47
1 EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE PETRÓLEO CRUDO DE TRES CEPAS DE Pseudomonas aeruginosa Por: ANA CATALINA LARA RODRIGUEZ Trabajo de grado propuesto como cumplimiento parcial de los requisitos para optar por el título de: MAESTRÍA EN CIENCIAS BIOLÓGICAS Área: Microbiología Directora: Martha Vives Facultad de Ciencias Departamento de Ciencias Biologicas Universidad de los Andes Noviembre 27, 2015

EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

1

EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE PETRÓLEO CRUDO DE TRES CEPAS DE Pseudomonas aeruginosa

Por:

ANA CATALINA LARA RODRIGUEZ

Trabajo de grado propuesto como cumplimiento parcial de los requisitos para optar por el título de:

MAESTRÍA EN CIENCIAS BIOLÓGICAS

Área: Microbiología

Directora:

Martha Vives

Facultad de Ciencias

Departamento de Ciencias Biologicas

Universidad de los Andes

Noviembre 27, 2015

Page 2: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

2

RESUMEN.

Pseudomonas aeruginosa es una bacteria Gram negativa, ubicua, y con un metabolismo altamente versátil que frecuentemente se aísla de muestras contaminadas con petróleo. Es especialmente efectiva para remover alcanos entre hidrocarburos (HC) 16 y 26 ya que posee los genes AklB1 y AlkB2 que son alcanohidroxilasas que funcionan entre HC12 y HC24. En el presente estudio, se probó la remoción de alcanos para tres diferentes cepas (cepas ambientales M8A1 y M8A4, y cepa clínica de referencia PAO1) y se encontraron diferencias importantes en la remoción: M8A4 removió en promedio un 82% de alcanos, PA01 un 57% y M8A1 un 42%. Paralelamente, un estudio en curso mostró que todas las cepas poseen los mismos genes para la degradación de hidrocarburos de la fracción de alcanos del petróleo, por lo que las diferencias en el desempeño podrían ser dadas por factores diferentes al nivel genético que afecta la degradación, como lo son diferencias en transcripción, diferencias en mecanismos de regulación genética, diferencias en producción de biosurfactantes y diferencias en la superficie de contacto (biopelícula) con el sustrato.

La superficie de contacto entre las células y el hidrocarburo está dada por la biopelícula que crece en la interfaz sustrato aire o sustrato agua, y la eficiencia en la construcción de esta biopelícula puede afectar las tasas de difusión de los hidrocarburos al interior de la célula, ya que la creación de biopelículas por parte de Pseudomonas aeruginosa se relaciona con aumentos en la hidrofobicidad de la superficie celular, lo que aumenta la interacción directa de las células con el hidrocarburo resultando en un aumento de la tasa de difusión. Pseudomonas aeruginosa es capaz de utilizar hidrocarburos como fuente de carbono porque produce biosurfactantes que le permiten solubilizarlos al interior de biopelículas que están en contacto con el petróleo.

La información sobre el comportamiento de biopelículas de cepas ambientales de P. aeruginosa es poca y es menor aún la información disponible de su comportamiento durante procesos de degradación de hidrocarburos, principalmente debido a la dificultad que existe al recoger material biológico de la interface agua/petróleo donde la biopelícula de estos microorganismos realiza la degradación activa del hidrocarburo. Para realizar estudios de expresión se estandarizó una técnica para la recolección de biopelículas que crecen directamente sobre petróleo.

Utilizando el mismo montaje de los estudios de expresión se evaluó las diferencias en la producción de la superficie de contacto (biopelícula) con microscopia confocal de fluorescencia; sin embargo, los resultados no fueron concluyentes debido a la autofluorescencia del petróleo y de las bacterias. Se realizaron además ensayos de caracterización de propiedades asociadas con la formación de biopelículas, como la formación de colonias antes y después de estar en presencia de petróleo, el movimiento swarming, twitching y swimming. M8A1 muestra morfologías diferentes a las de M8A4 y PAO1 en cuanto a la arquitectura de la biopelÍcula, formación de colonias y movimientos;factores que pueden estar asociados con las diferencias observadas en la remoción de alcanos pues una formación de biopelícula deficiente afecta de forma negativa la tasa de difusión de los mismos.

La técnica utilizada para visualizar las biopelÍculas sobre las gotas de petróleo nos permitió aislar RNA y detectar la expresión de genes asociados con degradación de alcanos y factores de virulencia en las biopelículas sobre crudo utilizando como control biopelículas sobre aceite de girasol. Se encontró que en las biopelículas que crecen sobre petróleo se expresan todos los genes evaluados mientras que en las biopelículas de aceite de girasol los genes asociados a rutas de degradación de alcanos, las bombas de excreción MexCD-OprJ, MExX-oprm asociado a resistencia a antibióticos y los genes ExoS y ExoT de proteínas secretadas por el sistema de secreción tipo 3 no se detectan.

Page 3: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

3

La mayoría de los determinantes de patogenicidad (factores de virulencia) fueron expresados tanto en biopeliculas asociadas a petróleo y de aceite vegetal. Estos genes están bajo la regulación de los sistemas quorum sensing que se activan durante la formación de biopelículas y puede que no cumplan ninguna función directa en la degradación aunque es adecuado pensar que pueden estar cumpliendo alguna función aún desconocida. La expresión del T3SS y bombas de excreción únicamente en las biopelículas crecidas en petróleo genera muchos interrogantes.

La información sobre biopelículas de cepas ambientales de P. aeruginosa y su comportamiento en procesos de degradación de hidrocarburos es escasa. Este estudio aporta información nueva sobre el comportamiento de las biopelículas de cepas ambientales durante procesos de degradación de petróleo, en los que se evidencia la respuesta de estrés, la transcripción de genes asociados a la degradación y la expresión de determinantes de patogenicidad. Además, contribuye con una técnica para evaluar la formación de biopelículas sobre petróleo y abre la puerta a futuros estudios cuantitativos de expresión en biopelículas y optimizar los procesos de biorremediación

Page 4: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

4

Contenido

RESUMEN. ....................................................................................................................................... 2

INTRODUCCION. ............................................................................................................................. 6

OBJETIVO GENERAL. ..................................................................................................................... 10

OBJETIVOS ESPECÍFICOS. .............................................................................................................. 10

MATERIALES Y METODOS ............................................................................................................. 11

1. Microorganismos: Cepas de Pseudomona aeruginosa ................................................... 11

2. Remoción de alcanos ........................................................................................................ 11

3. Estandarización de la formación de biopelícula sobre gota de petróleo. ...................... 12

4. Morfología de Biopelículas............................................................................................... 13

5. Determinación de características morfológicas y funcionales ........................................ 14

6. Expresión de Genes de degradación y de virulencia en biopelículas. ............................ 15

RESULTADOS ................................................................................................................................. 17

1. Remoción de Alcanos ....................................................................................................... 17

2. Estandarización de la formación de biopelícula sobre gota de petróleo. ...................... 18

3. Morfologia de Biopelículas............................................................................................... 22

4. Determinación de características morfológicas y funcionales........................................ 25

5. Expresión de Genes de degradación y virulencia en biopelículas. ................................. 27

DISCUSIÓN .................................................................................................................................... 30

CONCLUSIONES ............................................................................................................................. 34

BIBLIOGRAFIA ............................................................................................................................... 35

ANEXOS ......................................................................................................................................... 40

Page 5: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

5

Lista de Figuras

FIGURA 1: PORCENTAJE DE REMOCIÓN DE ALCANOS ___________________________________________ 17 FIGURA 2: PETRÓLEO INMOVILIZADO EN GOTAS DE ALGINATO 4% ________________________________ 19 FIGURA 3: BACTERIAS CRECIENDO SOBRE LA SUPERFICIE DE LAS PERLAS DE PETRÓLEO. _______________ 19 FIGURA 4: BACTERIAS COLONIZANDO BOLSILLOS DE PETRÓLEO EN PERLAS DE ALGINATO. _____________ 20 FIGURA 5: PETRÓLEO INMOVILIZADO EN AGAROSA 2% _________________________________________ 20 FIGURA 6: MONTAJES UTILIZANDO CAPILARES DE VIDRIO _______________________________________ 21 FIGURA 7: MONTAJE DE GOTAS DE PETRÓLEO. ________________________________________________ 21 FIGURA 8: RECUPERACIÓN DE LA BIOPELÍCULA SOBRE Y ALREDEDOR DE LA GOTA DE PETRÓLEO ________ 22 FIGURA 9: DIFERENCIAS DE MORFOLOGÍA DE LA BIOPELÍCULA DE HIDROCARBUROS DE LAS TRES CEPAS __ 23 FIGURA 10: FOTOGRAFÍA UTILIZANDO SYTO9 DE LA BIOPELÍCULA DE PSEUDOMONAS AERUGINOSA PAO1

CRECIENDO SOBRE UNA GOTA DE PETRÓLEO. _________________________________________________ 24 FIGURA 11: FOTOGRAMA DEL MODELO 3D DE LAS BACTERIAS (PAO1) SOBRE EL PETRÓLEO MOSTRANDO

BACTERIAS AL INTERIOR DE LA GOTA DE PETRÓLEO. ____________________________________________ 24 FIGURA 12: DEFINICIÓN DE VARIABLES DE MORFOLOGIA DE COLONIA Y MOVILIDAD. _________________ 25 FIGURA 13: EXPRESIÓN DE GENES DE VIRULENCIA Y DEGRADACIÓN PARA RNA PROVENIENTE DE

BIOPELÍCULAS DE PETRÓLEO Y ACEITE DE GIRASOL. ____________________________________________ 27 FIGURA 14: CAMBIOS EN LA SECUENCIA DE AMINOÁCIDOS DE PILB PARA M8A1 FRENTE A PAO1 Y M8A4 _ 28 FIGURA 15: PREDICCIÓN ESTRUCTURAL DE PILB PARA M8A4 Y M8A1 BASADO EN SECUENCIA DE

AMINOACIDOS __________________________________________________________________________ 28 FIGURA 16: SIMILITUD ESTRUCTURAL DE LAS QUINOLONAS CON HIDROCARBUROS DE PETRÓLEO. ______ 32 FIGURA 1 (Anexo): CROMATOGRAMAS DE M8A4 PARA LAS SEMANAS 1, 4 Y 8. ______________________ 40 FIGURA 2 (Anexo): CROMATOGRAMAS DE M8A1 PARA LAS SEMANAS 1, 4 Y 8. ______________________ 41 FIGURA 3 (Anexo): CROMATOGRAMAS DE PAO1 PARA LAS SEMANAS 1, 4 Y 8. _______________________ 42 FIGURA 4 (Anexo): CAMBIOS EN LA MORFOLOGIA DE COLONIA DE PAO1 DESPUES DE ESTAR 7 DIAS EN

PETRÓLEO. _____________________________________________________________________________ 44 FIGURA 6 (Anexo): CAMBIOS EN LA MORFOLOGIA DE COLONIA DE M8A1 DESPUES DE ESTAR 7 DIAS EN

PETRÓLEO ______________________________________________________________________________ 45

Page 6: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

6

INTRODUCCIÓN.

Las biopelículas se encuentran en toda la naturaleza y ocurren en multitud de diferentes interfaces (liquido-solido, liquido-líquido y líquido-aire)(Dasgupta, Ghosh, & Sengupta, 2013; Macedo, Kuhlicke, Neu, Timmis, & Abraham, 2005; Rühs, Böcker, Inglis, & Fischer, 2014; Solano, Echeverz, & Lasa, 2014). Las bacterias forman biopelículas principalmente para defenderse del estrés ambiental como lo son los rayos UV o el choque osmótico(Hall-Stoodley, Costerton, & Stoodley, 2004; Parsek & Greenberg, 2005). El desarrollo de las biopelículas se lleva a cabo en varios pasos, desde la unión de las bacterias al sustrato hasta la separación de las bacterias y la colonización de nuevos sutratos(Parsek & Greenberg, 2005; Persat, Inclan, Engel, Stone, & Gitai, 2015; Stoodley, Sauer, Davies, & Costerton, 2002). La mayoría de las biopelículas bacterianas no son deseables ya que se forman en la superficie de los tubos de aguas potables o en superficies industriales y se convierten en la fuente de intoxicación o enfermedades en las poblaciones humanas o perdidas económicas en la industria(Stoodley et al., 2002).

En general, las biopelículas pueden ser definidas como comunidades de microorganismos que se encuentran asociados a una superficie abiótica. Están formadas por una sola especie de organismos o por múltiples (Costerton, Stewart, & Greenberg, 1999; Grimaud, 2010) pero en el ambiente, las biopelículas de una sola especie son escasas. Por el contrario en medicina las biopelículas de una sola especie son muy importantes porque suelen estar asociadas a equipos médicos y se convierten en un factor de riesgo importante para los pacientes (George O'Toole, Kaplan, & Kolter, 2000).

Pero las biopelículas también pueden tener un efecto positivo en los tratamientos de aguas y son claves para la ecología global. En biorremediación, las biopelículas bacterianas se utilizan para degradación de alcanos y compuestos aromáticos policíclicos. Bacterias capaces de formar biopelículas en la interface agua-crudo poseen diversos metabolitos que les permiten utilizar el crudo como fuente de carbono, estas bacterias forman biopelículas alrededor de las gotas de petróleo para optimizar su captura de carbono (Dasgupta et al., 2013; Macedo et al., 2005; Rühs et al., 2014). La efectividad de la formación de la biopelícula depende de la hidrofobicidad de la superficie celular, ya que bajo la mayoría de condiciones fisiológicas las interacciones electrostáticas son repulsivas (las bacterias y la mayoría de superficies poseen carga neta negativa) sin embargo, la adhesión biológica se ve facilitada por la complejidad de las superficies celulares (Pili, flagelos, diversidad de proteínas, polisacáridos y en el caso de las biopelículas sobre líquidos viscosos producción de biosurfactantes)(Rühs et al., 2014).

La producción de ramnolípidos en presencia de líquidos viscosos hace parte del primer paso de la formación de la biopelícula. Este primer paso se denomina acondicionamiento, su objetivo es generar cambios en el sustrato que permitan a las bacterias establecerse más fácilmente. La producción de ramnolípidos genera entonces cambios en la hidrofobicidad y en la tensión superficial crítica del sustrato (Dasgupta et al., 2013; George O'Toole et al., 2000; Rühs et al., 2014).

Los cambios en la tensión superficial crítica del sustrato permiten a las bacterias ingresar en la capa viscosa utilizando el mecanismo de difusión Eddy o difusión turbulenta (Rühs et al., 2014). En este caso hay una adsorción directa con el sustrato y la creación de una interface con niveles de hidrofobicidad, fluidez, humedad, emulsificación y solubilización intermedios entre el medio y el líquido viscoso. Esta interfaz permite a las bacterias iniciar la colonización del sustrato dando la señal para que un grupo de bacterias cambie su morfotipo de nadadoras/planctónicas a no nadadoras/biopelícula (Macedo et al., 2005).

Page 7: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

7

Poca información existe sobre biopelículas asociadas a petróleo crudo dado que el petróleo es un compuesto muy complejo y varia de un punto de extracción al otro, en general se prefiere simplificar los ensayos al evaluar el crecimiento en hidrocarburos sencillos o aceites como fuente de carbono. En modelos de aceite-agua el morfotipo de nadado libre facilita la difusión turbulenta utilizando flagelos como propulsores y mezcladores de los dos horizontes fluidos (Rühs et al., 2014); una vez la señal ambiental es dada, una o múltiples bacterias pierden su morfotipo de nadado libre - pierden los flagelos - y desarrollan un morfotipo con mayor expresión de pili, es aparente entonces que las células cambian de motilidad swimming a motilidad Twitching (Eric Deziel, Comeau, & Villemur, 2001; Drenkard & Ausubel, 2002; Klausen et al., 2003; GA O'Toole & Kolter, 1998). Estas células que han perdido el morfotipo de nadado son el inicio de una microcolonia. La presencia de esta microcolonia es la primera fase de la formación de la biopelícula(Grimaud, 2010; Klausen et al., 2003; Macedo et al., 2005).

La microcolonia que se establece produce un exopolisacárido llamado alginato, este alginato es utilizado como matriz extracelular de la biopelícula y da protección a la misma (George O'Toole et al., 2000; GA O'Toole & Kolter, 1998; Prigent-Combaret, Vidal, Dorel, & Lejeune, 1999; Selezska et al., 2012; Stoodley et al., 2002; Vallet et al., 2004; Vallet, Olson, Lory, Lazdunski, & Filloux, 2001; R. Waite et al., 2006).

P. aeruginosa muestra al menos tres fenotipos durante el ciclo de vida de una biopelícula: (a) planctónica, (b) biopelícula madura, y (c) dispersión. Estos fenotipos muestran patrones de expresión tan diferentes entre ellos, que son comparables a las diferencias que muestran especies diferentes del género Pseudomonas en estadios similares de crecimiento. (Drenkard & Ausubel, 2002; Sauer, Camper, Ehrlich, Costerton, & Davies, 2002; Stoodley et al., 2002).

Este modelo de formación de biopelícula es el comúnmente utilizado para todos los estudios y aunque se construyó sobre estudios con cepas clínicas, superficies solidas o aceites vegetales, es interesante pensar en la nueva información que pueda aportar el estudio de las biopelículas sobre las gotas de petróleo. La formación de una biopelícula es una respuesta fisiológica muy compleja que implica la interacción de múltiples rutas genéticas. El origen de una biopelícula es tan complejo que ha sido comparado con la estructura compleja de los tejidos en eucariota (George O'Toole et al., 2000).

La formación de biopelículas en Pseudomonas aeruginosa está regulada por quorum sensing (QS). Quorum sensing es uno de los mecanismos globales de regulación que P. aeruginosa utiliza para regular cientos de genes, entre ellos la mayoría de factores de virulencia, en respuesta al tamaño de la población (Schuster y Greenberg, 2006). El sistema de regulación QS mide la cantidad de individuos que rodea a una célula dada, está compuesto por dos circuitos interregulados relacionados llamados sistema las y sistema rhl que dependen de moléculas de N-Acil Homoserina Lactona (AHL) (Chugani & Greenberg, 2010; Diggle, Winzer, Lazdunski, Williams, & Camara, 2002). También participa en la regulación una molécula señal tipo quinolona y por otros reguladores transcripcionales y pos-transcripcionales (Yarwood et al., 2005, Schuster et al., 2003). El sistema las está compuesto por el activador transcripcional LasR y la sintetasa AHL LasI que controla la síntesis de N-3-oxo-dodecanoyl-homoserin lactona (3-oxo-C12-HSL). El sistema rhl consiste del regulador transcripcional RhlR y de la sintetasa AHL Rhl que controla la síntesis de N-butanoyl-homoserin lactona (C4-HSL). Dado que el complejo LasR-3-oxo-C12-HSL regula de forma positiva la transcripción de RhlR y Rhll, los dos sistemas se encuentran interconectados y el gen rhrlR depende no solo de LasR para su expresión sino también de Vfr y del mismo RhlR (Juhas et al., 2005). Además, Dong et al., en el 2005 encontraron que el regulador de respuesta PprB y el activador transcripcional VqsM son moduladores de los genes lasI, rhlI, rhlR entre otros.

Page 8: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

8

Se ha encontrado que además de la densidad poblacional la activación del circuito Las/Rhl es dependiente del medio de cultivo de la bacteria. Utilizando 40 diferentes condiciones de crecimiento en cultivos de flujo continuo Duan y Surette (Duan & Surette, 2007) mostraron que la expresión de lasR, lasI, rhlI y rhlR variaba en gran mediad dependiendo de si se trataba de medios de cultivo ricos o pobres en nutrientes. En medios pobres la transcripción de estos genes iniciaba más temprano que en medios ricos y no se halló correlación alguna entre la densidad poblacional y la expresión de genes QS, lo que indica que bajo las condiciones evaluadas, no había un pre-requisito de densidad poblacional para la expresión de dichos genes (Duan & Surette, 2007). Por lo que podemos afirmar que en P. aeruginosa muchos procesos fisiológicos dependen de QS pero QS no depende únicamente de la densidad celular. Muchos otros parámetros son necesarios y esos parámetros pueden cambiar con el medio que las células habitan, esto quiere decir que QS no solo es un sistema global de regulación, sino que es una respuesta adaptativa a un medio en cambio continuo (E. Deziel et al., 2004; Wilder, Diggle, & Schuster, 2011; Williams & Cámara, 2009).

Además de presentar QS, Pseudomonas aeruginosa posee una alta versatilidad metabólica con solo 5000 a 6000 genes (Alonso et al., 1999). Es aislada de forma repetitiva en estudios enfocados al aislamiento e identificación de microorganismos capaces de degradar hidrocarburos y es un patógeno oportunista (Obuekwe et al., 2009; Sobiecka et al., 2009; AL-Saleh et al., 2009).

Pocos genes son asociados de forma tradicional a la degradación de hidrocarburos, y su presencia puede ser utilizada como medida del potencial de degradación de un microorganismo o una muestra ambiental. La degradación de n-alcanos está asociada al grupo de genes alk (C16 a C26 genes alkB1 y alkB2) (Staijen, Hatzimanikatis, & Witholt, 1997), la degradación de catecol está asociada al gen xylE que codifica para catecol dioxigenasa (Okuta, Ohnishi, & Harayama, 1998), la degradación de hidrocarburos policíclicos aromáticos (PAH) está asociada a genes de dioxigenasas como naftaleno dioxigenasa nahAa (reductasa), nahAb (ferrodoxina), and nahAc (subunidad grande de dioxigenasa) (Daane, Harjono, Zylstra, & Haggblom, 2001); el operón xyl codifica genes de oxidación de tolueno (Farhadian, Vachelard, Duchez, & Larroche, 2008), genes nbz (nbzA, nbzB, nbzC) codifican para nitrobenceno nitrorreductasas, 2–aminofenol 1,6–dioxigenasa e hidroxilaminobenceno mutasa (Ju & Parales); finalmente, la degradación de fenol está asociada a genes de fenol hidroxilasa (PHs) (Caldwell, Garrett, Prince, & Suflita, 1998).

Dado su potencial de utilización en procesos de biorremediación pues presenta los genes alkB1 y alkb2, se han realizado estudios buscando diferenciar los aislamientos clínicos (“peligrosos”) de los ambientales (“inocuos”). Estos estudios han mostrado que no existe una diferencia detectable entre la virulencia de las cepas ambientales y las cepas clínicas asociada a la presencia de genes específicos de los determinantes de virulencia como lo son la resistencia a antibióticos por bombas de excreción (Mex, Opr), sistemas de secreción tipo 3 (ExoS y ExoT), pili tipo IV (PilB), flagelos (FliA), movilidad tipo swarming, swimming y Twitching (pilB, FliA, RhlA), varias proteasas (LasA, LasB, ToxA), ramnolipidos (Rhl) o hemolisinas (ToxA), elastasas (LasA) (A Alonso, Campanario, & Martinez, 1999; Ana Alonso, Rojo, & Martínez, 1999; Feltman et al., 2001; Vives-Flórez & Garnica, 2006). Pero estos estudios se centran en la utilización de cepas de origen clínico. Estos determinantes de virulencia están asociadas a la colonización de células eucariotas, pues los estudios se centran en cepas y/o ambientes clínicos, y muy poco se conoce sobre su función en otros ambientes de crecimiento.

En general los estudios de degradación de hidrocarburos se realizan en modelos simplificados agregando al medio únicamente uno de los compuestos anteriormente nombrados y sobre los cuales se describió la ruta metabólica (fenol, tolueno, naftaleno, catecol, n-alcanos hasta C30). Los modelos simplificados permiten la evaluación de rutas metabólicas precisas, sin embargo, la

Page 9: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

9

complejidad del petróleo crudo puede otorgar condiciones de crecimiento muy diferentes a aquellas evaluadas en los modelos simplificados y las respuestas metabólicas o fisiológicas de los organismos pueden cambiar.

Es importante entonces contar con una metodología que permita la recolección de material genético de buena calidad de muestras directamente contaminadas con petróleo para poder evaluar si en efecto la complejidad del petróleo afecta lo que se conoce actualmente o si por el contrario, los modelos actuales son suficientes para explicar la respuesta metabólica de los organismos capaces de aprovechar el petróleo como fuente de carbono. Dado que el aprovechamiento del petróleo está asociado a la biopelícula que las bacterias forman sobre él, el estudio de lo que sucede al interior de estas biopelículas se hace de vital importancia.

La información sobre el comportamiento de biopelículas de cepas ambientales de P. aeruginosa es poca y es menor aun la información disponible de su comportamiento durante procesos de degradación de hidrocarburos debido a la dificultad que existe al recoger material biológico de muestras contaminadas. Por lo tanto es importante el aportar al conocimiento del comportamiento de cepas ambientales al determinar el perfil de expresión de genes asociados con la degradación de alcanos y la virulencia en la biopelícula de tres cepas de Pseudomonas aeruginosa asociada a gotas de petróleo, lo que permitirá en el futuro optimizar los procesos de biorremediación.

Page 10: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

10

OBJETIVO GENERAL. Determinar la expresión de genes asociados con la degradación de alcanos y la virulencia en tres cepas de Pseudomonas aeruginosa cuando crecen en biopelícula sobre gotas de petróleo, y su relación con la degradación de los alcanos.

OBJETIVOS ESPECÍFICOS.

1. Medir la remoción de hidrocarburos totales de petróleo para las cepas P. aeruginosa PA01, P. aeruginosa M8A1 y P. aeruginosa M8A4.

2. Estandarizar una metodología para la formación y separación de biopelículas crecidas sobre petróleo.

3. Determinar el presencia de transcritos por medio de RT-PCR de las biopelículas de tres cepas P. aeruginosa PA01, P. aeruginosa M8A1 y P. aeruginosa M8A4 en medio con y sin petróleo para genes asociados a QS, virulencia, movilidad y degradación de alcanos.

4. Identificar diferencias en morfología de colonia y tipos de movilidad asociada a formación de biopelículas para las cepas P. aeruginosa PA01, P. aeruginosa M8A1 y P. aeruginosa M8A4 después de crecer en presencia de petróleo.

5. Asociar diferencias en la remoción de alcanos con diferencias en la morfología de las biopelículas de las cepas P. aeruginosa PA01, P. aeruginosa M8A1 y P. aeruginosa M8A4 y sus perfiles de expresión.

Page 11: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

11

MATERIALES Y METODOS

1. Microorganismos: Cepas de Pseudomona aeruginosa

TABLA 1: CEPAS DE PSEUDOMONAS AERUGINOSA UTILIZADAS EN ESTE ESTUDIO.

Nombre de la cepa

Origen Publicación original

PAO1 Nosocomial, Australia. Aislada en 1955

Stover C K, Pham X Q, Erwin A L, Mizoguchi S D, et al., (2000) (secuenciación del genoma) aislamiento de 1955 por B. W. Holloway.

PaM8A1 Ambiental, Colombia, aguas residuales de explotación petrolera

Vives-Flores, (2006)

PaM8A4 Ambiental, Colombia, Aguas residuales de explotación petrolera

Vives-Flores, (2006)

1.1. Activación de las cepas

Las cepas se mantienen congeladas a -80°C. Para su activación se inocularon 5ml de medio LB (10g NaCL, 10g Triptona, 5g extracto de levadura) con cada una de las cepas y se incubaron ON a 30°C con agitación de 150rpm

2. Remoción de alcanos

El petróleo utilizado en este estudio fue tipo Trinidad, grado API 33 proveniente de Yopal, Casanare. El petróleo asociado al campo petrolero de Cusiana posee las siguientes características físicas: densidad a 15°C 0.8056, azufre total wt%:0.11, mercaptanos/tioles ppm:0.0001, viscosidad a 20°C: 2.44, viscosidad a 30°C 2.04, ceras wt%:10.0, nitrógeno total ppm(wt): 232, nitrógeno básico ppm(wt): 68, azufre total wt %: 0.11, mg KOH/g: 0.01, residuos de carbón wt %: 0.595, asfaltenos wt %: 0.212, niquel ppm (wt): 0.8, hierro ppm (wt): 1.1 (Corporation, 2011).

Para los montajes, el petróleo fue esterilizado en un ciclo de autoclave (30min, 121°C) utilizando botellas selladas de vidrio con atmosfera anaeróbica (CO2). El CO2 se burbujea en la botella antes de sellarla y una vez sellada el CO2 es inyectado a presión para saturar la atmosfera de la botella.

Se realizaron pruebas de esterilidad en las cuales 10ul de petróleo fueron sembrados en cajas de Petri de LB, cetrimide, agar nutritivo y PDA. Ninguna de las cajas mostró crecimiento después de 12, 24 y 48 horas en incubación a 30°C. La caja de PDA fue mantenida en incubación durante 8 días más y no mostró crecimiento de ningún microorganismo.

Los ensayos de degradación fueron montados en erlenmeyer de 250ml. y 100ml de medio mínimo de sales (MMS) (K2PO4, NH4Cl, Na2SO4, KNO3, CaCl2.6H2O, MgSO4, FeSO4); fue enriquecido con 1ml de petróleo estéril e inoculado con las células previamente crecidas en LB a una concentración final de 107ufc/ml. Antes de la inoculación estas células fueron centrifugadas 30min a 12000rpm y lavadas dos veces con buffer fosfato salino (PBS) 1X para asegurar que no se arrastrará LB a los ensayos.

Page 12: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

12

Se realizaron 3 réplicas de cada cepa semanalmente durante 8 semanas (En total se realizaron 96 cultivos = 12 erlemeyer (3xcepa+control) X 8 semanas). Semanalmente los cultivos de los ensayos de degradación (12 erlenmeyer) fueron retirados de la incubadora para realizar una extracción destructiva. Cada cultivo fue sometido a un tratamiento de 10ml de NaCl 5M para matar las bacterias antes del proceso de extracción. Para la extracción de los alcanos a una fase líquida de cromatografía los cultivos fueron tratados con 10ml de hexano por cada 1% de petróleo durante 24h.

La cromatografía de gases se corrió en el Mass Spect Facility de la Universidad Estatal de Michigan. La temperatura inicial fue de 50ºC y la máxima fue de 350ºC, en incrementos de temperatura cada 2 minutos. La columna utilizada fue DB-5m de 30m de longitud y 250um de diámetro. Como control interno de tiempo de retención se utilizaron alcanos de 9, 10, 12, 14, 16, 18, 20, 22, 24 y 26 carbonos además de estearato de 18C.

Además del tiempo de retención con respecto a los patrones, se confirmó la identidad de cada pico utilizando el espectro de masas.

La concentración total de alcanos fue cuantificada utilizando las áreas bajo la curva y la fórmula para hidrocarburos totales de petróleo (TPH). Los porcentajes de remoción fueron calculados utilizando la siguiente expresión:

% de remoción = [(alcanos control – alcanos tratamiento)/alcanos control]*100 (Drews; Zhengzhi Zhang et al., 2010).

3. Estandarización de la formación de biopelícula sobre gota de petróleo.

El estudio de las biopelículas formadas por Pseudomonas aeruginosa rutinario en los laboratorios de microbiología médica alrededor del mundo. La inclusión del petróleo en nuestro ensayo hace que la utilización de técnicas como la microtitulación en pozos de fondo plano sea imposible de utilizar pues el petróleo tiñe los pozos de microtitulación y no permite la lectura clara de las placas. El petróleo aporta contaminantes al medio (azufre, partículas sólidas) que dificultan e interfieren con la purificación de material genético de las células al coprecipitar o cambiar las condiciones de reacción. Es por esto que los estudios de biopelículas durante degradación de hidrocarburos se centran en las células planctónicas que no están directamente en contacto con el petróleo; en células que han formado biopelícula sobre otros materiales en medios contaminados con petróleo (laminillas de vidrio (Dasgupta et al., 2013), láminas de polietileno (Macedo et al., 2005), células HeLa o en colonias recuperadas después de múltiples repiques en medio con petróleo como única fuente de carbono. Parte de lo que se busca es que la metodología finalmente escogida permita la recuperación de la biopelícula que crece directamente sobre el petróleo para posteriormente realizar extracciones de material genético de la misma.

3.1. Perlas de alginato.

El petróleo se inmovilizó en perlas de alginato al 4%, la cantidad de petróleo inmovilizada es 1ml de crudo por cada 100ml de MMS.

En promedio cada perla pesó 0,64g y se realizaron aproximadamente 115 perlas por cada mililitro de petróleo a inmovilizar. Las perlas fueron agregadas a 100ml de medio mínimo de sales en

Page 13: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

13

erlenmeyer de 250ml y los ensayos fueron inoculados con 107 ufc/ml con las cepas de interés. Al final de este ensayo (ocho días) se observó que la población bacteriana planctónica había disminuido hasta 104 ufc/ml. Los erlenmeyer fueron incubados a 25°C sin agitación.

3.2. Láminas de agarosa.

El petróleo se inmovilizó en agarosa al 2%. El 1% de petróleo v/v con respecto al volumen total de la caja de Petri fue servido de forma tal que cubría todo el fondo de la caja. La agarosa a 60-70ºC fue vertida sobre el petróleo y la caja fue agitada para asegurar que la agarosa se mezclara con el petróleo a medida que iba solidificando.

Este ensayo fue inoculado por siembra masiva sobre la agarosa solidificada a partir de un cultivo con 107ufc/ml e incubado a 25°C.

3.3. Capilares de vidrio.

En un erlenmeyer de 50ml, se inocularon 25 ml de MMS con 107ufc/ml de la bacteria. Luego se puso un tapón de goma que sostenía un capilar de vidrio que anteriormente se había dejado absorber petróleo. Cada capilar cargaba en promedio 25ul de petróleo. Estos ensayos se incubaron a 25°C, sin agitación.

3.4. Gotas de petróleo.

El montaje consistió en una modificación del protocolo de Macedo (Macedo et al., 2005) en el que se cambian las láminas de Permanox por láminas de polipropileno, la fuente de carbono por petróleo y el volumen de medio de 1L a 60ml así: poner una gota de petróleo sobre una matriz adherente (tapa de una caja de Petri de 5cm de diámetro en polipropileno), y dejar la tapa de Petri flotando sobre la superficie del MMS. Cada caja de Petri profunda tiene 2 tapas de cajas de Petri mini y 2 gotas de 30ul de petróleo cada una.

Cada caja de Petri fue inoculada con 107ufc/ml de la cepa de interés. La biopelícula se dejó crecer durante 13 días a 25°C sin agitación y luego fue recuperada utilizando un aplicador estéril. Las biopelícula recuperadas fueron cuantificadas utilizando ufc, se sembraron solo las diluciones de 10-

7 a 10-10 y tres replicas por dilución.

4. Morfología de Biopelículas.

4.1. Fotografías arquitectura macro.

Se realizó el ensayo de formación de biopelícula siguiendo las instrucciones de Macedo y colaboradores, 2005(Macedo et al., 2005) y con las siguientes modificaciones: Láminas de polipropileno como soporte para las gotas de petróleo, Medio mínimo de sales (composición por litro: 0,5g K2PO4, 1g NH4Cl, 2g Na2SO4, 2g KNO3, 0,001g CaCl2.6H2O, 1g MgSO4, 0,0004gFeSO4). Las fotografías de la arquitectura macro de la biopelícula fueron tomadas utilizando un microscopio óptico en el cual se montó la lámina de polipropileno con la biopelícula madura. Las fotografías fueron tomadas sobre el borde de la gota de petróleo, lo que permitio observar la biopelícula alrededor de la misma.

4.2. Fotografías de fluorescencia.

Se realizó microscopia de fluorescencia sobre los montajes de formación de biopelículas utilizando Syto9 para teñir el DNA de las células.

Page 14: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

14

Los stacks para modelamiento de las biopelículas fueron tomados con el microscopio Olympus FluoView 1000 Filter-based CLSM. El análisis preliminar de las imágenes se realizó con el software ImageJ, el modelamiento de la biopelícula sobre la gota de petróleo se realizó utilizando el software Imaris. Las características de imagen fueron: 1024x1024um, lectura en un canal, tamaño de Z 43 (número de imágenes tomadas en profundidad), profundidad 45,88um, distancia entre puntos Z 1,07um, distancia entre puntos X 0,22um, distancia entre puntos Y 0,22um. Los modelos se construyeron buscando partículas de 0.5um por 1.5um (dimensiones de las células de Pseudomonas aeruginosa) en las imágenes del stack.

5. Determinación de características morfológicas y funcionales

5.1. Morfología de colonia

Las fotografías de morfología de colonia se realizaron sobre el medio de contraste descrito por Dietrich y colaboradores, 2008 (Dietrich, Teal, Price-Whelan, & Newman, 2008). Para el control 10ul de un over night de bacterias crecidas en LB fueron sembrados en el centro de la caja y las fotografías se tomaron 24 horas después de ser inoculadas. Los cultivos fueron mantenidos a 25°C.

Para determinar cambios en la morfología de colonia después de estar en petróleo, las cajas con medio de contraste se inocularon con 10ul de bacterias que habían estado creciendo durante 7 días en petróleo. Cada ensayo se montó 5 veces.

5.2. Movilidad

Los ensayos de movilidad se realizaron siguiendo las indicaciones de Rashid y Kornberg, 2000 (Rashid, Rao, & Kornberg, 2000). Se compararon los grados de movilidad swimming, swarming y twiching para bacterias que habían estado creciendo durante 7 días, en presencia de petróleo.

Swimming: Triptona 10g/L, NaCl 5g/L, agarosa 0.3% p/v. lo que permite que el medio de crecimiento no sea del todo sólido y las bacterias puedan “nadar” en el medio. Se midio principalmente el halo de nadado con respecto al punto de inoculación (distancia entre el punto de inoculación y el borde de la “colonia”) donde mayores halos de nadado indican mayor capacidad de swimming de las células y están relacionados a morfotipos donde los flagelos están presentes. Estas cajas de Petri se incubaron a 30°C sin agitación durante 14h. Swarming: Agarosa 0.5% p/v, 8 g/L caldo LB, 5 g/L glucosa. Las cajas de petri fueron dejadas secar a temperatura ambiente durante 12h antes de ser utilizadas. Estas cajas se incubaron a 30°C durante 14h Twitching: Caldo LB (10 g/L triptona, 5 g/L extracto de levadura, 10 g/L NaCl), 1% (p/v) agar. Las cajas de petri se dejaron secar durante un par de horas antes de ser inoculadas. Se inocularon las cajas utilizando un palillo estéril para llegar al fondo de la caja. Se incubaron a 37°C durante 24 h. Se midio la zona de movilidad entre el agar y la caja de Petri.

Page 15: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

15

Cada ensayo se montó cinco veces.

6. Expresión de Genes de degradación y de virulencia en biopelículas.

6.1. Extracción de RNA. Para la extracción de RNA se utilizó el kit RNeasy Midi de Quiagen, según instrucciones del fabricante. El material a extraer consistia en la biopelícula recuperada de los ensayos de gotas de petróleo (título anterior 3.4) y montajes similares realizados utilizando en vez de petróleo aceite de girasol.

6.2. Determinación de la expresión de genes. La presencia/ausencia de transcritos de los genes de interés se evaluó por medio de RT-PCR. Para esto se utilizó el kit Acces quick Rt-PCR de Promega de acuerdo a las instrucciones del fabricante. Los genes evaluados fueron los mismos de un trabajo anterior (Rojas, 2008). Sin embargo, es la primera vez que se evalúaban en RNA extraído de la biopelícula ya que anteriormente se trabajaba con material de las células planctónicas para evitar la contaminación con petróleo. Tabla 2.

TABLA 2: GENES EVALUADOS Y SU FUNCIÓN

Gen Función Referencias

LasI Síntesis de las moléculas auto inductoras que se unen a RhlR. Necesario para

QS. Regulador de la biosíntesis de elastina

(Chugani & Greenberg,

2010)

LasR Activador trascripcional del gen estructural de la elastina. Necesario para QS (Chugani & Greenberg,

2010)

ToxA Exotoxina A. Inhibe la expresión de proteínas en células eucariotas. (Rahme et al.,

1995)

LasA Proteólisis y elastólisis. Ataca surfactantes pulmonares. (Solano et al.,

2014)

LasB Hidrolisis de proteínas incluyendo elastina, colágenos tipos III y IV, fibronectina

e inmunoglobulina A. Ataca surfactantes pulmonares.

(Bastaert, Chignard, &

Sallenave, 2015)

RhII

Cataliza la síntesis del autoinductor butirilhomoserin lactona que es necesario para QS. Se requiere para la síntesis de las moléculas auto inductoras que se

unen a RhlR actuando como regulador de la biosíntesis de elastina y la producción de ramnolípidos

(Solano et al., 2014)

RhlA Se requiere para la producción del segmento hidrofóbico de ramnolípidos.

Promueve movilidad Swarming.

(E Deziel, Lepine, Milot, &

Villemur, 2003)

RhlB Ramnosiltransferasa. Asociado a la producción del segmento hidrofílico de

ramnolípidos Componente del complejo de degradación de RNA. (Zhao et al.,

2015)

ExoS Exoenzima secretada por el sistema de secreción tipo 3, funciona como efector

del sistema. (Feltman et al.,

2001)

ExoT Exoenzima secretada por el sistema de secreción tipo 3. Bloquea toxicidad necrótica y lleva a apoptosis, previene migración celular, interfiere con los

contactos célula-sustrato, interfiere con el citoesqueleto.

(Feltman et al., 2001)

Page 16: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

16

PilB Movilidad Twitching. Translocador de Pilin Tipo IV. (Persat et al.,

2015)

FliA (rpoS)

Movilidad Swimming. Factor sigma requerido para la expresión de FliC (flagelina)

(Roberts, Maddocks, & Cooper, 2014)

MexX Componente de la bomba de excreción MexXY-oprM. Transporta a través de

membrana un grupo específico de antibióticos

(Hocquet et al., 2003)

MexY Componente de la bomba de excreción MexXY-oprM. Transporta a través de

membrana un grupo específico de antibióticos

(Masuda et al., 2000)

MexC Componente de la bomba de excreción MexCD-OprJ Transporta a través de

membrana un grupo específico de antibióticos

(Masuda et al., 2000)

OprJ Componente de la bomba de excreción MexCD-OprJ Transporta a través de

membrana un grupo específico de antibióticos

(Masuda et al., 2000)

MexA Componente de unión periplasmática del sistema de excreción MexAB-OprM

Transporta a través de membrana un grupo específico de antibióticos (Masuda et al.,

2000)

OprM

Componente de membrana externa del sistema de excreción MexAB-OprM. Sistema de excreción principal de n-hexano y p-xyleno. Puede remplazar el

componente externo de membrana OprJ de la bomba MexCD-OprJ. Funciona como componente externo del sistema de excreción MexXY. Implicado en la

secreción del sideróforo pyoverdina.

(Hocquet et al., 2003)

Alkb1 Alcano hidroxilasa C16 - C24. Hidroxila transfiere un átomo de oxígeno desde

el oxígeno molecular al carbono terminal de hidrocarburos alifáticos conduciendo a la formación de un alcohol primario

(Ji, Mao, Wang, & Bartlam, 2013)

Alkb2 Alcano hydroxilasa C12 – C-20 transfiere un átomo de oxígeno desde el

oxígeno molecular al carbono terminal de hidrocarburos alifáticos conduciendo a la formación de un alcohol primario

(Ji et al., 2013)

NadB Produce L-aspartato oxidasa que se utiliza en el metabolismo de alanina y

aspartato. Housekeeping.

(Wang, Seeve, Pierson, &

Pierson, 2013)

Para la visualización de los resultados de RT-PCR se utilizaron geles de agarosa al 1% que se corrieron a 60V durante 1h. La presencia de bandas en el gel del tamaño esperado y sin bandas inespecíficas se tomó como un resultado positivo a la presencia de transcritos asociado al gen que se estuviese probando. Los productos de PCR se secuenciaron y anotados utilizando BLAST. Las secuencias de los genes de alkb1, alkb2, pilB, fliA de las tres cepas se alinearon utilizando el software MEGA y el algoritmo de alineamiento MUSCLE. Se realizó la predicción estructural del gen PilB en las tres cepas utilizando el servidor RaptorX y utilizando como templado la estructura 4HPTA que corresponde a la ATPasa GspE del complejo citoplasmático del sistema de secreción II de Vibrio vulnificus que es la secuencia más homologa a pilB en bases de datos que posee una estructura cristalina ya dilucidada.

Page 17: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

17

RESULTADOS

1. Remoción de Alcanos Se realizó un ensayo de remoción de alcanos y se siguió el resultado del mismo a través de de ochosemanas utilizando la técnica de cromatografía de gases asociada a espectroscopia de masas. Figura 1.

FIGURA 1: PORCENTAJE DE REMOCIÓN DE ALCANOS

La figura 1 muestra el porcentaje de remoción de los alcanos que se calculó utilizando la siguiente formula: % de remoción = [(alcanos control – alcanos tratamiento)/alcanos control]*100.

Se calculó el porcentaje de remoción de los alcanos para cada una de las réplicas. El grafico 1 muestra la eficiencia de remoción de cada una de las cepas a través del tiempo, la tabla tres muestra la varianza y la media de la cantidad de petróleo total (v/v) para cada cepa.

TABLA 3: PROMEDIO Y VARIANZA DE LOS DATOS DE PETRÓLEO TOTAL (V/V).

Media Varianza Media Varianza Media Varianza

Control 98 1 97,3333333 6,33333333 97,3333333 21,3333333

M8A1 94,6666667 1,33333333 77,6666667 2,33333333 56,6666667 4,33333333

M8A4 88 3 58 1 17 3

PAO1 91,3333333 1,33333333 65 7 38 4

7 días 28 días 56 días

Los cromatogramas (figura 1 a 3 del anexo) permiten observar como a lo largo del montaje la desaparición de los picos de alcanos es evidente en las muestras con bacterias frente a la muestra control. Sin embargo, la velocidad con la que desaparecen estos picos no es la misma para todas las bacterias. Para la semana 4 en los ensayos de M8A4 y PAO1 los únicos picos aun identificables son los picos de HC17 y HC18, mientras que para M8A1 en la semana 4 aún son identificables los picos de HC20 a HC31.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

7 2 8 5 6

% R

EMO

CIÓ

N

DIAS

Control P. aeruginosa M8A1 P. aeruginosa M8A4 P. aeruginosa PAO1

Page 18: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

18

Para la semana 8 el único pico identificable en PAO1 y M8A4 es HC17, mientras que para las muestras tomadas de M8A1 el pico HC18 también es identificable. HC17 es el pico de mayor abundancia en el petróleo que se probó, por lo que es lógico que sea también el pico que más demora en ser removido del medio.

Para saber si la diferencia existente entre las medias de remoción de las diferentes cepas (tabla 3) eran o no significativas para cada uno de los puntos de medición (día 7, 28 y 56) se corrió un ANOVA para todos los grupos (Ho: µ1 = µ2 = µ3 = µ4; grados de libertad = 3, F = 662,0694444, P = 3,36115E-23, valor critico F = 3,00878657) y pruebas T pareadas para las cepas en cada uno de los puntos de medición. La tabla 5 permite observar que las diferencias en remoción de hidrocarburos son significativas para el día 56.

TABLA 4: VALORES P PARA PRUEBAS T PAREADAS DE LA REMOCIÓN DE HIDROCARBUROS DE LAS CEPAS PARA EL DIA 56.

cepa P. aeruginosa M8A1 P. aeruginosa M8A4 P. aeruginosa PAO1

P. aeruginosa M8A1 0 1,43326E-05 0,000361862

P. aeruginosa M8A4 1,43326E-05 0 0,000162204

P. aeruginosa PAO1 0,000361862 0,000162204 0

2. Estandarización de la formación de biopelícula sobre gota de petróleo.

Para poder comparar la respuesta de las poblaciones bacterianas en un medio tan complejo como lo es el petróleo crudo se vio la necesidad de tener un montaje que permitiese aislar material genético con el mínimo de contaminación por hidrocarburos y que biológicamente fuese fiel a lo que sucede en los proceso de degradación.

Los montajes que usualmente permiten observar la formación de biopelícula sobre los hidrocarburos, no permiten que la biopelícula sea retirada sin arrastrar una gran cantidad del hidrocarburo consigo. Esto genera contaminación de la muestra cuando se realiza extracciones de material genético. La contaminación del material genético con alcanos o aromáticos limita los análisis que se pueden realizar sobre ese material.

2.1. Perlas de alginato. La figura 2A muestra una visión macro de una perla de alginato con petróleo inmovilizado dentro de ella. 2B muestra un acercamiento de la superficie de la perla donde se observa que la distribución del petróleo al interior del alginato no es uniforme. La figura 2C muestra una vista alterna de la superficie de una perla, observándose que las zonas de rugosidad sobre la superficie corresponden a “bolsillos de petróleo”; o espacios donde microgotas de petróleo quedaron inmovilizadas muy cerca de la superficie de perla.

Page 19: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

19

FIGURA 2: PETRÓLEO INMOVILIZADO EN GOTAS DE ALGINATO 4%

Figura 2: Petróleo inmovilizado en gotas de alginato 4%. Se observa que el alginato fue efectivo en inmovilizar el petróleo en su interior. 2A Visión macro de una perla de alginato con petróleo inmovilizado dentro de ella. 2B acercamiento de la superficie de la perla, se observa que la distribución del petróleo al interior del alginato no es uniforme. 2C vista alterna de la superficie de una perla, zonas de rugosidad sobre la superficie.

FIGURA 3: BACTERIAS CRECIENDO SOBRE LA SUPERFICIE DE LAS PERLAS DE PETRÓLEO.

Figura 3: Bacterias creciendo sobre la superficie de las perlas de petróleo. Las bacterias se ven creciendo sobre las gotas de alginato (manchas blancas)

Una de las cosas que se observó en este ensayo es que las bacterias no crecían “sobre” la superficie de las perlas (figura 3) sino que de hecho las bacterias ingresaban en la red de alginato y colonizaban los bolsillos de petróleo (Figura 4). Así mismo se observó que el petróleo escapaba en cierto porcentaje de las perlas y quedaba en el medio, lo que otorgaba al medio, al final del ensayo, una coloración café.

En el caso de estas perlas, el que las bacterias no crezcan sobre ellas sino que ingresen en la red de alginato y colonicen la arquitectura interna de las perlas ocasiona un problema extra para el aislamiento y purificación de RNA. Para aislar RNA en este ensayo tendríamos que macerar las perlas liberando el petróleo al medio y el petróleo más el alginato pasa a ser otra fuente de contaminación de la muestra lo que dificulta la extracción de RNA de las biopelículas que crecen sobre el petróleo.

Page 20: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

20

FIGURA 4: BACTERIAS COLONIZANDO BOLSILLOS DE PETRÓLEO EN PERLAS DE ALGINATO.

2.2. Láminas de agarosa.

Al final de este ensayo se observó que las bacterias crecen sobre la agarosa (sustrato solido) y sobre el petróleo (sustrato aceitoso). En este ensayo para poder retirar las células debíamos rasparlas de la matriz de agarosa, y al rasparlas arrastrábamos una considerable cantidad de petróleo líquido a la muestra además de que las células que crecen sobre una matriz solida activan diferentes mecanismos a aquellas que crecen sobre una matriz aceitosa y en este ensayo era imposible realizar la diferenciación de los dos tipos de células.

FIGURA 5: PETRÓLEO INMOVILIZADO EN AGAROSA 2%

La figura 5 permite observar el petróleo inmovilizado con agarosa. En este ensayo el petróleo no queda inmovilizado al interior de la agarosa sino que queda sobre la agarosa que se ha solidificado.

Page 21: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

21

2.3. Capilares de vidrio.

FIGURA 6: MONTAJES UTILIZANDO CAPILARES DE VIDRIO

Figura 6: montaje de capilares de vidrio. La gota de petróleo se sostiene ´por tención superficial en el capilar de vidrio, pero una vez empieza a ser degradado el petróleo la tención superficial de la gota se pierde y esta se despende del capilar arrastrando consigo la biopelícula.

La figura 6 muestra el montaje realizado con capilares de vidrio. El problema que presentó este montaje fue que una vez formada la biopelícula sobre la gota de petróleo, el petróleo empezaba a ser degradado y perdía sus componentes ligeros, esto ocasionó que la gota de petróleo que se sostenía sobre el capilar por tensión superficial colapsara y se soltara del capilar. Es entonces imposible recuperar la biopelícula sin tomar toda la gota de petróleo pues en el mejor de los casos, en los que la biopelícula se soltaba intacta junto con la gota de petróleo, esta envolvía totalmente la gota. Por lo tanto, la contaminación con petróleo de las muestras era muy alta y dificultaba la obtención de material genético de las biopelículas.

2.4. Biopelícula sobre gota de petróleo.

FIGURA 7: MONTAJE DE GOTAS DE PETRÓLEO.

Page 22: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

22

FIGURA 8: RECUPERACIÓN DE LA BIOPELÍCULA SOBRE Y ALREDEDOR DE LA GOTA DE

PETRÓLEO

En este montaje la biopelícula se desarrolló en la interface medio/petróleo y sobre la superficie de polipropileno de la tapa de la caja de petri mini. La biopelícula se sostuvo por tension supericial y es esta misma fuerza la que permite que al romper un punto de tension superficial sobre la superficie de polipropileno la pelicula sea halada en la direccion contraria y sea repelida de la superficie de la gota de petróleo permitiendo su recuperación relativamente limpia.

La formación de biopelícula se iniciaba hacia el día siete y hacia el día quince se observaba que partes de la biopelícula se desprendían de la gota de petróleo. En promedio cada biopelícula tenía entre 108 y 109 ufc. Con M8A1 mostrando de forma continua los valores más bajos de ufc/ml (107-108). La literatura indica que la formación de biopelícula se da cuando la densidad poblacional en P. aeruginosa alcanza 10-7 ufc/ml y que las biopelículas maduras presentan densidades poblacionales de 10-8ufc/ml o 10-9 ufc/ml. (Dötsch et al., 2012; Macedo et al., 2005) por lo que se considera que las biopelículas utilizadas en este estudio son maduras.

Este montaje es el que finalmente se escogió para llevar a cabo el aislamiento y purificación de RNA y la evaluación de presencia ausencia de transcritos relacionados a QS, virulencia y degradación de alcanos.

Todo el proceso es más fácilmente observable en el video del siguiente enlace: https://youtu.be/Drr5GnKWoSo.

3. Morfologia de Biopelículas.

3.1. Fotografías arquitectura macro.

Durante la separación de las biopelículas para extracción de RNA se observó que la biopelícula de M8A1 era muy débil y no se separaba como una sola unidad sino que al romper la tensión superficial

Page 23: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

23

9 de 10 veces se deshacía en pedacitos, mientras que las biopelículas de M8A4 y PAO1 se separaban siempre en una sola unidad.

Estas diferencias en resistencia de la biopelícula hacen surgir preguntas sobre las posibles diferencias que había entre ellas. A saber, ¿es la biopelícula de M8A1 diferente a las biopelículas producidas por PAO1 y M8A4?

Para responder a esta pregunta se realizó fotografía al estereoscopio de las biopelículas creciendo sobre las gotas de petróleo. La figura 8 muestra las diferentes morfologías de la biopelícula que exhiben las tres cepas.

FIGURA 9: DIFERENCIAS DE MORFOLOGÍA DE LA BIOPELÍCULA DE HIDROCARBUROS DE LAS

TRES CEPAS

Figura 9: Diferencias de morfología de la biopelícula de hidrocarburos de las tres cepas. La biopelícula que se observa para las cepas PAO1 y M8A4 es morfológicamente similar, mientras que la biopelícula que se observa para M8A1 es diferente con respecto a la de

PAO1

Se observó que M8A1 presenta una arquitectura diferente a la de las otras cepas, con una biopelícula aparentemente menos uniforme y compacta sobre la gota de petróleo.

3.2. Fotografías de fluorescencia.

Para intentar entender si las diferencias observadas en la arquitectura de las biopelículas eran producto de diferencias micro (posición de células vivas) al interior de las mismas, se realizó microscopia de fluorescencia utilizando Sito9 como marcador del DNA.

Los resultados se observan en la figura nueve que muestra las proyecciones XY y YZ para el único montaje que permitía ver algo (PAO1).

En la figura 9 podemos observar como el petróleo posee una señal muy fuerte y absorbió el fluorocromo (Syto9) lo que hizo que fuese difícil el ver la señal de las bacterias en la biopelícula.

Page 24: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

24

FIGURA 10: FOTOGRAFÍA UTILIZANDO SYTO9 DE LA BIOPELÍCULA DE PSEUDOMONAS

AERUGINOSA PAO1 CRECIENDO SOBRE UNA GOTA DE PETRÓLEO.

Figura 10: Fotografía utilizando syto9 de la biopelícula de Pseudomonas aeruginosa PAO1 creciendo sobre una gota de petróleo. A muestra la proyección XY de la fotografía. Aquí se observa la gota de petróleo en verde fluorescente continuo y la biopelícula en puntos verdes sobre fondo negro. En B se observa la proyección YZ o de profundidad, donde la gota de petróleo está en la parte superior de la imagen y la biopelícula en la parte inferior.

La figura 10A se observa que la gota de petróleo adsorbe la mayor parte del reactivo Syto9 (mancha verde fluorescente) y las células de la biopelícula (puntitos verdes fluorescentes sobre fondo negro). La figura 10B permite observar las células de PAO1 en la parte de abajo y la señal del petróleo en la parte de arriba.

Utilizando las imágenes del confocal de fluorescencia se realizó un modelo 3D de las biopelículas. La figura 11 muestra un fotograma del modelo 3D.

FIGURA 11: FOTOGRAMA DEL MODELO 3D DE LAS BACTERIAS (PAO1) SOBRE EL PETRÓLEO

MOSTRANDO BACTERIAS AL INTERIOR DE LA GOTA DE PETRÓLEO.

Figura 11: Fotograma del modelo 3D de las bacterias (PAO1) sobre el petróleo mostrando bacterias al interior de la gota de petróleo. Fotograma tomado de la reconstrucción 3D del stack de imágenes del microscopio de fluorescencia. Cada punto rojo en la imagen corresponde a una partícula de 0.5um por 1.5um que son las dimensiones reportadas para una célula de Pseudomonas aeruginosa. Se obseva que algunos de estos puntos fueron identificados por el software al interior de la gota de petróleo (mancha negra en la imagen).

Page 25: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

25

El modelamiento 3D es mas facilmente observable en el video del siguiente link: https://youtu.be/SRAIjnyQc1o

El modelo nos permite observar que las bacterias están en contacto directo con la gota de petróleo, algunas de ellas incluso fueron reconocidas hacia los bordes pero dentro de la gota de petróleo, lo que nos permite pensar que el modelo de horizontes fluidos propuesto por Rühs et al., 2014 para biopelículas aceite-agua es adecuado para describir lo que sucede en las biopelículas de Pseudomonas aeruginosa sobre petróleo.

Debido a las diferencias que observamos en las biopelículas que crecen sobre las gotas de petróleo y a las diferencias en remoción de hidrocarburos, se cuestionó si estas diferencias estaban asociadas a movilidades diferentes en las cepas (siendo movilidad un determinante morfológico y funcional de formación de biopelículas) o si estaban asociadas a diferencias en el perfil transcripcional.

4. Determinación de características morfológicas y funcionales.

4.1. Morfología de colonia.

FIGURA 12: DEFINICIÓN DE VARIABLES DE MORFOLOGIA DE COLONIA Y MOVILIDAD.

Figura 12: Definición de variables de morfología de colonia y movilidad. Para poder realizar la descripción de los cambios en morfología de colonia se definieron caracteres como la opacidad del medio y la cantidad de anillos de crecimiento observados. La figura permite ver como se definieron los estados del carácter para opacidad del medio, anillos de crecimiento y halo de movilidad

Page 26: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

26

TABLA 5: CAMBIOS EN LA MORFOLOGIA DE COLONIA Y MOVILIDAD DE LAS CEPAS DESPUES DE ESTAR 7 DIAS EN PETRÓLEO.

Colonia Swarming Swimming Twitching

Redonda, bordes definidos, 3 anillos de crecimiento definidos,

anillo externo muy delgado.

Redonda, bordes difusos, 3 anillos de crecimiento

definidos, halo de movilidad muy delgado

Redonda, A=8,25cm2, no hay anillos de

crecimiento definidos, opacidad del medio

baja.

Redonda, bordes poco definidos, 4 anillos de crecimiento definidos,

halo de movimiento muy delgado

PAO1

Control

Redonda, bordes definidos, 3 anillos de crecimiento definidos,

anillo externo muy grueso.

Redonda, bordes difusos, 3 anillos de crecimiento

definidos, halo de movilidad muy grueso

Redonda, A=10,66cm2, no hay anillos de

crecimiento definidos, opacidad del medio

baja.

Redonda, bordes poco definidos, 4 anillos de crecimiento definidos,

halo de movimiento muy delgado

M8A4

No es redonda, bordes definidos, no hay

evidencia de anillos de crecimiento.

No es redonda, bordes definidos, 2 zonas de

crecimiento definidas, no se diferencia halo de movilidad

Redonda, A=6,13cm2, no hay anillos de

crecimiento definidos, opacidad del medio alta.

Redonda, bordes poco definidos, 4 anillos de crecimiento definidos,

halo de movimiento muy delgado

M8A1

Redonda, bordes definidos, densidad central no uniforme,

anillos de crecimiento definidos.

Redonda, bordes difusos, 2 anillos de crecimiento

definidos, halo de movilidad muy delgado

Redonda, A=0,48cm2, 2 anillos de crecimiento

definidos, opacidad del medio baja.

Redonda, bordes definidos, sin anillos de crecimiento definidos,

halo de movimiento muy grueso

PAO1

7 días petróleo

Redonda, bordes definidos, densidad central no uniforme,

anillos de crecimiento definidos.

Redonda, bordes difusos, 3 anillos de crecimiento

definidos, halo de movilidad delgado

Redonda, A=0,64cm2, 2 anillos de crecimiento

definidos, opacidad del medio baja.

Redonda, bordes definidos, 4 anillos de crecimiento definidos,

halo de movimiento muy grueso

M8A4

No es redonda, bordes

poco definidos, un anillo de crecimiento definido.

No es redonda, bordes no definidos, 1 zona de

crecimiento definida, no se diferencia halo de movilidad

Redonda, A=0,92cm2, no hay anillos de

crecimiento definidos, opacidad del medio

baja.

Redonda, bordes definidos, 2 anillos de crecimiento definidos,

halo de movimiento muy delgado

M8A1

La tabla 5 muestra la descripción de la morfología de colonia y las diferencias en movimientos de las bacterias antes y después de estar 7 días en medio con 1% de petróleo. (Figuras 5, 6 y 7 del anexo muestran fotografías). Llama la atención que la morfología de colonia de M8A1 para iniciar es poco definida.

Dietrich y colaboradores, 2008; Rashid y Kornberg, 2000 mencionan la importancia de los tipos de movimientos celulares para la formación de las biopelículas. Durante la formación de las biopelículas se espera que el movimiento swimming (fliA) disminuya y los movimientos Twitching y swarming aumenten (pilB). Esto facilita el asentamiento de la biopelícula y el aumento de la densidad poblacional local para la activación de los mecanismos de quorum sensing. La figura 4 del anexo muestra a que corresponde cada una de las características evaluadas para la morfología de colonia y movilidad, resultados que se presentan en la tabla 5.

Page 27: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

27

5. Expresión de Genes de degradación y virulencia en biopelículas.

5.1. Extracciones de RNA.

La metodología escogida para realizar las extracciones de RNA fue la de biopelículas sobre gotas de petróleo. Los resultados de dichas extracciones fueron medidos en Quibit y se presentan en la tabla 1 del anexo. En general, las extracciones producen alrededor de 0,0100ug/ul a 0,0300ug/ul de RNA. La calidad del RNA fue evaluada utilizando el Bioanalyzer y los RIN son altamente variables, entre RIN 2 y Rin 7 con las muestras de M8A1 mostrando las menores calidades.

5.2. Determinación de la expresión de genes. El análisis de la trascripción de genes mostró diferencias de expresión entre las biopelículas de hidrocarburos y las biopelículas de aceite de girasol. En general las biopelículas de hidrocarburos están expresando de forma diferencial a las biopelículas de aceites los genes de degradación de alcanos y los genes de respuesta a estrés orgánico. Como es de esperarse los genes de movilidad y asociados a la formación de biopelícula y producción de ramnolípidos se expresaron en los dos ensayos (FIGURA 13)

FIGURA 13: EXPRESIÓN DE GENES DE VIRULENCIA Y DEGRADACIÓN PARA RNA

PROVENIENTE DE BIOPELÍCULAS DE PETRÓLEO Y ACEITE DE GIRASOL.

Figura 13: Expresión de genes de virulencia y degradación para rna proveniente de biopelículas de petróleo y aceite de girasol. Se observa que la expresión (cuadros a color) no es diferencial para las bacterias al interior de los dos medios de cultivo (petróleo y aceite de girasol), pero si se da una diferencia de expresión entre los dos medios de cultivo.

Las diferencias en el comportamiento en los agares de movilidad hacen pensar que las diferencias en remoción de los hidrocarburos podrían estar asociadas a las diferencias en la creación de las biopelículas. Diferentes estudios han probado que la adhesión de las células al sustrato y la creación eficiente de biopelículas afectan las tasas de degradación de derivados del petróleo y otros compuestos (Dohnt et al., 2011; Grimaud, 2010; Macedo et al., 2005; Taylor & Buckling, 2011)

Evaluamos si la secuencia de los genes PilB, FliA (los únicos asociados a movilidad evaluados) AlkB1 y AlkB2 era diferentes o similares en las cepas. Las secuencias de los genes fueron extraídas utilizando Blast2sequence sobre datos de secuenciación de las cepas y datos de NCBI.

Page 28: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

28

Se encontró que las secuencias para los genes FliA, AlkB1 y AlkB2 son idénticas en el contenido de aminoácidos entre las cepas, sin embargo la secuencia de aminoácidos para el gen PilB presenta múltiples cambios en la cepa M8A1 con respecto a la secuencia de PAO1 y M8A4 (FIGURA 14).

Se observó entonces que PilB en M8A1 posee una secuencia de aminoacidos poco conservada con respecto a PAO1 en los primeros 200 AA del marco de lectura del gen, sin embargo la región de 400 a 600 aminoácidos que le sigue está mucho mejor conservada.

FIGURA 14: CAMBIOS EN LA SECUENCIA DE AMINOÁCIDOS DE PILB PARA M8A1 FRENTE A

PAO1 Y M8A4

Figura15: Alineamiento de aminoácidos de las secuencias de PilB para las cepas M8A1, M8A4 y PAO1. El alineamiento permite ver donde difieren las secuencias de las tres cepas

Dado que el sitio activo de la proteína PilB (motivo GPTGSGKT, 326-333) se encuentra en las tres secuencias, se evaluó si el modelo predicho para la estructura de PilB difería en M8A1 y M8A4. (FIGURA 15).

FIGURA 15: PREDICCIÓN ESTRUCTURAL DE PILB PARA M8A4 Y M8A1 BASADO EN

SECUENCIA DE AMINOACIDOS

Page 29: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

29

Figura 14: Modelos predichos utilizando homología de secuencia de AA para PilB de las cepas M8A1 y M8A4. Valores P de los modelos predichos son: p-value M8A1 = 6.65e-14 M8A4 y p-value M8A4 = 5.63e-14 por lo que se considera que la escogencia del templado y los modelo predichos son acertados. Las flechas rojas indican donde se observa diferencias de plegamiento entre los dos modelos. La estrella indica el sitio activo de reconocimiento de ATP de esta proteína.

A futuro se podría evaluar la relación estadística entre la eficiencia de remoción de hidrocarburos y la eficiente formación de biopelículas alrededor de las gotas de petróleo. Se realizó un análisis de independencia utilizando Ji-cuadrado y la codificación de la tabla 6.

TABLA 6: CODIFICACIÓN DE VARIABLES PARA Ji-cuadrado

Tabla 6: Resumen de los resultados utilizando como punto de comparación los resultados de PAO1. Si el resultado es similar al obtenido por PAO1 se codifica como 1, si el resultado es diferente se codifica como 0. % Remoción = % remoción de hidrocarburos. Morfología = Morfología de biopelículas. Integridad = Integridad de la biopelícula durante el proceso de aislamiento. Perfil Transcripción = Resultados globales de presencia/ausencia de transcritos para los genes evaluados a partir de RNA de biopelículas sobre petróleo. Secuencia PilB = Secuencia de AA para el gen PilB

Al evaluar la independencia del porcentaje de remoción frente a las demás variables encontramos que es independiente para todas (Ji-cuadrado=3; P=0,226) excepto para la variable perfil de transcripción pues al ser igual en todas las cepas se convierte en un carácter no informativo. Tabla 7.

TABLA 7: TABLA DE CONTINGENCIA PARA JI-CUADRADO

Carácter B Integridad Carácter A: Remoción

82 57 42 total

igual PAO1 1 1 0 2

diferente PAO1 0 0 1 1

total 1 1 1 3

Cepa % Remoción Morfología Integridad Swimming Swarmming Twitchingperfil

transcripción

Secuencia

PilB

PAO1 57 1 1 1 1 1 1 1

M8A1 42 0 0 0 0 0 1 0

M8A4 82 1 1 1 1 1 1 1

Page 30: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

30

DISCUSIÓN

En el presente estudio se observa que existen diferencias en remoción de hidrocarburos para las cepas de P. aeruginosa PAO1, M8A1 y M8A4, que la morfología de las biopelícula es diferente para la cepa M8A1 y que esta cepa también posee diferencias en características morfológicas y funcionales de colonia y movilidad cuando se compara con M8A4 y PAO1. La expresión de los genes evaluados es la misma para todas las cepas, pero la secuencia del gen PilB difiere en M8A1 cuando se compara con la secuencia de M8A4 y PAO1.

Es posible que si se hacen análisis cuantitativos de expresión de estos genes, los resultados de independencia cambien, pero para el alcance de este estudio la expresión no diferencial por parte de todas las cepas de los genes evaluados en el ambiente con petróleo es no informativo con respecto a la remoción de alcanos.

Taylor and Buckling (2011), Rashid et al. (2000) y Eric Deziel et al. (2001) relacionan la formación de la biopelícula con disminución de los morfotipos swimming – asociados a bajas en la producción de flagelo (FliA) y aumento en los morfotipos twitching y swarming – asociados a aumentos en la producción de pili (PilB). Biopelículas fragmentadas, como la que se observa en M8A1, son para ellos indicadores de deficiencias en los mecanismos de transformación de los morfotipos de vida libre a biopelícula. Esta trasformación de morfotipos esta mediada por la activación y sobreexpresión de genes asociados a movilidad twitching y swarming (FliA, RhlA), así como por la regulación negativa de genes asociados a swimming (PilB).

En el presente estudio podemos ver esta diferencia de regulación de los morfotipos en los comportamientos de las diferentes cepas en los agares de movilidad.

Para las tres cepas, el movimiento de swimming pasó a tener menos área después de que las cerpas estuvieron creciendo en petróleo. El área del halo de movimiento disminuyó un 85% (M8A1) y 94% (M8A4) y un 95% para PAO1.

Twitching aumentó para PAO1 en presencia de petróleo un 58%, mientras que para M8A4 aumentó un 76%. En los tres casos se observó que la colonia principal se hizo más pequeña después de estar en petróleo. En el caso de M8A1 además el halo de movimiento desapareció.

Swarming para PAO1 no mostró aumento o disminución antes y después de estar en petróleo, mientras que para M8A4 disminuyó un 2% después de estar en petróleo. M8A1 por su parte inicio con una morfología poco definida para swarming y después de estar en petróleo esta morfología se hizo aún menos definida. Esta “malformación” de la colonia de swarming de M8A1 puede ser indicativo de una mutación en el gen PPK (que cataliza la transferencia reversible de los fosfatos terminales del ATP). Ya que en sus estudios Rashid et al. (2000) muestran que las cepas que tienen mutaciones en el gen PPK expresan formas de swarming diferentes a las de la cepa control (PAO1) y dificultades para formar biopelículas estables. Para las tres cepas, el movimiento de swimming, que en principio ocupa toda la caja de Petri pasó a tener menos área. El área del halo de movimiento disminuyó entre un 85% (M8A1) y 94% (M8A4). Este cambio en el área de movimiento durante el ensayo deja ver que la maquinaria para producir movimiento swimming, asociada a la producción de flagelo, disminuye su actividad después de que las bacterias han estado creciendo en petróleo. Sin embargo, vale la pena reafirmar que no es que

Page 31: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

31

las bacterias cambien totalmente del morfotipo swimming a morfotipos de menos movimiento, sino que un porcentaje de la población bastante considerable lo hace. La presencia de bacterias flageladas en la biopelícula liquido/liquido es lo que permite que se dé la difusión Eddy, pues son los flagelos de las bacterias los que crean los vórtices de mezcla y permiten la difusión entre los dos fluidos (Rühs et al., 2014) y en nuestro estudio podemos ver que este horizonte fluido (FIGURA 10) se presenta en las biopelÍculas de PAO1.

Twitching aumentó entre un 58% (PAO1) y un 76% (M8A4), esto permite ver de forma fisiológica como la maquinaria asociada a movilidad Twitching (PilB, RhlA) aumenta en la población de bacterias después de estar en petróleo. En otros estudios de movilidad asociada a biopelículas, se ve que un incremento en movilidad Twitching y una disminución en movilidad swimming es necesaria para la formación de la biopelícula (Dötsch et al., 2012; GA O'Toole & Kolter, 1998)

El gen Ppk cataliza la transferencia reversible de los fosfatos terminales del ATP para formar largas cadenas de polifosfatos y está asociado principalmente a la producción de alginato. La producción de alginato es vital para la motilidad swarming sobre superficies solidas pues permite al grupo de bacterias permaneces en una unidad cohesiva. No existen estudios de este gen en biopelículas liquido/liquido. Rashid et al. (2000) encontraron que malformaciones de la colonia en agares de swarming suelen ser indicativo de una mutación en el gen Ppk, por lo que se realizó un análisis de la secuencia de este gen para todas las cepas y no encontramos diferencia alguna en la secuencia de nucleótidos, por lo que en este momento no podemos explicar por qué la morfología swarming de M8A1 es diferente a la de las otras cepas. El análisis de la presencia/ausencia de trascritos mostró diferencias de expresión entre las biopelículas de hidrocarburos y las biopelículas de aceite de girasol. En general las biopelículas de hidrocarburos están expresando de forma diferencial a las biopelículas de aceites los genes de degradación de alcanos y los genes de respuesta a estrés orgánico. Los genes de movilidad y asociados a la formación de biopelícula y producción de ramnolípidos se expresaron en los dos ensayos. Estos resultados son diferentes a los resultados obtenidos por Rojas, 2008 donde en petróleo no se observó expresión de los genes mexC y OprJ. Sin embargo, al comparar los estudios hay que tener en cuenta un par de cosas: 1. En el estudio de Rojas 2008 evaluó un consorcio de cepas de Pseudomonas aeruginosa de los cuales M8A1 y M8A4 son 2 de las 4 cepas que se tenían en el consorcio. 2. El petróleo utilizado por Rojas 2008 no es un petróleo estéril, y de hecho reportan en el estudio el crecimiento de un hongo asociado. 3. La extracción de RNA se realizó de células planctónicas, mientras que en este estudio realizamos extracción de RNA de células en biopelículas directamente asociadas a las gotas de petróleo. Se puede crear paralelos entre el presente estudio y el estudio de Rojas, 2008 al observar que la producción de autoinductores y la activación del sistema QS están activos en los dos. Rojas, 2008 confiere la presencia de transcritos de los genes ExoS y ExoT a la presencia del hongo en el medio, principalmente debido a que el sistema de secreción tipo 3, del cual ExoS es el efector, esta descrito para cepas clínicas, en experimentos de virulencia. Rojas también concluye que la presencia de los trascritos MexX y MexY es producto de la presencia del hongo en el medio. Nuevamente, la información que se tiene de las bombas de excreción MexXY-oprM está asociada solo a la importancia que estas bombas tienen en la resistencia a antibióticos.

Page 32: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

32

En los estudios de los mecanismos de expresión de las bombas de excreción MexXY-Opr se ha encontrado que la expresión de las mismas es altamente específica para ciertos antibióticos (Evans et al., 1998; Hocquet et al., 2003; Li, Nikaido, & Poole, 1995; Masuda et al., 2000). Sin embargo, también se ha visto que estas bombas de excreción se encuentran sobre reguladas para proteger a las bacterias de estrés orgánico (Muller, Stevens, Craig, & Love, 2007). En nuestro ensayo la expresión de estas bombas puede hacer parte de la respuesta a estrés orgánico. OprM y OprJ son los canales de estas bombas (Masuda et al., 2000), y se ha encontrado que OprM y OprJ no son los precursores de la especificidad de sustrato de las bombas. De hecho, la especificad de sustrato de estas bombas cada vez está más en entredicho ya que a medida que se realizan estudios más amplios se encuentra que estas bombas facilitan el paso por membrana de una gran cantidad de compuestos (biosidas, tintes, detergentes, inhibidores metabólicos, solventes orgánicos, y moléculas asociadas a comunicación bacteriana) (Tegos & Hamblin, 2006) con estructuras similares a los antibióticos estudiados en un principio. Esto indica que las bombas realizan un reconocimiento estructural de su sustrato y cualquier cosa que estructuralmente sea parecido habrá de pasar por la bomba. Este reconocimiento estructural fue recientemente probado por Dreier and Ruggerone (2015). Teniendo todo esto en cuenta, es muy posible que la activación de estas bombas en nuestro ensayo se deba a que el petróleo posee compuestos que estructuralmente son similares a los sustratos comúnmente estudiados para estas bombas (FIGURA 15). La expresión de genes de virulencia como LasA y LasB está asociada a la degradación de elastina y la proteína surfactante-D (SP-D) en los pulmones (Bleves et al., 2010). Su función en degradación de petróleo no se ha estudiado, pero teniendo en cuenta que en las infecciones pulmonares rompe los enlaces que forman la SP-D es posible que en degradación de petróleo su función sea la de regular la cantidad de ramnolipidos o biosurfactantes en el medio alrededor de las bacterias.

FIGURA 16: SIMILITUD ESTRUCTURAL DE LAS QUINOLONAS CON HIDROCARBUROS DE

PETRÓLEO.

Figura 15: Similitud estructural de las quinolonas con hidrocarburos de petróleo. Estructuralmente, las quinolonas, no son más que anillos aromáticos. Esta misma estructura es posible encontrarla en hidrocarburos de petróleo como los tioles y los asfaltenos.

ToxA inhibe la formación de proteínas en células eucariotas, es dependiente del sistema QS y no se ha estudiado su función en ambientes de degradación de petróleo. Dado que en nuestro ensayo se

Page 33: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

33

expresa en presencia de petróleo sería muy interesante estudiar que otra función puede llegar a tener esta toxina además de la que ya se conoce en ambientes de infección.

La evaluación de las secuencias de los genes de movilidad y degradación de alcanos evaluados mostro que solo hay diferencias en las secuencias de aminoácidos del gen PilB para la cepa M8A1. Estas diferencias no afectan la secuencia del sitio de unión de la proteína producida por el gen, sin embargo el modelo estructural producido para M8A1 es diferente de aquel producido para M8A4, por lo que podemos sugerir que las diferencias observadas en movilidad entre las dos cepas podrían estar asociadas a un plegamiento diferente de PilB para M8A1.

Considerando datos de bibliografía, la formación de biopelícula en Pseudomonas aeruginosa parece estar regulada a nivel de traducción más que a nivel de transcripción. Esto se ve principalmente al comparar los resultados obtenidos por microarreglos con resultados obtenidos por proteomica. Los análisis de trascriptoma llevan a concluir que alrededor del 1% de los genes de P. aeruginosa están diferenciados entre biopelículas y células planctónicas (diferencias de 2-fold) (Whiteley et al., 2001) y que el trascriptoma de biopelícula es poco diferenciado del trascriptoma de las células en fase estacionaria, mientras que los resultados de proteomica muestran que alrededor del 50% del proteoma reportado se diferencia entre planctónicas y biopelículas (diferencias de hasta 6-fold) (R. D. Waite, Papakonstantinopoulou, Littler, & Curtis, 2005) y que además P. aeruginosa muestra al menos tres fenotipos durante el ciclo de vida de una biopelícula: (a) planctónica, (b) biopelícula madura, y (c) dispersión. Estos fenotipos muestran patrones de traducción tan diferentes entre ellos, que son comparables a las diferencias que muestran especies diferentes del género Pseudomonas en estadios similares de crecimiento. (Drenkard & Ausubel, 2002; Sauer et al., 2002; Stoodley et al., 2002)

Adicional y más recientemente, algunos investigadores se han concentrado en la identificación de determinantes relacionados con la formación y maduración de las biopelículas. Muchos de estos determinantes están relacionados con la movilidad de las bacterias pues durante la formación de biopelícula los fenotipos que P. aeruginosa exhibe están asociados a cambios en la traducción de genes asociados a movilidad de las células. Células de vida libre exhiben mayor traducción de genes asociados a Swimming, mientras que células de microcolonia y biopelícula exhiben mayor traducción de genes asociados a Twitching y Swarming. (Persat et al., 2015; Roberts et al., 2014; Rühs et al., 2014; Solano et al., 2014). Además, se ha demostrado que swarming en Pseudomonas aeruginosa no es solo dependiente de los flagelos sino que también es dependiente de pili tipo IV y ramnolipidos.

Por otro lado, la eficiencia de degradación de hidrocarburos se ve asociada a la formación de biopelículas además de a la expresión de genes de degradación de alkanos (Dasgupta et al., 2013; Rühs et al., 2014) pues en biorremediación, las biopelículas median la degradación de alcanos y compuestos aromáticos policíclicos al modificar la hidrofobicidad de la superficie celular y las constantes de solubilización de los compuestos.

Page 34: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

34

CONCLUSIONES

Al medir la remoción de hidrocarburos totales de petróleo para las cepas P. aeruginosa PA01, P. aeruginosa M8A1 y P. aeruginosa M8A4, se observó que M8A1 presenta porcentajes de remoción por debajo de las otras dos cepas especialmente de la cepa ambiental M8A4.

La remoción de alcanos por estas cepas es eficiente en diferentes grados, siendo M8A4 y PAO1 más efectivas frente a M8A1 a la hora de remover los hidrocarburos y podemos suponer que estas diferencias se deben a mecanismo metabólicos como por ejemplo la producción de biopelículas sobre las gotas de petróleo.

Se identificaron diferencias en morfología de colonia y tipos de movilidad asociada a formación de biopelículas para las cepas P. aeruginosa PA01, P. aeruginosa M8A1 y P. aeruginosa M8A4 después de crecer en presencia de petróleo. Se observó que los patrones de movilidad y morfología de colonia son compartidos por PAO1 y M8A4, mientras que M8A1 exhibe patrones de movilidad y morfología de colonia, integridad y morfología de biopelícula diferentes.

Se determinó el perfil transcripcional por medio de RT-PCR de las biopelículas de tres cepas P. aeruginosa PA01, P. aeruginosa M8A1 y P. aeruginosa M8A4 en medio con y sin petróleo para los genes de interés y se observó que las cepas no muestran diferencia en el patrón de transcripción cuando crecen en petróleo. Sin embargo, cuando crecen en aceite de girasol, las bombas de excreción MeX-Opr no presentan transcritos, al igual que el sistema de secreción tipo 3 y los genes de degradación de alcanos. El resultado de no expresión de genes de degradación de alcanos en los controles con aceite vegetal era el resultado esperado, pues las rutas de degradación de aceites utilizan maquinarias diferentes (lipasas) a las de degradación de alcanos (oxigenasas, alcano hidroxilasas) además de producir respuestas a estrés diferentes, por lo que tampoco es de extrañar que en los ensayos con aceite de girasol los genes asociados estrés orgánico (sistemas Mex, Opr y Exo) no sean expresados.

Se sugiere que la expresión de las bombas de excreción Mex-Opr puede estar relacionada con la presencia en el petróleo de compuestos estructuralmente similares a los sustratos usuales de estas bombas (antibióticos) y que la presencia de los factores de virulencia LasA y LasB puede estar relacionada con el control de ramnolipidos presentes en el medio.

De acuerdo con la bibliografía consultada podemos relacionar diferencias en la remoción alcanos con diferencias en la morfología de las biopelículas de las cepas P. aeruginosa PA01, P. aeruginosa M8A1 y P. aeruginosa M8A4. Así mismo se propone que en un futuro se realicen estudios a nivel de transcripción y traducción de genes específicos en las biopelículas que crecen sobre petróleo que permitan correlacionar los patrones de morfología con los perfiles de expresión por RT-PCR.

Fue posible determinar la expresión de genes asociados con la degradación de alcanos y la virulencia en tres cepas de Pseudomonas aeruginosa cuando crecen en biopelícula sobre gotas de petróleo y obser que la cepa con menores porcentajes de remoción de alcanos también es la cepa que presenta diferencias de movilidad y formación de biopelícula con respecto a la cepa control. Sin embargo no se logró probar asociación estadística entre estos resultados.

Page 35: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

35

BIBLIOGRAFIA Alonso, A., Campanario, E., & Martinez, J. (1999). Emergence of multidrug-resistant mutants is

increased under antibiotic selective pressure in Pseudomonas aeruginosa. Microbiology, 145, 2857 - 2862.

Alonso, A., Rojo, F., & Martínez, J. L. (1999). Environmental and clinical isolates of Pseudomonas aeruginosa show pathogenic and biodegradative properties irrespective of their origin. Environmental Microbiology, 1(5), 421-430. doi: 10.1046/j.1462-2920.1999.00052.x

Bastaert, F., Chignard, M., & Sallenave, J. (2015). LasB elastase, a T2SS Pseudomonas aeruginosa virulence factor kills mice in part by subverting host alveolar macrophage activity, through IL-1β down-regulation. Revue des Maladies Respiratoires, 32(3), 332.

Bleves, S., Viarre, V., Salacha, R., Michel, G. P. F., Filloux, A., & Voulhoux, R. (2010). Protein secretion systems in Pseudomonas aeruginosa: A wealth of pathogenic weapons. International Journal of Medical Microbiology, 300(8), 534-543. doi: http://dx.doi.org/10.1016/j.ijmm.2010.08.005

Caldwell, M. E., Garrett, R. M., Prince, R. C., & Suflita, J. M. (1998). Anaerobic Biodegradation of Long-Chain n-Alkanes under Sulfate-Reducing Conditions. Environmental Science & Technology, 32(14), 2191-2195. doi: 10.1021/es9801083

Corporation, P. (2011). Guide to world crude's updated: Cusiana assay reveals lighter crude oil. Retrieved 07/011/2015, 2015

Costerton, J., Stewart, P., & Greenberg, E. (1999). Bacterial biofilms: a common cause of persistent infections. Science, 284(5418), 1318 - 1322.

Chugani, S., & Greenberg, E. P. (2010). LuxR homolog-independent gene regulation by acyl-homoserine lactones in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences, 107(23), 10673-10678. doi: 10.1073/pnas.1005909107

Daane, L. L., Harjono, I., Zylstra, G. J., & Haggblom, M. M. (2001). Isolation and Characterization of Polycyclic Aromatic Hydrocarbon-Degrading Bacteria Associated with the Rhizosphere of Salt Marsh Plants. Appl. Environ. Microbiol., 67(6), 2683-2691. doi: 10.1128/aem.67.6.2683-2691.2001

Dasgupta, D., Ghosh, R., & Sengupta, T. K. (2013). Biofilm-Mediated Enhanced Crude Oil Degradation by Newly Isolated Pseudomonas Species. ISRN Biotechnology, 2013, 13. doi: 10.5402/2013/250749

Deziel, E., Comeau, Y., & Villemur, R. (2001). Initiation of Biofilm Formation by Pseudomonas aeruginosa 57RP Correlates with Emergence of Hyperpiliated and Highly Adherent Phenotypic Variants Deficient in Swimming, Swarming, and Twitching Motilities. J. Bacteriol., 183(4), 1195-1204. doi: 10.1128/jb.183.4.1195-1204.2001

Deziel, E., Lepine, F., Milot, S., He, J., Mindrinos, M. N., Tompkins, R. G., & Rahme, L. G. (2004). Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci U S A, 101(5), 1339-1344. doi: 10.1073/pnas.0307694100

Deziel, E., Lepine, F., Milot, S., & Villemur, R. (2003). rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy) alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology, 149, 2005 - 2013.

Dietrich, L. E. P., Teal, T. K., Price-Whelan, A., & Newman, D. K. (2008). Redox-Active Antibiotics Control Gene Expression and Community Behavior in Divergent Bacteria. Science, 321(5893), 1203-1206. doi: 10.1126/science.1160619

Page 36: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

36

Diggle, S., Winzer, K., Lazdunski, A., Williams, P., & Camara, M. (2002). Advancing the quorum in Pseudomonas aeruginosa : MvaT and the regulation of N-acylhomoserine lactone production and virulence gene expression. J Bacteriol, 184(10), 2576 - 2586.

Dohnt, K., Sauer, M., Muller, M., Atallah, K., Weidemann, M., Gronemeyer, P., . . . Krull, R. (2011). An in vitro urinary tract catheter system to investigate biofilm development in catheter-associated urinary tract infections. Journal of Microbiological Methods, 87(3), 302-308. doi: 10.1016/j.mimet.2011.09.002

Dötsch, A., Eckweiler, D., Schniederjans, M., Zimmermann, A., Jensen, V., Scharfe, M., . . . Häussler, S. (2012). The Pseudomonas aeruginosa Transcriptome in Planktonic Cultures and Static Biofilms Using RNA Sequencing. PLoS ONE, 7(2), e31092. doi: 10.1371/journal.pone.0031092

Dreier, J., & Ruggerone, P. (2015). Interaction of antibacterial compounds with RND e ffl ux pumps in Pseudomonas aeruginosa. Front Microbiol, 6, 660. doi: 10.3389/fmicb.2015.00660

Drenkard, E., & Ausubel, F. M. (2002). Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature, 416(6882), 740-743.

Drews, A. W. Manual on Hydrocarbon Analysis (6th Edition): (MNL 3): ASTM International. Duan, K., & Surette, M. G. (2007). Environmental Regulation of Pseudomonas aeruginosa PAO1 Las

and Rhl Quorum-Sensing Systems. Journal of Bacteriology, 189(13), 4827-4836. doi: 10.1128/JB.00043-07

Evans, K., Passador, L., Srikumar, R., Tsang, E., Nezezon, J., & Poole, K. (1998). Influence of the MexAB-OprM multidrug efflux system on quorum sensing in Pseudomonas aeruginosa. J Bacteriol, 180, 5443 - 5447.

Farhadian, M., Vachelard, C., Duchez, D., & Larroche, C. (2008). In situ bioremediation of monoaromatic pollutants in groundwater: A review. Bioresource Technology, 99(13), 5296-5308.

Feltman, H., Schulert, G., Khan, S., Jain, M., Peterson, L., & Hauser, A. R. (2001). Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa. Microbiology, 147(10), 2659-2669.

Grimaud, R. (2010). Biofilm Development at Interfaces between Hydrophobic Organic Compounds and Water. In K. Timmis (Ed.), Handbook of Hydrocarbon and Lipid Microbiology (pp. 1491-1499): Springer Berlin Heidelberg.

Hall-Stoodley, L., Costerton, J. W., & Stoodley, P. (2004). Bacterial biofilms: from the Natural environment to infectious diseases. Nat Rev Micro, 2(2), 95-108.

Hocquet, D., Vogne, C., El Garch, F., Vejux, A., Gotoh, N., Lee, A., . . . Plesiat, P. (2003). MexXY-OprM efflux pump is necessary for adaptive resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother, 47, 1371 - 1375.

Ji, Y., Mao, G., Wang, Y., & Bartlam, M. (2013). Structural Insights into Diversity and n-Alkane Biodegradation Mechanisms of Alkane Hydroxylases. Frontiers in Microbiology, 4. doi: 10.3389/fmicb.2013.00058

Ju, K.-S., & Parales, R. E. Nitroaromatic Compounds, from Synthesis to Biodegradation. Microbiol. Mol. Biol. Rev., 74(2), 250-272. doi: 10.1128/mmbr.00006-10

Klausen, M., Heydorn, A., Ragas, P., Lambertsen, L., Aaes-Jorgensen, A., Molin, S., & Tolker-Nielsen, T. (2003). Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol, 48(6), 1511 - 1524.

Li, X., Nikaido, H., & Poole, K. (1995). Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa. Antimicrob Agents Chemother, 39, 1948 - 1953.

Macedo, A. J., Kuhlicke, U., Neu, T. R., Timmis, K. N., & Abraham, W.-R. (2005). Three Stages of a Biofilm Community Developing at the Liquid-Liquid Interface between Polychlorinated

Page 37: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

37

Biphenyls and Water. Applied and Environmental Microbiology, 71(11), 7301-7309. doi: 10.1128/aem.71.11.7301-7309.2005

Masuda, N., Sakagawa, E., Ohya, S., Gotoh, N., Tsujimoto, H., & Nishino, T. (2000). Substrate Specificities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM Efflux Pumps in Pseudomonas aeruginosa. Antimicrob Agents Chemother, 44, 3322 - 3327.

Muller, J. F., Stevens, A. M., Craig, J., & Love, N. G. (2007). Transcriptome Analysis Reveals that Multidrug Efflux Genes Are Upregulated To Protect Pseudomonas aeruginosa from Pentachlorophenol Stress. Applied and Environmental Microbiology, 73(14), 4550-4558. doi: 10.1128/aem.00169-07

O'Toole, G., Kaplan, H. B., & Kolter, R. (2000). Biofilm formation as microbial development. Annual Review of Microbiology, 54, 49-79.

O'Toole, G., & Kolter, R. (1998). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol, 30(2), 295 - 304.

Okuta, A., Ohnishi, K., & Harayama, S. (1998). PCR isolation of catechol 2,3-dioxygenase gene fragments from environmental samples and their assembly into functional genes. Gene, 212(2), 221-228. doi: 10.1016/s0378-1119(98)00153-x

Parsek, M. R., & Greenberg, E. P. (2005). Sociomicrobiology: the connections between quorum sensing and biofilms. Trends in Microbiology, 13(1), 27-33. doi: http://dx.doi.org/10.1016/j.tim.2004.11.007

Persat, A., Inclan, Y. F., Engel, J. N., Stone, H. A., & Gitai, Z. (2015). Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences, 112(24), 7563-7568. doi: 10.1073/pnas.1502025112

Prigent-Combaret, C., Vidal, O., Dorel, C., & Lejeune, P. (1999). Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. J Bacteriol, 181(19), 5993 - 6002.

Rahme, L. G., Stevens, E. J., Wolfort, S. F., Shao, J., Tompkins, R. G., & Ausubel, F. M. (1995). Common virulence factors for bacterial pathogenicity in plants and animals. Science, 268(5219), 1899-1902.

Rashid, M. H., Rao, N. N., & Kornberg, A. (2000). Inorganic Polyphosphate Is Required for Motility of Bacterial Pathogens. J. Bacteriol., 182(1), 225-227. doi: 10.1128/jb.182.1.225-227.2000

Roberts, A. E. L., Maddocks, S. E., & Cooper, R. A. (2014). Manuka honey reduces the motility of Pseudomonas aeruginosa by suppression of flagella-associated genes. Journal of Antimicrobial Chemotherapy. doi: 10.1093/jac/dku448

Rühs, P. A., Böcker, L., Inglis, R. F., & Fischer, P. (2014). Studying bacterial hydrophobicity and biofilm formation at liquid–liquid interfaces through interfacial rheology and pendant drop tensiometry. Colloids and Surfaces B: Biointerfaces, 117, 174-184. doi: http://dx.doi.org/10.1016/j.colsurfb.2014.02.023

Sauer, K., Camper, A. K., Ehrlich, G. D., Costerton, J. W., & Davies, D. G. (2002). Pseudomonas aeruginosa Displays Multiple Phenotypes during Development as a Biofilm. Journal of Bacteriology, 184(4), 1140-1154. doi: 10.1128/jb.184.4.1140-1154.2002

Selezska, K., Kazmierczak, M., Müsken, M., Garbe, J., Schobert, M., Häussler, S., . . . Sikorski, J. (2012). Pseudomonas aeruginosa population structure revisited under environmental focus: impact of water quality and phage pressure. Environ Microbiol. doi: 10.1111/j.1462-2920.2012.02719.x

Solano, C., Echeverz, M., & Lasa, I. (2014). Biofilm dispersion and quorum sensing. Current Opinion in Microbiology, 18, 96-104. doi: http://dx.doi.org/10.1016/j.mib.2014.02.008

Page 38: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

38

Staijen, I. E., Hatzimanikatis, V., & Witholt, B. (1997). The AlkB Monooxygenase of Pseudomonas oleovorans. European Journal of Biochemistry, 244(2), 462-470. doi: 10.1111/j.1432-1033.1997.00462.x

Stoodley, P., Sauer, K., Davies, D. G., & Costerton, J. W. (2002). Biofilms as complex differentiated communities. Annual Review of Microbiology, 56, 187-209.

Taylor, T. B., & Buckling, A. (2011). SELECTION EXPERIMENTS REVEAL TRADE-OFFS BETWEEN SWIMMING AND TWITCHING MOTILITIES IN PSEUDOMONAS AERUGINOSA. Evolution, 65(11), 3060-3069. doi: 10.1111/j.1558-5646.2011.01376.x

Tegos, G. P., & Hamblin, M. R. (2006). Phenothiazinium Antimicrobial Photosensitizers Are Substrates of Bacterial Multidrug Resistance Pumps. Antimicrobial Agents and Chemotherapy, 50(1), 196-203. doi: 10.1128/aac.50.1.196-203.2006

Vallet, I., Diggle, S., Stacey, R., Camara, M., Ventre, I., Lory, S., . . . Filloux, A. (2004). Biofilm formation in Pseudomonas aeruginosa: fimbrial cup gene clusters are controlled by the transcriptional regulator MvaT. J Bacteriol, 186(9), 2880 - 2890.

Vallet, I., Olson, J., Lory, S., Lazdunski, A., & Filloux, A. (2001). The chaperone/usher pathways of Pseudomonas aeruginosa: identification of fimbrial gene clusters (cup) and their involvement in biofilm formation. Proc Natl Acad Sci USA, 98(12), 6911 - 6916.

Vives-Flórez, M., & Garnica, D. (2006). Comparison of virulence between clinical and environmental Pseudomonas aeruginosa isolates. International Microbiology, 9(4), 247 - 252.

Waite, R., Paccanaro, A., Papakonstantinopoulou, A., Hurst, J., Saqi, M., Littler, E., & Curtis, M. (2006). Clustering of Pseudomonas aeruginosa transcriptomes from planktonic cultures, developing and mature biofilms reveals distinct expression profiles. BMC Genomics, 7(1), 162.

Waite, R. D., Papakonstantinopoulou, A., Littler, E., & Curtis, M. A. (2005). Transcriptome Analysis of Pseudomonas aeruginosa Growth: Comparison of Gene Expression in Planktonic Cultures and Developing and Mature Biofilms. Journal of Bacteriology, 187(18), 6571-6576. doi: 10.1128/jb.187.18.6571-6576.2005

Wang, D., Seeve, C., Pierson, L., & Pierson, E. (2013). Transcriptome profiling reveals links between ParS/ParR, MexEF-OprN, and quorum sensing in the regulation of adaptation and virulence in Pseudomonas aeruginosa. BMC Genomics, 14(1), 618.

Whiteley, M., Bangera, M. G., Bumgarner, R. E., Parsek, M. R., Teitzel, G. M., Lory, S., & Greenberg, E. P. (2001). Gene expression in Pseudomonas aeruginosa biofilms. Nature, 413(6858), 860-864.

Wilder, C. N., Diggle, S. P., & Schuster, M. (2011). Cooperation and cheating in Pseudomonas aeruginosa: the roles of the las, rhl and pqs quorum-sensing systems. ISME J, 5(8), 1332-1343. doi: http://www.nature.com/ismej/journal/v5/n8/suppinfo/ismej201113s1.html

Williams, P., & Cámara, M. (2009). Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Current Opinion in Microbiology, 12(2), 182-191. doi: DOI: 10.1016/j.mib.2009.01.005

Zhao, F., Shi, R., Zhao, J., Li, G., Bai, X., Han, S., & Zhang, Y. (2015). Heterologous production of Pseudomonas aeruginosa rhamnolipid under anaerobic conditions for microbial enhanced oil recovery. Journal of Applied Microbiology, 118(2), 379-389. doi: 10.1111/jam.12698

Zhengzhi Zhang, Lixue Gai, Zhaowei Hou, Chunyu Yang, Cuiqing Ma, Zhongguo Wang, . . . Xu, P. (2010). Characterization and biotechnological potential of petroleum-degrading bacteria isolated from oil-contaminated soils. Bioresource Technology, 8452–8456.

Page 39: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

39

Page 40: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

40

ANEXOS

FIGURA 1 (Anexo): CROMATOGRAMAS DE M8A4 PARA LAS SEMANAS 1, 4 Y 8. A

B

HC17

HC16

HC18 HC19

HC20 HC21

HC22 HC23

HC24

HC25 HC26

HC27 HC28

HC29

HC30 HC31

HC17

HC18

Page 41: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

41

C

Los cronogramas comparativos del montaje control de (petróleo, rojo) y el montaje con M8A4 (negro) para la semana 1 (A), la semana 4 (B) y la semana 8 (C)

FIGURA 2 (Anexo): CROMATOGRAMAS DE M8A1 PARA LAS SEMANAS 1, 4 Y 8. A

B

HC17

HC17

HC16

HC18 HC19

HC20 HC21

HC22 HC23

HC24 HC25

HC26 HC27 HC28

HC29 HC30

HC31

HC17

HC18 HC20

HC21 HC22 HC23

HC24

HC25 HC26

HC27 HC28

HC29

HC30 HC31

Page 42: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

42

C

Los cronogramas comparativos del montaje control de (petróleo, rojo) y M8A1 (negro) para la semana 1 (A), la semana 4 (B) y la semana 8 (C)

FIGURA 3 (Anexo): CROMATOGRAMAS DE PAO1 PARA LAS SEMANAS 1, 4 Y 8. A

HC17

HC18

HC17

HC16

HC18 HC19 HC20

HC21 HC22

HC23

HC24

HC25 HC26

HC27 HC28

HC29 HC30

HC31

Page 43: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

43

B

C

Los cronogramas comparativos del montaje control de (petróleo, rojo) y PAO1 (negro) para la semana 1 (A), la semana 4 (B) y la semana 8 (C)

HC17

HC18

HC17

HC18

Page 44: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

44

FIGURA 4 (Anexo): CAMBIOS EN LA MORFOLOGIA DE COLONIA DE PAO1 DESPUES DE

ESTAR 7 DIAS EN PETRÓLEO.

FIGURA 5 (Anexo): CAMBIOS EN LA MORFOLOGIA DE COLONIA DE M8A4 DESPUES DE ESTAR 7

DIAS EN PETRÓLEO.

Page 45: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

45

FIGURA 6 (Anexo): CAMBIOS EN LA MORFOLOGIA DE COLONIA DE M8A1 DESPUES DE

ESTAR 7 DIAS EN PETRÓLEO

Page 46: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

46

Tabla 1 (Anexo) Resultados de extracciones de RNA M8A1.

Fecha de medición ng/ul Rin

25/01/2015 10:51 0,20 7

25/01/2015 10:53 0,26 3

25/01/2015 10:54 0,23 7

25/01/2015 10:55 0,20 7

25/01/2015 10:56 0,18 7

25/01/2015 10:57 0,12 5

25/01/2015 10:59 0,12 5

25/01/2015 10:59 0,13 3

25/01/2015 11:00 0,11 7

25/01/2015 11:01 0,17 6

25/01/2015 11:02 0,20 3

25/01/2015 11:03 0,16 5

25/01/2015 11:04 0,17 3

25/01/2015 11:05 0,19 2

25/01/2015 11:06 0,15 4

25/01/2015 11:07 0,19 5

25/01/2015 11:08 0,06 2

25/01/2015 11:09 0,07 3

25/01/2015 11:10 0,07 2

25/01/2015 11:12 0,06 2

12/03/2015 15:12 0,05 5

12/03/2015 15:47 0,06 3

13/03/2015 09:49 0,01 5

13/04/2015 09:36 0,48 5

17/04/2015 09:36 <0,050 7

18/04/2015 09:36 0,08 2

19/04/2015 09:36 <0,050 6

20/04/2015 09:36 <0,050 2

22/04/2015 09:36 <0,050 3

23/04/2015 09:36 <0,050 4

Page 47: EXPRESIÓN DE GENES EN BIOPELÍCULAS CRECIDAS SOBRE …

47

Tabla 2 (Anexo) Resultados de extracciones de RNA M8A4.

Fecha de medición ng/ul Rin

12/03/2015 15:47 1,75 5

13/03/2015 10:01 1,5 7

14/03/2015 14:59 0,834 4

14/03/2015 15:00 0,892 5

14/03/2015 15:01 1,21 7

14/03/2015 15:01 0,989 5

25/03/2015 11:57 0,708 5

25/03/2015 11:59 0,579 4

25/03/2015 12:00 0,553 4

14/04/2015 09:36 0,375 5

.

Tabla 3 (Anexo) Resultados de extracciones de RNA M8A1

Fecha de medición ng/ul Rin

14/03/2015 15:03 0,896 6

14/03/2015 15:03 0,985 5

14/03/2015 15:04 0,865 2

25/03/2015 12:00 0,716 4

25/03/2015 12:01 0,581 7

14/04/2015 09:36 0,375 7

15/04/2015 09:36 0,525 5

16/04/2015 09:36 1,17 5

21/04/2015 09:36 0,867 2

12/04/2015 09:36 1,29 4