

2.3.2 Fuktkvot ....................................................................................................... 6

2.3.3 Relativ luftfuktighet ..................................................................................... 7

2.4 Dimensionering av träkonstruktioner .................................................................. 7

2.4.1 Klimatklasser .............................................................................................. 7

2.4.2 Dimensionerande laster i brott- och bruksgränstillstånd ........................... 7

2.4.3 Systemeffekt i KL-trä ................................................................................... 8

3 Metod .............................................................................................................. 9

3.1 Realistisk fördelning av fuktkvoten .................................................................... 9

3.1.1 Fuktkvoter från studien gjord i Vancouver ................................................. 9

3.1.2 Uppskattade fuktkvoter ............................................................................... 9

3.2 Beräkningsmodellerna ...................................................................................... 10

3.2.1 Gemensamma beräkningsförfaranden för de båda modellerna ................ 10

3.2.2 Modell 1 – medelvärdet för 𝑘𝑚𝑜𝑑 och 𝑘𝑑𝑒𝑓 .............................................. 10

3.2.3 Modell 2 – dimensionerande hållfasthet för variabel fuktkvot ................. 10

3.3 Dimensionering av bjälklag i brottgränstillståndet ........................................... 11

3.4 Dimensionering av bjälklag i bruksgränstillståndet .......................................... 12

3.5 Dimensionering av vägg i brottgränstillståndet ................................................ 13

3.6 Dimensionering av anslutning mellan vägg och bjälklag ................................. 13

4 Genomförande .............................................................................................. 15

4.1 Beräkning av dimensionerande hållfasthet ....................................................... 15

Page 12: Examensarbete i byggteknik

4.1.1 Dimensionerande hållfasthet med modell 1 .............................................. 15

4.1.2 Dimensionerande hållfasthet med modell 2 .............................................. 15

4.2 Dimensionering av bjälklag i brottgränstillståndet ........................................... 15

4.3 Dimensionering av bjälklag i bruksgränstillståndet .......................................... 15

4.4 Dimensionering av vägg i brottgränstillståndet ................................................ 16

4.5 Dimensionering av anslutning mellan vägg och bjälklag ................................. 16

5 Resultat ......................................................................................................... 17

5.1 Beräkning av dimensionerande böjhållfasthet .................................................. 17

5.1.1 Dimensionerande böjhållfasthet med modell 1 ......................................... 17

5.1.2 Dimensionerande böjhållfasthet med modell 2 ......................................... 17

5.2 Dimensionering av bjälklag i brottgränstillståndet ........................................... 18

5.2.1 Böjmomentkapacitet enligt modell 1 ......................................................... 18

5.2.2 Böjmomentkapacitet enligt modell 2 ......................................................... 19

5.2.3 Bjälklagets maximala längd ...................................................................... 19

5.2.4 Största möjliga last på bjälklaget ............................................................. 20

5.3 Dimensionering av bjälklag i bruksgränstillstånd ............................................. 20

5.4 Dimensionering av vägg i brottgränstillståndet ................................................ 20

5.5 Dimensionering av anslutning mellan vägg och bjälklag ................................. 21

6 Analys ............................................................................................................ 23

6.1 Dimensionerande böjhållfasthet ........................................................................ 23

6.2 Dimensionering av bjälklag i brottgränstillståndet ........................................... 23

6.2.1 Böjmomentkapaciteten .............................................................................. 23

6.2.2 Bjälklagets största möjliga längd ............................................................. 23

6.2.3 Största möjliga last på bjälklaget ............................................................. 24

6.3 Dimensionering av bjälklag i bruksgränstillstånd ............................................. 24

6.4 Dimensionering av vägg i brottgränstillståndet ................................................ 24

6.5 Dimensionering av anslutning mellan vägg och bjälklag ................................. 24

6.6 Konsekvenser för variabel fuktkvot över tid ..................................................... 24

7 Diskussion ..................................................................................................... 27

7.1 Teori- och metoddiskussion .............................................................................. 27

7.2 Resultatdiskussion ............................................................................................. 27

8 Slutsatser....................................................................................................... 29

Referenslista......................................................................................................... 31

Page 13: Examensarbete i byggteknik

1

1 Introduktion

Först 1994 blev det tillåtet i Sverige att bygga hus i trä med fler än två våningar (Svenskt

trä 2020a). Sedan dess har användandet av KL-trä som stomelement ökat mycket i

Sverige. Att bygga med trä har flera fördelar, där de som brukar framhållas främst är att

trä är en klimatneutral resurs som kraftigt minskar utsläppet av koldioxid jämfört med

betong och stål. KL-trä tillåter nyskapande arkitektur i miljövänlig tappning.

Trä är ett material som är känsligt för fukt. Om det sker förändringar i den relativa

luftfuktigheten anpassar sig fuktkvoten i träet till omgivningen. När fuktkvoten ändras i

träet påverkar det träets egenskaper. För att undvika negativa förändringar används ofta

väderskydd vid uppförandet av träkonstruktioner. En annan åtgärd som vidtas är att

trämaterialet har liknande fuktkvot vid leverans som det ska ha vid färdigställt skick. Det

är viktigt att redan i dimensioneringsfasen ha klarhet i vilken miljö som konstruktionen

ska uppföras.

I Eurokod 5 (SIS 2004) beskrivs hur så kallade klimatklasser används för att ta i

beaktande hur fuktkvoten i träet påverkar hållfastheten och styvheten. Klimatklasserna,

tillsammans med lastvarighetsklasserna, bestämmer hållfasthetsmodifieringsfaktorn 𝑘𝑚𝑜𝑑

och modifikationsfaktorn för krypdeformation 𝑘𝑑𝑒𝑓. Den förstnämnda används för att

reducera den dimensionerade hållfastheten, den andra för att reducera elasticitetsmodulen.

I Eurokod 5 anges tre klimatklasser som definieras för intervallen 0–12, 12–20 och mer

än 20 % fuktkvot.

Om inget väderskydd används under byggtiden kan det medföra att KL-elementen utsätts

för stora mängder vatten under en period som kan uppgå till flera månader. Det gör att

klimatklass 2 eller 3 bör användas för att dimensionera stomdelarna, åtminstone under en

viss tid. Samtidigt kan förhållandena som byggnaden utsätts för när den väl har tagits i

bruk vara sådana som motiverar klimatklass 1. Det är konstruktören som avgör vilken

klimatklass byggnaden ska dimensioneras efter.

Trä torkar olika snabbt beroende på exponering för sol och vind. I vissa fall torkar KL-

element som varit direkt exponerat för fukt under byggnationen till en nivå som

motsvarar klimatklass 2 efter ca 6 månader (Schmidt & Riggio 2019). För delar av

konstruktionen där fukten har svårigheter att avlägsnas, som till exempel i en anslutning

mellan vägg och bjälklag eller vid fogar mellan olika byggnadsdelar, krävs lång tid för att

fuktkvoten ska minska till de 12 % som motsvarar klimatklass 1.

Klimatfaktorerna är bland de mest reducerande faktorerna i Eurokod 5. Ett mer nyanserat

sätt att beräkna hållfastheten och styvheten med hänseende till fukt kan därför leda till

ekonomiska och miljömässiga fördelar.

1.1 Bakgrund och problembeskrivning Materialet trä är hygroskopiskt, vilket innebär att det absorberar fukt från omgivningen

om dess fuktkvot är större än träets, medan desorption sker om träets fuktkvot är större än

omgivningens (Blaß & Sandhaas 2017). När fuktkvoten i träet ökar påverkar det

materialets hållfasthetsegenskaper på flera sätt. Synliga förändringar är volymökning,

vridning eller böjning. Osynliga förändringar påverkar materialets mekaniska egenskaper,

så som hållfastheten och styvheten (Gereke & Niemz 2009).

Ett trästycke både absorberar och avger fukt snabbast i dess ytskikt. Det tar längre tid för

en KL-skiva att få förhöjd fuktkvot i mitten av skivan vid uppfuktning, än vad det gör

ytterst på skivan. På samma sätt torkar de yttersta delarna snabbare än mitten när skivan

Page 14: Examensarbete i byggteknik

2

befinner sig i uppvärmt och väderskyddat tillstånd. Fuktkvoten varierar alltså över tid och

över skivans djup.

Trä är anisotropt, vilket betyder att träet har olika egenskaper beroende på riktning. I

tangentiell riktning uppgår volymändringen per procentenhets ökning av fuktkvot till

8,3 %, medan den i radiell riktning kan uppgå till 4,3 % och i longitudinell riktning endast

kan uppgå till 0,4 % (Blaß & Sandhaas 2017). Även hållfastheten och styvheten skiljer

sig för de olika riktningarna.

Många byggnadsmaterial får minskad hållfasthet vid långvarig exponering för en last.

Fenomenet kallas för krypning och beror på relativ fuktighet, förekomsten av kvistar,

värme, tid och lastens storlek (Blaß & Sandhaas 2017).

Krypning kan delas in i två kategorier: viskoelastiskt och mekano-sorptiv krypning

(Nordström & Sandberg 1994). Viskoelastisk deformation sker vid konstant fuktkvot

under konstant belastning. Ju längre tid som materialet utsätts för en belastning och ju

högre temperatur som råder, desto större blir deformationen. Den mekano-sorptiva

krypningen beror på förändringar i fuktkvoten i träet. I Eurokod 5 behandlas

krypdeformationen med modifikationsfaktorn 𝑘𝑑𝑒𝑓 (SIS 2004).

När trä torkar återfår det till stor del sina fysiologiska egenskaper. Ett träelement som

böjts på grund av krypdeformation riskerar däremot att aldrig återfå sin ursprungliga form

(Blaß & Sandhaas 2017). Eftersom krypdeformationen beror på fuktkvoten och

fuktkvoten beror på skydd mot nederbörd finns ett direkt samband mellan väderskydd och

risk för långvarig deformation i KL-element.

Att använda klimatklasserna och lastvarighetsklasserna för att dimensionera stomelement

i trä är en enkel process som ger konkreta resultat. Det kan däremot vara svårt att avgöra

vilken klimatklass som ska användas när byggnaden kommer utsättas för olika

väderförhållanden under konstruktionstiden jämfört med när byggnaden tas i bruk.

Klimatklass 1 och 2 ger samma hållfasthetsmodifieringsfaktor 𝑘𝑚𝑜𝑑 för

konstruktionsvirke och limträ samt KL-trä, vilket föranleder frågan om byggnaden inte

överdimensioneras för att underlätta för konstruktören.

1.2 Syfte och mål Syftet med rapporten är att visa hur tillverkare, konstruktörer och andra aktörer kan agera

för att på ett mer nyanserat sätt dimensionera KL-trä med avseende på hur dess styvhet

och hållfasthet påverkas av fukt.

Målet med studien är att genom modeller beskriva hur olika fuktkvoter påverkar

hållfastheten och styvheten. Det görs tillämpade beräkningar och exempel visas av hur

KL-trä kan dimensioneras.

1.3 Avgränsningar Endast KL-skivor med 3 och 5 lager användes i beräkningarna. Ingen egen uppmätning

av fuktkvoter har gjorts. Dimensionering gjordes av ett bjälklag i bruks- och

brottsgränstillståndet, en vägg och anslutningen mellan vägg och bjälklag. I

beräkningarna bortsågs påverkan av horisontella krafter.

Page 15: Examensarbete i byggteknik

3

2 Teoretiska utgångspunkter

I detta kapitel ges de teoretiska utgångspunkterna som krävs för att förstå rapportens

innehåll. Teorin är hämtad från facklitteratur, vetenskapliga rapporter, tillverkare av KL-

trä och branschorganisationer.

2.1 KL-trä KL-trä kan tillverkas i många former och utföranden. I kommande avsnitt förklaras vissa

av KL-träets egenskaper och fördelar.

2.1.1 Sammansättning av KL-trä

KL-trä består av ett antal lager brädor som överlappar varandra vinkelrätt, se Figur 1. Hur

många lager som används och lagrens tjocklek beror på användningsområdet. Skivorna

kan användas som bärande bjälklag, väggar och yttertak. Dessa kan tillverkas i storlekar

från ca 3 till 16 m. Det är ofta transportmöjligheterna som avgör hur stora skivorna kan

vara.

Figur 1. Schematisk bild av KL-trä med 5 lager (Figur: Joel Andersson).

För det mesta används gran eller furu i KL-trä, men även lövträ och hybrider med en

blandning av barr- och lövträ förekommer. Fuktkvoten i brädorna bör vara mellan 8 och

15 % vid limning. Mellan de brädor som ligger intill varandra får inte skillnaden i

fuktkvot vara större än 5 %. För att verifiera att KL-träet följer rådande krav sker

slumpmässiga kontroller i fabrikerna som övervakas av en tredje part (Svenskt Trä 2017).

När KL-trä tillverkas delas brädor in i olika kvalitetsklasser beroende på slutproduktens

krav. Vanliga virkeskvaliteter som används i Sverige är C24 eller C30 och även

blandningar förekommer. Brädor av konstruktionsvirket fingerskarvas till långa brädor

som sedan kapas och hyvlas till rätt dimensioner. Dessa brädor limmas sedan under stort

tryck till skivor, där fiberriktningen varierar vinkelrätt för varje lager. Trycket skapas

antingen av vakuum eller med hydraulik. Om ytan på slutprodukten ska bli synlig

bearbetas den för att estetiska krav ska säkerställas (Svenskt Trä 2017).

Tjockleken på de olika lamellerna varierar beroende på vilka krav som ställs på

elementet. Vanliga tjocklekar är 20, 30 eller 40 mm per skikt. Det förespråkas att

tjockleken på lamellerna väljs så att skivans masscentrum sammanfaller med mitten på

skivan, eftersom det minskar påverkan av fuktrörelser i träet.

2.1.2 Fördelar med KL-trä

Trä är en naturlig råvara som binder koldioxid till dess att träet förbränns eller på annat

sätt bryts ned. En kubikmeter trä lagrar ungefär ett ton koldioxid (Stora Enso 2020).

Tillverkningen av KL-trä görs på ett energieffektivt sätt, där restprodukter som till

Page 16: Examensarbete i byggteknik

4

exempel sågspån kan användas vid tillverkningen (Svenskt Trä 2017). Med ett långsiktigt

skogsbruk är trä en outtömlig råvara som dessutom kan återanvändas i flera steg.

Exempelvis kan en uttjänad KL-platta omvandlas till lastpallar, förpackningar, flis, kläder

med mera förutsatt att träet inte möglat eller av andra orsaker blivit obrukbart. Att

använda träprodukter kan därför vara ett miljövänligt sätt att bygga på.

KL-trä har lägre densitet än betong och stål. Det gör att det är lättare att hantera vid frakt

och montage. Trä är ett mjukt material som går att efterbearbeta på arbetsplatsen med

vanliga handverktyg. Automatiserad tillverkning med hjälp av bland annat CNC-

maskiner tillåter snabb hantering och hög precision. KL-element kan därmed produceras i

många olika utföranden. Det enklaste ur produktionssynpunkt är rätvinkliga element som

skapar intressanta och hållbara konstruktioner genom att anslutas på olika sätt. Det går

även att skapa KL-trä i böjda former, men det kräver en avancerad maskinhall (Svenskt

Trä 2017).

2.2 Träets egenskaper Kollmann (1982) och Dinwoodie (2000) ger överblick till träets egenskaper och beteende.

Trä är ett komplext material eftersom dess egenskaper beror på förekomsten av kvistar,

förhållandet mellan vårved och sommarved och vilka egenspänningar som finns i

materialet. Hur ett träd växer, och därmed vilka dess egenskaper blir, beror på platsen

trädet befinner sig på, vilken jordart som finns där, de omgivande växterna och

meteorologiska förhållanden som regn, sol och värme.

2.2.1 Fuktrelaterade egenskaper

Träets elasticitetsmodul förändras med dess fuktkvot och temperaturen. Temperaturen har

inte lika stor påverkan som fuktkvoten, men eftersom den relativa fuktkvoten ändras med

temperaturen beror träets hygroskopiska egenskaper även på temperaturen (Kollmann

1982)

Kollmann (1982) visar att hållfastheten kan beräknas genom att draghållfastheten ökar

respektive minskar 3 % i fiberriktningen och 1,5 % vinkelrätt fiberriktningen för varje

procent som fuktkvoten ökar respektive minskar från 10 % fuktkvot till

fibermättnadspunkten, som är ca 30 % fuktkvot. Tryckhållfastheten förändras 4–6 % för

varje % som fuktkvoten ökar eller minskar i samma intervall som för draghållfastheten.

När fuktkvoten är mindre än 10 % sker ingen nämnvärd förändring i träets egenskaper.

Försök har visat att ju fler kvistar det finns i virket, desto mindre påverkan har fuktkvoten

på hållfastheten (Dinwoodie 2000). Det är därför komplext att bestämma fuktkvotens

påverkan på hållfastheten. Dinwoodie föreslår ett förhållande mellan fuktkvoten och

träets egenskaper enligt Tabell 1. Den procentuella förändringen i hållfasthet och styvhet

för skotsk furu anges per 1 % ökning i fuktkvot i intervallerna 6–10, 12–16 och 20–24 %

fuktkvot (Dinwoodie 2000).

Tabell 1. Förändring i hållfasthet och styvhet enligt Dinwoodie (2000).

Fukthalt [%]

Egenskap 6–10 12–16 20–24

Elasticitetsmodul 0,21 0,18 0,15

Böjstyvhet 4,20 3,30 2,40

Tryckhållfasthet 2,70 2,00 1,40

Hårdhet 0,06 0,05 0,05

Skjuvhållfasthet parallellt med fibrerna 0,70 0,53 0,36

Page 17: Examensarbete i byggteknik

5

Blaß & Sandhaas (2017) har sammanställt en annan tabell, se Tabell 2. Där utgår

förändringen från fuktkvoten 12 % och tillämpas för varje procent som fuktkvoten ökar.

Att en minskning i hållfastheten sker när fuktkvoten ökar kan förklaras med att de

molekylära bindningarna blir svagare. De förändringar som anges är giltiga till

fibermättnadspunkten, därefter sker ingen förändring av egenskaperna.

Tabell 2. Förändring i träets egenskaper enligt Blaß & Sandhaas (2017).

Egenskap Förändring [%]

Tryckhållfasthet parallellt med fibrerna 6,0

Tryckhållfasthet vinkelrätt mot fibrerna 5,0

Böjhållfasthet 4,0

Draghållfasthet parallellt med fibrerna 2,5

Draghållfasthet vinkelrätt mot fibrerna 2,0

Skjuvmodul 2,5

Elasticitetsmodul parallellt med fibrerna 1,5

Att fuktkvoten påverkar tryckhållfastheten visas även av Brandner (2018). I en studie om

hur KL-trä beter sig under belastning i tryck vinkelrätt fiberriktningen anges att

deformationen beror på lastens magnitud, arean som utsätts för tryck och träets fuktkvot.

Tryckhållfastheten testades för provkroppar med måtten 150×150 mm.

Tryckhållfastheten när provkroppen hade fuktkvoten 8,8 % var 3,87 MPa, medan den vid

fuktkvoterna 12,7 % respektive 15,3 % var 3,54 MPa respektive 3,03 MPa.

Även limmet som binder samman de olika lamellerna i KL-träet påverkas av fukt

(Kläusler, Clauß, Lübke, Trachsel & Niemz 2019). Det beror dels på att träet krymper

och sväller beroende på den relativa luftfuktigheten, vilket töjer respektive krymper

limmet, dels på att även limmets egenskaper påverkas av fukten. Limmets

elasticitetsmodul återgår relativt snabbt till dess ursprungliga värden efter att materialet

torkat.

2.2.2 Densitet

Träets densitet har stor påverkan på dess mekaniska egenskaper. Densiteten definieras

enligt ekvation (1)

𝜌𝑢 =𝑚𝑢

𝑉𝑢 (1)

där 𝑚𝑢 är träets massa och 𝑉𝑢 träets volym vid fuktkvot u. Trä är ett kapillärt poröst

material som kan innehålla stora mängder vatten. Ändringar av vattenhalt kan medföra

stora volym- och viktförändringar. Därför måste träets densitet förtydligas med rådande

relativ fuktkvot och temperatur (Blaß & Sandhaas 2017).

Nästan alla av träets egenskaper påverkas av densiteten. Densiteten skiljer mycket mellan

olika träslag, men kan även skilja mycket inom en bräda. Det beror på att trädet växer

olika beroende på årstid och år, till exempel har vårved mindre densitet än sommarved

(Blaß & Sandhaas 2017).

2.2.3 Reologiska egenskaper

Ett ämne reagerar elastiskt och / eller plastiskt när det deformeras. När ett ämne påverkas

elastiskt återgår det till sin ursprungliga form efter att de deformerande krafterna tagits

bort. När plastisk deformation sker kan ämnet inte längre återgå till sin ursprungliga form

vid avlastning (Nordström & Sandberg 1994).

Page 18: Examensarbete i byggteknik

6

Krypning innebär att ett träelement som utsätts för en konstant last fortsätter att

deformeras beroende på lastvarigheten. I en del fall återgår träelementet till sin

ursprungliga form (visko-elasticitet), men oftast sker även en visko-plastisk deformation

som inte återgår efter att belastningen tagits bort. Huruvida det sker eller inte beror på

lastens magnitud och hur lång tid lasten verkar på elementet (Nordström & Sandberg

1994).

2.2.4 KL-träets egenskaper

Ett KL-element kan ta upp laster i flera riktningar, men har en tydlig huvudriktning

(Svenskt Trä 2017). I de fall då skivan används för att bära upp laster i en huvudsaklig

riktning kan dimensionering göras med balkteori. I en KL-skiva anges x-led parallellt

med ytskiktets fiberriktning, medan y-led anges vinkelrätt mot fiberriktningen i det

yttersta skiktet och z-led pekar i tjocklekens riktning, se Figur 2.

Figur 2. Riktningsanvisning för KL-trä (Figur: Joel Andersson).

Trä är starkast och styvast i fiberriktningen. Draghållfastheten är dubbelt så stor som

tryckhållfastheten i fiberriktningen och vinkelrätt fiberriktningen är draghållfastheten

mycket låg (Träguiden 2020). Lokala skillnader i träet, så som kvistar eller andra

deformationer, ger mindre påverkan hos KL-trä eftersom sannolikheten att alla skikt ska

ha defekter på samma plats är väldigt låg.

2.3 Fukt i trä Fukt förekommer i tre olika former: flytande, gasform (ånga) och fast form (is). Om inget

väderskydd används riskerar nederbörd att få negativ inverkan på konstruktionen. Även

den relativa luftfuktigheten påverkar fuktkvoten i träet.

2.3.1 Nederbörd

Mängden nederbörd som faller över ett område beror på geografisk plats och årstid.

Påverkan nederbörden har på KL-trä beror på hur skyddad konstruktionen är. Vattnet

avdunstar väsentligt snabbare om solen strålar på en yta och om det blåser (Schmidt &

Riggio 2019). Om det snöar riskerar snöfickor att under lång tid öka fuktkvoten i träets

ytskikt för att sedan absorberas längre in i träet.

2.3.2 Fuktkvot

Fuktkvot u anger hur stor andel vatten det finns i ett material i förhållande till när

materialet är ugnstorrt, se ekvation (2),

Page 19: Examensarbete i byggteknik

7

𝑢 =

𝑚(𝑢) − 𝑚𝑡𝑜𝑟𝑟

𝑚𝑡𝑜𝑟𝑟× 100 (2)

där u är fuktkvoten, 𝑚(𝑢) träets massa och 𝑚𝑡𝑜𝑟𝑟 träets massa efter torkningen.

Fuktkvoten kan variera inom virket eftersom det torkar utifrån och in. För att undvika

svällning eller krympning ska virket ha samma fuktkvot vid leverans till arbetsplatsen

som det kommer ha när byggnaden är i färdigt skick. Det sker huvudsakligen rörelser i trä

till följd av fukt när fuktkvoten är mindre än fibermättnadspunkten, det vill säga ca 30 %.

2.3.3 Relativ luftfuktighet

Den relativa luftfuktigheten är ett mått av mängden vatten i luften. Formeln för att

beräkna den relativa fuktigheten ges i ekvation (3).

𝑅𝐹(𝑢, 𝑇) =

𝑎𝑘𝑡𝑢𝑒𝑙𝑙 å𝑛𝑔ℎ𝑎𝑙𝑡

𝑚ä𝑡𝑡𝑛𝑎𝑑𝑠å𝑛𝑔ℎ𝑎𝑙𝑡× 100 (3)

Mättnadsånghalten beror på temperaturen T, eftersom varm luft kan hålla mer fukt än

kall.

2.4 Dimensionering av träkonstruktioner Dimensioneringsformlerna är hämtade från Eurokod 5 (SIS 2004) och KL-trähandboken

(Svenskt Trä 2017).

2.4.1 Klimatklasser

I Eurokod 5 anges tre klimatklasser och fem varaktighetsklasser, se Tabell 3. Det är upp

till konstruktören att avgöra vilken klimatklass som bäst representerar det aktuella fallet.

Tabell 3. Fuktkvotsintervaller för klimatklasserna enligt Eurokod 5 (SIS 2004).

Fuktkvot, u [%] Klimatklass

0–12 1

12–20 2

>20 3

Hållfasthetsmodifieringsfaktorn 𝑘𝑚𝑜𝑑 och modifikationsfaktorn för krypdeformation

𝑘𝑑𝑒𝑓 bestäms med hjälp av klimat- och lastvaraktighetsklasserna, se Tabell 4. Ju längre

tid lasten verkar, desto större blir krypdeformationen och desto mindre är hållfastheten.

Tabell 4. Hållfasthetsmodifieringsfaktor 𝑘𝑚𝑜𝑑 enligt Eurokod 5 (SIS 2004).

Lastvaraktighetsklass

Klimatklass Permanent

0,60

Långtid Medellång Korttid Momentan

1 0,6 0,7 0,8 0,9 1,1

2 0,6 0,7 0,8 0,9 1.1

3 0,5 0,55 0,65 0,7 0,9

2.4.2 Dimensionerande laster i brott- och bruksgränstillstånd

När en byggnadsdel dimensioneras enligt europeisk norm kan detta göras för ett

brottgränstillstånd eller ett bruksgränstillstånd. I detta arbete dimensioneras KL-

elementen för både brott- och bruksgränstillståndet, där endast hänsyn tas till egenvikten

och den nyttiga lasten.

Page 20: Examensarbete i byggteknik

8

För beräkning i brottgränstillstånd tas alla laster med som är ogynnsamma.

Brottgränstillståndet beräknas efter STR(a) enligt ekvation (4)

𝑞𝑑 = 𝛾𝑑1.35𝐺𝑘 + ∑ 𝛾𝑑1.5𝜓0.𝑖𝑄𝑘.𝑖

𝑖>1

(4)

eller STR(b) enligt ekvation (5)

𝑞𝑑 = 𝛾𝑑1.2𝐺𝑘 + 𝛾𝑑1.5𝑄𝑘.1 + ∑ 𝛾𝑑1.5𝜓0.𝑖𝑄𝑘.𝑖

𝑖>1

(5)

där 𝛾𝑑 är en partialkoefficient för att beräkna inverkan av säkerhetsklass för brott i

brottgränstillståndet, 𝜓0.1 är en kombinationsfaktor för variabla laster, 𝐺𝑘 är egenvikten

och 𝑄𝑘.𝑖 är alla nyttiga laster och 𝑄𝑘.1 den ledande nyttiga lasten (SIS 2002a).

Träkonstruktioner är i vanliga fall lätta konstruktioner med en mindre andel av

egenvikten än jämförbara konstruktioner i betong. I arbetet används därför endast

beräkningarna enligt STR(b).

Bruksgränstillståndet avgör hur mycket en byggnadsdel kan belastas innan oacceptabla

konsekvenser i bruksskede uppstår, som till exempel nedböjningar av ett bjälklag eller

ljudnivåer mellan lägenhetsväggarna. Bruksgränstillståndet för ett bjälklag beräknas

genom att den totala nedböjningen jämförs med tillåtna värden, till exempel enligt Tabell

5. När lastfallen består av flera laster med olika lång belastningstid adderas summan av

nedböjningen för varje last.

Tabell 5 Maximal tillåten nedböjning enligt Svenskt Trä (2017).

Konstruktionsdel winst wnet,fin wfin

Balk på två stöd (max 20 mm) L/300-L/500 L/250-L/350 L/150-L/300

2.4.3 Systemeffekt i KL-trä

När lösvirke används bestäms dess hållfasthet efter den svagaste punkten, vilket i regel

utgörs av en kvist eller skarv. I ett element av KL-trä sprids dessa oregelbundenheter ut.

Det gör att hållfastheten för en skiva är större än den för varje enskild brädas och en så

kallad systemeffekt uppstår. Faktorn 𝑘𝑠𝑦𝑠 beror på bredden b av elementet och begränsas

till 1,15, se ekvation (5), och kan tillämpas för beräkning av drag- och böjhållfastheten

(Svenskt Trä 2017).

𝑘𝑠𝑦𝑠 = min {1,15

1 + 0,1𝑏 (6)

Page 21: Examensarbete i byggteknik

9

3 Metod

Följande kapitel beskriver hur beräkningsmodellen ska användas och varifrån

informationen har hämtats.

3.1 Realistisk fördelning av fuktkvoten Eftersom ingen möjlighet fanns till att göra egna mätningar av hur fuktkvoten i KL-trä

varierar över tid, användes mätdata från en studie utförd i Vancouver, Kanada (Mcclung,

Ge, Straube, & Wang 2013). Uppskattade fuktkvoter användes också för att ge fler

exempel på användningsområdena för beräkningsmodellen.

3.1.1 Fuktkvoter från studien gjord i Vancouver

Studien i Vancouver (McClung et al. 2013), fortsättningsvis kallad studie A, gjordes med

KL-trä i fyra olika träslag. Fyra olika väggar tillverkades för varje träslag som skiljde sig

i utförandet av tjockleken på isoleringen och hur fuktspärren var monterad.

Varje skiva, som mätte 0,6×0,6 m, sänktes ned i en simbassäng fylld med vatten i en

vecka för att fuktkvoten skulle överstiga fibermättnadspunkten. Efter att skivorna blivit

uppblötta, monterades de ståendes i en vägg där varje skiva kunde övervakas noggrant.

Sex mätpunkter installerades i varje skiva, vid 6 mm, 13 mm, 19 mm, 44,5 mm, 70 mm

och 76 mm mätt från utsidan. Rummet som utgjordes av testväggarna hade ett styrt

ventilationsflöde och konstant temperatur. Kontinuerliga mätningar utfördes under ett års

tid.

Den skiva från studie A som använts som referensobjekt i denna rapport var gjord av

European spruce, som har egenskaper liknande de som återfinns i svensk gran (McClung

et al. 2013). Skivan bestod av tre skikt, där de yttersta lamellerna var 33 mm tjocka och

den mittersta var 23 mm tjock. I studien mättes fuktkvoterna direkt när väggen var

monterad, efter 5 dagar och efter 1, 4, 7, 10 respektive 12 månader.

Fuktkvoterna som uppmättes av McClung et al (2013) varierade beroende på hur lång tid

KL-skivan hade torkat, se Figur 3. När mätningarna började var fuktkvoten ytterst på

skivan nästan 33 %, medan den efter 12 månader var ca 13 %. Fuktkvoten sjönk även

med tiden på grund av uttorkningen. Fuktkvoten jämnades ut över skivans hela tjocklek

ju längre tid den torkade.

Figur 3. Fuktkvotsfördelning vid olika tidpunkter i en KL-skiva (McClung et al. 2013).

3.1.2 Uppskattade fuktkvoter

För att ytterligare illustrera hur beräkningsmodellen kan användas vid dimensionering av

träkonstruktioner uppskattades fuktkvoter för en KL-skiva med 5 lameller om 40 mm.

Page 22: Examensarbete i byggteknik

10

Fuktkvoterna uppskattades för en mätning i fuktigt tillstånd och en mätning efter att

skivan kunnat torka, se Figur 4. Det antogs att mätningarna utfördes på åtta olika punkter

i skivan, vid 0, 19, 40, 70, 100, 160, 181 och 200 mm från ovansidan.

Figur 4. Uppskattade fuktkvoter för ett bjälklag med 5 skikt.

3.2 Beräkningsmodellerna Alla beräkningar har utförts i programmet Mathcad Prime 6.0. ”KL-trähandboken”

(Svenskt Trä 2017) tillsammans med boken ”Timber engineering principles for design”

(Blaß & Sandhaas 2017) användes för att utföra beräkningarna på ett korrekt sätt.

Modellerna är anpassningsbara och har i examensarbetet använts för KL-skivor med 3

och 5 skikt. För att använda modellerna krävs information om mätsensorernas placering i

skivan samt fuktkvoterna som uppmätts. Ju fler mätsensorer som används, desto

tillförlitligare blir resultaten från modellerna.

3.2.1 Gemensamma beräkningsförfaranden för de båda modellerna

Två beräkningsmodeller skapades för att beräkna böj- och tryckhållfastheten i KL-trä.

Grunden är densamma i båda modellerna. Konceptet var att öka precisionen i

beräkningen genom att dela in skivan i många skikt. Hur många skikt som delas in går att

ställa in efter behov, men i detta arbete valdes ett skikt för varje halv millimeter.

När fuktkvoter mäts i en skiva görs det för en viss punkt, beroende på hur djupt in i

skivan sensorerna sitter. I studie A användes 6 mätpunkter, men det går att använda fler

eller färre. Ett antagande som gjordes för att beräkna hållfastheten var att fuktkvoten

förändras linjärt mellan mätpunkterna och att limfogarna inte påverkar hur fukten varierar

i skivan. Genom att interpolera mellan mätpunkterna kan fuktkvoten bestämmas för varje

halv millimeter av skivan.

3.2.2 Modell 1 – medelvärdet för 𝒌𝒎𝒐𝒅 och 𝒌𝒅𝒆𝒇

I modell 1 användes randvillkoren för klimatklasserna 1, 2 och 3 enligt Eurokod 5 (Tabell

3), för att tillskriva varje punkt i skivan ett värde för 𝑘𝑚𝑜𝑑 och 𝑘𝑑𝑒𝑓. Faktorerna

bestämdes för varje halv millimeter av skivan. Därefter beräknades respektive

medelvärden 𝑘𝑚𝑜𝑑 och 𝑘𝑑𝑒𝑓.

3.2.3 Modell 2 – dimensionerande hållfasthet för variabel fuktkvot

I modell 2 användes värden från Blaß & Sandhaas (2017) för att beräkna den

dimensionerande hållfastheten, se Tabell 2.

Page 23: Examensarbete i byggteknik

11

När fuktkvoten för varje halv millimeter hade fastställts, beräknades hållfastheten med

ekvation (7) som utgångspunkt. Eftersom hållfastheten enligt Blaß & Sandhaas (2017) är

konstant när fuktkvoten är 12 % eller mindre, gäller ekvationerna endast för 𝑢 ≥ 12 %.

De kommande ekvationerna anger hållfastheten för böjning

𝑓𝑚.𝑥.𝑑(𝑢) = 𝑘𝑡𝑖𝑑 ⋅ 𝑘𝑠𝑦𝑠 ⋅

𝑓𝑚.𝑥.𝑘 ⋅ 0.96(𝑢−12)

𝛾𝑀 (7)

tryck parallellt fiberriktningen

𝑓𝑐.0.𝑥.𝑑.𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑙(𝑢) = 𝑘𝑡𝑖𝑑 ⋅

𝑓𝑐.𝑥.𝑘 ⋅ 0.94(𝑢−12)

𝛾𝑀 (8)

och tryck vinkelrätt fiberriktningen

𝑓𝑐.90.𝑧.𝑑.𝑣𝑖𝑛𝑘𝑒𝑙𝑟ä𝑡𝑡(𝑢) = 𝑘𝑡𝑖𝑑 ⋅

𝑓𝑐.𝑧.𝑘 ⋅ 0.95(𝑢−12)

𝛾𝑀 (9)

där 𝑘𝑡𝑖𝑑 är en faktor som beror på lastvaraktigheten, 𝑘𝑠𝑦𝑠 är systemeffekten, 𝛾𝑀 är en

partialkoefficient, 𝑢 är fuktkvot för en given punkt i skivan och 𝑓𝑚.𝑥.𝑘, 𝑓𝑐.𝑥.𝑘 och 𝑓𝑐.𝑧.𝑘 är

hållfastheten. Observera att 𝑘𝑠𝑦𝑠 endast tillämpas när böjhållfastheten beräknas, eftersom

det är då systemeffekten är påtaglig (Svenskt Trä 2017).

Faktorn 𝑘𝑡𝑖𝑑 bestäms enligt Tabell 4. Eftersom modell 2 redan behandlar inverkan av

fukt, bortses klimatklasserna från tabellen och hänsyn tas endast till den tidsberoende

faktorn.

Modell 2 kan inte användas för att beräkna 𝑘𝑑𝑒𝑓. Modellen används därför inte vid

dimensionering i bruksgränstillståndet.

3.3 Dimensionering av bjälklag i brottgränstillståndet Vid dimensionering av ett bjälklag måste det säkerställas att kapaciteten är större än

lasteffekten som kommer verka på bjälklaget. Detta görs vanligen genom att beräkna hur

stort moment som den dimensionerade hållfastheten ger upphov till. Momentet beräknas

från tyngdpunkten av skivan, vilket i de fall som beräknats i examensarbetet sammanföll

med mitten av skivan.

Under antaganden av en homogen fördelning av hållfastheten i elementet fås det

maximalt tillåtna momentet i vanliga fall där hävarmen är som störst, det vill säga ytterst

på skivan. Eftersom fuktkvoten i modellen förändras över skivans djup som ger upphov

till en inhomogen fördelning av hållfastheten kan det inte uteslutas att en annan punkt i

elementet än ytterst vid kanten blir avgörande. Därför måste alla punkter i elementet

undersökas för att hitta det maximalt tillåtna momentet, se ekvation (10)

𝑀𝑅𝑑(𝑧, 𝑢) =

𝐼

𝑧 ⋅ 𝑓𝑚.𝑥.𝑑(𝑧, 𝑢) (10)

Page 24: Examensarbete i byggteknik

12

där 𝐼 är tröghetsmomentet runt y-axeln, 𝑧 är avståndet till varje punkt på skivan mätt från

tyngdpunkten, och 𝑓𝑚.𝑥.𝑑(𝑧, 𝑢) är den dimensionerande böjhållfastheten för varje punkt

på skivan enligt ekvation (7), (8) och (9).

Bjälklaget dimensionerades i brottgränstillståndet enligt STR(b), se ekvation (5). Det

största momentet som kan uppkomma på bjälklaget fås vid dess mitt, se ekvation (11)

𝑀𝐸𝑑 =

𝑞𝑑 ⋅ 𝐿2

8 (11)

där 𝑞𝑑 är dimensionerande utbredd linjelast enligt STR(b) och 𝐿 är bjälklagets längd.

För att konstruktionsdelen ska klara av att bära de laster som påförs under dess livstid

måste momentkapaciteten vara större än momentet för lasterna, 𝑀𝑅𝑑 ≥ 𝑀𝐸𝑑. Eftersom

momentkapaciteten 𝑀𝑅𝑑 redan beräknats som funktion av fuktkvoten i varje punkt över

skivans tjocklek, kan den maximala längden för bjälklaget beräknas enligt ekvation (12).

𝐿𝑚𝑎𝑥 = √8 ⋅ 𝑀𝑅𝑑

𝑞𝑑 (12)

Momentkapaciteten, 𝑀𝑅𝑑, beror på fuktkvoten, vilket gör att det enkelt går att jämföra

den maximala längden på bjälklaget genom att sätta in 𝑀𝑅𝑑 för de olika fuktkvoterna i

ekvation (12). På så sätt kan fuktkvotens påverkan på bärförmågan utvärderas.

3.4 Dimensionering av bjälklag i bruksgränstillståndet När ett bjälklag belastas under lång tid måste effekten av krypning beräknas. Det görs

med faktorn 𝑘𝑑𝑒𝑓. Det finns olika krav på hur mycket bjälklaget får böjas ned som mest,

se Tabell 5.

Nedböjningen beräknas i två steg. Först beräknas nedböjningen för egentyngden samt för

den utbredda lasten enligt ekvation (13) och (14) (Svenskt Trä 2017).

𝑤𝑖𝑛𝑠𝑡,𝑔𝑘 =

5 ⋅ 𝑔𝑘 ⋅ 𝐿4

384 ⋅ 𝐸𝑥.𝑚𝑒𝑎𝑛 ⋅ 𝐼𝑥.𝑒𝑓 (13)

𝑤𝑖𝑛𝑠𝑡,𝑞𝑘 =

5 ⋅ 𝑞𝑘 ⋅ 𝐿4

384 ⋅ 𝐸𝑥.𝑚𝑒𝑎𝑛 ⋅ 𝐼𝑥.𝑒𝑓

(14)

där 𝑔𝑘 är egentyngden, 𝑞𝑘 är utbredd last, 𝐸𝑥.𝑚𝑒𝑎𝑛 är elasticitetsmodulen i x-led och 𝐼𝑥.𝑒𝑓

är det effektiva tröghetsmomentet.

För att bestämma krypdeformationen multipliceras den elastiska nedböjningen med 𝑘𝑑𝑒𝑓

och alla laster (förutom egentyngden) även med lastkombinationsfaktorn 𝜓2 enligt

ekvation (15) (Svenskt Trä 2017).

𝑤𝑓𝑖𝑛 = 𝑤𝑖𝑛𝑠𝑡,𝑔𝑘(1 + 𝑘𝑑𝑒𝑓) + 𝑤𝑖𝑛𝑠𝑡,𝑞𝑘(1 + 𝜓2𝑘𝑑𝑒𝑓) (15)

Page 25: Examensarbete i byggteknik

13

3.5 Dimensionering av vägg i brottgränstillståndet En vägg dimensioneras för att ta upp de laster som dels verkar vertikalt, dels horisontellt.

I detta examensarbete bortsågs från de horisontella krafterna. Väggen dimensionerades

således enbart för knäckning från vertikala laster.

Hur stor kraft som kan verka på en vägg innan den knäcks beror på geometriska

egenskaper, som knäcklängden och tjockleken, och materialspecifika egenskaper, som

styvhet och hållfasthet. I detta fall motsvarades knäcklängden av hela väggens längd,

eftersom det antogs att KL-skivan inte var stagad. För att kontrollera risk för knäckning

av väggen enligt Eurokod 5 användes ekvation (16).

𝜎𝑐.𝑥.𝑑

𝑘𝑐.𝑦 ⋅ 𝑓𝑐.0.𝑥.𝑑≤ 1 (16)

där 𝜎𝑐.𝑥.𝑑 är påliggande kraft fördelad på ytan för de lameller vars fiberriktning är parallell

med kraftens riktning, 𝑘𝑐.𝑦 är en faktor som behandlar skivans slankhet och 𝑓𝑐.0.𝑥.𝑑 är den

dimensionerade tryckhållfastheten.

3.6 Dimensionering av anslutning mellan vägg och bjälklag Eftersom trä är ett relativt mjukt material tvärs fiberriktningen är det viktigt att

kontrollera om det finns en risk för att bjälklaget deformeras av de laster som påförs via

väggen. Deformationen beror på hur stor kraften är och hur stor ytan som kraften överförs

på är. Den beror också på var på skivan kraften överförs. Minst risk för deformation av en

KL-skiva är i mitten av skivan, medan risken ökar vid kanter och hörn. För att kontrollera

att KL-skivan inte riskerar att deformeras användes ekvation (17) enligt Eurokod 5.

𝜎𝑐.𝑧.𝑑

𝑘𝑐.90 ⋅ 𝑓𝑐.90.𝑧.𝑑≤ 1 (17)

där 𝜎𝑐.𝑧.𝑑 är påliggande kraft fördelad på ytan för de lameller vars fiberriktning är

vinkelrät mot kraftens riktning, 𝑘𝑐.90 är en faktor som behandlar på vilken del av KL-

skivan som väggen ansluter och 𝑓𝑐.90.𝑧.𝑑 är den dimensionerande tryckhållfastheten.

Page 26: Examensarbete i byggteknik
Page 27: Examensarbete i byggteknik

15

4 Genomförande

I detta kapitel förklaras hur beräkningsmodellerna tillämpades, vilka parametrar som

ingick och hur beräkningarna utfördes.

4.1 Beräkning av dimensionerande hållfasthet För att beräkna den dimensionerande hållfastheten delades KL-skivan in i skikt om en

halv millimeter. Fuktkvoterna från Figur 3 tilldelades varje halv millimeter genom

interpolering mellan mätpunkterna.

4.1.1 Dimensionerande hållfasthet med modell 1

När modell 1 användes bestämdes först faktorerna 𝑘𝑚𝑜𝑑 för varje halv millimeter med

randvillkoren beskrivna i Tabell 3. Lastvaraktighetsklassen valdes till medellång,

eftersom nyttig last verkade på bjälklaget. Faktorn 𝑘𝑚𝑜𝑑 beräknades sedan som ett

medelvärde för skivan och efter det beräknades den dimensionerande hållfastheten.

4.1.2 Dimensionerande hållfasthet med modell 2

När modell 2 användes beräknades den dimensionerande hållfastheten med ekvationerna

(7), (8) och (9) för varje halv millimeter av skivan. Lastvaraktigheten var medellång

eftersom nyttig last verkade på bjälklaget. Faktorn 𝑘𝑡𝑖𝑑 bestämdes därför till 0,8.

4.2 Dimensionering av bjälklag i brottgränstillståndet Ett bjälklag beståendes av skivan som använts i studie A, där tjockleken var 89 mm,

dimensionerades i brottgränstillståndet. Egentyngden för bjälklaget var 𝑔𝑘 = 0,6 kN/m2,

medan den nyttiga lasten var 𝑞𝑘 = 2 kN/m2. Den dimensionerande lasten bestämdes för

STR(a) och STR(b) enligt ekvation (4) och (5), där STR(b) blev störst.

Momentkapaciteten för bjälklaget beräknades med ekvation (10), där 𝑓𝑚.𝑥.𝑑(𝑧, 𝑢)

beräknats med modell 1 och 2 enligt kapitel 4.1. Den yttersta halva millimetern var

dimensionerande för momentkapaciteten för modell 2.

Momentkapaciteten jämfördes med det största momentet på bjälklaget, som beräknades

för mitten av bjälklaget enligt ekvation (11). För att bjälklaget inte skulle gå till brott

säkerställdes att momentkapaciteten alltid var större än momentet från de påförda

lasterna, 𝑀𝑅𝑑 > 𝑀𝐸𝑑.

Den maximala längden för bjälklaget beräknades med ekvation (12), genom att använda

böjmomentkapaciteten beräknad med modell 1 och 2. Det gjordes även en beräkning av

vilken last som kunde påföras bjälklaget innan brott uppstod med fuktkvoterna från Figur

3.

4.3 Dimensionering av bjälklag i bruksgränstillståndet Dimensionering gjordes av ett bjälklag i bruksgränstillståndet. Till det användes ett

bjälklag som bestod av fem lameller med måtten 40 mm. Egentyngden för bjälklaget var

𝑔𝑘 =1,3 kN/m2 och den nyttiga lasten var 𝑞𝑘 = 2 kN/m2. Även för detta bjälklag blev

STR(b) störst.

För att beräkna nedböjningen av bjälklaget användes ekvationerna (13), (14) och (15).

Faktorn 𝑘𝑑𝑒𝑓 beräknades enligt modell 1. Längden på bjälklaget valdes till 6 m. Den

största tillåtna nedböjningen valdes till 𝐿/300 ur Tabell 5. Fuktkvoterna som användes

för beräkningarna ses i Figur 4.

Page 28: Examensarbete i byggteknik

16

4.4 Dimensionering av vägg i brottgränstillståndet Dimensionering gjordes av en ostagad vägg med höjden ℎ = 3 m. Det antogs att lasterna

som fördes ned på väggen från ovanliggande bjälklag och tak var 𝑁𝑑 = 30 kN/m.

Väggen beräknades för bredden 𝑏 = 1 m. Det förutsattes att ingen horisontell last

verkade på väggen, vilket gjorde att endast risk för knäckning kontrollerades.

Kontrollen gjordes med ekvation (16), där den dimensionerande tryckhållfastheten 𝑓𝑐.0.𝑥.𝑑

beräknats med modell 1 och 2 enligt tidigare beskrivning.

4.5 Dimensionering av anslutning mellan vägg och bjälklag Bjälklaget vid anslutningen med väggen kontrollerades för tryckdeformation enligt

ekvation (17), där den dimensionerande tryckhållfastheten beräknats med modell 1 och 2

enligt tidigare beskrivning. Även vid denna beräkning förutsattes att de vertikala lasterna

var 𝑁𝑑 = 30 kN/m.

Page 29: Examensarbete i byggteknik

17

5 Resultat

I följande kapitel presenteras resultaten av beräkningarna.

5.1 Beräkning av dimensionerande böjhållfasthet Den dimensionerande böjhållfastheten beräknades med modell 1 och 2. För

beräkningarna användes fuktkvoterna i Figur 3.

5.1.1 Dimensionerande böjhållfasthet med modell 1

När den dimensionerande böjhållfastheten, 𝑓𝑚,𝑥,𝑑, beräknades med modell 1, gjordes det

med värdena för 𝑘𝑚𝑜𝑑 enligt Tabell 6. Böjhållfastheten beräknades även för 𝑘𝑚𝑜𝑑 för

medellång varaktighet enligt Eurokod 5 (SIS 2004). I tabellen anges dels värdena för

faktorn 𝑘𝑚𝑜𝑑, dels hur stor den dimensionerande böjhållfastheten blir för respektive

𝑘𝑚𝑜𝑑. För dag 1 var hållfastheten 15,62 MPa, medan den efter 7 månader och framåt var

16,90 MPa.

Tabell 6. Värden för faktorn 𝑘𝑚𝑜𝑑 och dimensionerande böjhållfasthet för olika tidpunkter vid uttorkningen.

Tidpunkt 𝒌𝒎𝒐𝒅 𝒇𝒎,𝒙,𝒅

[MPa]

Efter 1 dag 0,74 15,62

Efter 5 dagar 0,74 15,71

Efter 1 månad 0,75 15,90

Efter 4 månader 0,77 16,37

Efter 7 månader 0,80 16,90

Efter 10 månader 0,80 16,90

Efter 12 månader 0,80 16,90

Klimatklass 1 0,80 16,90

Klimatklass 2 0,80 16,90

Klimatklass 3 0,65 13,73

5.1.2 Dimensionerande böjhållfasthet med modell 2

Den dimensionerande böjhållfastheten, 𝑓𝑚,𝑥,𝑑 beräknades även med modell 2. I Tabell 7

redovisas hållfastheten för den yttersta halva millimetern av skivan för varje tidpunkt och

i Figur 5 redovisas hållfastheten för alla punkter på skivan. För dag 1 var hållfastheten

beräknat med modell 2 6,65 MPa. Hållfastheten ökade sedan för varje mättillfälle och var

efter 12 månader 15,62 MPa, vilket motsvarade hållfastheten efter dag 1 med modell 1.

Tabell 7. Dimensionerande böjhållfasthet beräknat med modell 2 för olika tidpunkter vid uttorkningen.

Tidpunkt 𝒇𝒎,𝒙,𝒅

[MPa]

Efter 1 dag 6,65

Efter 5 dagar 8,13

Efter 1 månad 10,00

Efter 4 månader 11,74

Efter 7 månader 12,74

Efter 10 månader 14,40

Efter 12 månader 15,62

Klimatklass 1 16,90

Klimatklass 2 16,90

Klimatklass 3 13,73

Page 30: Examensarbete i byggteknik

18

Figur 5. Dimensionerad böjhållfasthet för hela KL-skivan för olika tidpunkter vid uttorkningen.

5.2 Dimensionering av bjälklag i brottgränstillståndet När bjälklaget dimensionerades i brottgränstillståndet gjordes det med den

dimensionerande böjhållfastheten som beräknats med modell 1 och 2. Fuktkvoterna som

använts var de från Figur 3 (McClung et al. 2013).

5.2.1 Böjmomentkapacitet enligt modell 1

Böjmomentkapaciteten, 𝑀𝑅𝑑, beräknades för fuktkvoterna för de tidpunkter som angavs i

Figur 3. Kapaciteten beräknades även med böjhållfastheten för klimatklass 1, 2 och 3

enligt Eurokod 5 (SIS 2004), se Tabell 8.

Tabell 8. Böjmomentkapacitet beräknat med modell 1 för olika tidpunkter vid uttorkningen.

Tidpunkt MRd [kNm]

Efter 1 dag 20,62

Efter 5 dagar 20,73

Efter 1 månad 20,99

Efter 4 månader 21,59

Efter 7 månader 22,31

Efter 10 månader 22,31

Efter 12 månader 22,31

Klimatklass 1 22,31

Klimatklass 2 22,31

Klimatklass 3 18,12

Page 31: Examensarbete i byggteknik

19

5.2.2 Böjmomentkapacitet enligt modell 2

När modell 2 användes beräknades den kritiska böjmomentkapaciteten, 𝑀𝑅𝑑, för den

yttersta punkten på skivan, där hävarmen var som störst, se Tabell 9Tabell 9. Kapaciteten

efter 12 månader var drygt 2 kNm mindre än för klimatklass 1 och 2.

Tabell 9. Böjmomentkapacitet beräknat med modell 2 samt för de olika klimatklasserna för olika tidpunkter

vid uttorkningen.

Tidpunkt MRd [kNm]

Efter 1 dag 8,78

Efter 5 dagar 10,73

Efter 1 månad 13,21

Efter 4 månader 15,50

Efter 7 månader 16,82

Efter 10 månader 19,01

Efter 12 månader 20,63

Klimatklass 1 22,31

Klimatklass 2 22,31

Klimatklass 3 18,12

5.2.3 Bjälklagets maximala längd

En jämförande beräkning av bjälklagets maximala längd gjordes genom att använda

modell 1 och 2 för fuktkvoterna enligt Figur 3, se Tabell 10. Den maximala längden

beräknat med modell 2 var 30 cm kortare än beräknat med klimatklass 1 och 2.

Tabell 10. Maximal längd beräknat med modell 1 och 2 för olika tidpunkter vid uttorkningen.

Maximal längd [m]

Tidpunkt Modell 1 Modell 2

Efter 1 dag 6.83 4,46

Efter 5 dagar 6.85 4,93

Efter 1 månad 6.89 5,47

Efter 4 månader 7.00 5,47

Efter 7 månader 7,10 6,17

Efter 10 månader 7,10 6,56

Efter 12 månader 7,10 6,83

Klimatklass 1 7.10

Klimatklass 2 7.10

Klimatklass 3 6.40

Page 32: Examensarbete i byggteknik

20

5.2.4 Största möjliga last på bjälklaget

Den största möjliga lasten som kan verka på bjälklaget innan brott beräknades med

modell 1 och 2 för fuktkvoterna enligt Figur 3, se Tabell 11. Bjälklagets längd var 5 m

och dess bredd 1 m.

Tabell 11. Maximal last beräknat med modell 1 och 2 för olika tidpunkter vid uttorkningen.

Maximal last [kN/m]

Tidpunkt Modell 1 Modell 2 Differens [%]

Efter 1 dag 6.60 2,81 235

Efter 5 dagar 6.64 3,44 193

Efter 1 månad 6.72 4,23 159

Efter 4 månader 6.91 4,23 163

Efter 7 månader 7.14 5,38 133

Efter 10 månader 7.14 6,08 117

Efter 12 månader 7.14 6,60 108

Klimatklass 1 7.14

Klimatklass 2 7.14

Klimatklass 3 5.80

5.3 Dimensionering av bjälklag i bruksgränstillstånd Ett bjälklag dimensionerades i bruksgränstillståndet med 𝑘𝑑𝑒𝑓 beräknat med modell 1

samt med 𝑘𝑑𝑒𝑓 för klimatklass 1, 2 och 3, se Tabell 12. Fuktkvoterna som användes var

från Figur 4. Nedböjningen för klimatklass 3 översteg det tillåtna värdet med 2

millimeter, medan nedböjningen för mätning 1 och 2 liknade den för klimatklass 2.

Tabell 12. Nedböjning och 𝑘𝑑𝑒𝑓.

𝒌𝒅𝒆𝒇 Nedböjning [mm]

Klimatklass 1 0,85 15,5

Klimatklass 2 1,10 17,0

Klimatklass 3 2,00 22,3

Mätning 1 1,30 18,2

Mätning 2 1,06 16,7

Största tillåtna nedböjning 20,0

5.4 Dimensionering av vägg i brottgränstillståndet Utnyttjandegraden för en vägg beräknades med hjälp av modell 1 och 2 enligt ekvation

(16), se Tabell 13. Väggen beräknades för samma skiva som användes i studie A

(McClung et al. 2013). Fuktkvoterna som användes var desamma som i Figur 3.

Utnyttjandegraden för modell 2 var efter dag 1 nästan fyra gånger så stor som för modell

2, medan de båda modellerna gav liknande resultat för fuktkvoterna mätta efter 12

månader.

Page 33: Examensarbete i byggteknik

21

Tabell 13. Utnyttjandegrad av väggens bärande förmåga för olika tidpunkter vid uttorkningen.

Utnyttjandegrad [%]

Tidpunkt Modell 1 Modell 2

Efter 1 dag 12,5 47,1

Efter 5 dagar 12,4 34,7

Efter 1 månad 12,2 25,4

Efter 4 månader 12,0 20,0

Efter 7 månader 11,5 17,7

Efter 10 månader 11,5 15,6

Efter 12 månader 11,5 13,8

5.5 Dimensionering av anslutning mellan vägg och bjälklag Dimensionering av ett bjälklag gjordes med hänseende till risken för tryckdeformation

vid anslutningen till väggen. Bjälklaget som dimensionerades var samma som i Figur 3.

Utnyttjandegraden beräknades med modell 1 och 2 enligt ekvation (17), se Tabell 14.

Utnyttjandegraden för modell 2 var efter 1 dag nästan tre gånger den för modell 1, medan

resultaten skiljde 1 % efter 12 månader.

Tabell 14. Utnyttjandegrad av tryckhållfastheten för bjälklag 1 för olika tidpunkter vid uttorkningen.

Utnyttjandegrad [%]

Tidpunkt Modell 1 Modell 2

Efter 1 dag 7,2 21,4

Efter 5 dagar 7,2 16,6

Efter 1 månad 7,0 12,8

Efter 4 månader 6,9 10,5

Efter 7 månader 6,6 9,5

Efter 10 månader 6,6 8,6

Efter 12 månader 6,6 7,7

Page 34: Examensarbete i byggteknik
Page 35: Examensarbete i byggteknik

23

6 Analys

I följande kapitel analyseras resultaten med utgångspunkt i den teori som listats i tidigare

kapitel.

6.1 Dimensionerande böjhållfasthet När modell 1 användes för att beräkna den dimensionerande böjhållfastheten blev

resultatet nästan samma för de olika tidpunkterna, se Tabell 6. Böjhållfastheten blev

minst när 𝑘𝑚𝑜𝑑 för klimatklass 3 användes. Hållfastheten var densamma från 7 månader

beräknat med modell 1 samt med klimatklass 1 och 2.

Den dimensionerande böjhållfastheten beror på faktorn 𝑘𝑚𝑜𝑑. Eftersom 𝑘𝑚𝑜𝑑 inte

varierade mycket för de beräknade fuktkvoterna, blev inte heller förändringen i

böjhållfastheten stor. Det beror delvis på att endast få delar av skivan tillhörde

klimatklass 3 samt att 𝑘𝑚𝑜𝑑 inte skiljer sig mellan klimatklasserna 1 och 2. Beräkning av

böjhållfastheten med modell 1 gav ett mer varierat resultat än med Eurokod 5 (SIS 2004),

men på grund av att 𝑘𝑚𝑜𝑑 beräknats som ett medelvärde för hela skivan varierade inte

hållfastheten mycket mellan de olika mätningarna.

När modell 2 användes varierade den dimensionerande böjhållfastheten från 6,65 MPa för

dag 1, till 15,62 MPa efter ett år, se Tabell 7. Att resultaten skiljer sig så mycket från

modell 1 beror på att böjhållfastheten har beräknats för den yttersta punkten på skivan,

där fuktkvoten varierade mest. Beräkningen påverkas därför främst av fuktkvoten i det

yttersta skiktet.

6.2 Dimensionering av bjälklag i brottgränstillståndet Eftersom bjälklagen endast beräknades med egentyngd och nyttig last blev STR(b)

dimensionerande. Vind- eller snölast beaktades inte i detta arbete.

6.2.1 Böjmomentkapaciteten

Böjmomentkapaciteten beror på den dimensionerande böjhållfastheten, se ekvation (10).

Resultaten för de båda beräkningsmodellerna förhåller sig därför på samma sätt som

förklarats i kapitel 6.1.

Böjmomentkapaciteten för dag 1 beräknat med modell 1 var lika stor som beräknat med

modell 2 efter 12 månader, se Tabell 8 och Tabell 9. Kapaciteten för dag 1 beräknat med

modell 2 var drygt en tredjedel som för dag 1 med modell 1. Enligt modell 2 fås en

väldigt reducerad hållfasthet vid höga fuktkvoter efter till exempel exponering för

nederbörd och snö. Att värdena skiljer sig så mycket kan tolkas som att modell 1 och

därmed Eurokod 5 resulterar i för stor hållfasthet, medan modell 2 dimensionerar mer

restriktivt.

6.2.2 Bjälklagets största möjliga längd

Ett tydligt sätt att demonstrera hur fuktkvoten påverkar böjmomentkapaciteten är att

beräkna hur långt bjälklaget som längst kunde vara förutsatt att den enda parametern som

förändrades var fuktkvoten. Som syns i Tabell 10 skiljer den maximala längden beräknat

med modell 1 inte mer än drygt 30 cm från dag 1 till efter 12 månader. När modell 2

användes varierade längden drygt 2,5 m från dag 1 till ett år senare. Alla tidpunkter

visade en kortare spännvidd i modell 2 jämfört med modell 1. Det resultatet var väntat

med tanke på den stora variationen i böjmomentkapacitet.

Page 36: Examensarbete i byggteknik

24

6.2.3 Största möjliga last på bjälklaget

Ett annat sätt att visa modellernas tillämpningsmöjlighet gjordes genom att beräkna den

största möjliga lasten med båda modellerna, se Tabell 11. Även i denna tabell ses att

modell 1 ger rätt lika resultat för alla fuktkvoter, medan modell 2 ger resultat som skiljer

sig mycket från dag 1 till efter 12 månader. Kapaciteten är mer än dubbelt så stor för

mätningen vid 12 månader än vad den är för dag 1 enligt modell 2, samtidigt som alla

värden ligger tydlig under värden från modell 1.

6.3 Dimensionering av bjälklag i bruksgränstillstånd Dimensioneringen av bjälklaget i bruksgränstillståndet gjordes enbart med modell 1

eftersom modell 2 inte beräknar faktorn 𝑘𝑑𝑒𝑓. Resultaten i Tabell 12 visar att 𝑘𝑑𝑒𝑓

beräknat med modell 1 för båda mätningarna i Figur 4 liknar 𝑘𝑑𝑒𝑓 för klimatklass 2. Även

när nedböjningen beräknades var resultatet för klimatklass 2 liknande det för modell 1.

Det är intressant att nedböjningen beräknad för klimatklass 3 inte hade klarat kravet på

största tillåtna nedböjning, medan modell 1 klarade kravet med 2 mm marginal för den

fuktigaste mätningen. Klimatklass 3 gäller för fuktkvoter över 20 % och den första

mätningen i Figur 4 visade att bjälklaget hade fuktkvoter över 20 % för de översta

40 mm. Enligt modell 1 beräknades 𝑘𝑑𝑒𝑓 som ett medelvärde för hela skivan som därför

blev mycket mindre än för klimatklass 3, även om de yttersta millimetrarna av skivan

hade större fuktkvot än 20 %.

6.4 Dimensionering av vägg i brottgränstillståndet Bärförmågan och utnyttjandegraden för knäckning beräknades med modell 1 och 2, se

Tabell 13. Resultaten varierade liknande dem för böjmomentkapaciteten. Modell 1 visade

inga större variationer, medan modell 2 varierade mycket. Båda modellerna klarade med

god marginal kraven på belastningen för den antagna lasten, men modell 1 hade återigen

större marginal än modell 2.

6.5 Dimensionering av anslutning mellan vägg och bjälklag Bärförmågan vinkelrätt fibrerna kontrollerades genom att beräkna situationen för

bjälklaget vid anslutningen med väggen, se Tabell 14. Återigen syns ett samlat resultat för

modell 1, medan modell 2 visar en mer än fördubblad hållfasthet efter 12 månader

jämfört med efter 1 dag.

Det är värt att uppmärksamma att utnyttjandegraden enligt modell 1 var konstant från och

med 7 månader, medan utnyttjandegraden enligt modell 2 fortsatte att minska för varje

tidpunkt som fuktkvoten mättes. Det stämmer överens med studien som Brandner (2018)

gjorde, som visade att tryckhållfastheten vinkelrätt fibrerna varierar även när fuktkvoten

närmar sig 12 %.

6.6 Konsekvenser för variabel fuktkvot över tid Fuktkvoterna i beräkningarna varierade över tid och över skivans djup. Vid vissa punkter

hade delar av skivan från studie A (McClung et al. 2013) fuktkvoter som vida översteg

20 % under de första dagarna, den första dagen översteg den till och med

fibermättnadspunkten. Vid häftiga regn riskerar de yttersta sikten på KL-träet att uppnå

liknande fuktkvoter och dimensioneringen bör göras med detta i åtanke.

Riggio och Schmidt (2019) konstaterade att det råder ett mikroklimat på

byggarbetsplatser på grund av att vissa delar blir skuggade och skyddade från vind medan

andra är exponerade för sol och vind. Det är därför svårt att på förhand uppskatta hur

fuktkvoterna i stomelementen kommer fördelas.

Page 37: Examensarbete i byggteknik

25

Modell 2 visar att fuktkvoten har stor påverkan på hållfastheten och bärförmågan. Det

visar på vikten av att noggrant fundera över klimatklass vid dimensionering av

träbyggnader. Det mest effektiva sättet att hindra fukt från att påverka hållfastheten är att

använda väderskydd vid uppförandet av en byggnad. Det har även andra fördelar som

ökad komfort för byggnadsarbetarna och minskad risk för mögel och röta.

Page 38: Examensarbete i byggteknik
Page 39: Examensarbete i byggteknik

27

7 Diskussion

I detta kapitel diskuteras rapportens innehåll, uppdelat i underkategorierna teori och

metod samt resultat.

7.1 Teori- och metoddiskussion Detta examensarbete bygger på en kombination av tidigare utförda studier och egna

beräkningsmodeller. Eftersom det inte var möjligt att göra egna fuktmätningar användes

bland annat en studie av McClung et al. (2013) som ingångsvärden för att visa de olika

resultat som beräkningsmodellerna genererar.

Problemet med att inte utföra egna mätningar var att hitta data som passade efter svenska

förhållanden. De flesta studier som hittades var utförda i USA eller Kanada, där KL-

skivorna oftast är gjorda med inhemska träsorter som har andra egenskaper än svensk

gran och tall. Även väderförhållandena skiljer sig åt mellan de olika länderna, vilket gör

att mätstudier gjorda i Nordamerika har utförts under andra förutsättningar och därför

eventuellt inte speglar svenska förhållanden.

Litteraturstudien gjordes dels för att finna information om fuktkvoter i träkonstruktioner,

dels för att förstå hur trä påverkas av fukt. I Eurokod 5 definieras tre klimatklasser, men

hållfasthetsmodifieringsfaktorn 𝑘𝑚𝑜𝑑 är densamma för klimatklass 1 och 2. Dessa två

klimatklasser är giltiga i spannet från 0 % till 20 % fuktkvot, vilket är ett område där trä

är känsligt för förändringar i fuktkvot (Blaß & Sandhaas 2017; Dinwoodie 2000;

Kollmann 1982). Det var därför intressant att göra jämförande beräkningar som visar på

hur fuktkvoten teoretiskt sett påverkar hållfastheten. Studien hade dragit stor nytta av att

utföra brottstester för att se hur väl den teoretiska hållfastheten beräknad i respektive

modell stämmer överens med den faktiska hållbarheten i KL-skivorna.

7.2 Resultatdiskussion Resultaten från beräkningsmodellerna visar att fuktkvoten har en stor påverkan på

dimensioneringsresultaten. För att få ett tillförlitligt resultat måste därför en grundlig

mätning av fuktkvoter göras. Ju fler mätpunkter som används, desto säkrare blir

interpoleringen och därmed fuktkvotsfördelningen.

Modell 1 gav resultat som inte skiljde sig mycket från när beräkningar utförts enligt

Eurokod 5, framförallt med klimatklass 1 och 2. Det beror på att i modell 1 beräknades

faktorn 𝑘𝑚𝑜𝑑 som ett medelvärde för hela skivan och klimatklasserna 1 och 2 gäller till

20 % fuktkvot. Beräkningssättet med hållfasthetsmodifieringsfaktorn är inte anpassad för

att beräknas för mindre fraktioner av skivan, vilket gör att modell 1 inte skiljer sig mycket

från Eurokod 5.

Modell 2 gav väldigt detaljerade beräkningar och var användbar framförallt vid beräkning

av bärförmågan i brottgränstillståndet. På grund av att beräkningen är så precis, ställs det

höga krav på att fuktkvoterna som används i beräkningarna är korrekta. I praktiken

dimensionerade modell 2 endast efter fuktkvoten i den yttersta delen av skivan, vilket gör

att hållfastheten påverkas väldigt mycket av ytlig fukt. Den påförda lasten får inte

överstiga kapaciteten i en enda punk på skivan, vilket gör modellen relevant för kontroll

av bärförmågan i ett bjälklag.

Resultaten av beräkningarna visar att modell 1 och Eurokod 5 riskerar att leda till

underdimensionering när KL-träet är mycket fuktigt, framförallt när delar av skivan har

fuktkvoter som överstiger 20 % och delar som understiger 20 %. En konstruktör kan

förutsätta att ett bjälklag ska konstrueras efter klimatklass 1, eftersom byggnaden ska vara

Page 40: Examensarbete i byggteknik

28

uppvärmd och väderskyddad när den i bruk. Under tiden som byggnaden uppförs kan

KL-skivorna däremot utsättas för så mycket fukt att hållfastheten drastiskt minskar. Som

kan ses i Tabell 11 är det stor skillnad på hur stor last bjälklaget kunde utsättas för enligt

modell 2. Om däremot en låg hållfasthet inte har en avgörande roll under byggfasen, till

exempel på grund av låga laster, kan den nedsatta hållfastheten eventuellt tillåtas om en

efterföljande uttorkningen kan ske.

Som nämnts tidigare skulle det vara av intresse att kombinera beräkningarna utförda

enligt modell 1 och 2 med praktiska tester för att undersöka hur väl den teoretiska

hållfastheten stämmer överens med den verkliga. Det skulle också vara intressant att

utveckla modell 2 så att den tar i beaktande hur krypning påverkar dimensionering i

bruksgränstillståndet.

Page 41: Examensarbete i byggteknik

29

8 Slutsatser

Genom att använda beräkningsmodellerna som framtagits i examensarbetet kan

dimensionering av stomelement i KL-trä göras på ett sätt som på detaljerad nivå tar

hänsyn till fuktkvoten i träet. En förutsättning är att korrekta fuktkvoter på olika djup i

KL-elementet anges som parametrar i ekvationen.

Modell 1 ger noggranna resultat eftersom fuktkvoten för hela skivans djup tas med i

beräkningen. Även om fuktkvoten skiljde sig mycket i KL-träet, blev resultaten liknande

det med Eurokod 5. Det beror på att klimatklasserna som är bestämda i Eurokod 5 är

giltiga för stora spann och således inte är anpassade för att beräknas på den detaljerade

nivån som sker i modell 1. Modell 1 ger därför ingen större fördel jämfört med den ännu

enklare beräkningen enligt Eurokod 5.

Modell 2 resulterade däremot i att hållfastheten varierade mycket för de olika

fuktkvoterna och över tiden. I det beräknade fallet var endast hållfastheten för den yttersta

punkten på skivan avgörande, även om varje punkt i skivan kontrollerades. I teorin kan

även skikt längre in i elementet vara avgörande, framförallt vid snabb uttorkning.

Studien kan med fördel följas upp med brottstester för att undersöka hur väl

dimensionering med modell 1 och 2 stämmer överens med knäckning utfört i

laboratoriemiljö.

Page 42: Examensarbete i byggteknik
Page 43: Examensarbete i byggteknik

31

Referenslista

Blaß, H. J. & Sandhaas, C. (2017). Timber Engineering – Principles for Design.

Karslruhe: KIT Scientific Publishing.

Brandner, R. (2018). Cross laminated timber (CLT) in compression perpendicular to

plane: Testing, properties, design and recommendations for harmonizing design

provisions for structural timber products. Engineering Structures, 171, ss. 944–960. doi:

10.1016/j.engstruct.2018.02.076

Dinwoodie, J. M. (2000). Timber: its nature and behavior. 2. uppl., Taylor & Francis

LTD.

Gereke, T., Niemz, P. (2009). Moisture-induced stresses in spruce cross-laminates.

Engineering Structures, 32(2), ss. 600-606. doi:10.1016/j.engstruct.2009.11.006

Kläusler, O. Clauß, S. Lübke, L. Trachsel, J. Niemz, P. (2013). Influence of moisture on

stress-strain behavior of adhesives used for structural bonding of wood. International

Journal of Adhesion and Adhesives, 44, ss. 57-65. doi:10.1016/j.ijadhadh.2013.01.015

[2020-04-20]

Kollmann, F. (1982). Technologie des Holzes und der Holzwerkstoffe: Anatomie und

Pathologie, Chemie, Physik, Elastizität und Festigkeit, Bd 1. 2 uppl., Berlin: Springer-

Verlag.

Mcclung, R. Ge, H. Straube, J. & Wang, J. (2013). Hygrothermal performance of cross-

laminated timber wall assemblies with built-in moisture: field measurements and

simulations. Building and Environment, 71, ss. 95-110.

doi:10.1016/j.buildenv.2013.09.008 [2020-04-20]

Nordström, J-E P. & Sandberg, D. (1994). The Rheology of Wood – Considerations of the

Mechano-Sorptive Creep. http://lnu.diva-

portal.org/smash/get/diva2:540943/FULLTEXT01.pdf [2020-04-13]

Schmidt, E. & Riggio, M. (2019). Monitoring Moisture Performance of Cross-Laminated

Timber Building Elements during Construction. Buildings, 9(6), ss. 144.

doi:10.3390/buildings9060144

Stora Enso. (2020). Get facts. https://www.storaenso.com/en/products/wood-

products/massive-wood-construction/clt/get-facts [2020-04-08]

Svenskt Trä. (2017). KL-trähandboken. Stockholm: Svenskt Trä.

Svenskt trä. (2020a). Småhus och flervåningshus. https://www.svenskttra.se/bygg-med-

tra/byggande/olika-trakonstruktioner/smahus-och-flervaningshus/ [2020-04-07]

Svenskt trä. (2020b). Egenskaper hos barrträ. https://www.svenskttra.se/trafakta/allmant-

om-tra/fran-timmer-till-planka/egenskaper-hos-barrtra/ [2020-04-13]

Swedish Standards Institute (SIS) (2002a). SS‐EN 1990 Eurokod – Grundläggande

dimensioneringsregler för bärverk. Stockholm: SIS.

Swedish Standards Institute (SIS) (2002b). SS‐EN 1991‐1‐1 Eurokod 1: Laster på

bärverk – Del 1‐1: Allmänna laster – Tunghet, egentyngd, nyttiga laster för byggnader.

Stockholm: SIS.

Page 44: Examensarbete i byggteknik

32

Swedish Standards Institute (SIS) (2004). SS‐EN 1995‐1‐1:2004 Eurokod 5:

Dimensionering av träkonstruktioner – Del 1‐1: Allmänt - Gemensamma regler och regler

för byggnader. Stockholm: SIS.

Träguiden. (2020). https://www.traguiden.se/om-tra/materialet-tra/traets-egenskaper-och-

kvalitet/mekaniska-egenskaper1/traets-styrka-och-styvhet/ [2020-04-16]

Page 45: Examensarbete i byggteknik

Fakulteten för teknik

391 82 Kalmar | 351 95 Växjö Tel 0772-28 80 00

[email protected]

Lnu.se/fakulteten-for-teknik