12
Broj 2,2012. RUDARSKI RADOVI 93 INSTITUT ZA RUDARSTVO I METALURGIJU BOR YU ISSN: 1451-0162 KOMITET ZA PODZEMNU EKSPLOATACIJU MINERALNIH SIROVINA UDK: 622 UDK: 622.7:622.322:622.36:546.431(045)=861 Srđana Magdalinović * , Vesna Marjanović * , Daniela Urošević * , Dragiša Stanujkić ** FLOTACIJSKA KONCENTRACIJA POLIMETALIČNE BARITSKE RUDE *** Izvod Polimetalične baritske rude predstavljaju tehnološki veoma složene sirovine iz kojih je moguće izdvojiti više korisnih komponenata prema komplikovanim tehnološkim šemama. U radu su prikazana tehnološka ispitivanja dva uzorka polimetalične baritske rude, u cilju dobijanja kolektivnog koncentrata sulfida i koncentrata barita. Ključne reči: polimetalična ruda, barit, flotacijska koncentracija * Institut za rudarstvo i metalurgiju Bor ** Fakultet za menadžment, Megatrend Univerzitet *** Ovaj rad je proistekao kao rezultat projekta TR 33023 „Razvoj tehnologija flotacijske prerade ruda bakra i plemenitih metala radi postizanja boljih tehnoloških rezultata“ finansiranog od strane Ministarstva prosvete i nauke Republike Srbije UVOD Polimetalične baritske rude predstavljaju tehnološki veoma složene sirovine iz kojih je moguće izdvojiti više korisnih komponenata, ali prema komplikovanim tehnološkim šemama [1,2]. Ove šeme najčće uključuju više postupaka koncentracije, kao što su flotacijska koncentracija i fizi čke i hemijske metode [2,3]. Pored toga što sadrže veliki broj korisnih mineralnih komponenata, njihovo srastanje je veoma komplikovano jer se javljaju u vidu sitnozrnih agregata, pa ih je teško ili gotovo nemoguće izdvojiti u zasebne koncentrate [1]. Uzorci 1 i 2 predstavljaju polimetaličnu baritsku rudu. Na uzorcima su sprovedena laboratorijska flotacijska ispitivanja u cilju izdvajanja sulfidnog koncentrata i koncen- trata barita. U radu su prikazani samo rezultati konačnih eksperimenata. 1. FIZIČKO-HEMIJSKA I MINERALOŠKA KARAKTERIZACIJA UZORAKA 1.1. Hemijska analiza uzorka Tabela 1. Hemijska analiza uzoraka Element, jedinjenje 1 2 Cu % 1,35 0,90 Zn % 6,76 5,61 Pb % 4,28 5,00 Au g/t 1,7 1,6 Ag g/t 90,2 112,5 Ba % 9,59 14,01 BaSO 4 % 16,30 23,80 S Ukupni 37,10 35,05 S Sulfidni % 35,00 32,58 S Sulfatni % 2,10 2,47 CaO % 0,085 0,11 SiO 2 % 5,12 2,39 Pt g/t <0,05 <0,05 Mo % 0,0035 0,0040 As % 0,41 0,30 Al 2 O 3 0,20 0,23 Fe % 25,85 26,61 FeO % <0,5 <0,5 Fe 3 O 4 % <0,3 <0,3 MgCO 3 % 0,10 0,096

flotacijska koncentracija polimetalične baritske rude

Embed Size (px)

Citation preview

Page 1: flotacijska koncentracija polimetalične baritske rude

Broj 2,2012. RUDARSKI RADOVI

93

INSTITUT ZA RUDARSTVO I METALURGIJU BOR YU ISSN: 1451-0162 KOMITET ZA PODZEMNU EKSPLOATACIJU MINERALNIH SIROVINA UDK: 622

UDK: 622.7:622.322:622.36:546.431(045)=861

Srđana Magdalinović*, Vesna Marjanović*, Daniela Urošević*, Dragiša Stanujkić**

FLOTACIJSKA KONCENTRACIJA POLIMETALIČNE BARITSKE RUDE***

Izvod

Polimetalične baritske rude predstavljaju tehnološki veoma složene sirovine iz kojih je moguće izdvojiti više korisnih komponenata prema komplikovanim tehnološkim šemama. U radu su prikazana tehnološka ispitivanja dva uzorka polimetalične baritske rude, u cilju dobijanja kolektivnog koncentrata sulfida i koncentrata barita.

Ključne reči: polimetalična ruda, barit, flotacijska koncentracija

* Institut za rudarstvo i metalurgiju Bor ** Fakultet za menadžment, Megatrend Univerzitet *** Ovaj rad je proistekao kao rezultat projekta TR 33023 „Razvoj tehnologija flotacijske prerade

ruda bakra i plemenitih metala radi postizanja boljih tehnoloških rezultata“ finansiranog od strane Ministarstva prosvete i nauke Republike Srbije

UVOD

Polimetalične baritske rude predstavljaju tehnološki veoma složene sirovine iz kojih je moguće izdvojiti više korisnih komponenata, ali prema komplikovanim tehnološkim šemama [1,2]. Ove šeme najčešće uključuju više postupaka koncentracije, kao što su flotacijska koncentracija i fizičke i hemijske metode [2,3]. Pored toga što sadrže veliki broj korisnih mineralnih komponenata, njihovo srastanje je veoma komplikovano jer se javljaju u vidu sitnozrnih agregata, pa ih je teško ili gotovo nemoguće izdvojiti u zasebne koncentrate [1].

Uzorci 1 i 2 predstavljaju polimetaličnu baritsku rudu. Na uzorcima su sprovedena laboratorijska flotacijska ispitivanja u cilju izdvajanja sulfidnog koncentrata i koncen-trata barita. U radu su prikazani samo rezultati konačnih eksperimenata.

1. FIZIČKO-HEMIJSKA I MINERALOŠKA KARAKTERIZACIJA UZORAKA

1.1. Hemijska analiza uzorka Tabela 1. Hemijska analiza uzoraka

Element, jedinjenje 1 2

Cu % 1,35 0,90 Zn % 6,76 5,61 Pb % 4,28 5,00 Au g/t 1,7 1,6 Ag g/t 90,2 112,5 Ba % 9,59 14,01 BaSO4 % 16,30 23,80 SUkupni 37,10 35,05 SSulfidni % 35,00 32,58 SSulfatni % 2,10 2,47 CaO % 0,085 0,11 SiO2 % 5,12 2,39 Pt g/t <0,05 <0,05 Mo % 0,0035 0,0040 As % 0,41 0,30 Al2O3 0,20 0,23 Fe % 25,85 26,61 FeO % <0,5 <0,5 Fe3O4 % <0,3 <0,3 MgCO3 % 0,10 0,096

Page 2: flotacijska koncentracija polimetalične baritske rude

Broj 2,2012. RUDARSKI RADOVI

94

1.2. Mineraloška analiza uzoraka

Kvalitativna mineraloška analiza uzo-rka „1” pokazala je da je mineralni sastav sledeći:

Pirit, sfalerit, galenit, markasit, luzonit, enargit, tenantit, halkopirit, kovelin, halko-zin, bornit, minerali srebra, samorodno zlato, barit, kvarc, podređeno karbonati. Sadržaj sulfidne mase iznosi 79,6 %.

Kvalitativna mineraloška analiza uzorka „2” pokazala je da je mineralni sastav sledeći:

Pirit, sfalerit, galenit, markasit, luzonit, enargit, tenantit, kovelin, halkopirit, minerali srebra, samorodno zlato, barit, kvarc, podređeno karbonati. Sadržaj sulfidne mase iznosi 72,8 %.

1.3. Prirodna pH vrednost uzoraka

Prirodna pH vrednost uzoraka rude je određena merenjem pH rude i česmenske vode (pH=6,80), u odnosu 1:1 posle 30 minuta stajanja i posle 24 sata stajanja.

pH30 min 1= 4,77 pH24h 1= 4,30 pH30 min 2 = 4,38 pH24h 2 = 4,68

1.4. Gustina uzoraka

Gustina uzoraka rude je određena metodom staklenih piknometara sa vakumiranjem. Srednja vrednost gustine iz tri merenja je: ρ1= 4.725 kg/m3 ρ2= 5.005 kg/m3

1.5. Nasipna masa uzoraka

Nasipna masa je određena na krupnoći rude -3,35 mm. Srednja vrednost nasipne mase iz tri merenja je: ∆1= 2,458 t/m3 ∆2= 2,555 t/m3

1.6. Kinetika mlevenja

Za potrebe daljih istraživanja, na uzorcima je urađena kinetika mlevenja. Svi eksperimenti mlevenja izvedeni su u elipsoidnom mlinu sa kuglama, zapremine 14,6 l i sa šaržom kugli mase 13,45 kg na početku ispitivanja. Sadržaj čvrstog u mlinu bio je 75%. Kinetika mlevenja prikazana je u tablicama 2 i 3 i na slikama 6 i 7.

Tabela 2. Kinetika mlevenja uzorka 1 2 min 4 min 7 min 10 min 1 m % D % m % D % m % D % m % D %

-1,70+1,180 11,20 100,0 -1,18+0,850 3,0 88,0 -0,850+0,600 4,6 84,6 1,4 100,0 -0,600+0,425 5,4 79,8 0,4 98,6 -0,425+0,300 8,4 74,6 1,6 98,2 -0,300+0,212 9,4 66,4 5,4 96,6 0,2 100,0 -0,212+0,106 16,4 58,2 21,0 91,2 7,5 99,8 1,8 100,0 -0,106+0,075 6,0 42,4 9,4 70,2 8,7 92,3 5,20 98,2 -0,075+0,053 4,6 36,8 6,8 60,8 8,5 83,6 7,20 93,0 -0,053+0,038 3,6 32,4 6,4 54,0 6,7 75,1 8,20 85,8 -0,038+0 27,4 29,2 47,6 47,60 68,4 68,4 77,6 77,6

Page 3: flotacijska koncentracija polimetalične baritske rude

Broj 2,2012. RUDARSKI RADOVI

95

0 2 4 6 8 100

20

40

60

80

100

Klasa -75 μm

Sadr

žaj k

lase

-0,0

75 m

m ,

%

Vreme mlevenja, min Sl. 1. Kinetika mlevenja uzorka 1

Tabela 3. Kinetika mlevenja uzorka 2 2 min 4 min 7 min 10 min DEPO m % D % m % D % m % D % m % D %

-1,70+1,180 11,20 100,0 -1,18+0,850 3,0 88,8 -0,850+0,600 4,6 85,8 2,4 100,0 -0,600+0,425 5,4 81,2 0,8 97,6 -0,425+0,300 8,4 75,8 2,6 96,8 -0,300+0,212 9,4 67,4 6,8 94,2 0,4 100,0 -0,212+0,106 16,4 58,0 22,2 87,4 10,4 99,6 3,0 100,0 -0,106+0,075 6,0 41,6 9,0 65,2 10,0 89,2 7,4 97,0 -0,075+0,053 4,6 35,6 7,2 56,2 9,8 79,2 8,6 89,6 -0,053+0,038 3,6 31,0 6,0 49,0 7,6 69,4 9,4 81,0 -0,038+0 27,4 27,4 43,0 43,0 61,8 61,8 71,6 71,6

0 2 4 6 8 100

20

40

60

80

100

Klasa -75 μm

Sadr

žaj k

lase

-0,0

75 m

m ,

%

Vreme mlevenja , min Sl. 2. Kinetika mlevenja uzorka 2

Page 4: flotacijska koncentracija polimetalične baritske rude

Broj 2,2012. RUDARSKI RADOVI

96

2.1. Flotacijska koncentracija

Posle određenog broja flotacijskih eksperimenata, na oba uzorka su utvrđeni osnovni tehnološki parametri i izvedeni su završni eksperimenti sa prečišćavanjima koncentrata barita. Na slikama 3 i 4,

prikazane su šeme prema kojima su izvedeni završni eksperimenti. U tabli-cama 4 i 5 prikazani su ostvareni tehnološki rezultati.

Sl. 3. Šema eksperimenta na uzorku 1

Tabela 4. Ostvareni bilans koncentracije u eksperimentu na uzorku 1

1 m % Zn % IZn % Pb% IPb % Cu % ICu % Au g/t IAu % Ag g/t IAg % BaSO4 % IBaSO4 %

U 100,00 6,03 100,00 2,68 100,00 1,31 100,00 1,44 100,00 109,71 100,00 13,69 100,00

KS 83,04 7,16 98,56 3,05 94,33 1,55 98,00 1,6 92,07 127,7 96,65 6,4 38,81

OS 16,96 0,51 1,44 0,90 5,67 0,16 2,00 0,67 7,93 21,65 3,35 49,41 61,19

J 3,13 1,40 0,73 1,40 1,63 0,24 0,57 0,2 0,44 29,7 0,85 3,30 0,75

KoBa 13,83 0,31 0,71 0,78 4,04 0,14 1,43 0,78 7,48 19,83 2,49 59,84 60,44

OIBa 1,37 0,56 0,13 1,95 0,99 0,22 0,23 0,3 0,28 84,4 1,05 3,66 0,37

KIBa 12,46 0,28 0,59 0,66 3,04 0,13 1,20 0,83 7,20 12,73 1,44 66,02 60,07

OIIBa 1,41 0,62 0,14 2,18 1,14 0,28 0,30 0,3 0,29 32,9 0,42 7,00 0,72

KIIBa 11,05 0,24 0,44 0,46 1,90 0,11 0,91 0,90 6,91 10,16 1,02 73,55 59,35

OIIIBa 1,46 0,84 0,20 2,18 1,18 0,35 0,39 2,9 2,93 35,5 0,47 26,57 2,83

KIIIBa 9,59 0,15 0,24 0,20 0,72 0,071 0,52 0,6 3,98 6,3 0,55 80,70 56,52

Page 5: flotacijska koncentracija polimetalične baritske rude

Broj 2,2012. RUDARSKI RADOVI

97

Sl. 4. Šema eksperimenta na uzorku 2

Tabela 5. Ostvareni bilans koncentracije u eksperimentu na uzorku 2

ZAKLJUČAK

Prema literaturnim i iskustvenim podacima, poznato je da polimetalične baritske rude predstavljaju tehnološki veoma složene sirovine iz kojih je moguće izdvojiti više korisnih komponenata, ali prema komplikovanim tehnološkim

šemama. Ove šeme najčešće uključuju više postupaka koncentracije, kao što su flotacijska koncentracija i fizičke i hemi-jske metode. Pored toga što sadrže veliki broj korisnih mineralnih komponenata, njihovo srastanje je veoma komplikovano

2 m % Zn % IZn % Pb% IPb % Cu % ICu % Au g/t IAu % Ag g/t IAg % BaSO4 % IBaSO4 %

U 100,00 4,76 100,00 3,08 100,00 0,80 100,00 1,43 100,00 110,04 100,00 21,69 100,00

KS 69,21 5,21 75,82 3,74 83,99 1,06 91,64 1,6 77,54 135,4 85,16 9,10 29,03

OS 30,79 3,74 24,18 1,60 16,01 0,22 8,36 1,04 22,46 53,04 14,84 50,00 70,97

J 10,68 8,38 18,82 3,51 12,16 0,45 6,01 0,8 5,98 109,2 10,60 10,32 5,08

KoBa 20,11 1,27 5,37 0,59 3,84 0,09 2,35 1,17 16,49 23,22 4,24 71,07 65,89

OIBa 1,18 7,01 1,74 2,93 1,12 0,33 0,49 5,3 4,38 78,1 0,84 17,39 0,95

KIBa 18,93 0,91 3,63 0,44 2,72 0,08 1,86 0,91 12,11 19,80 3,40 74,42 64,94

OIIBa 1,01 4,99 1,06 2,01 0,66 0,25 0,31 2,0 1,41 55,0 0,50 17,39 0,81

KIIBa 17,92 0,68 2,57 0,35 2,06 0,07 1,55 0,85 10,70 17,81 2,90 77,63 64,13

OIIIBa 2,65 2,03 0,22 1,13 0,97 0,15 0,50 1,15 2,14 39,2 0,94 53,38 6,52

KIIIBa 15,27 0,73 2,34 0,22 1,09 0,055 1,05 0,8 8,56 14,1 1,96 81,84 57,61

Page 6: flotacijska koncentracija polimetalične baritske rude

Broj 2,2012. RUDARSKI RADOVI

98

jer se javljaju se u vidu sitnozrnih agregata, pa ih je teško ili gotovo nemoguće izdvojiti u zasebne koncentrate.

Uzorci 1 i 2 predstavljaju polimetaličnu baritsku rudu. Uzorak 1 sadrži: 1,35%Cu, 6,76 % Zn, 4,28 % Pb, 1,7 g/t Au, 90,2 g/t Ag, 9,59 % Ba i 16,30 % BaSO4. Uzorak 2 sadrži 0,90 % Cu, 5,61 % Zn, 5,00 % Pb, 1,6 g/t Au, 112,5 g/t Ag, 11,01 % Ba i 23,80 % BaSO4. Na osnovu sprovedenih eksperimenata flotacijske koncentracije doneti su sledeći zaključci:

- Oba uzorka su tehnološki vrlo slična tako da ruda koju predstavljaju može da se prerađuje prema istim šemama.

- U uzorcima je sulfidna masa dominantna, što je pokazala i miner-loška analiza. To se odrazilo na masu sulfidnog koncentrata koja je varirala uglavnom od 75-80% u odnosu na ulaz u flotaciju.

- Velika količina sulfidnog kon-centrata značajno se odrazila na nisku koncentraciju korisnih metala

- Sadržaj barita u otoku flotacije sulfida je nizak pa ga je neophodno koncentrisati flotiranjem.

- Sa tri prečišćavanja koncentrata barita, dobijen je sadržaj BaSO4 od 80% što je niže nego što su zahtevi za upotrebu. Dva do tri dodatna prečišćavanja koncentrata bi dovela do kvaliteta koncentrata odgo-varajuće tržišne vrednosti.

Optimizacijom tehnoloških parametara verovatno bi mogli da se dobiju nešto bolji rezultati u koncentraciji barita.

Konačno, na osnovu sprovedenih ispitivanja može da se zaključi da uzorci 1 i 2 predstavljaju komplikovanu sirovinu, masivno sulfidnu sa velikim sadržajem bakra, cinka, olova, srebra, zlata i barita. Tako komplikovana sirovina, zahteva detaljna laboratorijska ispitivanja sa ciljem utvrđivanja tehnologije za najoptimalniju valorizaciju svih korisnih mineralnih komponenata.

LITERATURA

[1] Handbook of Flotation reagent: Chemistry, Theory and Practice: Flotation of Sulfide Ores, Srdjan M. Bulatović, ISBN: 0444530290, Publisher: Elsevier Science & Technology Books, 2007.

[2] Priprema nemetaličnih mineralnih sirovina, J. Pavlica, D. Dračkić, ISBN 86-7352-012-6, RGF Beograd, 1997.

[3] Domaće nemetalične mineralne sirovine za primenu u privredi, Grupa autora, ISBN 86-82867-09-5, ITNMS, Beograd 1998.

[4] Mining Chemical Handbook, Cytec, 2010.

Page 7: flotacijska koncentracija polimetalične baritske rude

No 2, 2012. MINING ENGINEERING

99

MINING AND METALLURGY INSTITUTE BOR YU ISSN: 1451-0162 COMMITTEE OF UNDERGROUND EXPLOITATION OF THE MINERAL DEPOSITS UDK: 622

UDK: 622.7:622.33:622.36:546.431(045)=20

Srđana Magdalinović*, Vesna Marjanović*, Daniela Urošević*, Dragiša Stanujkić**

FLOTATION CONCENTRATION OF POLYMETALLIC BARITE ORE***

Abstract

The polymetallic barite ore is technologically very complex raw material from which is possi-ble to extract more useful components using the complex technological schemes. This paper pre-sents the technological testing of two samples the polymetallic barite ore, in order to obtain a collective concentrate of sulphides and barite concentrate.

Keywords: polymetallic ore, barite, flotation concentration

* Mining and Metallurgy Institute Bor ** Faculty of Management in Zaječar, University Megatrend Belgrade *** This work has resulted from the TR Project: 33023, entitled "Technology Development of Flo-

tation Processing of Copper Ore and Precious Metals in Order to Achieve Better Technological Results" for which we would like to thank to the Ministry of Education and Science of the Repub-lic of Serbia for funding.

INTRODUCTION

The polymetallic barite ore is techno-logically very complex raw material from which is possible to extract more useful components but using the complex tech-nological schemes [1, 2]. These schemes usually involve multiple processes of con-centration, such as the flotation concentra-tion and physical and chemical methods [2, 3]. In addition to the content a number of useful mineral components, their inter-growth is very complicated, because they

appear in the form of fine grained aggre-gates, so it is difficult or almost impossi-ble to separate them into separate concen-trates [1]. Samples 1 and 2 represent the polymetallic barite ore. Were conducted on samples of The laboratory flotation tests f were carried out on samples in or-der to separate the sulphide concentrate and barite concentrate. This paper presents only the results of final experiments.

Page 8: flotacijska koncentracija polimetalične baritske rude

No 2, 2012. MINING ENGINEERING

100

1 PHYSICO-CHEMICAL AND MINERALOGICAL CHARACTERIZATION OF SAMPLE

1.1 Chemical analysis of samples

Table 1. Chemical analysis of samples Element, compound Sample 1 Sample 2 Cu % 1.35 0.90 Zn % 6.76 5.61 Pb % 4.28 5.00 Au g/t 1.7 1.6 Ag g/t 90.2 112.5 Ba % 9.59 14.01 BaSO4 % 16.30 23.80 STotal 37.10 35.05 SSulphide % 35.00 32.58 SSulphate% 2.10 2.47 CaO % 0.085 0.11 SiO2 % 5.12 2.39 Pt g/t <0.05 <0.05 Mo % 0.0035 0.0040 As % 0.41 0.30 Al2O3 0.20 0.23 Fe % 25.85 26.61 FeO % <0.5 <0.5 Fe3O4 % <0.3 <0.3 MgCO3 % 0.10 0.096

1.2. Mineralogical analysis of samples

Qualitative mineralogical analysis of the sample "1" has indicated the following mineral content: pyrite, sphalerite, galena, marcasite, luzonite, enargite, tennantite, chalcopyrite, covelline, chalcocite, bor-nite, silver minerals, native gold, barite, quartz, subordinated carbonates. The con-tent of sulphide mass is 79.6%. Qualita-tive mineralogical analysis of the sample "2" has indicated the following mineral content: pyrite, sphalerite, galena, marca-site, luzonite, enargite, tennantite, covel-line, chalcopyrite, silver minerals, native

gold, barite, quartz, subordinated carbon-ates. The content of sulphide mass is 72.8%.

1.3. Natural pH of samples

Natural pH value of ore samples was determined measuring the pH of ore and tap water (pH = 6.80), compared to 1:1 after 30 minutes of standing and after 24 hours of standing.

Sample 1 Sample 2 pH30 min 1= 4.77 pH30 min 2 = 4.38 pH24h 1= 4.30 pH24h 2 = 4.68

1.4. Density of samples

Density of ore samples was deter-mined using the glass pycnometer in vac-uum. The mean value of three density measurements is ρ1=4725 kg/m3 and ρ2 = 5005 kg/m3.

1.5. Bulk density of samples

Bulk density was determined using the ore size category of -3.35 mm. The mean value of bulk density from three meas-urements is: Δ1 = 2.458 t/m3 and Δ2 = 2.555 t/m3.

1.6. Grinding kinetics

For the purposes of further research, the grinding kinetics was carried out on sam-ples. All grinding experiments were carried out in an elliptical ball mill, volume 14.6 l with the ball charge mass of 13.45 kg at the start of testing. Solid content in the mill was 75%. Grinding kinetics is shown in Tables 2 and 3 and Figures 1 and 2.

Page 9: flotacijska koncentracija polimetalične baritske rude

No 2, 2012. MINING ENGINEERING

101

Table 2. Grinding kinetics of sample 1 2 min 4 min 7 min 10 min Sample 1 m % D % m % D % m % D % m % D %

-1.70+1.180 11.20 100.0 -1.18+0.850 3.0 88.0 -0.850+0.600 4.6 84.6 1.4 100.0 -0.600+0.425 5.4 79.8 0.4 98.6 -0.425+0.300 8.4 74.6 1.6 98.2 -0.300+0.212 9.4 66.4 5.4 96.6 0.2 100.0 -0.212+0.106 16.4 58.2 21.0 91.2 7.5 99.8 1.8 100.0 -0.106+0.075 6.0 42.4 9.4 70.2 8.7 92.3 5.20 98.2 -0.075+0.053 4.6 36.8 6.8 60.8 8.5 83.6 7.20 93.0 -0.053+0.038 3.6 32.4 6.4 54.0 6.7 75.1 8.20 85.8 -0.038+0 27.4 29.2 47.6 47.60 68.4 68.4 77.6 77.6

0 2 4 6 8 100

20

40

60

80

100

-0,0

75 m

m C

lass

con

tent

, %

Grinding time, min Fig. 1. Grinding kinetics of sample 1

0 2 4 6 8 100

20

40

60

80

100

-0,0

75 m

m C

lass

con

tent

, %

Grinding time , min Fig. 2. Grinding kinetics of sample 2

Page 10: flotacijska koncentracija polimetalične baritske rude

No 2, 2012. MINING ENGINEERING

102

Table 3. Grinding kinetics of sample 2 2 min 4 min 7 min 10 min DEPO

m % D % m % D % m % D % m % D % -1.70+1.180 11.20 100.0 -1.18+0.850 3.0 88.8 -0.850+0.600 4.6 85.8 2.4 100.0 -0.600+0.425 5.4 81.2 0.8 97.6 -0.425+0.300 8.4 75.8 2.6 96.8 -0.300+0.212 9.4 67.4 6.8 94.2 0.4 100.0 -0.212+0.106 16.4 58.0 22.2 87.4 10.4 99.6 3.0 100.0 -0.106+0.075 6.0 41.6 9.0 65.2 10.0 89.2 7.4 97.0 -0.075+0.053 4.6 35.6 7.2 56.2 9.8 79.2 8.6 89.6 -0.053+0.038 3.6 31.0 6.0 49.0 7.6 69.4 9.4 81.0 -0.038+0 27.4 27.4 43.0 43.0 61.8 61.8 71.6 71.6

2.1. Flotation concentration

After a number of flotation experi-ments, the basic technological parameters were determined on both samples and the final experiments were carried ou+t with the final treatment of barite concentrate.

Figures 3 and 4 show the schemes by which the final experiments were carried out. Tables 4 and 5 show the achieved technological results.

Fig. 3. Scheme of the experiment on sample 1

Fig. 4. Scheme of the experiment on sample 2

Page 11: flotacijska koncentracija polimetalične baritske rude

No 2, 2012. MINING ENGINEERING

103

Table 4 Realized balance of concentration in the experiment on sample 1

Table 5 Realized balance of concentration in the experiment on sample 2

CONCLUSION

According to the literature and empiri-cal data, it is known that the polymetallic barite ore is technologically very complex raw material from which is possible to extract more useful components but using the complex technological schemes. These schemes usually involve multiple proc-esses of concentration, such as the flota-tion concentration and physical and

chemical methods. In addition to the con-tent of a number of useful mineral compo-nents, their intergrowth is very complex, because it occurs in the form of fine grained aggregates, so it is difficult or almost impossible to separate them into separate concentrates.

Samples 1 and 2 represent the polymet-allic barite ore. Sample 1 contains:

1 m % Zn % IZn % Pb% IPb % Cu % ICu % Au g/t IAu % Ag g/t IAg % BaSO4 % IBaSO4 %

U 100.00 6.03 100.00 2.68 100.00 1.31 100.00 1.44 100.00 109.71 100.00 13.69 100.00

KS 83.04 7.16 98.56 3.05 94.33 1.55 98.00 1.6 92.07 127.7 96.65 6.4 38.81

OS 16.96 0.51 1.44 0.90 5.67 0.16 2.00 0.67 7.93 21.65 3.35 49.41 61.19

J 3.13 1.40 0.73 1.40 1.63 0.24 0.57 0.2 0.44 29.7 0.85 3.30 0.75

KoBa 13.83 0.31 0.71 0.78 4.04 0.14 1.43 0.78 7.48 19.83 2.49 59.84 60.44

OIBa 1.37 0.56 0.13 1.95 0.99 0.22 0.23 0.3 0.28 84.4 1.05 3.66 0.37

KIBa 12.46 0.28 0.59 0.66 3.04 0.13 1.20 0.83 7.20 12.73 1.44 66.02 60.07

OIIBa 1.41 0.62 0.14 2.18 1.14 0.28 0.30 0.3 0.29 32.9 0.42 7.00 0.72

KIIBa 11.05 0.24 0.44 0.46 1.90 0.11 0.91 0.90 6.91 10.16 1.02 73.55 59.35

OIIIBa 1.46 0.84 0.20 2.18 1.18 0.35 0.39 2.9 2.93 35.5 0.47 26.57 2.83

KIIIBa 9.59 0.15 0.24 0.20 0.72 0.071 0.52 0.6 3.98 6.3 0.55 80.70 56.52

2 m % Zn % IZn % Pb% IPb % Cu % ICu % Au g/t IAu % Ag g/t IAg % BaSO4 % IBaSO4 %

U 100.00 4.76 100.00 3.08 100.00 0.80 100.00 1.43 100.00 110.04 100.00 21.69 100.00

KS 69.21 5.21 75.82 3.74 83.99 1.06 91.64 1.6 77.54 135.4 85.16 9.10 29.03

OS 30.79 3.74 24.18 1.60 16.01 0.22 8.36 1.04 22.46 53.04 14.84 50.00 70.97

J 10.68 8.38 18.82 3.51 12.16 0.45 6.01 0.8 5.98 109.2 10.60 10.32 5.08

KoBa 20.11 1.27 5.37 0.59 3.84 0.09 2.35 1.17 16.49 23.22 4.24 71.07 65.89

OIBa 1.18 7.01 1.74 2.93 1.12 0.33 0.49 5.3 4.38 78.1 0.84 17.39 0.95

KIBa 18.93 0.91 3.63 0.44 2.72 0.08 1.86 0.91 12.11 19.80 3.40 74.42 64.94

OIIBa 1.01 4.99 1.06 2.01 0.66 0.25 0.31 2.0 1.41 55.0 0.50 17.39 0.81

KIIBa 17.92 0.68 2.57 0.35 2.06 0.07 1.55 0.85 10.70 17.81 2.90 77.63 64.13

OIIIBa 2.65 2.03 0.22 1.13 0.97 0.15 0.50 1.15 2.14 39.2 0.94 53.38 6.52

KIIIBa 15.27 0.73 2.34 0.22 1.09 0.055 1.05 0.8 8.56 14.1 1.96 81.84 57.61

Page 12: flotacijska koncentracija polimetalične baritske rude

No 2, 2012. MINING ENGINEERING

104

1.35% Cu, 6.76% Zn, 4.28% Pb, 1.7 g / t Au, 90.2 g / t Ag, 9.59% Ba and 16.30% BaSO4. Sample 2 contains 0.90% Cu, 5.61% Zn, 5.00% Pb, 1.6 g / t Au, 112.5 g / t Ag, Ba 11.01% and 23.80% BaSO4. Based on the carried out experiments of flotation concentration, the following con-clusions were made:

- Both samples are technologically very similar so the ore, presented by them, could be processed using the same schemes,

- Sulphide mass is dominant in the samples as shown by mineralogical analysis. This is reflected in the mass of sulphide concentrate which mainly varied of 75-80% over the entrance in the flotation,

- Large amount of sulphide concen-trate has significantly affected the low concentration of valuable metals,

- Barite content in the sulphide flota-tion underflow is low, so it is neces-sary to concentrate it by flotation,

- BaSO4 content of 80% was obtained by three treatments of barite concen-trate, what is lower than the require-ments for use. Two to three addi-tional concentrate treatments would lead to the quality of concentrate with appropriate market value.

Slightly better results in the barite con-centration would be probably obtained by optimization of technological parameters.

Finally, on the basis of carried out in-vestigations, it can be concluded that the samples 1 and 2 are complex raw mineral resource, massive sulphide with high con-tent of copper, zinc, lead, silver, gold and barite. Such complex raw mineral re-source requires a detailed laboratory test-ing with the aim to determine the technol-ogy for the most optimum evaluation the all useful mineral components.

REFERENCES

[1] S. M. Bulatović, Handbook of Flotation Reagent: Chemistry, Theory and Practice: Flotation of Sulfide Ores, ISBN: 0444530290, Publisher: Elsevier Science & Technology Books, 2007;

[2] J. Pavlica, D. Draškić, Preparation of Non-metallic Mineral Resources, ISBN 86-7352-012-6, RGF Belgrade, 1997 (in Serbian);

[3] Group of Authors, Domestic Non-metallic Mineral Resources for the Use in Industry, ISBN 86-82867-09-5, ITNMS, Belgrade, 1998 (in Serbian);

[4] Mining Chemical Handbook, Cytec, 2010.