127
1 LTE 무선기술 개요 [email protected] 청강문화산업대학 이동통신전공 2014년2월 • 모든 그림과 수치는 3GPP 표준규격을 준용하여 재정리하였으며, 관련 산업통계는 http://www.gsacom.com 에서 인용되었습니다.

Feb. 2014 @ TTA

Embed Size (px)

Citation preview

Page 1: Feb. 2014 @ TTA

1

LTE 무선기술 개요

이 상 근

[email protected]

청강문화산업대학 이동통신전공

2014년2월

• 모든 그림과 수치는 3GPP 표준규격을 준용하여 재정리하였으며, 관련 산업통계는 http://www.gsacom.com 에서 인용되었습니다.

Page 2: Feb. 2014 @ TTA

2

LTE 기술의 진화

Page 3: Feb. 2014 @ TTA

3

이동통신 기술의 진화

1) 동기식(미국식) CDMA 의 몰락, 비동기식(유럽식) WCDMA의 확대 (이동통신 기술의 본질은 규모의 경쟁력) 2) CDMA 기술의 종말 => OFDM 기술 시대의 개막 (CDMA로서는 4G 에서 요구하는 수백Mbps 불가능)

3) LTE의 규모의 경쟁력과 Wimax(와이브로)의 빠른 상용화 경쟁력에 의한 4G 기술의 경쟁

cdma2000

EVDORev0

EVDV

미국식아나로그

TDMAIMT-

Advanced

IS95A

EVDORevA

WCDMAHSDPA/HSUPA

GPRS, EDGEGSM유럽식아나로그

TD-SCDMA

WiMAX-Evolution801.16m

1995년 2000년 2005년

153k

2.4M/150kdata only

3.2M/1.8M

삼성전자 주도2006년 종료

384k 14.4M/5M

384k (~2Mbps)

1세대 (아나로그) 2세대 (디지털) 3세대(IMT2000), 3.5세대, 3.9세대 이동통신 (고속 데이터) 4세대 (초고속 데이터)

LTE-FDD

UMB

Mobile WiMAX(와이브로) 802.16e

40M/10M 100M~1G

~300M

CDMA 기술

OFDM 기술

2014년1월 기준

중국식 IMT2000

178사업자/79개국 사업자

2010년2014년

2003년1993년

EVDORevB

HSPA+

TD-LTE

LTE-Advanced

동기식,미국식 IMT2000, 118개 국가, 311개 사업자, 약 5.5억명

비동기식 IMT2000 (532개 사업자)/197개국

21M/5M

263개 사업자/97개국 (506개 사업자 투자계획)

약1.8억명

유선/무선 분리

기술,산업,서비스

유무선 통합

통합

2013년3분기 기준

• 세계인구 : 약70억명

• 이동통신가입자 : 약66.5억명

• GSM+WCDMA+LTE 가입자 : 약60억명

• WCDMA+LTE 가입자 : 약 14억명

Page 4: Feb. 2014 @ TTA

4

DC : Dual Carrier

HSPA14Mbps(16QAM)

21M HSPA+ (64QAM)

28M HSPA+(16QAM,MIMO)

42M HSPA+(DC-HSPA+)532개 사업자

145개 사업자

180개 사업자

8개 사업자

2013년12월 기준

314개

사업

802.16eRel 1.0

802.16m Rel 2.0

16e+TD-LTERel 2.1

16m+TD-LTERel 2.2178개 사업자

2012년11월 기준

HSPA / mobile Wimax 의 진화

• 16QAM : 한번에 4bit 씩 무선전송

• 64QAM : 한번에 6bit 씩 무선전송, 잡음에 매우 취약

• MIMO : 두개의 송수신 안테나에 의한 속도를 두배로

• Dual Carrier, 5MHz 대역 2개를 연동하여 속도를 두배로

스마트폰의 급격한 보급 => 3G 망의 급격한 포화 => LTE 시대의 급격한 도래 =>

규모의 경쟁력이 없는 와이브로의 몰락 => TD-LTE 와의 공생전략 (Rel 2.1, Rel 2.2)

Dual mode

Dual mode

single mode

LTE 시대에도 WCDMA/HSDPA 기술은 열심

히 진화하고 있음

한국

Page 5: Feb. 2014 @ TTA

5

• 무선망 설계 용이

• 상하향 비대칭 구조 구성 불가능

• Guard Band 에 의한 주파수 효율성

감소

• 대체적으로 좁은 대역폭, 비싼 주파

수 경매비용

• Guard Band 불필요, 상하향 비대칭 구성

용이에 따른 주파수 효율성 증대

• 대체적으로 넓은 대역폭, 싼 주파수 경매

비용

• 무선망 설계의 민감성 증대 (송,수신 신호

충돌 방지)

• 사업자간 주파수 간섭 가능성 민감

• Time delay 에 민감 (셀반경, 광중계기 제

약요소 …)

시간

주파수

송신

수신

guard band

Full Duplex FDD

시간

주파수

송신 수신 송신 수신 송신

Guard TimeGuard Period

TDD

시간

주파수

송신 수신 송신 수신 송신

less guard band

Half Duplex FDD

TxRxTxRxTxRx

주파수시간

TDDFDD

Tx

Rx

주파수

시간

기술진화 ??

FDD & TDD

• FDD DL/UL 주파수 간격이 좁아

단말 Duplexer 구현이 어려울 때

• 기지국 관점에서는 full duplex

FDD, 단말 관점에서 2개 이상의

단말들이 시분활하여 Half Duplex

FDD 로 동작 가능

• 단말에서의 Duplex 제거 가능

Page 6: Feb. 2014 @ TTA

6

LTE-FDD / LTE-TDD

(176)

cdma2000

EVDORev0

EVDV

미국식아나로그

TDMAIMT-

Advanced

IS95A

EVDORevA

WCDMAHSDPA/HSUPA

GPRS, EDGEGSM유럽식아나로그

TD-SCDMA

WiMAX-Evolution801.16m

1995년 2000년 2005년

153k

2.4M/150kdata only

3.2M/1.8M

삼성전자 주도2006년 종료

384k 14.4M/5M

1세대 (아나로그) 2세대 (디지털) 3세대(IMT2000), 3.5세대, 3.9세대 이동통신 (고속 데이터) 4세대 (초고속 데이터)

LTE-FDD

UMB

Mobile WiMAX(와이브로) 802.16e

40M/10M 100M~1G

~300M

~300M

중국식 IMT2000, 2009년1월

신규 추가(한국,미국) IMT2000

2010년2014년

2003년1993년

EVDORevB

HSPA+

TD-LTE

LTE-Advanced

동기식,미국식 IMT2000,

비동기식,유럽식 IMT2000

21M/5M

FDD

TDD

GP

DL TxDL Tx

UL TxUL Tx

5ms or 10ms

TDD 가 주파수 효율성이 높은 기술이라도 기존 통신방식이 FDD 이면 TDD 로의 주파수 구조 변화 불가 => FDD 로 진화

기존 TDD 방식은 계속 TDD 로 진화, FDD 와 TDD 는 하드웨어가 완전히 다른 기술, 호환성 불가

28개 사업자, 45개 계획중

/ 14년1월 기준 FDD 사업자 : 235개

TDD only 사업자 : 15개

FDD+TDD 사업자 : 13개

Page 7: Feb. 2014 @ TTA

7

국내의 LTE 주파수 현황 (1)

30M

SKT

WCDMA

20M

KT

WCDMA

10M

KT

LTE

10M

KT

WCDMA??

10M

LGU+

LTE

15M

SKT

86

9M

89

4M

18

40M

18

60M

18

70M

21

30M

21

50M

21

70M

10M

LGU+

PCS

21

20M

88

4M

95

0M

96

0M

하향링크(기지국 송신) 기준 주파수 표

21

10M

20

11년

8월

LT

E 1

0M

30M

SKT

WCDMA

20M

KT

WCDMA

20M

KT

PCS

25M

SKT

CDMA

86

9M

89

4M

18

40

M

18

60

M

18

70

M

21

30

M

21

50

M

21

70

M

10M

LGU+

PCS

(2010년 초)

(11년 8월)2

G 5

M

LT

E

10

M

20

11년

8월

2G

10

M

10M

LGU+

LTE

20

10년

4월

20

10년

4월

20

10년

4월

20

11년

8월

30M

SKT

WiBro

30M

KT

WiBro

23

00M

23

30M

23

60M

25

75

M

24

72M

60M

ISM band

WLAN ...

30M

SKT

WiBro

30M

KT

WiBro

23

00

M

23

30

M

23

60

M

24

12

M

24

72

M

60M

ISM band

WLAN ...

26

15M

TDD TDD TDDTDD

???

40M

WiBro

24

12M

TDD TDD TDD

10M

SKT

LTE

15M

SKT

5M

KT

LTE

• 10년초) SKT 850M 회수 재배치 LGT 850M, KTF 900M, SKT 2.1G

• 10년중반) 본격적인 스마트폰 시대 세계적인 3G망 포화

• 10년중반) SKT 2.1G 우월한 3G 통화용량 무제한 데이터

• 10년후반) KT 3G CCC 서비스

• 10년후반) 3G망 포화에 대하여 당장 사용이 가능한 2.1G 10M에 대한 무한경쟁

• 11년초) KT 2G 1.8G 10M 반납 경매

• 11년초반) 시설 투자가 용이한 2.1G 10M에 대한 무한 경쟁, KT 1.8G 10M 반납

• 11년초중반) 유럽 LTE 주파수 경매 1.8G LTE 대세

• 11년중반) 2.1G 10M LGU+ 지정, 1.8G 10M 경매

• 11년중반) 1.8G LTE 20M 대역폭(150Mbps) 확보 무한경쟁 SKT 획득

• 13년초중반) 1.8G LTE 20M 대역폭을 향한 무한 경쟁

피쳐폰 시대

스마트폰 시대

2010년 중반

3G망의 포화

피쳐폰 시대 스마트폰 시대

Page 8: Feb. 2014 @ TTA

8

freq

5Mhz

주파수

WCDMA

300

파 freq

5Mhz

600 파

20Mhz

1200 파

10Mhz

LTE

1st 2nd 5th

20Mhz20Mhz 주파수

LTE-Advanced

CDMA 의 최대 비효율성은 통화용량 증대에 따라 FA 증설,

즉 하드웨어 투자가 요구된다는 점과 주파수간 이동이 자유

롭지 않다는 점 => 통화용량의 불규칙 분포와 무관하게 균

등한 FA 증설 => 통화용량 증대를 위한 과도한 투자 필요

LTE 최대 효율성은 통화용량 증가에 따른 하드웨어 증설이

요구되지 않는다는 점 => 5MHz, 10MHz, 20MHz 동일한 하

드웨어 형상 => 사업자의 축복, 장비회사의 불행

LTE 기지국 용량 증설

Page 9: Feb. 2014 @ TTA

9

전세계 이통사의 로망 ~

규모의 경제를 갖는 연속된

20Mhz

2011년7월 주파수 경매 SKT worst, KT Best 상황 ??K

T 2

G

=>

LT

E

20

M

10

M L

GU

+

cd

ma

+E

VD

O

10

M K

T L

TE

SK

T

LT

E 1

0M

5M

SK

T 2

G

LG

U+

LT

E 1

0M

최고 150Mbps최고 75Mbps

SK

T

LT

E 1

0M

5M

SK

T 2

G

LG

U+

LT

E 1

0M

11년8월~

10

M K

T

LT

E

10

M L

GU

+

cd

ma

+E

VD

O

10

M S

KT

LT

E

KT

LT

E

10

M

LG

U+

LT

E 1

0M

800M 대역 900M 대역 1.8G 대역 2.1G 대역

SK

TL

TE

5M

~11년10월SK

T

2G

10

M

20

M K

T

PC

S

10

M L

GU

+

cd

ma

+E

VD

O

LG

U+

LT

E 1

0M

10

M K

T L

TE

최고 75Mbps

최고 37Mbps

(동일한 투자비로 두배의 속도와 용량)

800M 대역 1.8G 대역

SK

T

LT

E 1

0M

5M

SK

T 2

G

20

M K

T

PC

S

10

M L

GU

+

cd

ma

+E

VD

O

LG

U+

LT

E 1

0M

10

M K

T L

TE

11년11월~

800M 대역 900M 대역 1.8G 대역

LTE 연속된 20MHz 대역폭을 향한 경쟁 (2011년 1.8GHz 경매의 예)

Page 10: Feb. 2014 @ TTA

10

• LTE 주파수 대역 연속된 20Mhz Best !!

• 분산된 10Mhz 대역을 연동시켜 마치 한 개의 20Mhz 처럼 동작 Carrier Aggregation

• 3G HSDPA 에서의 5MHz 대역폭 연동 기술 DC-HSPA

10MHz 10MHz

800M 1.8G

FA1 FA2

속도 same, 용량 2배,2개 RU

10MHz 10MHz

800M 1.8G속도 2배, 용량 2배,

2개 RU

20Mhz 1FA

MC(Multi Carrier)

CA(Carrier Aggregation)

20MHz

1.8G20MHz BW속도 2배, 용량 2배

1개 RU

이통사의 로망 ~

규모의 경제를 갖는

연속된 20Mhz

LTE MC, CA

Page 11: Feb. 2014 @ TTA

11

20MHz 20MHz

20MHz 20MHz

5MHz 5MHz

20MHz

40MHz

80MHz

LTE non-contiguous CA

LTE contiguous CA

HSPA+ Dual Carrier

802.11b,g,n,ac

802.11n,ac Channel Bonding

802.11ac Channel Bonding 160MHz (상용화??)

802.11ac Channel Bonding

채널 결합에 의한 전송속도 증가

Page 12: Feb. 2014 @ TTA

12

48 + 4 [54M]

52 + 4 [65M]

108 + 6 [150M]

234 + 8 [433M]

20MHz 11g) 48 data_SC + 4 Pilot_SC

80MHz 11ac) 234 data SC + 8 Pilot SC

20MHz,40MHz 11n) 52 data_SC+4 Pilot_SC, 108data_SC+6 Pilot_SC

와이파이 부반송파의 확장(channel bonding)

Page 13: Feb. 2014 @ TTA

13

이동통신 주파수 대역의 확장

??? ???

86

4M

(8

19M

)

89

4M

(8

49M

)

95

0M

(9

05M

)

96

0M

(9

15M

)

18

40

M (

17

45

M)

18

80

M (

17

85

M)

21

10

M (

19

20

M)

21

70

M (

19

80

M)

22

00M

(2

01

0M

)

18

10

M (

17

15

M)

78

3M

( 7

28

M)

80

3M

(7

48M

)

??

75

8M

(6

98

M)

기지국 기준 - 송신주파수 (수신주파수)

국내 LTE 주파수 대역 확장 (2013년 8월 기준)

???

(TDD)

25

75M

26

20

M (

25

00

M)

26

60

M (

25

40

M)

26

15M

??

KT L

TE 5

M

SKT 2

G 5

M

SKT L

TE 1

0M

LG

U+

10M

KT L

TE 1

0M

SKT L

TE 2

0M

KT L

TE 1

0M

KT L

TE 1

0M

SKT L

TE 1

0M

LG

U+

3G

10M

LG

U+

LTE 1

0M

SKT 3

G 3

0M

KT 3

G 2

0M

LG

U+

LTE 2

0M

26

40

M (

25

20

M)

LTE 주파수대역의 경쟁력

1) 규모의 경제 (단말 수급, 로밍)

2) 연속된 20MHz 대역폭

2.1GHz로 전세계 통일된 3G 와 달리 주

파수 대역이 분산된 LTE 에서는 동일 주

파수 대역에서의 로밍이 중요한 이슈

0

20

40

60

80

100

120

1.8G 2.6G 700M 800M AWS 2.1G 1.9G 850M 900M

FDD주파수 대역별 LTE 사업자 수 (14년1월 기준/263개 상용망)

Page 14: Feb. 2014 @ TTA

14

800MUL/DL

700M

UL/DL 900MUL/DL

1.7G

UL

AWS band (USA only)

1.8G

UL/DL

약35% 1.9G

UL/DL2.1G

UL/DL

2.1G

DL

2.6G

UL/DL

약30%1.7GUL/DL

전세계 LTE 주파수 도입 현황 (FDD 기준)

2.6G

TDD2.3G

TDD3.5GTDD

Iphone5 (A1429) : 3G(850M,900M,1.9G,2.1G), GSM/EDGE(850M,900M,1.8G,1.9G), LTE(2.1G,1.8G,850M)

Ipad3 (AT&T) : 3G(850M,900M,1.9G,2.1G), GSM/EDGE(850M,900M,1.8G,1.9G), LTE(AWS,700M)

갤럭시S3 (국내향) : 3G(1.9G,2.1G), GSM/EDGE(900M,1.8G,1.9G), LTE(2.1G,1.8G,850M)

갤럭시S3 (캐나다 Talus) : 3G(850M,1.9G,2.1G), GSM/EDGE(900M,1.8G,1.9G), LTE(700M,1.7G)

850M

UL/DL900MUL/DL

1.7G

UL

1.9G

UL/DL

2.1G

UL/DL

2.1G

DL

1125model 526model 2183model

AWS band

전세계 WCDMA 주파수 도입 현황

850M+900M+2.1GTriband 819model

출시된 단말의 90% 이상 2.1G 지원(2011년2월 기준)

전세계 3G, 4G 상용서비스 주파수 대역

<휴대단말 모델별 주파수 대역 지원의 예>

상세 주파수 구조 => 3GPP TS36.101

3G 는 전세계 대부분 2.1GHz 로 통일, 로밍 용이

전세계 파편화된 LTE 주파수 대역,

로밍의 어려움, 단말 수급의 어려

움, FDD 주파수 대역별 LTE 사업자 수 (14년1월 기준/263개)

0

20

40

60

80

100

120

1.8G 2.6G 700M 800M AWS 2.1G 1.9G 850M 900M

TDD 사업자수

2.3G 13개

2.6G 13개

3.5G 3개

1.9G 1개

Page 15: Feb. 2014 @ TTA

15

OFDM 기술의 개요

Page 16: Feb. 2014 @ TTA

16

접 심볼간 간섭

매우 심각 !!

보통

• 이 통신의 핵심 기술은 고속 데이터를 위한 사파 처리 기술

• 이 통신 전파의 99% 는 사파

• 데이터가 고속화 될 수록 사파에 의 여 접 비트(심볼)간 간섭의 급격한 가 => 고속화의 기술 장벽

• 사파를 제한 으로 처리 는 CDMA 기술의 한계

• 새로운 이 통신 기술의 => 사파에 강한 OFDM 기술의 탄생 => CDMA 기술의 종말 (HSDPA/HSUPA)

• CDMA : 사파 각각에 대한 별 처리 (제한 수의 사파에 대 여만 처리 가능)

• OFDM : 고속의 데이터를 저속의 데이터로 병렬 전 ,

병렬 전 되는 저속 데이터들에 대 여도 일정 시간 내에서의 모든 사파에 대 여는 일괄 처리(무시)

심볼의 폭

고속 데이터

심볼의 폭

저속 데이터

직접파

반사파

직접파

반사파

앞 뒤 심볼이 완전히 겹쳐 뭐가 뭔지 도체 모르겠네 …

무선데이터 고속화에 따른 반사파 문제점

Page 17: Feb. 2014 @ TTA

17

If Td>Ts (high rate)

ISI

If Td<Ts (low rate)

Convolution

y(t)=x(t)*h(t)

Ts signal x(t)

time

Td

channel h(t)

y(t)

y(t)

• 수신 신호 = 신신호와 특성의 콘볼류션

• 의 delay spread 시간 보 symbol duration 이 을 경우 ISI 발생

ISI 문제점 (Inter Symbol Interference )

Page 18: Feb. 2014 @ TTA

18

Serial

to

Parall

el

Parall

el

to

Serial

f1

f2

fk

RF

f0 f1 f2 fk

접 주파수 신호가 간섭을

기 위 여 간격을

주파수 성

주파수

f0 f1 f2 f1000

주파수 성 우수

주파수

화 하 ..1) 송파 간 2) 송파간의 간 화

FTDFTFFT

T

주파수

1/T 2/T-1/T-2/TT

1/T 2/T

FT,DFT,FFT

IFT,IDFT,IFFT

MCM 과 OFDM 의 비교

Page 19: Feb. 2014 @ TTA

19

A

0rthogonal : 호간성이 없

Frequency of subcarrier Division

Multiplexing

use

r

OFDM subcarrier 의 직교성

Page 20: Feb. 2014 @ TTA

20

• 고속의 데이터는 사파에 매우 취약

• 고속의 데이터를 사파에 강한 저속으로 변환 여 병렬 전

수신

• 수신 저속의 병렬 데이터를 합치여 고속의 데이터를 복원

Serial

to

Parall

el

Parall

el

to

Serial

f0

f1

fk

RF

고속, 반사파 취약

저속, 반사파 강함

Serial

to

Parall

el

Parall

el

to

Serial

f0

f1

fk

RF

고속 데이터의 복원

f0

f1

f2

f4

fk = f0 + k / T Orthogonal 의 근간

OFDM

접 subcarrier 최대값과 최 값이 서로 교차

IFFT FFT

time

FT,DFT,FFT

IFT,IDFT,IFFT frequency

OFDM 기술의 기본원리

Page 21: Feb. 2014 @ TTA

21

셀 내를

무작위로

돌아 녀

~

시간

수신세기

무작위로 돌아다니면서 유효 반사파가 최대 어느만큼 늦게 착하는지를 조사하였더니 . . .

10usec

delay spread 대응하는 GI & CP

불확실성 구간 사용하지 말자

GI(Guard Interval)

불확실성 구간 사용하지 말자

CP(Cyclic Prefix)

10usec CP 정의

어떤 곳에선 반사파가 10us 넘어 ISI 증가하면??

40us (25ksps)

20usec CP 정의

40us (25ksps)

여유롭게 심볼 50%를 CP로 정의하면. . .심볼에너지는 남는게 없네??

CP 크기는 OFDM 하드웨어 규격을 결정하는 민감한 요소

Page 22: Feb. 2014 @ TTA

22

Guard Interval

1)절대값 : 셀 반경에 비례

2)상대값(심볼내 차지하는 비율) : 경제성, 부반송파 수, 성능 등에 비례

성능민감

코스트 증가

부반송파수 증가,피크파워 증가

스펙트럼 마스크 우수

성능 둔감

코스트 감소

부반송파수 감소,피크파워 감소

스펙트럼 마스크 불량

주파수 퍼짐 . . .

6%(-0.25dB)

LTE

11%(-0.5dB)

와이브로

20%(-1dB)

와이파이 심볼에서의 CP 비율

symbol

CP

심볼내 Guard Interval 의 비율 결정

Page 23: Feb. 2014 @ TTA

23

Serial

to

Parallel

Parallel

to

Serial

F0(100.0Mhz)

F1(100.1Mhz)

F99(109.9Mhz)

RF

10Mhz

BW

10Mbps

100Kbps

10

0K

hz

간격

10usec심볼폭의

역수

FFT 구성의 예 (Guard Time 제외) Serial

to

Parallel

Parallel

to

Serial

RF

12.5Mhz

BW

10Mbps

100Kbps

12

5K

hz

간격

8usec유 심볼 폭의

역수

2usec

FFT 구성의 예 (20% Guard Interval 포 )

• Guard Interval 값은 OFDM 시스템 대 분의 RF 현상에 대한 영향을 미침

- RF BW, ACLR, PAPR, subcarrier tone 수, subcarrier 간격, 전류 모 …

• 충분히 큰 GI 값은 사파에 많은 내성을 여 만 RF BW, PAPR, 모뎀 복잡도,전류 모 등의 가를 으로 유발시킴

• 너무 작은 GI 값은 RF BW, PAPR, 모뎀 복잡도,전류 모 등의 가를 할 수 있 만 사파에 대한 내성이

BPSK 기준

Cyclic Prefix – RF BW

Page 24: Feb. 2014 @ TTA

24

셀 경 송파 간 송파 개수Guard Interval 전류 모

셀 경 송파 간 송파 개수Guard Interval 전송속도

10Mbps125kHz

100

12.5Mhz

10Mbps

GI => 20%

GI=2usec

high

ACPR

low

ACPR

GI

5u 20u

25usec40kbps

10Mbps

50kHz

250

12.5Mhz

10Mbps

GI => 20%

GI=5usec

GI

5u 8u

13usec77kbps

7.7Mbps125kHz

100

12.5Mhz

10Mbps

GI => 38%

GI=5usec

GI

2u 8u

10usec100kbps

low

ACPR

A

셀반경 / subcarrier 개수 / ACLR의 상관관계

Page 25: Feb. 2014 @ TTA

25

TB(Transport Block) :

물리계층에서 정보전송이 이루어지는 기본 단위(묶음)

인터리빙(집합에러를 분산에러로 변환)이 이루어지는 단위

무선구간 에러 발생시(CRC 확인에 의하여) 재전송(H-ARQ에 의하여)이 이루어지는 단위

TB size : 1개의 TB 에 포함되는 비트 수, 채널코딩율에 따라 가변

TTI (Transmission Time Interval) : 1개의 TB 가 전송되는 시간

짧을수록 무선구간 fast fading 에 의한 에러발생 신속대처에 유리 출력 최소화 가능 용량증대

짧을수록 프레임 단위의 오버헤드 부담 증가, TCP/IP 오버헤드 압축 프로토콜 필요 PDCP

CDMA 20msec, WCDMA 5msec, HSDPA 2msec, LTE 1msec

Subframe : 물리계층에서의 프레임 구조 단위, 1개의 TB 와 동일, LTE 1msec

Slot : RF 구간을 통하여 실제 전송이 이루어질수 있는 최소 단위, 1개의 RB에 해당, LTE 에서는 0.5msec

TB(Transport Block), Subframe

물리계층 정보전송의 단위

Page 26: Feb. 2014 @ TTA

26

• OFDM 더 큰 셀 반경 => 1) 주파수 퍼짐 or 2) 속도 저하 or 3) 복잡도 증가

• 셀 반경에 따른 CP 값의 정의, 초기 동기 시 SSC 에서 알려줌

• Normal 첫번째 심볼의 Tcp 값이 다른 것은 특별한 의미가 없음 (slot 시간에 일치)

15kHz

12

00

/20

M

15kHz

12

00

/20

M

7.5kHz

24

00

/20

M

5.2u 4.7u 66.7u 4.7u 66.7u 4.7u 66.7u 4.7u 66.7u 4.7u 66.7u 4.7u 66.7u66.7u

71.9u 71.4u

Tcp

symbol

FFT inteval

16.7u 66.7u 16.7u 66.7u 16.7u 66.7u 16.7u 66.7u 16.7u 66.7u 16.7u 66.7u

83.4uTcp

33.3u 133.3u 33.3u 133.3u 33.3u 133.3u

166.6uTcp

normal

extended

MBMS

subframe 1msec

1slot

0.5msecframe 10msec

1/66.7us

1/66.7us

1/133.3us

복잡도 그대로, 속도 저하 (1/7저하)

속도 그대로, 복잡도 증가

MBMS

LTE Cyclic Prefix lengths (LTE-FDD Type1) TDD Type 2 p211

Page 27: Feb. 2014 @ TTA

27

• 802.11g 의 예

• 52 subcarrier (48 traffic + 4 pilot), 심볼주기 4usec, GI 0.8usec

• subcarrier 간격 = 1/(4us-0.8us) = 312.5kHz

• 대역폭 = 312.5 kHz x 52 subchannel = 16.25 MHz

• modulation symbol rate = 1/4usec = 250 ksps

• for max throughput, 64QAM modulation, 3/4 convolutional coding

• 최대 전송속도 = 250Ksps x 6bit/symbol x 3/4ChannnelCoding x 48개_data_SC = 54Mbps

F0

31

2.5

kh

z

간격

F1

54Mbps

250ksps(1125kbps)

3.2us유 심볼

폭의 역수

4us

48

su

bc

arr

ier

/ 1

6.2

5M

hz

GI 800ns

와이파이 부반송파 구조의 예

Page 28: Feb. 2014 @ TTA

28

와이파이 최고 전송속도

안테나 개수

MCS 변조 방식

코딩 비율

20 MHz 채널 40 MHz 채널 80 MHz 채널

800 ns GI

400 ns GI

800 ns GI

400 ns GI

800 ns GI

400 ns GI

1

0 BPSK 1/2 6.5 7.2 13.5 15 29.3 32.5

1 QPSK 1/2 13 14.4 27 30 58.5 65

2 QPSK 3/4 19.5 21.7 40.5 45 87.8 97.5

3 16-QAM 1/2 26 28.9 54 60 117 130

4 16-QAM 3/4 39 43.3 81 90 175.5 195

5 64-QAM 2/3 52 57.8 108 120 234 260

6 64-QAM 3/4 58.5 65 121.5 135 263.3 292.5

7 64-QAM 5/6 65 72.5 135 150 292.5 325

8 256-QAM 3/4 78 86.7 162 180 351 390

9 256-QAM 5/6 N/A N/A 180 200 390 433

2 9 256-QAM 5/6 N/A N/A 360 400 780 867

3 9 256-QAM 5/6 260 288.9 540 600 1170 1300

• MCS 9 256QAM 변조는 801.11ac 에서만 지원됨, MCS 0~7 은 802.11n, 802.11ac 동시 지원

• 1.3Gbps = 250ksps/SC x 8bit/symbol x 234SC(80MHz) x 5/6CC x 3x3MIMO

Page 29: Feb. 2014 @ TTA

29

LTE 셀간 간 제어

Page 30: Feb. 2014 @ TTA

30

4FA/3Sector

sectorsector

sector

1 FA

2 FA

sectorsector

sector

3 FA

sectorsector

sector

4 FA

omni

1 FA

1FA/omni 6FA/3Sector

sectorsector

sector

1 FA

2 FA

sectorsector

sector

3 FA

sectorsector

sector

4 FA

sectorsector

sector

5 FA

sectorsector

sector

6 FA

1FA/3Sector

sector

sector

sector

1 FA

cell split

1/2/3/4 FA 1/2/3/4 FA

1/2/3/4 FA1/2/3/4 FA1/2/3/4 FA

무선 데이터 폭증에 대응하는 기지국 형상의 변화

Page 31: Feb. 2014 @ TTA

31

DU 집 화에 의한 Cell split

DU : Digital UnitRU : RF Unit

RU RU

RURU

RU

DU

광케이블

효율적 셀간 간섭 문제점 해결

RU RU

RURU

RU

DU

광케이블

DU

DUDU

DU

DU RU

DU RU

SKT LTE SCAN

Warp,A-SCAN (CS, JT)

LTE 기술의 최대 난제인 셀간 간섭 문제점 증가 ..

• LTE 셀간 간섭 해결의 궁극적 방식은 CoMP (LTE-A), 너무 먼 훗날??

• 유사품?? 유사기술?? => Warp, A-SCAN

CDMA에서는 셀 경계에

서 양쪽 기지국 신호를 취

하는 소프트 핸드오버 기

술로서 셀간 간섭제거 =>

용량저하 => LTE에서는

허용 불가 => 셀간 간섭

증가

기존 기지국은 too heavy =>부동산 확

보의 어려움 => 셀 분활의 어려움 =>

기지국의 RF 와 디지털부를 분리하여

RF만 전진 배치 => CCC, SCAN

Digital

RF

셀 분할을 위한 기지국 집중화 (CCC,SCAN)

Page 32: Feb. 2014 @ TTA

32

JT(Joint Transmission)에 의한 셀간 간섭 제어

RU RU RU RU RU

DU pool

PCI 256 PCI 48 PCI 184 PCI 450 PCI 120

셀간 간섭

RU RU RU RU RU

DU pool

PCI 256 PCI 256 PCI 184 PCI 184 PCI 120

JT(Joint Transmission) 셀간 간섭 제어셀 경계에서의 동일한 정보전송, 인접 셀간 동일 PCI 할당, 독립적 셀 용량

• 고속으로 진행하는 KTX, 지하철 구간등에서 과도한 핸드오버 및 셀간 간섭 최소화를 위하여 적용

• Joint Transmission, Copy mode, Combined mode . . . 구현의 이슈

중계기에 의한 셀간 간섭 제어

Page 33: Feb. 2014 @ TTA

33

출력 낮은 출력으로 인접셀에 영향 없음, 동일 부반송파 영역을 양쪽에서 사용하 록 협의

높은 출력, 내가 사용하는 부반송파 영역을 인접셀에서 사용하지 않 록, 또는 낮은 출력으로만 사용하 록 협의

X2 터페이스RNTP for DL, HII & OI fo UL

• 기지국간 셀경계에서 상호 간섭이 최소화 되도록 상하향링크 오버로드 정보를 교환 (동작은 구현의 이슈)

• RNTP(Relative Narrowband Transmit Power) : PRB (또는 subband)단위의 tx power overload 정보, 1초에 수회 이내

• HII (High Interference Indicator) : PRB (또는 subband)단위의 rx overload 정보

• OI(Overload Indicator) : rx interference high/medium/low 정보

• FFR 은 static ICIC, hard freq reuse, ICIC 는 semi-static ICIC, soft freq reuse

CS (Coordinated Scheduling) / ICIC (Inter Cell Interference Coordination)

Page 34: Feb. 2014 @ TTA

34

• 일반적인 delay spread signal 의 수신세기는 약하게 도달, but 광중계기 접경의 경우…

• 공중 전파전파는 3usec/km, 광케이블은 5usec/km & 꼬불꼬불

• If B,C시간차>CP(4.7usec) 심각한 ISI 발생 가장 먼 광중계기를 기준으로 광중계기간 인위적 시간지연 설정, 양쪽 중

계기로 부터 도착하는 신호의 시간차가 CP 값 이내가 되도록

• Normal CP 4.7usec 광케이블 940m, 공중전파전파 1.4km 에 해당, 양쪽 신호의 시간차가 이값 이상이면 Extended

mode CP 또는 광중계기간 인위적 시간지연(time advance) 설정 필요

• 단말 입장에서는 인위적 시간지연에 의하여 기지국과 매우 먼~ 거리로 인식 RACH format 재설정 필요

• Ex) 모든 ROU 시간지연 동일한 50usec(광케이블 10km) 설정 전파전파 약 15km 효과 PRACH format 1 or 2

MHU

PCI 256 PCI 256 PCI 256

ROU

시간

수신세기A B

A B

고속전철/지하철 . . . 구간

ROU ROU

dela

y

dela

y

dela

y

Maximum Round Trip delay

C

B C

시간차<4.7usec(normal CP)

RACH 최대허용 RTDFormat 0 : 100us, 셀반경 15km 이하Format 1 : 520us, 셀반경 72km 이하Format 2 : 200us, 셀반경 22km 이하

중계기에 의한 셀간 간섭 제어

또는 Joint Transmission

Page 35: Feb. 2014 @ TTA

35

LTE-TDD 구조와 동작

Page 36: Feb. 2014 @ TTA

36

Tx Tx Tx Tx Tx Tx Tx Tx Tx TxTxTxTx TxTx

Rx Rx Rx Rx Rx Rx Rx Rx Rx RxRxRxTx RxRx

LTE-FDD

10/20Mhz

10/20Mhz

보호대역

10ms,메시지 전송의 최소 단위

1ms,정보전송의 최소 단위

15kHz

12

00

/20

M

Tx

Tx Rx Rx Rx Tx Rx Rx RxRxRxTx Tx

Tx Rx Rx Tx Tx Rx Rx TxTxRxTx Tx

Tx Rx Tx Tx Tx Tx Tx TxTxTxTx TxLTE-TDD

10/20Mhz

TDD config : 송수신 절체 100회 or 200회/초, 송수신 비대칭구조, 6단계로 정의

off

off off

off

off off

off

off

TDD config 0

TDD config 1

TDD config 5

LTE-FDD / LTE-TDD (1)

Page 37: Feb. 2014 @ TTA

37

DwPTS UpPTSGP

Special Subframe1msec subframe

DL UL DL UL

DL

DL

DL

UL DL

UL DL

UL DL

UL DL

UL DL

UL DL

10msec radio frame

DL UL DL

DL

DL

UL DL

UL DL

TDD config

0 ( 2:3 )

1 ( 3:2 )

2 ( 4:1 )

6 ( 5:5 )

3 ( 7:3 )

4 ( 8:2 )

5 ( 9:1 )

5m

sec s

wit

hin

g(2

00회

/sec)

10m

sec s

wit

hin

g(1

00회

/sec)

LTE-FDD slot 과 완전하게 동일한 내부 구조

• GP : Guard Period, Guard Time (for TDD)

• GI : Guard Interval (for OFDM symbol)

• TD-LTE 용어는 TD-SCDMA 로 부터 시작되었기에 기존

의 3GPP 용어와 표현방법이 다소 다름에 유의

GP

DL TxDL Tx

UL TxUL Tx

5ms or 10ms

(15-455)

DL,UL subframe 간의 세부동작 절차는 PDCCH DCI 설명 페이지를 참조

SR

S

PUCCH

PUCCH

DwPTS GP UpPTS

GP

Special subframe

SSS

PSS

PCFIC

H,

PD

CCH

, H

ICH

DL d

ata

S-R

ACH

,SRSRS,BCH,

PDSCH

subca

rrie

r

DL subframe UL subframe

PCFIC

H,

PD

CCH

, H

ICH

RS, PUSCH,RACH

PUCCH

PUCCH

RS, PUSCH,RACH

UL subframe

LTE TDD DL/UL configurations (TD-LTE Type2)

DwPTS, UpPTS 를 DL, UL 에 포함시키면 비대칭 비율 다소 변경됨에 유의

FDD Type1 프레임구조

Page 38: Feb. 2014 @ TTA

38

•DwPTS(Downlink Pilot Time Slot) : DL 제어신호와 DL 데이터 전송(PSS, RS, control, data)

- control : PCFICH, PDCCH, HICH

•UpPTS(Uplink Pilot Time Slot) : UL sounding reference signal 전송,

짧은 셀(up to 1.4km)에서의 랜덤 엑세스 시도 (S-RACH)

•GP (Guard Period) : 지연되어 도착하는 송신신호에 의한 수신신호의 손상을 방지하기 위한 보호대역

파라미터 설정 범위 (format)

DwPTS 3 ~ 12 심볼 (213 ~ 852usec)

GP 1 ~ 10개 심볼 (71~710usec), 최대 셀 반경 100km 지원

UpPTS 1 ~ 2개 심볼 (71~142usec) 0

1

2

3

4

5

0

1

2

3

4

5

6

7

8

TD-LTE

formatNormal

Extendedconfig

상하향 비율상하향 절체속도

커버리지

커버리지

CP mode

.

.

.

.

.

.

.....

GP

DL TxDL Tx

UL TxUL Tx

5ms or 10ms

Wibro TDD

LTE TDD Special Subframe 구조

Page 39: Feb. 2014 @ TTA

39

format

Normal mode Extended mode

DwPTS GP UpPTS DwPTS GP UpPTS

0 3sym 10sym(714us)

1sym

3sym 8sym

1sym 1 9sym 4sym(285us) 8sym 3sym

2 10sym 3sym(214us) 9sym 2sym

3 11sym 2sym(143us) 10sym 1sym

4 12sym 1sym(71us) 3sym 7sym

2sym 5 3sym 9sym(643us)

2sym

8sym 2sym

6 9sym 3sym(214us) 9sym 1sym

7 10sym 2 sym(143us)

8 11sym 1sym(71us)

subframe 14symbol/1msec 12symbol/1msec

TDD Special Subframe format - coverage

0 20 40 60 80 100

0

1

2

3

4

5

6

7

8

format

max coverage(km) / normal mode 기준

단위 : 심볼(sym) - normal mode 71.4usec/sym - extended mode 83.4usec/sym

TDD

3.3usec/kmTx기준

Rx기준

Tx,Rx 시간차 GP

Page 40: Feb. 2014 @ TTA

40

비교 항목 LTE-FDD 대비 TD-LTE 의 Phy,MAC 특징

프레임 구조 TDD configuration 에 따른 6종류의 프레임 구조

CP mode Normal, Extended mode FDD 와 동일

coverage 100% 시간점유인 FDD에 비하여 Tx 시간 점유비율 만큼 커러리지 축소, 특히 UL 에서

Random Access 매우 작은 셀에서 효율적인 S-RACH 추가 (preamble format 4)

Ack/Nack 4 프레임 뒤 고정된 위치에서 피드백 되는 FDD 에 비하여 4~7 피드백 프레임 위치 가변

HARQ - 8번째 프레임에서 재전송 되는 FDD 와 달리 10~16번째 뒤의 프레임에서 재전송

- FDD 8개 동시 HARQ 프로세스, TDD config 에 따라 프로세스 개수 가변

S-RACH

TD-LTE versus LTE-FDD

시간

주파수

송신

수신

guard band

Full Duplex FDD

시간

주파수

송신 수신 송신 수신 송신

guard time

TDD

Page 41: Feb. 2014 @ TTA

41

1) 6개의 설정모드(cofig)에 의한 절체속도(100 or 200회/초) 및 상하향 비율 결정

2) FDD 대비 커버리지 축소 – 특히 상향링크, 음성, 평균 5dB, 약 35% 축소

• 항상 송신하는 FDD 대비 송수신 절체에 따른 평균출력 감소

• FDD 와 동일한 기지국에 설치시(cosite)의 문제점, (if not, no problem)

• FDD 와 동일한 커버리지 용도 보다는 capacity offload 용도 선호

3) 와이파이와 비슷한 인빌딩에서의 간단 접속기능 추가 (S-RACH)

4) 송수신 실시간 응답의 어려움으로 FDD 대비 약간의 성능저하 (HARQ 성능저하)

5) 모든 기지국 송수신 동기 필수, 전파전달 시간지연에 민감 (특히 광케이블)

• 공중 전파는 직진 3.3us/km, 광케이블은 꼬불꼬불 5us/km

6) LTE-FDD, 와이브로와의 셀간 간섭 민감

• 국내 와이브로 DL:UL = 29:18

7) 보호대역 불필요, 송수신 비대칭 설정에 의한 주파수 효율성 증대

LTE-TDD (2)

Page 42: Feb. 2014 @ TTA

42

FDD UL coverage

TDD UL coverage

-4.7dB

FDD UL coverage

TDD UL coverage

-2dB

Tx Rx Tx Rx Tx

RF frame

2 1

UL TTI bundlingNormal TTI

낮은 rate 전송에서 유효 (VoLTE…) -4.7 = 10log(1/3)

시간

출력

LTE-FDD시간

출력

LTE-TDD (DL:UL=2:1 기준)

평균출력200mw

200mw

70mw

-4.7

dB

LTE-TDD coverage

Page 43: Feb. 2014 @ TTA

43

LTE-FDD

TB TB TB TB TB TB

TBTB

TBTB

TBTB

4msec 후 ACK/NACK 응답

8parallel HARQ

HARQ0

HARQ1

HARQ7

LTE-TDD

TB TB TB TB TB TB

TBTB

TBTB

TBTB

4~13msec 후 ACK/NACK 응답

HARQ0

HARQ1

HARQNTDD config 에 따른 가변

4~7parallel HARQ

Longer latency than FDD HARQ 성능저하

LTE-TDD HARQ 절차

Page 44: Feb. 2014 @ TTA

44

TDD config

Tx/Rx

스위칭

Subframe 순서

0 1 2 3 4 5 6 7 8 9

0 200회/sec

DL4 Sp6 UL4 UL7 UL6 DL4 Sp6 UL4 UL7 UL6

1 DL7 Sp6 UL4 UL6 DL4 DL7 Sp6 UL4 UL6 DL4

2 DL7 Sp6 UL6 DL4 DL8 DL7 Sp6 UL6 DL4 DL8

6 DL4 Sp7 UL4 UL6 UL6 DL7 Sp7 UL4 UL7 DL5

3 100회/sec

DL12 Sp11 UL6 UL6 UL6 DL7 DL6 DL6 DL5 DL5

4 DL12 Sp11 UL6 UL6 DL8 DL7 DL7 DL6 DL5 DL4

5 DL7 Sp11 UL6 DL9 DL8 DL7 DL6 DL5 DL4 DL13

• “UL6” : UL subframe 이며 이에 대한 응답는 6번째 뒤 DL subframe 또는 specical frame 의 DwPTS 에서 이루어짐

• “DL4” : DL subframe 이며 이에 대한 응답과 DCI0 에 대한 UL RB 지정이 4번째 뒤 UL subframe 에서 이루어짐,

• “Sp6” : Special subframe 의 DwPTS 에서 DL data 송신이 이루어지고 이에 대한 응답과 DCI0 에 대한 UL RB 지정이

6번째 뒤 UL subframe 에서 이루어짐

SR

S

PUCCH

PUCCH

DwPTS GP UpPTS

GP

Special subframe

SSS

PSS

PCFIC

H,

PD

CCH

, H

ICH

DL d

ata

S-R

ACH

,SRSRS,

BCH,PDSCH

subca

rrie

r

DL subframe UL subframe

PCFIC

H,

PD

CCH

, H

ICH

RS, PUSCH,RACH

PUCCH

PUCCH

RS, PUSCH,RACH

UL subframe

TDD Config 별 DL,UL,Spec Subframe 의 연동

Page 45: Feb. 2014 @ TTA

45

LTE-FDD

LTE-TDD

LTE-FDD

LTE-TDD

LTE-TDD 셀 구성의 예

LTE-FDD 망의 offload 용도

(차이나보마일홍콩 …)

더 촘촘한 셀간 간격으로 LTE-TDD 혼자만으로 무선망 구성

(중국 차이나모바일, 인도 바르티 …)

LTE-FDD 기지국에 cosite 망구성

LTE-TDD

backhaul

LTE-FDD 망의 backhaul 용도

<14년1월 기준>

FDD 사업자 : 235개

TDD only 사업자 : 15개

FDD+TDD 사업자 : 13개

Page 46: Feb. 2014 @ TTA

46

ULFDD

DL / ULTDD

DLFDD

freq2570M 2620M

간섭간섭

FDDTDD/Rx

+20dBm

-100dBm-40dBm

+40dBm

-80dBm

FDD

간섭2

TDD/TxFDD/Rx+20dBm

FDD

+40dBm-30dBm

-90dBm

간섭1

FDD/UL TDD FDD/DL

간섭1 간섭2

LTE-FDD, LTE-TDD 셀간 간섭

Page 47: Feb. 2014 @ TTA

47

DL UL DL UL

DL UL DL UL

간섭 간섭

Cell-A

Cell-B

셀간 비대칭 비율 일치 필수

eIMTA(R12)

DL UL DL UL

간섭 간섭

DL UL DL UL

Cell-A

Cell-B

TDD 기지국간 시간동기 필수

GPS, IEEE1588..

TDD-ATDD-BTDD

+40dBm-30dBm

-90dBm

LTE-TDD 셀간 간섭

Page 48: Feb. 2014 @ TTA

48

DLUL TDD TDDUL DLTDD

UL DL UL DLTDDTDD

700MHz 대역 2GHz 대역

Guard Band for FDD60MHz

Guard Band for FDD30MHz

D사업자60MHz

DL DL DLTDD

A사업자20MHz

B사업자20MHz

C사업자20MHz

UL UL UL

B사업자20MHz

C사업자20MHz

A사업자20MHz

경매비용 9000억원??경매비용 2000억원??

TDD 대역의 탄생

더 높은 주파수 대역에서의 TDD 대역의 탄생

FDD / TDD 주파수 경매의 예

FDD/TDD 주파수 대역

Page 49: Feb. 2014 @ TTA

49

Band 번호

LTE-TDD Band 비고

1~32 LTE-FDD Band

33 1900 ~ 1902MHz

34 2010 ~ 2025MHz

35 1850 ~ 1910MHz

36 1930 ~ 1990MHz

37 1910 ~ 1930MHz US PCS-FDD GB

38 2570 ~ 2620MHz 2.6G LTE-FDD GB

제4이동통신사 예상

차이나모바일

39 1880 ~ 1920MHz 차이나모바일

40 2300 ~ 2400MHz 국내 와이브로,

차이나모바일

41 2496 ~ 2690MHz 미국 클리어와이어

42 3400 ~ 3600MHz

43 3600 ~ 3800MHz

44 703 ~ 803MHz 아나로그 TV 유휴대역

ULFDD

DL / ULTDD

DLFDD

freq2570M 2620M2615M2575M

•2.3G, 2.6G 에 몰려있는 TDD 사업자

•주파수 경매비용 저렴, TDD 사업자 넓은 주파수 대역 확보 LTE-TDD CA 활성화 예상

국내 2.6G 대역 LTE-FDD, LTE-TDD 공존

LTE-TDD 주파수 대역

LTE-FDD 대비 LTE-TDD 산업의 경쟁력??

북유럽의 경우 경매제도에 기인하여TDD 주파수가 FDD 대비 더 높았던 경우도 있음

Page 50: Feb. 2014 @ TTA

���1

TTA LTE 기술 교육 -물리 계층-

Feb. 14, 2014 !

Prof. Tae-Won Ban (http://sites.google.com/site/taewonban)

!Dept. of Information & Communication Engineering

Gyeongsang National University

Page 51: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Contents

Fundamentals of OFDM • OFDM Principles

• OFDM Parameters in LTE

Fundamentals of MIMO

Downlink Physical Layer • Frame and Slot Structure

• Physical Channels

• Physical Signals

Uplink Physical Layer • Key Features

• Physical Channel

• Physical Signals

���2

Page 52: Feb. 2014 @ TTA

���3

Fundamentals of OFDM

Page 53: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Basic Theories

Convolution

!!!Discrete Time Fourier Transform (DTFT) for non-periodic time signals

!!• Convolution theorem is valid

���4

y [n] =1X

k=�1x [k ]h[n � k ] , x [n] ⇤ h[n]

<latexit sha1_base64="ZVy66vFrG4oXLkKiUfUbJ8XJKpk=">AAACsXicfVHbihNBEO2Ml13jLauPvjSGBRE2TGTRfVkM6IMv4grGXXamjT2dmkkz3T1jd41kGMbP8Wt8VfAv/AQ7kyCbXbCg6cM5VVTVqaRU0mEY/u4F167fuLmze6t/+87de/cHew8+uqKyAqaiUIU9S7gDJQ1MUaKCs9IC14mC0yR/tdJPv4J1sjAfsC6BaZ4ZmUrB0VOzwaSODDuOXaVnTX58EEuTYt1+ajZgGeVsEZmDnMVoJTeZgi906Uti7pB6hc0Gw3AUdkGvgvEGDF/+IV2czPZ65/G8EJUGg0Jx56JxWCJruEUpFLT9uHJQcpHzDCIPDdfgWNOt2tJ9z8xpWlj/DNKOvVjRcO1crROfqTku3GVtRf7T9i+26ihhWQOV/2SJ7bZeYXrEGmnKCsGI9SRppSgWdGUsnUsLAlXtAff1fhkqFtxygd7+rTGETqzMFr5B/Bq8BRbe+t7vSrAcC/u0ibnNtDSttyT7tgL/y+PLTZ4H/b6/xviy91fB9Nno+Sh8fzichOurkF3yiDwmT8iYvCAT8oackCkR5Dv5QX6SX8FhcB58DpJ1atDb1DwkWxHkfwFB7tvK</latexit><latexit sha1_base64="ZVy66vFrG4oXLkKiUfUbJ8XJKpk=">AAACsXicfVHbihNBEO2Ml13jLauPvjSGBRE2TGTRfVkM6IMv4grGXXamjT2dmkkz3T1jd41kGMbP8Wt8VfAv/AQ7kyCbXbCg6cM5VVTVqaRU0mEY/u4F167fuLmze6t/+87de/cHew8+uqKyAqaiUIU9S7gDJQ1MUaKCs9IC14mC0yR/tdJPv4J1sjAfsC6BaZ4ZmUrB0VOzwaSODDuOXaVnTX58EEuTYt1+ajZgGeVsEZmDnMVoJTeZgi906Uti7pB6hc0Gw3AUdkGvgvEGDF/+IV2czPZ65/G8EJUGg0Jx56JxWCJruEUpFLT9uHJQcpHzDCIPDdfgWNOt2tJ9z8xpWlj/DNKOvVjRcO1crROfqTku3GVtRf7T9i+26ihhWQOV/2SJ7bZeYXrEGmnKCsGI9SRppSgWdGUsnUsLAlXtAff1fhkqFtxygd7+rTGETqzMFr5B/Bq8BRbe+t7vSrAcC/u0ibnNtDSttyT7tgL/y+PLTZ4H/b6/xviy91fB9Nno+Sh8fzichOurkF3yiDwmT8iYvCAT8oackCkR5Dv5QX6SX8FhcB58DpJ1atDb1DwkWxHkfwFB7tvK</latexit>

X(!) =1X

n=�1x [n]e�j!n

<latexit sha1_base64="9j6VIM0mJRfG0rez0rF4MwSejlE=">AAACpnicfVHbbhMxEHWWWwm3FB55sYgqtUiNNojbS0UleOAFtUgsichug9eZ3Zj6srJnUSNr+RG+hlf4Av6CT8DZRKhpJUayfHTmjGbmTF5J4TCOf3eiK1evXb+xdbN76/adu/d62/c/OlNbDgk30thxzhxIoSFBgRLGlQWmcgmj/PT1Mj/6CtYJoz/gooJMsVKLQnCGgZr2no13U6OgZHsHqavV1OuD/VToAhfNiV+Ds4nO4MTvf1kpqW6mvX48iNugl8FwDfqv/pA2jqfbnU/pzPBagUYumXOTYVxh5plFwSU03bR2UDF+ykqYBKiZApf5dr+G7gRmRgtjw9NIW/Z8hWfKuYXKg1IxnLuLuSX5L7dzvlVLcZt5qMMnKmw28zUWLzMvdFUjaL6apKglRUOXbtKZsMBRLgJgoT4sQ/mcWcYxeL4xBle5FeU8NEjfQLDAwrvQ+6gCy9DYxz5ltlRCN8GS8tsS/E/Hzta6ALrdcI3hRe8vg+TJ4Pkgfv+0fxivrkK2yEPyiOySIXlBDslbckwSwsl38oP8JL+ivegoSqLRShp11jUPyEZEn/8CFH7WvQ==</latexit><latexit sha1_base64="9j6VIM0mJRfG0rez0rF4MwSejlE=">AAACpnicfVHbbhMxEHWWWwm3FB55sYgqtUiNNojbS0UleOAFtUgsichug9eZ3Zj6srJnUSNr+RG+hlf4Av6CT8DZRKhpJUayfHTmjGbmTF5J4TCOf3eiK1evXb+xdbN76/adu/d62/c/OlNbDgk30thxzhxIoSFBgRLGlQWmcgmj/PT1Mj/6CtYJoz/gooJMsVKLQnCGgZr2no13U6OgZHsHqavV1OuD/VToAhfNiV+Ds4nO4MTvf1kpqW6mvX48iNugl8FwDfqv/pA2jqfbnU/pzPBagUYumXOTYVxh5plFwSU03bR2UDF+ykqYBKiZApf5dr+G7gRmRgtjw9NIW/Z8hWfKuYXKg1IxnLuLuSX5L7dzvlVLcZt5qMMnKmw28zUWLzMvdFUjaL6apKglRUOXbtKZsMBRLgJgoT4sQ/mcWcYxeL4xBle5FeU8NEjfQLDAwrvQ+6gCy9DYxz5ltlRCN8GS8tsS/E/Hzta6ALrdcI3hRe8vg+TJ4Pkgfv+0fxivrkK2yEPyiOySIXlBDslbckwSwsl38oP8JL+ivegoSqLRShp11jUPyEZEn/8CFH7WvQ==</latexit>

x(n) =1

2⇡

Z ⇡

�⇡X(!)e j!nd!

<latexit sha1_base64="pPipIGXd+f5KRc83en/+X06/r3A=">AAACtHicfZHdatRAFMdnUz/q+rVtL70ZXApbwSUpYr2RFuqFN2IF1y426TKZPcmOnS9mJtJliO/j03hr38JHcJIs0m3BA8n8+J9zODP/k2vOrIvjq160cefuvfubD/oPHz1+8nSwtf3FqspQmFDFlZnmxAJnEiaOOQ5TbYCInMNpfnHc5E+/g7FMyc9uqSETpJSsYJS4IM0Gx5cjufc2LQyhPqn9fqpZjVMm3cy/bPjcN//pKFUCSrIH5/5bh1jWeN7hbDCMx3Eb+DYkKxge/kFtnMy2el/TuaKVAOkoJ9aeJbF2mSfGMcqh7qeVBU3oBSnhLKAkAmzm29fWeDcoc1woEz7pcKte7/BEWLsUeagUxC3szVwj/svtXh/VStRkHqpwMO3q9XzlijeZZ1JXDiTtblJUHDuFG2/xnBmgji8DkNAfHoPpggRrXdjA2jWoyA0rF2FA+g6CBQY+hNkfNRjilHnhU2JKwWQdLCl/NPC/OnK5qgvQ74dtJDe9vw2T/fHrcfzp1fAo7raCNtEz9ByNUIIO0BF6j07QBFH0E/1Cv9FVdBBlEY2gK416q54dtBaR/AvF2Nvn</latexit><latexit sha1_base64="pPipIGXd+f5KRc83en/+X06/r3A=">AAACtHicfZHdatRAFMdnUz/q+rVtL70ZXApbwSUpYr2RFuqFN2IF1y426TKZPcmOnS9mJtJliO/j03hr38JHcJIs0m3BA8n8+J9zODP/k2vOrIvjq160cefuvfubD/oPHz1+8nSwtf3FqspQmFDFlZnmxAJnEiaOOQ5TbYCInMNpfnHc5E+/g7FMyc9uqSETpJSsYJS4IM0Gx5cjufc2LQyhPqn9fqpZjVMm3cy/bPjcN//pKFUCSrIH5/5bh1jWeN7hbDCMx3Eb+DYkKxge/kFtnMy2el/TuaKVAOkoJ9aeJbF2mSfGMcqh7qeVBU3oBSnhLKAkAmzm29fWeDcoc1woEz7pcKte7/BEWLsUeagUxC3szVwj/svtXh/VStRkHqpwMO3q9XzlijeZZ1JXDiTtblJUHDuFG2/xnBmgji8DkNAfHoPpggRrXdjA2jWoyA0rF2FA+g6CBQY+hNkfNRjilHnhU2JKwWQdLCl/NPC/OnK5qgvQ74dtJDe9vw2T/fHrcfzp1fAo7raCNtEz9ByNUIIO0BF6j07QBFH0E/1Cv9FVdBBlEY2gK416q54dtBaR/AvF2Nvn</latexit>

DTFT [x ⇤ y ] = DTFT [x ]⇥DTFT [y ]<latexit sha1_base64="1UjLGcB6sGbo/8fo5Dn1HlK4Xig=">AAAClHicfVFNaxRBEO0dv+L6lejBg5fGJSAellkRzSUkkChe1Ai7JrgzhJre2tkm3T1Dd41kGNa7v8ar/hT/hT/B2tlFsglY0PSrV6+o6tdZaXSgOP7dia5dv3Hz1sbt7p279+4/2Nx6+DkUlVc4UoUp/EkGAY12OCJNBk9Kj2Azg8fZ2cGifvwVfdCFG1JdYmohd3qqFRBTp5u9w+Hb4fg8gUCyTneXWZqQthhkm9Upq+J+3Ia8CgYr0Nv7I9o4Ot3qfEkmhaosOlIGQhgP4pLSBjxpZXDeTaqAJagzyHHM0AFPS5v2NXO5zcxETgvPx5Fs2YsdDdgQapux0gLNwuXagvxX2744qqWUTxus+NIlzdfrFU130ka7siJ0arnJtDKSCrnwTk60R0WmZgDcz4+RagYeFLHDa2som3mdz3hAcohsgcf3PPtjiR6o8M+bBHxutZuzJfm3BfifDs5XOgbdLv/G4LL3V8HoRf9VP/70srcfL39FbIgn4ql4JgbitdgX78SRGAklvosf4qf4FT2OdqOD6M1SGnVWPY/EWkQf/gJrRs3Y</latexit><latexit sha1_base64="1UjLGcB6sGbo/8fo5Dn1HlK4Xig=">AAAClHicfVFNaxRBEO0dv+L6lejBg5fGJSAellkRzSUkkChe1Ai7JrgzhJre2tkm3T1Dd41kGNa7v8ar/hT/hT/B2tlFsglY0PSrV6+o6tdZaXSgOP7dia5dv3Hz1sbt7p279+4/2Nx6+DkUlVc4UoUp/EkGAY12OCJNBk9Kj2Azg8fZ2cGifvwVfdCFG1JdYmohd3qqFRBTp5u9w+Hb4fg8gUCyTneXWZqQthhkm9Upq+J+3Ia8CgYr0Nv7I9o4Ot3qfEkmhaosOlIGQhgP4pLSBjxpZXDeTaqAJagzyHHM0AFPS5v2NXO5zcxETgvPx5Fs2YsdDdgQapux0gLNwuXagvxX2744qqWUTxus+NIlzdfrFU130ka7siJ0arnJtDKSCrnwTk60R0WmZgDcz4+RagYeFLHDa2som3mdz3hAcohsgcf3PPtjiR6o8M+bBHxutZuzJfm3BfifDs5XOgbdLv/G4LL3V8HoRf9VP/70srcfL39FbIgn4ql4JgbitdgX78SRGAklvosf4qf4FT2OdqOD6M1SGnVWPY/EWkQf/gJrRs3Y</latexit>

Page 54: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Basic Theories

Circular Convolution

!!Discrete Fourier Transform (DFT) • Converts a finite list of equally spaced samples of a function into the list of

coefficients of a finite combination of complex sinusoids !!!

• Convolution theorem is not valid, but circular convolution theorem is valid

���5

X(k) =1

N

N�1X

n=0

x [n]e�jk!0n, !0 =2⇡

N

<latexit sha1_base64="+kxQSh2SYUEJ4noEuTiofJmwre0=">AAACv3icfVHbbtNAEN2YWwmXpvDIi0VUqSAa2RWifamogAdeCEUiNCJ2rfVm7CzZm3bXqNHK/Sp+Bl7hA/gE1k5ATSsx0mrPnpmjmT2TK0aNjaLvneDa9Rs3b23c7t65e+/+Zm/rwScjK01gRCSTepxjA4wKGFlqGYyVBsxzBif5/HWTP/kK2lApPtqFgpTjUtCCEmw9lfWG4535k8Ok0Ji4uHbDOjEVz5w4jOpTN9yN67OJSOHU7X6ZJ5JDibMoFPWz87+PlXQvUbRRZ71+NIjaCK+CeAX6L3+jNo6zrc7nZCpJxUFYwrAxkzhSNnVYW0oY1N2kMqAwmeMSJh4KzMGkrv14HW57ZhoWUvsjbNiyFxUOc2MWPPeVHNuZuZxryH+57YutWoro1EHlL6psvZ6vbHGQOipUZUGQ5SRFxUIrw8bmcEo1EMsWHmCv958JyQx7q6xfxtoYhOealjPfIHkD3gIN73zv9wo0tlI/dQnWJaei9paU5w34Xx0+W9V50O36bcSXvb8KRnuDF4Pow/P+UbTcCtpAj9BjtINitI+O0Ft0jEaIoG/oB/qJfgWvglkgArUsDTorzUO0FsHiD3mc4Dk=</latexit><latexit sha1_base64="+kxQSh2SYUEJ4noEuTiofJmwre0=">AAACv3icfVHbbtNAEN2YWwmXpvDIi0VUqSAa2RWifamogAdeCEUiNCJ2rfVm7CzZm3bXqNHK/Sp+Bl7hA/gE1k5ATSsx0mrPnpmjmT2TK0aNjaLvneDa9Rs3b23c7t65e+/+Zm/rwScjK01gRCSTepxjA4wKGFlqGYyVBsxzBif5/HWTP/kK2lApPtqFgpTjUtCCEmw9lfWG4535k8Ok0Ji4uHbDOjEVz5w4jOpTN9yN67OJSOHU7X6ZJ5JDibMoFPWz87+PlXQvUbRRZ71+NIjaCK+CeAX6L3+jNo6zrc7nZCpJxUFYwrAxkzhSNnVYW0oY1N2kMqAwmeMSJh4KzMGkrv14HW57ZhoWUvsjbNiyFxUOc2MWPPeVHNuZuZxryH+57YutWoro1EHlL6psvZ6vbHGQOipUZUGQ5SRFxUIrw8bmcEo1EMsWHmCv958JyQx7q6xfxtoYhOealjPfIHkD3gIN73zv9wo0tlI/dQnWJaei9paU5w34Xx0+W9V50O36bcSXvb8KRnuDF4Pow/P+UbTcCtpAj9BjtINitI+O0Ft0jEaIoG/oB/qJfgWvglkgArUsDTorzUO0FsHiD3mc4Dk=</latexit>

x(n) =N�1X

k=0

X[k ]e jk!0

<latexit sha1_base64="jroRmpD6Zt9BGrhmylfn30SrRuk=">AAACmnicfVHtahNBFJ2sXzV+pfpThMFQaAXDrEj1T7FQfyiiVmhsMLtdZic3m+nOxzIzKw3D+go+jX/1OXwLH8HJJkjTgheGOZxzL/fec/NKcOsI+d2Jrly9dv3Gxs3urdt37t7rbd7/bHVtGAyZFtqMcmpBcAVDx52AUWWAylzAcV4eLPTjr2As1+rIzStIJS0Un3JGXaCy3s7ZttrZS2wtM1/ukebEf3gaN6NxmcKJP8UlTrSEgmakyXp9MiBt4MsgXoH+qz+ojcNss/MlmWhWS1COCWrtOCaVSz01jjMBTTepLVSUlbSAcYCKSrCpb3dq8FZgJniqTXjK4ZY9X+GptHYu85ApqZvZi9qC/KdtnW/VUsykHurw8co163rtpi9Tz1VVO1BsOcm0FthpvHAQT7gB5sQ8ABrqwzKYzaihzAWf18ZgMje8mIUGyWsIFhh4H3p/rMBQp80Tn1BTSK6aYEnxbQH+l0fPVnkBdLvhGvFF7y+D4bPB7oB8et7fJ8uroA30ED1G2yhGL9A+eoMO0RAx9B39QD/Rr+hRdBC9jd4tU6POquYBWovo6C9pKdBq</latexit><latexit sha1_base64="jroRmpD6Zt9BGrhmylfn30SrRuk=">AAACmnicfVHtahNBFJ2sXzV+pfpThMFQaAXDrEj1T7FQfyiiVmhsMLtdZic3m+nOxzIzKw3D+go+jX/1OXwLH8HJJkjTgheGOZxzL/fec/NKcOsI+d2Jrly9dv3Gxs3urdt37t7rbd7/bHVtGAyZFtqMcmpBcAVDx52AUWWAylzAcV4eLPTjr2As1+rIzStIJS0Un3JGXaCy3s7ZttrZS2wtM1/ukebEf3gaN6NxmcKJP8UlTrSEgmakyXp9MiBt4MsgXoH+qz+ojcNss/MlmWhWS1COCWrtOCaVSz01jjMBTTepLVSUlbSAcYCKSrCpb3dq8FZgJniqTXjK4ZY9X+GptHYu85ApqZvZi9qC/KdtnW/VUsykHurw8co163rtpi9Tz1VVO1BsOcm0FthpvHAQT7gB5sQ8ABrqwzKYzaihzAWf18ZgMje8mIUGyWsIFhh4H3p/rMBQp80Tn1BTSK6aYEnxbQH+l0fPVnkBdLvhGvFF7y+D4bPB7oB8et7fJ8uroA30ED1G2yhGL9A+eoMO0RAx9B39QD/Rr+hRdBC9jd4tU6POquYBWovo6C9pKdBq</latexit>

x [n]⌦ h[n] ,N�1X

k=0

x

⇥k

⇤y

⇥[n � k ]N

<latexit sha1_base64="j3RPvbmqr0CcEeE7huxzhy5iefQ=">AAACunicfZHNitRAEMd74tc6fs3q0UvjsCDCDomIellc0IMeXFdw3MUkhk5PTaZJf8TuiswQ4iv5NB686Cv4CHYyg+zsggXd/eNfVVR1VV5J4TAMfw6CS5evXL22c3144+at23dGu3c/OlNbDlNupLGnOXMghYYpCpRwWllgKpdwkpcvO//JV7BOGP0BVxWkihVazAVn6KVs9GYZ6zQxKBQ4uugYrWC6kPCFJq5WWVMehO3n5mg/apdJLoq47O501XOs98s0O+qVbDQOJ2Fv9CJEGxi/+EN6O852B5+SmeG1Ao1cMufiKKwwbZhFwSW0w6R2UDFesgJij5r5HtOm/3NL97wyo3Nj/dFIe/VsRsOUcyuV+0jFcOHO+zrxn2/vbKle4jZtoPaPqLDd9tc4f542Qlc1gubrTua1pGhoN2E6ExY4ypUH5vP9ZyhfMMs4+j1stcFVbkWx8AWSV+BHYOGtr/2uAsvQ2EdNwmyhhG79SIpvHfwvji03cR6GQ7+N6PzsL8L08eTpJHz/ZHwYrrdCdsh98oA8JBF5Rg7Ja3JMpoST7+QH+UV+BwcBD0RQrkODwSbnHtmyAP8CDe/e4g==</latexit><latexit sha1_base64="j3RPvbmqr0CcEeE7huxzhy5iefQ=">AAACunicfZHNitRAEMd74tc6fs3q0UvjsCDCDomIellc0IMeXFdw3MUkhk5PTaZJf8TuiswQ4iv5NB686Cv4CHYyg+zsggXd/eNfVVR1VV5J4TAMfw6CS5evXL22c3144+at23dGu3c/OlNbDlNupLGnOXMghYYpCpRwWllgKpdwkpcvO//JV7BOGP0BVxWkihVazAVn6KVs9GYZ6zQxKBQ4uugYrWC6kPCFJq5WWVMehO3n5mg/apdJLoq47O501XOs98s0O+qVbDQOJ2Fv9CJEGxi/+EN6O852B5+SmeG1Ao1cMufiKKwwbZhFwSW0w6R2UDFesgJij5r5HtOm/3NL97wyo3Nj/dFIe/VsRsOUcyuV+0jFcOHO+zrxn2/vbKle4jZtoPaPqLDd9tc4f542Qlc1gubrTua1pGhoN2E6ExY4ypUH5vP9ZyhfMMs4+j1stcFVbkWx8AWSV+BHYOGtr/2uAsvQ2EdNwmyhhG79SIpvHfwvji03cR6GQ7+N6PzsL8L08eTpJHz/ZHwYrrdCdsh98oA8JBF5Rg7Ja3JMpoST7+QH+UV+BwcBD0RQrkODwSbnHtmyAP8CDe/e4g==</latexit>

DFT [x [n]⌦ h[n]] = DFT [x [n]]⇥DFT [h[n]]<latexit sha1_base64="PFtTAvDkKuekoqJK8lxyroV/3hU=">AAACoHicfVHdahNBFJ6sP63xL9VLbwZDQbyImyLaG7FgKfZC2kJjS7NLmJ2cbIbOzzJzVhqW+BY+jbf1IXwLH6FnN1GaFjwwzDffdw7nnG+yQquAcfy7Fd25e+/+2vqD9sNHj5887Ww8+xpc6SUMpNPOn2YigFYWBqhQw2nhQZhMw0l2/qnWT76BD8rZY5wVkBqRWzVRUiBRo86b3b3j4cXQpolDZSDwKeH0w182TRZs/W6UUacb9+Im+G3QX4Luxz+sicPRRussGTtZGrAotQhh2I8LTCvhUUkN83ZSBiiEPBc5DAlaQf3SqtlszjeJGfOJ83Qs8oa9XlEJE8LMZJRpBE7DTa0m/2mb11s1lPRpBSVdqsD5ql7iZDutlC1KBCsXk0xKzdHx2kc+Vh4k6hkBQfW0DJdT4YVEcntlDGkyr/IpNUh2gSzw8IV6HxTgBTr/ukqEz42yc7Ik/16D/+WJi2UegXabfqN/0/vbYLDVe9eLj952d+LFr7B19oK9ZK9Yn71nO+wzO2QDJtkP9pNdsl9RN9qPDqKjRWrUWtY8ZysRnV0Bq6HTEw==</latexit><latexit sha1_base64="PFtTAvDkKuekoqJK8lxyroV/3hU=">AAACoHicfVHdahNBFJ6sP63xL9VLbwZDQbyImyLaG7FgKfZC2kJjS7NLmJ2cbIbOzzJzVhqW+BY+jbf1IXwLH6FnN1GaFjwwzDffdw7nnG+yQquAcfy7Fd25e+/+2vqD9sNHj5887Ww8+xpc6SUMpNPOn2YigFYWBqhQw2nhQZhMw0l2/qnWT76BD8rZY5wVkBqRWzVRUiBRo86b3b3j4cXQpolDZSDwKeH0w182TRZs/W6UUacb9+Im+G3QX4Luxz+sicPRRussGTtZGrAotQhh2I8LTCvhUUkN83ZSBiiEPBc5DAlaQf3SqtlszjeJGfOJ83Qs8oa9XlEJE8LMZJRpBE7DTa0m/2mb11s1lPRpBSVdqsD5ql7iZDutlC1KBCsXk0xKzdHx2kc+Vh4k6hkBQfW0DJdT4YVEcntlDGkyr/IpNUh2gSzw8IV6HxTgBTr/ukqEz42yc7Ik/16D/+WJi2UegXabfqN/0/vbYLDVe9eLj952d+LFr7B19oK9ZK9Yn71nO+wzO2QDJtkP9pNdsl9RN9qPDqKjRWrUWtY8ZysRnV0Bq6HTEw==</latexit>

Page 55: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Introduction to OFDM

OFDM is a multi-carrier modulation

Symbols at rate R are serial-to-parallel converted to N parallel streams • Each stream is at rate R/N

Symbol duration per stream increased N times • Bandwidth per stream reduced N times

Each stream modulates one of N orthogonal carriers

Implemented easily with IFFT/FFT

���6

Page 56: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Advantages and Disadvantages of OFDM

Advantages • No complex time-domain equalization.

• Robust against intersymbol interference (ISI) and fading caused by multipath propagation

• High spectral efficiency as compared to conventional schemes, CDMA

• Efficient implementation using Fast Fourier Transform (FFT).

• Low sensitivity to time synchronization errors.

• Tuned sub-channel receiver filters are not required (unlike conventional FDM).

• Facilitates single frequency networks (SFNs); i.e., transmitter macrodiversity.

Disadvantages • Sensitive to Doppler shift.

• Sensitive to frequency synchronization problems.

• High peak-to-average-power ratio (PAPR

• Loss of efficiency caused by cyclic prefix/guard interval

���7Ref) Wikipedia

Page 57: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Complete OFDM Modulation

���8

X<latexit sha1_base64="uSoFSP86Jq5uYEYGeEtqI3buoFA=">AAACcHicfVFdSxtBFL1ZbWtjrV9PpQ+uDULxIWxEWt8U6kNfShUaDTWL3J3cbAZnZpeZu8WwxD/QV/1x/guhf6CTjUrSoheGOZxzLvfOmSRX0nEU3daCufkXL18tvK4vvll6u7yyunbissIKaotMZbaToCMlDbVZsqJObgl1oug0ufgy1k9/kXUyMz94mFOsMTWyLwWyp4475yuNVjOqKoz+Aw9SY/8Oqjo6X6397PYyUWgyLBQ6d9aKco5LtCyFolG9WzjKUVxgSmceGtTk4rLadBRueaYX9jPrj+GwYqc7StTODXXinRp54P7VxuSjtjU9qqKEjUsq/CVzHs3qBff34lKavGAyYrJJv1AhZ+E4l7AnLQlWQw/Q9/vHhGKAFgX79GbWEDqxMh34Ad1D8hFY+uZnf8/JImd2u+yiTbU0Ix9JejUGz/nw8t7nQb0+/RtPg/ZO81MzOt5tHESTX4EFeA8f4CO04DMcwFc4gjYIIPgN13BT+xO8CzaCzYk1qN33rMNMBdt/Ad+6wWw=</latexit><latexit sha1_base64="uSoFSP86Jq5uYEYGeEtqI3buoFA=">AAACcHicfVFdSxtBFL1ZbWtjrV9PpQ+uDULxIWxEWt8U6kNfShUaDTWL3J3cbAZnZpeZu8WwxD/QV/1x/guhf6CTjUrSoheGOZxzLvfOmSRX0nEU3daCufkXL18tvK4vvll6u7yyunbissIKaotMZbaToCMlDbVZsqJObgl1oug0ufgy1k9/kXUyMz94mFOsMTWyLwWyp4475yuNVjOqKoz+Aw9SY/8Oqjo6X6397PYyUWgyLBQ6d9aKco5LtCyFolG9WzjKUVxgSmceGtTk4rLadBRueaYX9jPrj+GwYqc7StTODXXinRp54P7VxuSjtjU9qqKEjUsq/CVzHs3qBff34lKavGAyYrJJv1AhZ+E4l7AnLQlWQw/Q9/vHhGKAFgX79GbWEDqxMh34Ad1D8hFY+uZnf8/JImd2u+yiTbU0Ix9JejUGz/nw8t7nQb0+/RtPg/ZO81MzOt5tHESTX4EFeA8f4CO04DMcwFc4gjYIIPgN13BT+xO8CzaCzYk1qN33rMNMBdt/Ad+6wWw=</latexit>

x = IDFT [X]<latexit sha1_base64="tJOibyEJ5xvXwJmI4KDk7JuE1JA=">AAACeHicfVFNbxMxEJ0stJRAv+DIZSGqaHuINhFqe6moRIXggChSQ9Mmq2rWmWys2t6VPYsarcKf4Ao/jH/BnQvOpqCECkay/PTeG834OcmVdBxF32vBnbtLy/dW7tcfPFxdW9/YfPTRZYUV1BGZymw3QUdKGuqwZEXd3BLqRNFZcvVqqp99IutkZk55nFOsMTVyKAWyp86vD98evz7tdePLjUarGVUVRrfAb6nx8gdUdXK5WbvoDzJRaDIsFDrXa0U5xyValkLRpN4vHOUorjClnocGNbm4rDaehFueGYTDzPpjOKzY+Y4StXNjnXinRh65v7Up+Ufbmh9VUcLGJRX+kjlPFvWChwdxKU1eMBkx22RYqJCzcJpPOJCWBKuxB+j7/WNCMUKLgn2KC2sInViZjvyA/jH5CCy987Pf52SRM7tb9tGmWpqJjyT9PAX/8+H1jc+Den3+N/4NOu3mXjP68KJxFM1+BVbgCTyDbWjBPhzBGziBDgjQ8AW+wrfaz+Bp8DzYmVmD2k3PY1iooP0LXkLEUA==</latexit><latexit sha1_base64="tJOibyEJ5xvXwJmI4KDk7JuE1JA=">AAACeHicfVFNbxMxEJ0stJRAv+DIZSGqaHuINhFqe6moRIXggChSQ9Mmq2rWmWys2t6VPYsarcKf4Ao/jH/BnQvOpqCECkay/PTeG834OcmVdBxF32vBnbtLy/dW7tcfPFxdW9/YfPTRZYUV1BGZymw3QUdKGuqwZEXd3BLqRNFZcvVqqp99IutkZk55nFOsMTVyKAWyp86vD98evz7tdePLjUarGVUVRrfAb6nx8gdUdXK5WbvoDzJRaDIsFDrXa0U5xyValkLRpN4vHOUorjClnocGNbm4rDaehFueGYTDzPpjOKzY+Y4StXNjnXinRh65v7Up+Ufbmh9VUcLGJRX+kjlPFvWChwdxKU1eMBkx22RYqJCzcJpPOJCWBKuxB+j7/WNCMUKLgn2KC2sInViZjvyA/jH5CCy987Pf52SRM7tb9tGmWpqJjyT9PAX/8+H1jc+Den3+N/4NOu3mXjP68KJxFM1+BVbgCTyDbWjBPhzBGziBDgjQ8AW+wrfaz+Bp8DzYmVmD2k3PY1iooP0LXkLEUA==</latexit>

x

0<latexit sha1_base64="yiV/G0DdaCT7hBCzCRXj3wWzJm4=">AAACeXicfVFNbxMxEJ0sXyXlo4Ujl1WjSlUP0YYi4EYlOPSCaKWGVu1uq1lnsrFqey17FjVaLb+Ca/lf/At+AAecTVslIBjJ8tN7bzTj59wq6TlJfnSiO3fv3X+w8rC7+ujxk6dr688++7JygoaiVKU7ztGTkoaGLFnRsXWEOld0lF+8n+lHX8h5WZpDnlrKNBZGjqVADtTJ5VmdWic1NedrvUE/aStO/gI3Uu/dT2hr/3y9c5KOSlFpMiwUen86SCxnNTqWQlHTTStPFsUFFnQaoEFNPqvblZt4MzCjeFy6cAzHLbvYUaP2fqrz4NTIE/+nNiNvtc3FUS0lXFZTFS5puVnWKx6/zWppbMVkxHyTcaViLuNZQPFIOhKspgFg6A+PicUEHQoOMS6tIXTuZDEJA9IPFCJw9DHM/mTJIZduu07RFVqaJkRSfJ2B//nw8toXQLe7+Bv/BsOX/df95OBVbzeZ/wqswAvYgC0YwBvYhT3YhyEIMPANruB751e0EW1F23Nr1LnueQ5LFe38BlG3xbU=</latexit><latexit sha1_base64="yiV/G0DdaCT7hBCzCRXj3wWzJm4=">AAACeXicfVFNbxMxEJ0sXyXlo4Ujl1WjSlUP0YYi4EYlOPSCaKWGVu1uq1lnsrFqey17FjVaLb+Ca/lf/At+AAecTVslIBjJ8tN7bzTj59wq6TlJfnSiO3fv3X+w8rC7+ujxk6dr688++7JygoaiVKU7ztGTkoaGLFnRsXWEOld0lF+8n+lHX8h5WZpDnlrKNBZGjqVADtTJ5VmdWic1NedrvUE/aStO/gI3Uu/dT2hr/3y9c5KOSlFpMiwUen86SCxnNTqWQlHTTStPFsUFFnQaoEFNPqvblZt4MzCjeFy6cAzHLbvYUaP2fqrz4NTIE/+nNiNvtc3FUS0lXFZTFS5puVnWKx6/zWppbMVkxHyTcaViLuNZQPFIOhKspgFg6A+PicUEHQoOMS6tIXTuZDEJA9IPFCJw9DHM/mTJIZduu07RFVqaJkRSfJ2B//nw8toXQLe7+Bv/BsOX/df95OBVbzeZ/wqswAvYgC0YwBvYhT3YhyEIMPANruB751e0EW1F23Nr1LnueQ5LFe38BlG3xbU=</latexit>

channel : h<latexit sha1_base64="i8THypjw159UUpHzJcObq9fJnXk=">AAACgXicfVFdSxtBFL3Z2lbTr1gf+7I0COJD2Ehpiz5UqA99KSo0VXSXcHdysxmcmV1m7oph2f6Svup/6r/wJzjZaEla2gvDHM45l3vnTFoo6TiKfrWCRyuPnzxdXWs/e/7i5avO+uvvLi+toIHIVW5PU3SkpKEBS1Z0WlhCnSo6SS8+z/STS7JO5uYbTwtKNGZGjqVA9tSw04mZrrgSEzSGVL07GXa6/V7UVBj9BR6k7qdbaOpouN46i0e5KDUZFgqdO+9HBScVWpZCUd2OS0cFigvM6NxDg5pcUjWr1+GmZ0bhOLf+GA4bdrGjQu3cVKfeqZEn7k9tRv7WNhdHNZSwSUWlv2TB9bJe8vhjUklTlExGzDcZlyrkPJwFFY6kJcFq6gH6fv+Y0KdkUbCPc2kNoVMrs4kfEB+Qj8DSVz/7sCCLnNvtKkabaWlqH0n2Ywb+58Ore58H7fbib/wbDHZ673vR8bvufjT/FViFN/AWtqAPH2AfvsARDEDAJfyEa7gJVoLtIAp25tagdd+zAUsV7N0BaYPHcA==</latexit><latexit sha1_base64="i8THypjw159UUpHzJcObq9fJnXk=">AAACgXicfVFdSxtBFL3Z2lbTr1gf+7I0COJD2Ehpiz5UqA99KSo0VXSXcHdysxmcmV1m7oph2f6Svup/6r/wJzjZaEla2gvDHM45l3vnTFoo6TiKfrWCRyuPnzxdXWs/e/7i5avO+uvvLi+toIHIVW5PU3SkpKEBS1Z0WlhCnSo6SS8+z/STS7JO5uYbTwtKNGZGjqVA9tSw04mZrrgSEzSGVL07GXa6/V7UVBj9BR6k7qdbaOpouN46i0e5KDUZFgqdO+9HBScVWpZCUd2OS0cFigvM6NxDg5pcUjWr1+GmZ0bhOLf+GA4bdrGjQu3cVKfeqZEn7k9tRv7WNhdHNZSwSUWlv2TB9bJe8vhjUklTlExGzDcZlyrkPJwFFY6kJcFq6gH6fv+Y0KdkUbCPc2kNoVMrs4kfEB+Qj8DSVz/7sCCLnNvtKkabaWlqH0n2Ywb+58Ore58H7fbib/wbDHZ673vR8bvufjT/FViFN/AWtqAPH2AfvsARDEDAJfyEa7gJVoLtIAp25tagdd+zAUsV7N0BaYPHcA==</latexit>

x

0 ⇤ h = x ~ h + ↵<latexit sha1_base64="+WcGikJuGGUVSeDjrdfD2a7ufHk=">AAACmXicfVHdahNBFJ6sfzX+pe2lXgyGQlEIGxH1RlqqF0UQKxpb7K7h7ORkd+jM7DBzVhKW9RF8Gm/1PXwLH8HJpkqi6IFhvvm+c+b8ZVZJT3H8vRNduHjp8pWNq91r12/cvNXb3Hrny8oJHIlSle4kA49KGhyRJIUn1iHoTOFxdvZsoR9/ROdlad7S3GKqITdyKgVQoMa93dmHOrFOamwS8MSLp7NESCcUTtonv88TULaAca8/HMSt8fgv8Evq7/1grR2NNzvvk0kpKo2GhALvT4expbQGRzJ833STyqMFcQY5ngZoQKNP67alhu8EZsKnpQvHEG/Z1YgatPdznQVPDVT4P7UF+VvbWU3VUsKlNVbhkpaadb2i6ZO0lsZWhEYsK5lWilPJFwPkE+lQkJoHACE+NMNFAQ4EhTGvlSF05mRehATJcwwjcPgy5H5l0QGV7l6dgMu1NE0YSf5pAf7nB7NzvwC63dVt/BuMHgweDeLXD/v78XIrbIPdZnfZLhuyx2yfHbIjNmKCfWZf2Ff2LboTHUSH0Yula9Q5j9lmaxa9+Qke2tDD</latexit><latexit sha1_base64="+WcGikJuGGUVSeDjrdfD2a7ufHk=">AAACmXicfVHdahNBFJ6sfzX+pe2lXgyGQlEIGxH1RlqqF0UQKxpb7K7h7ORkd+jM7DBzVhKW9RF8Gm/1PXwLH8HJpkqi6IFhvvm+c+b8ZVZJT3H8vRNduHjp8pWNq91r12/cvNXb3Hrny8oJHIlSle4kA49KGhyRJIUn1iHoTOFxdvZsoR9/ROdlad7S3GKqITdyKgVQoMa93dmHOrFOamwS8MSLp7NESCcUTtonv88TULaAca8/HMSt8fgv8Evq7/1grR2NNzvvk0kpKo2GhALvT4expbQGRzJ833STyqMFcQY5ngZoQKNP67alhu8EZsKnpQvHEG/Z1YgatPdznQVPDVT4P7UF+VvbWU3VUsKlNVbhkpaadb2i6ZO0lsZWhEYsK5lWilPJFwPkE+lQkJoHACE+NMNFAQ4EhTGvlSF05mRehATJcwwjcPgy5H5l0QGV7l6dgMu1NE0YSf5pAf7nB7NzvwC63dVt/BuMHgweDeLXD/v78XIrbIPdZnfZLhuyx2yfHbIjNmKCfWZf2Ff2LboTHUSH0Yula9Q5j9lmaxa9+Qke2tDD</latexit>

x ~ h<latexit sha1_base64="i8qlF031TXwEwSmB0pxG11xrAXk=">AAACfXicfVFRTxNBEJ4eilAUAR992dhgDDHN1RDwTRJ94MWIiQUid5C57fS6YXfvsjtnaC71d/gq/8p/4U9ge0XTamCSzX75vpmd2W+yUivPcfyrFS09eLj8aGW1vfb4yfrTjc2tY19UTlJfFrpwpxl60spSnxVrOi0dock0nWSX76f6yTdyXhX2C49LSg3mVg2VRA7U+VUilZOaBuhZjC42Or1u3ISI/wN/pM6739DE0cVm62syKGRlyLLU6P1ZLy45rdGxCq9O2knlqUR5iTmdBWjRkE/rZuyJ2A7MQAwLF45l0bDzFTUa78cmC5kGeeT/1abkX217vlVDSZfWVIVLlTxZ1Csevk1rZcuKycrZJMNKCy7E1CQxUI4k63EAGOrDZ4QcoUPJwcqFMaTJnMpHoUHygYIFjj6G3p9KcsiF26kTdLlRdhIsyb9PwX15eHWbF0C7Pb+Nu0H/TXevG3/e7RzEs63ACjyHF/AKerAPB3AIR9AHCQ5+wE+4jiB6Gb2OurPUqHVb8wwWItq/AUddxhE=</latexit><latexit sha1_base64="i8qlF031TXwEwSmB0pxG11xrAXk=">AAACfXicfVFRTxNBEJ4eilAUAR992dhgDDHN1RDwTRJ94MWIiQUid5C57fS6YXfvsjtnaC71d/gq/8p/4U9ge0XTamCSzX75vpmd2W+yUivPcfyrFS09eLj8aGW1vfb4yfrTjc2tY19UTlJfFrpwpxl60spSnxVrOi0dock0nWSX76f6yTdyXhX2C49LSg3mVg2VRA7U+VUilZOaBuhZjC42Or1u3ISI/wN/pM6739DE0cVm62syKGRlyLLU6P1ZLy45rdGxCq9O2knlqUR5iTmdBWjRkE/rZuyJ2A7MQAwLF45l0bDzFTUa78cmC5kGeeT/1abkX217vlVDSZfWVIVLlTxZ1Csevk1rZcuKycrZJMNKCy7E1CQxUI4k63EAGOrDZ4QcoUPJwcqFMaTJnMpHoUHygYIFjj6G3p9KcsiF26kTdLlRdhIsyb9PwX15eHWbF0C7Pb+Nu0H/TXevG3/e7RzEs63ACjyHF/AKerAPB3AIR9AHCQ5+wE+4jiB6Gb2OurPUqHVb8wwWItq/AUddxhE=</latexit>

HX<latexit sha1_base64="3QrECIZgah1NPLJzYbXTuyviEhc=">AAACcXicfVFdaxNBFL3ZVm3jV2vf7MvQUBCFsCmivlloH/oitsXYYLOUu5O7m6Ezs8vMXTEs8Rf4qv/Nf+FDf4CTTVsSRS8MczjnXO6dM2mplec4/tmKVlbv3L23tt6+/+Dho8cbm08++qJykvqy0IUbpOhJK0t9VqxpUDpCk2o6Sy8PZvrZZ3JeFfYDT0pKDOZWZUoiB+r0aHCx0el146ZE/Be4kTpvf0FTxxebrU/DUSErQ5alRu/Pe3HJSY2OldQ0bQ8rTyXKS8zpPECLhnxSN6tOxW5gRiIrXDiWRcMudtRovJ+YNDgN8tj/qc3IW213cVRDSZfUVIVLlTxd1ivO3iS1smXFZOV8k6zSggsxC0aMlCPJehIAhv7wGCHH6FByiG9pDWlSp/JxGDA8pBCBo3dh9vuSHHLhntdDdLlRdhoiyb/OwP98+OXaF0C7vfgb/wb9ve6rbnzysrMfz38F1mAbduAZ9OA17MMRHEMfJGTwDb7Dj9ZV9DQS0c7cGrWue7ZgqaIXvwGY3cG+</latexit><latexit sha1_base64="3QrECIZgah1NPLJzYbXTuyviEhc=">AAACcXicfVFdaxNBFL3ZVm3jV2vf7MvQUBCFsCmivlloH/oitsXYYLOUu5O7m6Ezs8vMXTEs8Rf4qv/Nf+FDf4CTTVsSRS8MczjnXO6dM2mplec4/tmKVlbv3L23tt6+/+Dho8cbm08++qJykvqy0IUbpOhJK0t9VqxpUDpCk2o6Sy8PZvrZZ3JeFfYDT0pKDOZWZUoiB+r0aHCx0el146ZE/Be4kTpvf0FTxxebrU/DUSErQ5alRu/Pe3HJSY2OldQ0bQ8rTyXKS8zpPECLhnxSN6tOxW5gRiIrXDiWRcMudtRovJ+YNDgN8tj/qc3IW213cVRDSZfUVIVLlTxd1ivO3iS1smXFZOV8k6zSggsxC0aMlCPJehIAhv7wGCHH6FByiG9pDWlSp/JxGDA8pBCBo3dh9vuSHHLhntdDdLlRdhoiyb/OwP98+OXaF0C7vfgb/wb9ve6rbnzysrMfz38F1mAbduAZ9OA17MMRHEMfJGTwDb7Dj9ZV9DQS0c7cGrWue7ZgqaIXvwGY3cG+</latexit>

X<latexit sha1_base64="uSoFSP86Jq5uYEYGeEtqI3buoFA=">AAACcHicfVFdSxtBFL1ZbWtjrV9PpQ+uDULxIWxEWt8U6kNfShUaDTWL3J3cbAZnZpeZu8WwxD/QV/1x/guhf6CTjUrSoheGOZxzLvfOmSRX0nEU3daCufkXL18tvK4vvll6u7yyunbissIKaotMZbaToCMlDbVZsqJObgl1oug0ufgy1k9/kXUyMz94mFOsMTWyLwWyp4475yuNVjOqKoz+Aw9SY/8Oqjo6X6397PYyUWgyLBQ6d9aKco5LtCyFolG9WzjKUVxgSmceGtTk4rLadBRueaYX9jPrj+GwYqc7StTODXXinRp54P7VxuSjtjU9qqKEjUsq/CVzHs3qBff34lKavGAyYrJJv1AhZ+E4l7AnLQlWQw/Q9/vHhGKAFgX79GbWEDqxMh34Ad1D8hFY+uZnf8/JImd2u+yiTbU0Ix9JejUGz/nw8t7nQb0+/RtPg/ZO81MzOt5tHESTX4EFeA8f4CO04DMcwFc4gjYIIPgN13BT+xO8CzaCzYk1qN33rMNMBdt/Ad+6wWw=</latexit><latexit sha1_base64="uSoFSP86Jq5uYEYGeEtqI3buoFA=">AAACcHicfVFdSxtBFL1ZbWtjrV9PpQ+uDULxIWxEWt8U6kNfShUaDTWL3J3cbAZnZpeZu8WwxD/QV/1x/guhf6CTjUrSoheGOZxzLvfOmSRX0nEU3daCufkXL18tvK4vvll6u7yyunbissIKaotMZbaToCMlDbVZsqJObgl1oug0ufgy1k9/kXUyMz94mFOsMTWyLwWyp4475yuNVjOqKoz+Aw9SY/8Oqjo6X6397PYyUWgyLBQ6d9aKco5LtCyFolG9WzjKUVxgSmceGtTk4rLadBRueaYX9jPrj+GwYqc7StTODXXinRp54P7VxuSjtjU9qqKEjUsq/CVzHs3qBff34lKavGAyYrJJv1AhZ+E4l7AnLQlWQw/Q9/vHhGKAFgX79GbWEDqxMh34Ad1D8hFY+uZnf8/JImd2u+yiTbU0Ix9JejUGz/nw8t7nQb0+/RtPg/ZO81MzOt5tHESTX4EFeA8f4CO04DMcwFc4gjYIIPgN13BT+xO8CzaCzYk1qN33rMNMBdt/Ad+6wWw=</latexit>

Page 58: Feb. 2014 @ TTA

Feb. 2014 @ TTA

OFDM Cyclic Prefix

After IFFT, a guard band (cyclic prefix) is added at the beginning

Guard time prevents Inter- Symbol Interference (ISI) and Inter- Carrier Interference (ICI) due to multipath

���9

Page 59: Feb. 2014 @ TTA

Feb. 2014 @ TTA

OFDM Cyclic Prefix

Guard time duration > channel maximum delay • Optic cable can cause additional delay spread

���10

Page 60: Feb. 2014 @ TTA

Feb. 2014 @ TTA

OFDM Parameters

���11

Page 61: Feb. 2014 @ TTA

Feb. 2014 @ TTA

OFDM in LTE

���12

Page 62: Feb. 2014 @ TTA

Feb. 2014 @ TTA

OFDM in LTE

OFDM parameters should be optimizedconsidering UE’s velocity and multi path environments

Time domain

!!!Frequency domain

���13

Page 63: Feb. 2014 @ TTA

���14

Fundamentals of MIMO

Page 64: Feb. 2014 @ TTA

Feb. 2014 @ TTA

MIMO Channel Modeling

���15

Page 65: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Linear Independent

One vector can be represented by any linear combination of other vectors

���16

Page 66: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Rank of Channel Matrix

The maximum number of linearly independent column vectors of H

!!!!The maximum number of data streams that can be transmitted simultaneously

Rank(H)≤min(NR, NT)

���17

Page 67: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Summary of various MIMO schemes

Total transmit power is fixed regardless of the number of tx antennas

���18

⇢i j =P |hi j |2

n0<latexit sha1_base64="lu0qOzA6CZkEIP1gcozr39svcEU=">AAACknicfVHbahRBEO0dL0nW2yaSp7yMLgHxYZkNYgQJRuKDDxFXcE0wMw49vTUzbfoydPeIS2d89Wt8Nd+Sv/ATrJ1dJJuABU2fPnWKqjqdVYJbF0UXneDGzVu3V1bXunfu3rv/oLe+8cnq2jAYMy20Oc6oBcEVjB13Ao4rA1RmAo6y04NZ/ugbGMu1+uimFSSSFornnFGHVNp7FJtSp55/bfbi3FDmR2dl+zz7stN4lUZN2utHg6iN8DoYLkD/1R/Sxihd73yOJ5rVEpRjglp7Mowql3hqHGcCmm5cW6goO6UFnCBUVIJNfLtLE24jMwlzbfAoF7bs5QpPpbVTmaFSUlfaq7kZ+S+3fblVSzGTeKjx4pVrlvO1y18knquqdqDYfJK8FqHT4cy5cMINMCemCCjW4zIhKyl65tDfpTGYzAwvSmwQvwG0wMA77P2+AkOdNk99TE0huWrQkuLHDPxPR78vdAi6XfyN4VXvr4PxzuD5IPrwrL8fzX+FrJIt8pg8IUOyS/bJWzIiY8LIT/KL/CbnwWbwMngdHMylQWdR85AsRXD4F22ZzuA=</latexit><latexit sha1_base64="lu0qOzA6CZkEIP1gcozr39svcEU=">AAACknicfVHbahRBEO0dL0nW2yaSp7yMLgHxYZkNYgQJRuKDDxFXcE0wMw49vTUzbfoydPeIS2d89Wt8Nd+Sv/ATrJ1dJJuABU2fPnWKqjqdVYJbF0UXneDGzVu3V1bXunfu3rv/oLe+8cnq2jAYMy20Oc6oBcEVjB13Ao4rA1RmAo6y04NZ/ugbGMu1+uimFSSSFornnFGHVNp7FJtSp55/bfbi3FDmR2dl+zz7stN4lUZN2utHg6iN8DoYLkD/1R/Sxihd73yOJ5rVEpRjglp7Mowql3hqHGcCmm5cW6goO6UFnCBUVIJNfLtLE24jMwlzbfAoF7bs5QpPpbVTmaFSUlfaq7kZ+S+3fblVSzGTeKjx4pVrlvO1y18knquqdqDYfJK8FqHT4cy5cMINMCemCCjW4zIhKyl65tDfpTGYzAwvSmwQvwG0wMA77P2+AkOdNk99TE0huWrQkuLHDPxPR78vdAi6XfyN4VXvr4PxzuD5IPrwrL8fzX+FrJIt8pg8IUOyS/bJWzIiY8LIT/KL/CbnwWbwMngdHMylQWdR85AsRXD4F22ZzuA=</latexit>

Page 68: Feb. 2014 @ TTA

���19

Downlink Physical Layer of LTE

References: 1. Bong Youl Cho, LTE Physical Layer in TTA, March 2013 2. Stefania Sesia, et al., LTE: From Theory to Practice, Wiley, 2nd Ed. 3. Erik Dahlman, et al., 4G LTE/LTE-Advanced for Mobile Broadband, Elsevier

Page 69: Feb. 2014 @ TTA

Feb. 2014 @ TTA

LTE Time Domain Frame Structure

���20

Page 70: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Transmission Resource Structure-PDCCH

RE→REG→CCE→Aggregation Level

Aggregation Level • 1, 2,4, 8

• ‘aggregation level’ isdetermined by the eNodeBaccording tothe channel conditions.

– For a UE with a good DL channel one CCE

– For a UE with a poor DL channel, then eight CCEs may be requiredin order to achieve sufficient robustness

���21

Page 71: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Transmission Resource Structure-PDSCH

RE→RB→RBG

Basic time-domain unit (TTI) for dynamic scheduling in LTE is one subframe consisting of two consecutive slots

���22

Page 72: Feb. 2014 @ TTA

Feb. 2014 @ TTA

DL Signal Generation

Codeword • CRC + Channel Coded

The initial scrambling is applied to all downlink physical channels for interference rejection

Scrambled bits are modulated to generate complex-valued modulation symbols

Complex-valued modulation symbols are mapped onto one or several transmission layers

Precoding of the complex-valued modulation symbols on each layer for transmission on the antenna ports

• mapping of complex-valued modulation symbols for each antenna port to resource elements

• generation of complex-valued time-domain OFDM signal for each antenna port

���23

Page 73: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Modulation

PDSCH, PMCH: QPSK, 16QAM, 64QAM

PBCH, PCFICH, PDCCH: QPSK

PHICH: BPSK

���24

Page 74: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Layer Mapping and Precoding

Spatial layer is used for one of the different streams generated by spatial multiplexing • A layer can be described as a mapping of symbols onto the transmit antenna

ports

• Each layer is identified by a precoding vector of size equal to the number of transmit antenna ports and can be associated with a radiation pattern

The rank of the transmission is the number of layers transmitted

A codeword is an independently encoded data block • Sngle Transport Block (TB) delivered from the Medium Access Control (MAC)

layer in the transmitter to the physical layer, and protected with a CRC

���25

Page 75: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Layer Mapping and Precoding

1≤The number of layers (NL)≤min (Tx ant, Rx ant)

Codebook-based precoding • CRS-based channel estimation

• Cell-specific reference signals (CRS) are applied after precoding

• Maximum 4 layers are supported

���26

Modulation symbols :one or two transport block(codewords)

Page 76: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Layer Mapping and Precoding

Transport Block to Layer Mapping

���27

Page 77: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Channels

���28

Physical Channels Transport Channels

Contents Comments

PBCH Physical Broadcast Channel

BCHMIB

(BW, SFN 등)

UE가 셀 탐색이후 최초로 검출하는 채널로 다른 물리채널 수신을 위한 필수 시스템 정보 전송

PCFICH Physical Control Format Indicator

Channel

CFI (Control Format Indicator)

-UE에게 PDCCH용 OFDM 심벌의 길이를 알려줌 -매 subframe 전송 -One PCFICH/cell

PMCH Physical Multicast Channel

MCH Broadcast data

PHICH Physical HARQ Indicator Channel

ACK/NACK

PDSCH Physical Downlink Shared Channel

DL-SCH PCH

Downlink user data, SI Paging

System Information도 RRC 메시지 형태로 DL-SCH를 통해서 전송

Page 78: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Channels-PBCH

Broadcast MIB • Should be reached over entire cell

The coded BCH transport block ismapped to four subframes(slot #1 in subframe #0) within a 40ms interval

���29

Page 79: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Channels-PBCH

Detectability without the UE having prior knowledge of the system bandwidth • PBCH is mapped only to the central 72 subcarriers of the OFDM signal

regardless of the actual system bandwidth

Low system overhead for the PBCH • Achieving stringent coverage requirements for a large quantity of data would

result in a high system overhead.

• MIB is just 14 bits and repeated every 40 ms→350bps

���30

Page 80: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Channels-PBCH

Reliable reception of the PBCH • FEC

– Coding rate=1/48 (40/1920)

• Time diversity – Spreading out the transmission of each MIB on the PBCH over a period of 40 ms – Prevent information loss due to deep fading even when mobile is moving at

pedestrian speeds

• Antenna diversity at both the eNodeB and the UE – Receive diversity at UE using dual receiving antennas – Transmit diversity may be also employed at eNB

• Space-Frequency Block Code (SFBC) using two or four transmit antenna ports • UE can blindly find the number of transmit antenna ports (two or four) by using CRC

on each MIB which is masked with a codeword representing the number of transmit antenna ports

���31

Page 81: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Channels-PCFICH

Carries a Control Format Indicator (CFI) which indicates the number of OFDM symbols (i.e. normally 1, 2 or 3) used for transmission of control channel information in each subframe • UE can deduce the value of the CFI without the PCFICH by multiple attempts

to decode the control channels assuming each possible number of symbols, but this would result in significant additional processing load

To minimize the possibility of confusion with PCFICH information from a neighbouring cell, a cell-specific frequency offset is applied to the positions of the PCFICH REs • Offset depends on the Physical Cell ID (PCI), which is deduced from the

Primary and Secondary Synchronization Signals (PSS and SSS)

Tx diversity, the same antenna ports as PBCH

���32

Page 82: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Channels-PCFICH

���33

Page 83: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Channels-PHICH

The PHICH carries the HARQ ACK/NACK, which indicates whether the eNodeB has correctly received a transmission on the PUSCH • 0 for ACK and 1 for a NACK • This information is repeated in each of three BPSK symbols

Tx diversity, the same antenna ports as PBCH

���34

Page 84: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Channels-PHICH

A PHICH is carried by 3 Resource Element Groups (REGs) • Each REG contains 4 resource elements (REs)

• The three REGs are evenly distributed within the system bandwidth to provide frequency diversity

Multiple PHICHs can share the same set of REGs and are differentiated by orthogonal covers • PHICHs which share the same resources are called a PHICH group

���35

Page 85: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Channels-PHICH

A total of 8 orthogonal sequences have been defined (3GPP TS 36.211 Table 6.9.1-2), so each PHICH group can carry up to 8 PHICHs • A specific PHICH is identified by two parameters

– PHICH group number – Orthogonal sequence index within the group

���36

Page 86: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Channels-PDCCH

Carry downlink control information(DCI) which includes • Downlink scheduling assignments, including PDSCH resource indication,

transport format, HARQ-related information, and control information related to spatial multiplexing (if applicable).

• Uplink scheduling grants, including PUSCH resource indication, transport format, and HARQ-related information

• Uplink power control commands

DL assignment • Regular unicast data – RB assignment, transport block size

• Scheduling of paging messages – acts as a “PICH”

• Scheduling of SIBs

• Scheduling of RA responses

• UL power control commands

���37

Page 87: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Channels-PDCCH

UL grant • Regular unicast data

• Request for aperiodic CQI reports

• Power control command, cyclic shift of DM RS

Tx diversity, the same antenna ports as PBCH

���38

Page 88: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Channels-PDCCH

���39

Release 9Release 10

Release 10

Page 89: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Channels-PDCCH

PDCCH Format • Each PDCCH is transmitted using one or more Control Channel Elements

(CCEs)

• Each CCE corresponds to nine REGs

• Four QPSK symbols are mapped to each REG

���40

Page 90: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Channels-PDCCH

���41

• The identity of the terminal (or terminals) addressed(RNTI) is included in the CRC calculation and not explicitly transmitted

• Depending on the purpose of the DCI message, different RNTIs are used; for normal unicast data transmission, the terminal-specific C-RNTI is used

Page 91: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Channels-PDSCH

PDSCH is the main data-bearing downlink channel in LTE carrying

All user data

Broadcast system information which is not carried on the PBCH

Paging messages

No specific physical layer paging channel in LTE

���42

Page 92: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Channels-PDSCH

PDSCH is the main data-bearing downlink channel in LTE carrying • All user data

• Broadcast system information which is not carried on the PBCH

• Paging messages – No specific physical layer paging channel in LTE

Data is transmitted in units of Transport Blocks (TBs), each of which corresponds to MAC PDU • Transport blocks are passed down from the MAC layer to the physical layer

once per Transmission Time Interval (TTI), where a TTI is 1 ms, corresponding to the subframe duration

���43

Page 93: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Channels-PDSCH

When employed for user data, one or, at most, two TBs can be transmitted per UE per subframe, depending on the following transmission modes selected for the PDSCH for each UE

���44

Transmission Modes

Descriptions Releases

1 Transmission from a single eNodeB antenna port

Release 8

2 Transmit diversity3 Open-loop spatial multiplexing

4 Closed-loop codebook-based spatial multiplexing

5 Multi-User Multiple-Input Multiple-Output (MU-MIMO)

6 Closed-loop rank-1 precoding

7 Transmission using non-codebook-based UE-specific RSs with a single spatial layer

8 Transmission using non-codebook-based UE-specific RSs with up to two spatial layers Release 9

9 Transmission using non-codebook-based UE-specific RSs with up to eight spatial layers Release 10

Page 94: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Channels-PDSCH

���45

Page 95: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Channels-PDSCH

Transmission Mode 1: Single antenna transmission • DL transmissions using a single Tx antenna (Port 0) at eNB

Transmission Mode 2: Transmit diversity • DL transmission using Alamouti-like transmit diversity schemes

• The number of layers is equal to the number of antenna ports

���46

Page 96: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Channels-PDSCH

Transmission Mode 3: Open-loop spatial multiplexing • Transmit different streams of data simultaneously on the same RB(s) by

exploiting the spatial dimension of the radio channel. These data streams belong to the same user.

– It requires less UE feedback regarding the channel situation (no precoding matrix indicator is included, and is used when channel information is missing or when the channel rapidly changes, e.g. for UEs moving with high velocity

• Up to 2 codewords transmissions with “no PMI feedback” – For two transmit antennas, a fixed precoding, while for four antennas, the

precoders are cyclically switched

• Exploits CDD in DL transmissions→Frequency selective fading

• Up to 4 layers and 4 antennas

���47

Page 97: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Channels-PDSCH

Transmission Mode 4: Closed-loop spatial multiplexing (SU-MIMO) • Transmit different streams of data simultaneously on the same RB(s) by

exploiting the spatial dimension of the radio channel. These data streams belong to the same user.

• Up to 2 codewords transmissions with “RI and PMI feedback”.

• Exploits CDD in DL transmissions

• Up to 4 layers and 4 antennas

���48

Page 98: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Channels-PDSCH

Transmission Mode 5: Multi-User MIMO (MU-MIMO) • Transmit different streams of data simultaneously on the same RB(s) by

exploiting the spatial dimension of the radio channel. These data streams belong to different users (Also known as downlink SDMA)

– The eNodeB pairs UEs that report orthogonal PMIs.

• Single codewords and single Layer per user (UE reports only PMI, no RI is reported).

• Up to 4 Tx antennas at eNB

• Different users can use the same time/freq resources in different location within a cell

���49

Page 99: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Channels-PDSCH

Transmission Mode 6: Closed-loop Rank-1 Precoding • Same as Mode 4 with Rank restriction 1

• No Rank reports are required

• This mode amounts to beamforming since only a single layer is transmitted, exploiting the gain of the antenna array

• A UE feeds channel state information back to the eNodeB to indicate suitable precoding matrix (PMI) to apply for the beamforming operation

���50

Page 100: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Channels-PDSCH

Transmission Mode 7: Transmission using non-codebook-based UE-specific RSs with a single spatial layer • Same as Mode 1 using UE-specific Reference Signals instead of Cell-specific

Reference Signals (with the help of sounding reference signal)

• MIMO precoding is not restricted to a predefined codebook, so the UE cannot use the cell-specific RS for PDSCH demodulation and precoded UE-specific RS are therefore needed.

• Data transmission for the UE appears to have been received from only one transmit antenna. Therefore, this transmission mode is also called "single antenna port; port 5”

• Various algorithms for calculating the optimum beamforming weightings – Direction of the received uplink signal (DoA or angle of arrival (AoA)) – Channel estimation by using channel reciprocity in TD-LTE

���51

Page 101: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Channels-PDSCH

Transmission Mode 8: Transmission using non-codebook-based UE-specific RSs with up to two spatial layers • Extended to support dual-layer beamforming in Release 9

• The two associated PDSCH layers can then be transmitted to a single user in good propagation conditions to increase its data rate, or to multiple users (MU-MIMO) to increase the system capacity

• Superposed beams share the available transmit power of the eNodeB, so the increase in data rate comes at the expense of a reduction of coverage

���52

Page 102: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Signals-RS

Cell-specific RS • Transmitted in every downlink subframe, and span entire cell BW

MBSFN RS • Used for channel estimation for coherent demodulation of signals being

transmitted by means of MBSFN

UE-specific RS • When non-codebook-based beamforming is used

���53

Page 103: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Signals-Cell Specific RS

Enables the UE to determine the phase reference for demodulating the downlink control channels and the downlink data

Also used by the UEs to generate Channel State Information (CSI) feedback

The required spacing in time between the reference symbols can be determined by the maximum Doppler spread (highest speed) to be supported • fd=fcv/c=950Hz when =fc2GHz and v=500km/h

• Tc=1/(2fd)=0.5ms

• Two reference symbols per slot are needed in the time domain in order to estimate the channel correctly

���54

Page 104: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Signals-Cell Specific RS

The required spacing in frequency between the reference symbols can be determined by the maximum coherence time • The maximum r.m.s channel delay spread considered is about 991ns

• Bc,90% = 1/(50στ)=20kHz and Bc,50% = 1/(5στ)=200kHz

• One reference symbol every six subcarriers on each

• 991ns→Bc,90% = 20 kHz and Bc,50% = 200 kHz

• Spacing two reference symbols in frequency, in one RB, is 45 kHz

Pseudo-random sequence generation

!• ns: slot number within a radio frame

• l:OFDM symbol number within the slot

• c(i): length-31 Gold sequence which is initialized depending on the cell ID

A cell-specific frequency shift is applied, given by (Cell ID) mod 6

���55

Page 105: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Signals-Cell Specific RS

���56

One antennaTwo antennas

Page 106: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Signals-Cell Specific RS

���57

Four antennas

Page 107: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Signals-Cell Specific RS

Density for the third and fourth RSs is lower, compared to the density of the first and second RSs.

Reduce the RS overhead in the case of four reference signals

This obviously has an impact on the potential of the terminal to track very fast channel variations

However, this can be justified based on an expectation that, for example, high-order spatial multiplexing will mainly be applied to scenarios with low mobility.

���58

Page 108: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Signals-UE Specific RS

In Release 8 of LTE, UE-specific RSs may be transmitted in addition to the CRS if the UE is configured (by higher-layer RRC signaling) to use transmission mode 7

The UE-specific RSs are embedded only in the RBs to which the PDSCH is mapped for those UEs • If UE-specific RSs are transmitted, the UE is expected to use them to derive

the channel estimate for demodulating the data in the corresponding PDSCH RBs

• The same precoding is applied to the UE-specific RSs as to the PDSCH data symbols, and therefore there is no need for signaling to inform the UE of the precoding applied

���59

Page 109: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Signals-PSS and SSS

504 unique physical-layer cell identities • 168 unique physical-layer cell-identity groups (0~167)

• 3 physical-layer identity within physical-layer cell-identity group (0~2)

���60

Page 110: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Signals-Summary

���61

Source) 이희준, “Synchronization and Cell Search for LTE and WCDMA”

Page 111: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Signals-Cell Search Procedure

���62

Source) 이희준, “Synchronization and Cell Search for LTE and WCDMA”

Page 112: Feb. 2014 @ TTA

Feb. 2014 @ TTA

LTE Downlink Resource Grids

���63Ref)http://paul.wad.homepage.dk/LTE/lte_resource_grid.html

Page 113: Feb. 2014 @ TTA

Feb. 2014 @ TTA

LTE Downlink Resource Grids

���64Ref)http://paul.wad.homepage.dk/LTE/lte_resource_grid.html

Page 114: Feb. 2014 @ TTA

���65

Uplink Physical Layer of LTE

References: 1. Bong Youl Cho, LTE Physical Layer in TTA, March 2013 2. Stefania Sesia, et al., LTE: From Theory to Practice, Wiley, 2nd Ed. 3. Erik Dahlman, et al., 4G LTE/LTE-Advanced for Mobile Broadband, Elsevier

Page 115: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Uplink Key Features

SC-FDMA is used to reduce UEs’ PAPR • Perform an M-point DFT operation on each block of M QAM data symbols

• Zeros are then inserted among the outputs of the DFT in order to match the DFT size to an N-subcarrier OFDM modulator

���66

Page 116: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Uplink Key Features

SC-FDMA parameters

!!!!!!!MU-MIMO, QPSK, 16QAM, (64QAM) modulations are supported

���67

Page 117: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Channels

Physical Uplink Shared Channel (PUSCH) • Uplink counterpart of PDSCH

• Carries UL-SCH

Physical Uplink Control Channel (PUCCH) • Carries HARQ ACK/NAKs in response to DL transmission

• Carries Scheduling Request (SR)

• Carries channel status reports such as CQI, PMI and RI

• At most one PUCCH per UE

Physical Random Access Channel (PRACH) • Carries the random access preamble

���68

Page 118: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Channels

���69

Page 119: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Channels-PUCCH

PUCCH Formats

���70

Page 120: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Channels-PRACH

Cyclic Prefix and Guard Time of PRACH determine the maximum allowable cell coverage in LTE

���71

Guard Time=max RTT

UE close to eNB

UE at cell edge

Delay spread of UE close to eNB

Delay spread of UE at cell edge=max delay spread

max RTT

=max RTT+max delay spreadTCP

Page 121: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Channels-PRACH

There 4 PRACH preamble format • Maximum cell radius is about 100km

���72

Page 122: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Signals

An uplink physical signal is used by the physical layer but does not carry information originating from higher layers

Two types of reference signals • UL demodulation reference signal (DRS) for PUSCH, PUCCH

• UL sounding reference signal (SRS) not associated with PUSCH, PUCCH transmission

���73

Page 123: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Signals-DRS

The DRSs associated with uplink PUSCH data or PUCCH control transmissions from a UE are primarily provided for channel estimation for coherent demodulation and are therefore present in every transmitted uplink slot

DRS for PUSCH • In the center SC-FDMA symbol for normal CP

• In the 3rd SC-FDMA symbol for extended CP

���74

Page 124: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Signals-DRS

DRS for PUCCH • Format 1x: ACK/NACK !!!!

• Format 2x: CSI

���75

Page 125: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Signals-SRS

Transmitted on the uplink to allow for the eNB to estimate the uplink channel state at different frequencies. • Periodic SRS (Release 8) and aperiodic SRS (Release 10)

Periodic SRS • Once every 2 ms (every second subframe) ~ Once every 160 ms (every 16th

frame)

���76

Page 126: Feb. 2014 @ TTA

Feb. 2014 @ TTA

Physical Signals-SRS

Non-frequency-hopping (wideband) versus frequency-hopping SRS • Wideband SRS transmission is more efficient from a resource-utilization point

of view because less OFDM symbols need to be used to sound a given overall bandwidth

• However, in the case of a high uplink path loss, wideband SRS transmission may lead to relatively low received power density, which may degrade the channel-state estimation→narrowband SRS

���77

Page 127: Feb. 2014 @ TTA

���78

Thank you for you attention !