24
Slide 1 Simulating and Testing Ice Screw Performance in the Laboratory Final Presentation 04/28/03 Stefano A. Alziati Warren L. M. Bennett Advisors: Dr. Kim Blair Dave Custer

Final Presentation - MIT OpenCourseWare · Final Presentation 04/28/03 Stefano A. Alziati Warren L. M. Bennett Advisors: Dr. Kim Blair Dave Custer. Slide 2 Introduction Ł Project

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Final Presentation - MIT OpenCourseWare · Final Presentation 04/28/03 Stefano A. Alziati Warren L. M. Bennett Advisors: Dr. Kim Blair Dave Custer. Slide 2 Introduction Ł Project

Slide 1

Simulating and Testing Ice Screw Performance in the Laboratory

FinalPresentation

04/28/03

Stefano A. AlziatiWarren L. M. Bennett

Advisors: Dr. Kim BlairDave Custer

Page 2: Final Presentation - MIT OpenCourseWare · Final Presentation 04/28/03 Stefano A. Alziati Warren L. M. Bennett Advisors: Dr. Kim Blair Dave Custer. Slide 2 Introduction Ł Project

Slide 2

Introduction

� Project Motivation� Statement of Problem� Description of Experiment� Results & Discussion� Conclusion� Questions

Ice screw being pulled from Specimen

Page 3: Final Presentation - MIT OpenCourseWare · Final Presentation 04/28/03 Stefano A. Alziati Warren L. M. Bennett Advisors: Dr. Kim Blair Dave Custer. Slide 2 Introduction Ł Project

Slide 3

Project Motivation

� The attraction of extreme sports is aiding its rapidly increasing popularity.

� Present safety equipment ineffective more accidents

� Project will be first step towards safer ice protection

� Very little published research available:� Harmston & Luebben Study, 1997

Page 4: Final Presentation - MIT OpenCourseWare · Final Presentation 04/28/03 Stefano A. Alziati Warren L. M. Bennett Advisors: Dr. Kim Blair Dave Custer. Slide 2 Introduction Ł Project

Slide 4

Primary Hypothesis & Objectives

� Primary Hypothesis:The structure and morphology of different types of ice formations can be characterized and simulated in a lab to provide a �test bed� useful for assessment of ice screws.

� Primary Objective:To develop a repeatable means of reproducing ice in a lab and to characterize this ice using rheological data.

� Success Criteria:a) If hypothesis 1 is true, then success is characterizing the

critical properties of ice.b) If hypothesis 1 is false, then success is identifying why ice

cannot be made successfully.

Page 5: Final Presentation - MIT OpenCourseWare · Final Presentation 04/28/03 Stefano A. Alziati Warren L. M. Bennett Advisors: Dr. Kim Blair Dave Custer. Slide 2 Introduction Ł Project

Slide 5

Secondary Hypothesis and Objective

� Secondary Hypothesis:If the first hypothesis is true, using the simulated ice, the variables affecting screw placement safety can be determined.

� Secondary Objective:To use laboratory created ice to test simulated falls on ice screws in a manner useful to climbers.

� Success Criteria:If hypothesis 2 is true, then success is the development of a test for ice screw safety that produces consistent and repeatable data for differing ice types.

Page 6: Final Presentation - MIT OpenCourseWare · Final Presentation 04/28/03 Stefano A. Alziati Warren L. M. Bennett Advisors: Dr. Kim Blair Dave Custer. Slide 2 Introduction Ł Project

Slide 6

Description of Experiment

Stage 1: The characterization of ice� Produced different types of ice using different methods.

� Ice types chosen on ease of production and difference in characteristics

Page 7: Final Presentation - MIT OpenCourseWare · Final Presentation 04/28/03 Stefano A. Alziati Warren L. M. Bennett Advisors: Dr. Kim Blair Dave Custer. Slide 2 Introduction Ł Project

Slide 7

Apparatus setup for stage 1 Preparing specimen for test

Experiment (cont�d)

Page 8: Final Presentation - MIT OpenCourseWare · Final Presentation 04/28/03 Stefano A. Alziati Warren L. M. Bennett Advisors: Dr. Kim Blair Dave Custer. Slide 2 Introduction Ł Project

Slide 8

Experiment (cont�d)Stage 2: Testing of ice screws in ice

� Produced the two ice types on a larger scale.

� Placed ice screws at different angles into each specimen and pulled at different load rates.

Page 9: Final Presentation - MIT OpenCourseWare · Final Presentation 04/28/03 Stefano A. Alziati Warren L. M. Bennett Advisors: Dr. Kim Blair Dave Custer. Slide 2 Introduction Ł Project

Slide 9

Experiment (cont�d)

Stage 2 Test Rig Close-up of Ice Screw/MTS interface

Page 10: Final Presentation - MIT OpenCourseWare · Final Presentation 04/28/03 Stefano A. Alziati Warren L. M. Bennett Advisors: Dr. Kim Blair Dave Custer. Slide 2 Introduction Ł Project

Slide 10

Results � Stage 1Compressive Tests:� ABS 1:

� Compressive strength: 2203 lbs

� Std Dev: 638 lbs

� ABS 2:� Compressive strength:

1802 lbs� Std Dev: 618 lbs

� F-Stat: 9% chance of ABS1 being different to ABS2

Compressive load on ABS#1-3500

-3000

-2500

-2000

-1500

-1000

-500

00 5 10 15 20 25Time (s )

Compressive load on ABS#2-3500

-3000

-2500

-2000

-1500

-1000

-500

00 5 10 15 20 25Time (s )

Page 11: Final Presentation - MIT OpenCourseWare · Final Presentation 04/28/03 Stefano A. Alziati Warren L. M. Bennett Advisors: Dr. Kim Blair Dave Custer. Slide 2 Introduction Ł Project

Slide 11

Results � Stage 1 (cont�d)

� Density:� ABS1: 913 kg m-3

� ABS2: 804 kg m-3

� F-Stat: 97% chance of ABS1 being different to ABS2.

Page 12: Final Presentation - MIT OpenCourseWare · Final Presentation 04/28/03 Stefano A. Alziati Warren L. M. Bennett Advisors: Dr. Kim Blair Dave Custer. Slide 2 Introduction Ł Project

Slide 12

Discussion � Stage 1

� Compressive Test:

� Means are different, however this is not statistically significant

� Qualitatively different after testing� ABS1 still sticks to fingers� ABS2 feels wet to touch

� Graphs are different: � ABS1 peaks sharper� ABS2 peaks more rounded

Compressive load on ABS#1-3500

-3000

-2500

-2000

-1500

-1000

-500

00 5 10 15 20 25Time (s )

Compressive load on ABS#2-3500

-3000

-2500

-2000

-1500

-1000

-500

00 5 10 15 20 25Time (s )

Page 13: Final Presentation - MIT OpenCourseWare · Final Presentation 04/28/03 Stefano A. Alziati Warren L. M. Bennett Advisors: Dr. Kim Blair Dave Custer. Slide 2 Introduction Ł Project

Slide 13

Discussion � Stage 1

� Density: � Shows definite difference between ABS1 and ABS2.

� Differentiated appearance between ABS1 and ABS2

� Relation to Hypothesis 1:� Valid hypothesis. Structure and morphology of different ice

types were simulated and characterized in the lab successfully.

Page 14: Final Presentation - MIT OpenCourseWare · Final Presentation 04/28/03 Stefano A. Alziati Warren L. M. Bennett Advisors: Dr. Kim Blair Dave Custer. Slide 2 Introduction Ł Project

Slide 14

Results � Stage 2

� Typical ice screw test data set.

Page 15: Final Presentation - MIT OpenCourseWare · Final Presentation 04/28/03 Stefano A. Alziati Warren L. M. Bennett Advisors: Dr. Kim Blair Dave Custer. Slide 2 Introduction Ł Project

Slide 15

Results � Stage 2

Previous study�s claim.

Screwangle

- ve 0 + ve

ABS2 (high rate)

ABS2 (low rate)

ABS1 (high rate)

ABS1 (low rate)Load

Page 16: Final Presentation - MIT OpenCourseWare · Final Presentation 04/28/03 Stefano A. Alziati Warren L. M. Bennett Advisors: Dr. Kim Blair Dave Custer. Slide 2 Introduction Ł Project

Slide 16

Results � Stage 2

Results from the experiment.

Peak Mean Failure Load vs. Screw Placement angle

0

500

1000

1500

2000

2500

3000

-30 -20 -10 0 10 20 30Angle

Failu

re Lo

ad (l

bs)

ABS 1 (low rate)ABS 1 (high rate)ABS 2 (low rate)ABS 2 (high rate)

Page 17: Final Presentation - MIT OpenCourseWare · Final Presentation 04/28/03 Stefano A. Alziati Warren L. M. Bennett Advisors: Dr. Kim Blair Dave Custer. Slide 2 Introduction Ł Project

Slide 17

Discussion � Stage 2

� Loading rate:

� Loading rate more significant than screw placement angle or ice type.

� Very useful for climbers. � loading rate can be controlled, using ropes that can stretch more and/or

using a friction device for slowing fall.

� No ice screw broken. Possibly due to:� development in ice screws over last six years� the length of screw� Temperature of the ice Screws� Loading rate of MTS machine not sufficient for breakage

Page 18: Final Presentation - MIT OpenCourseWare · Final Presentation 04/28/03 Stefano A. Alziati Warren L. M. Bennett Advisors: Dr. Kim Blair Dave Custer. Slide 2 Introduction Ł Project

Slide 18

Discussion � Stage 2

� Screw placement:� Not much of an influence on the load taken. In general, zero angle is

the one that will hold the most.

Peak Mean Failure Load vs. Screw Placement angle

0

500

1000

1500

2000

2500

3000

-30 -20 -10 0 10 20 30Angle

Failu

re Lo

ad (l

bs)

ABS 1 (low rate)ABS 1 (high rate)ABS 2 (low rate)ABS 2 (high rate)

Page 19: Final Presentation - MIT OpenCourseWare · Final Presentation 04/28/03 Stefano A. Alziati Warren L. M. Bennett Advisors: Dr. Kim Blair Dave Custer. Slide 2 Introduction Ł Project

Slide 19

Discussion � Stage 2

� Relation to Hypothesis:� Hypothesis proved.

� Variables affecting screw placement safety identified and tested.

� Ice type, loading rate and screw placement angle all affect safety.

Page 20: Final Presentation - MIT OpenCourseWare · Final Presentation 04/28/03 Stefano A. Alziati Warren L. M. Bennett Advisors: Dr. Kim Blair Dave Custer. Slide 2 Introduction Ł Project

Slide 20

Conclusion

� Compressive Testing is not necessarily a valid test to differentiate between ice types.

� Fall Rate significantly affects failure load

� Screws safest at zero degrees� Previous work not supported by study

Page 21: Final Presentation - MIT OpenCourseWare · Final Presentation 04/28/03 Stefano A. Alziati Warren L. M. Bennett Advisors: Dr. Kim Blair Dave Custer. Slide 2 Introduction Ł Project

Slide 21

Further work

� A test for assessing ice screw performance has been developed. Further improvements and developments possible:

� Research on methods for making more different ice types.� Determination of other tests that can characterize ice� Research on the effect of screw length on load.

Page 22: Final Presentation - MIT OpenCourseWare · Final Presentation 04/28/03 Stefano A. Alziati Warren L. M. Bennett Advisors: Dr. Kim Blair Dave Custer. Slide 2 Introduction Ł Project

Slide 22

Acknowledgements

� Advisors Kim Blair & Dave Custer

� 622 Faculty Staff� Earl Murman, Ed Greitzer & Jennifer Pixley.

� Lab staff: � Dick Perdichizzi, John Kane, Don Wiener, Dave

Robertson & Paul Bauer.

Page 23: Final Presentation - MIT OpenCourseWare · Final Presentation 04/28/03 Stefano A. Alziati Warren L. M. Bennett Advisors: Dr. Kim Blair Dave Custer. Slide 2 Introduction Ł Project

Slide 23

Questions

?

Page 24: Final Presentation - MIT OpenCourseWare · Final Presentation 04/28/03 Stefano A. Alziati Warren L. M. Bennett Advisors: Dr. Kim Blair Dave Custer. Slide 2 Introduction Ł Project

Slide 24

Results � Stage 2

21%47229.75-301.0ABS1

32%14244601.0ABS1

68%481708+301.0ABS1

34%4101220-300.01ABS2

3%75237500.01ABS2

30%243810+300.01ABS2

51%276547+301.0ABS24%2569701.0ABS2

68%142211-301.0ABS2

24%3221329+300.01ABS118%294166000.01ABS122%3091394-300.01ABS1

SD/ meanStd. Dev.MeanAngleRateIce Type