35
From electrons to photons: Quantum- inspired modeling in nanophotonics Steven G. Johnson, MIT Applied Mathematics Image removed due to copyright reasons.

From electrons to photons: Quantum-inspired modeling in ...dspace.mit.edu/bitstream/handle/1721.1/45575/18-325Fall-2005/NR/… · Photonic Crystals periodic electromagnetic media

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: From electrons to photons: Quantum-inspired modeling in ...dspace.mit.edu/bitstream/handle/1721.1/45575/18-325Fall-2005/NR/… · Photonic Crystals periodic electromagnetic media

From electrons to photons: Quantum-inspired modeling in nanophotonics

Steven G. Johnson, MIT Applied Mathematics

Image removed due to copyright reasons.

Page 2: From electrons to photons: Quantum-inspired modeling in ...dspace.mit.edu/bitstream/handle/1721.1/45575/18-325Fall-2005/NR/… · Photonic Crystals periodic electromagnetic media

Nano-photonic media (λ-scale)

synthetic materials

strange waveguides

3d structures

hollow-core fibersoptical phenomena

& microcavities[B. Norris, UMN] [Assefa & Kolodziejski,

MIT]

[Mangan, Corning]

Image removed due to copyright reasons.

Page 3: From electrons to photons: Quantum-inspired modeling in ...dspace.mit.edu/bitstream/handle/1721.1/45575/18-325Fall-2005/NR/… · Photonic Crystals periodic electromagnetic media

Photonic Crystalsperiodic electromagnetic media

1887 19872-D�

periodic in�two directions�

3-D�

periodic in�three directions�

1-D�

periodic in�one direction�

can have a band gap: optical “insulators”

Page 4: From electrons to photons: Quantum-inspired modeling in ...dspace.mit.edu/bitstream/handle/1721.1/45575/18-325Fall-2005/NR/… · Photonic Crystals periodic electromagnetic media

Electronic and Photonic Crystalsatoms in diamond structure

wavevector

dielectric spheres, diamond lattice

wavevector

phot

on fr

eque

ncy

elec

tron

ener

gy

Peri

odic

Med

ium

Ban

d D

iagr

amB

loch

wav

es:

interacting: hard problem non-interacting: easy problem

Image removed due to copyright reasons. Image removed due to copyright reasons.

Page 5: From electrons to photons: Quantum-inspired modeling in ...dspace.mit.edu/bitstream/handle/1721.1/45575/18-325Fall-2005/NR/… · Photonic Crystals periodic electromagnetic media

Electronic & Photonic ModellingElectronic Photonic

• strongly interacting—tricky approximations

• non-interacting (or weakly),—simple approximations

(finite resolution)—any desired accuracy

• lengthscale dependent(from Planck’s h)

• scale-invariant—e.g. size ×10 ⇒ λ ×10

Option 1: Numerical “experiments” — discretize time & space … go

Option 2: Map possible states & interactionsusing symmetries and conservation laws: band diagram

Page 6: From electrons to photons: Quantum-inspired modeling in ...dspace.mit.edu/bitstream/handle/1721.1/45575/18-325Fall-2005/NR/… · Photonic Crystals periodic electromagnetic media

Fun with Math

r ∇ ×

r E = − 1

c∂∂t

r H = i ω

c

r H

r ∇ ×

r H = ε

1c

∂∂t

r E +

r J = i

ωc

εr E

0

dielectric function ε(x) = n2(x)

First task:get rid of this mess

∇ ×

∇ ×r

H =ωc

⎛ ⎝ ⎜

⎞ ⎠ ⎟

2 r H

eigen-operator eigen-value eigen-state

∇⋅r H = 0

+ constraint

Page 7: From electrons to photons: Quantum-inspired modeling in ...dspace.mit.edu/bitstream/handle/1721.1/45575/18-325Fall-2005/NR/… · Photonic Crystals periodic electromagnetic media

Electronic & Photonic Eigenproblems

PhotonicElectronic

h2

2m∇2 + V

⎝ ⎜

⎠ ⎟ ψ = Eψ

∇ ×

∇ ×r

H =ωc

⎛ ⎝ ⎜

⎞ ⎠ ⎟

2 r H

simple linear eigenproblem(for linear materials)

nonlinear eigenproblem(V depends on e density |ψ|2)

—many well-knowncomputational techniques

Hermitian = real E & ω, … Periodicity = Bloch’s theorem…

Page 8: From electrons to photons: Quantum-inspired modeling in ...dspace.mit.edu/bitstream/handle/1721.1/45575/18-325Fall-2005/NR/… · Photonic Crystals periodic electromagnetic media

A 2d Model System

dielectric “atom”ε=12 (e.g. Si)

square lattice,period a

a

a

ETMH

Page 9: From electrons to photons: Quantum-inspired modeling in ...dspace.mit.edu/bitstream/handle/1721.1/45575/18-325Fall-2005/NR/… · Photonic Crystals periodic electromagnetic media

Periodic Eigenproblemsif eigen-operator is periodic, then Bloch-Floquet theorem applies:

r H (

r x , t) = e

ir k ⋅r x −ωt( ) r

H r k (r x )can choose:

planewaveperiodic “envelope”

Corollary 1: k is conserved, i.e. no scattering of Bloch wave

Corollary 2: given by finite unit cell,so ω are discrete ωn(k)

r H r k

Page 10: From electrons to photons: Quantum-inspired modeling in ...dspace.mit.edu/bitstream/handle/1721.1/45575/18-325Fall-2005/NR/… · Photonic Crystals periodic electromagnetic media

Solving the Maxwell Eigenproblem

∇ + ik( )×1ε

∇ + ik( )× Hn =ωn

2

c 2 Hn

∇ + ik( )⋅ H = 0constraint:

Finite cell discrete eigenvalues ωn

Want to solve for ωn(k),& plot vs. “all” k for “all” n,

00.10.20.30.40.50.60.70.80.91

Photonic Band Gap

TM bands

where: H(x,y) ei(k⋅x – ωt)

Limit range of k: irreducible Brillouin zone1

2 Limit degrees of freedom: expand H in finite basis

3 Efficiently solve eigenproblem: iterative methods

Page 11: From electrons to photons: Quantum-inspired modeling in ...dspace.mit.edu/bitstream/handle/1721.1/45575/18-325Fall-2005/NR/… · Photonic Crystals periodic electromagnetic media

Solving the Maxwell Eigenproblem: 1Limit range of k: irreducible Brillouin zone1

—Bloch’s theorem: solutions are periodic in k

kx

ky2

first Brillouin zone= minimum |k| “primitive cell”

πaΓ

M

X

irreducible Brillouin zone: reduced by symmetry

2 Limit degrees of freedom: expand H in finite basis

3 Efficiently solve eigenproblem: iterative methods

Page 12: From electrons to photons: Quantum-inspired modeling in ...dspace.mit.edu/bitstream/handle/1721.1/45575/18-325Fall-2005/NR/… · Photonic Crystals periodic electromagnetic media

Solving the Maxwell Eigenproblem: 2aLimit range of k: irreducible Brillouin zone1

2 Limit degrees of freedom: expand H in finite basis (N)

H = H(xt ) = hmbm (x t )m=1

N

∑ ˆ A H = ω 2 Hsolve:

Ah = ω 2Bhfinite matrix problem:

Aml = bmˆ A blf g = f * ⋅ g∫ Bml = bm bl

3 Efficiently solve eigenproblem: iterative methods

Page 13: From electrons to photons: Quantum-inspired modeling in ...dspace.mit.edu/bitstream/handle/1721.1/45575/18-325Fall-2005/NR/… · Photonic Crystals periodic electromagnetic media

Solving the Maxwell Eigenproblem: 2bLimit range of k: irreducible Brillouin zone1

2 Limit degrees of freedom: expand H in finite basis

(∇ + ik) ⋅ H = 0— must satisfy constraint:

Finite-element basisPlanewave (FFT) basisconstraint, boundary conditions:

H(x t ) = HGeiG⋅xt

G∑ Nédélec elements

[ Nédélec, Numerische Math.35, 315 (1980) ]HG ⋅ G + k( )= 0constraint:

nonuniform mesh,more arbitrary boundaries,

complex code & mesh, O(N)

uniform “grid,” periodic boundaries,simple code, O(N log N) [ figure: Peyrilloux et al.,

J. Lightwave Tech.21, 536 (2003) ]

3 Efficiently solve eigenproblem: iterative methods

Image removed due to copyright reasons.

Page 14: From electrons to photons: Quantum-inspired modeling in ...dspace.mit.edu/bitstream/handle/1721.1/45575/18-325Fall-2005/NR/… · Photonic Crystals periodic electromagnetic media

Solving the Maxwell Eigenproblem: 3aLimit range of k: irreducible Brillouin zone1

2 Limit degrees of freedom: expand H in finite basis

3 Efficiently solve eigenproblem: iterative methods

Ah = ω 2BhSlow way: compute A & B, ask LAPACK for eigenvalues

— requires O(N2) storage, O(N3) time

Faster way:— start with initial guess eigenvector h0— iteratively improve— O(Np) storage, ~ O(Np2) time for p eigenvectors

(p smallest eigenvalues)

Page 15: From electrons to photons: Quantum-inspired modeling in ...dspace.mit.edu/bitstream/handle/1721.1/45575/18-325Fall-2005/NR/… · Photonic Crystals periodic electromagnetic media

Solving the Maxwell Eigenproblem: 3bLimit range of k: irreducible Brillouin zone1

2 Limit degrees of freedom: expand H in finite basis

3 Efficiently solve eigenproblem: iterative methods

Ah = ω 2BhMany iterative methods:

— Arnoldi, Lanczos, Davidson, Jacobi-Davidson, …,Rayleigh-quotient minimization

Page 16: From electrons to photons: Quantum-inspired modeling in ...dspace.mit.edu/bitstream/handle/1721.1/45575/18-325Fall-2005/NR/… · Photonic Crystals periodic electromagnetic media

Solving the Maxwell Eigenproblem: 3cLimit range of k: irreducible Brillouin zone1

2 Limit degrees of freedom: expand H in finite basis

3 Efficiently solve eigenproblem: iterative methods

Ah = ω 2BhMany iterative methods:

— Arnoldi, Lanczos, Davidson, Jacobi-Davidson, …,Rayleigh-quotient minimization

for Hermitian matrices, smallest eigenvalue ω0 minimizes:

ω02 = min

h

h' Ahh' Bh

minimize by preconditionedconjugate-gradient (or…)

“variationaltheorem”

Page 17: From electrons to photons: Quantum-inspired modeling in ...dspace.mit.edu/bitstream/handle/1721.1/45575/18-325Fall-2005/NR/… · Photonic Crystals periodic electromagnetic media

Band Diagram of 2d Model System(radius 0.2a rods, ε=12)a

freq

uenc

(2πc

/a)

= a

/ λ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Photonic Band Gap

TM bands

MΓ X M Γirreducible Brillouin zone

Γ r k

E gap forn > ~1.75:1

TMXH

Page 18: From electrons to photons: Quantum-inspired modeling in ...dspace.mit.edu/bitstream/handle/1721.1/45575/18-325Fall-2005/NR/… · Photonic Crystals periodic electromagnetic media

Origin of the Band GapHermitian eigenproblems:

solutions are orthogonal and satisfy a variational theorem

Electronic Photonic

field oscillationsfield in high ε

• minimize kinetic + potential energy

(e.g. “bonding” state)

• minimize:

ω 2 = minr E

∇ ×r E

2

∫ε

r E

2

∫c 2

• higher bands orthogonal to lower —must oscillate (high kinetic) or be in low ε (high potential)

(e.g. “anti-bonding” state)

Page 19: From electrons to photons: Quantum-inspired modeling in ...dspace.mit.edu/bitstream/handle/1721.1/45575/18-325Fall-2005/NR/… · Photonic Crystals periodic electromagnetic media

Origin of Gap in 2d Model System

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Photonic Band Gap

TM bands

E

HTM

Γ X M Γ

Ez

– +

Ez

lives in high ε

orthogonal: node in high ε

gap forn > ~1.75:1

Page 20: From electrons to photons: Quantum-inspired modeling in ...dspace.mit.edu/bitstream/handle/1721.1/45575/18-325Fall-2005/NR/… · Photonic Crystals periodic electromagnetic media

The Iteration Scheme is Important(minimizing function of 104–108+ variables!)

ω02 = min

h

h' Ahh'Bh

= f (h)

Steepest-descent: minimize (h + α ∇f) over α … repeat

Conjugate-gradient: minimize (h + α d)— d is ∇f + (stuff): conjugate to previous search dirs

Preconditioned steepest descent: minimize (h + α d) — d = (approximate A-1) ∇f ~ Newton’s method

Preconditioned conjugate-gradient: minimize (h + α d)— d is (approximate A-1) [∇f + (stuff)]

Page 21: From electrons to photons: Quantum-inspired modeling in ...dspace.mit.edu/bitstream/handle/1721.1/45575/18-325Fall-2005/NR/… · Photonic Crystals periodic electromagnetic media

The Iteration Scheme is Important(minimizing function of ~40,000 variables)

E E E E E E E E E EE EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Ñ

ÑÑ

Ñ Ñ Ñ Ñ Ñ Ñ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

J

JJ

JJ

JJ

J J J J J J J JJ JJJJJ

J

JJJJJJ

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100000

1000000

1 10 100 1000

% e

rror

preconditionedconjugate-gradient no conjugate-gradient

no preconditioning

# iterations

Page 22: From electrons to photons: Quantum-inspired modeling in ...dspace.mit.edu/bitstream/handle/1721.1/45575/18-325Fall-2005/NR/… · Photonic Crystals periodic electromagnetic media

The Boundary Conditions are TrickyE|| is continuous

E⊥ is discontinuous(D⊥ = εE⊥ is continuous)

Any single scalar ε fails:(mean D) ≠ (any ε) (mean E)

Use a tensor ε:ε

ε

ε−1 −1

⎜ ⎜ ⎜

⎟ ⎟ ⎟

E||

E⊥

ε?

Page 23: From electrons to photons: Quantum-inspired modeling in ...dspace.mit.edu/bitstream/handle/1721.1/45575/18-325Fall-2005/NR/… · Photonic Crystals periodic electromagnetic media

The ε-averaging is Important

B B

B

B

B

B

B

B

BB

B

B

B

J

JJ

J

J J

JJ J

J J

J J

HH

H H HH

H H HH

HH H

0.01

0.1

1

10

100

10 100

resolution (pixels/period)

% e

rror

backwards averaging

tensor averaging

no averaging

correct averagingchanges orderof convergencefrom ∆x to ∆x2

(similar effectsin other E&M

numerics & analyses)

Page 24: From electrons to photons: Quantum-inspired modeling in ...dspace.mit.edu/bitstream/handle/1721.1/45575/18-325Fall-2005/NR/… · Photonic Crystals periodic electromagnetic media

Gap, Schmap?

freq

uenc

Γ X M Γ0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Photonic Band Gap

TM bands

a

But, what can we do with the gap?

Page 25: From electrons to photons: Quantum-inspired modeling in ...dspace.mit.edu/bitstream/handle/1721.1/45575/18-325Fall-2005/NR/… · Photonic Crystals periodic electromagnetic media

Intentional “defects” are good

microcavities waveguides (“wires”)

Page 26: From electrons to photons: Quantum-inspired modeling in ...dspace.mit.edu/bitstream/handle/1721.1/45575/18-325Fall-2005/NR/… · Photonic Crystals periodic electromagnetic media

Intentional “defects” in 2d

a

(Same computation, with supercell = many primitive cells)

Page 27: From electrons to photons: Quantum-inspired modeling in ...dspace.mit.edu/bitstream/handle/1721.1/45575/18-325Fall-2005/NR/… · Photonic Crystals periodic electromagnetic media

Microcavity Blues

For cavities (point defects)frequency-domain has its drawbacks:

• Best methods compute lowest-ω bands,but Nd supercells have Nd modesbelow the cavity mode — expensive

• Best methods are for Hermitian operators,but losses requires non-Hermitian

Page 28: From electrons to photons: Quantum-inspired modeling in ...dspace.mit.edu/bitstream/handle/1721.1/45575/18-325Fall-2005/NR/… · Photonic Crystals periodic electromagnetic media

Time-Domain Eigensolvers(finite-difference time-domain = FDTD)

Simulate Maxwell’s equations on a discrete grid,+ absorbing boundaries (leakage loss)

• Excite with broad-spectrum dipole ( ) source

∆ω

Response is manysharp peaks,

one peak per mode

signal processingcomplex ωn [ Mandelshtam,

J. Chem. Phys. 107, 6756 (1997) ]

decay rate in time gives loss

Page 29: From electrons to photons: Quantum-inspired modeling in ...dspace.mit.edu/bitstream/handle/1721.1/45575/18-325Fall-2005/NR/… · Photonic Crystals periodic electromagnetic media

Signal Processing is Trickysignal processing

complex ωn

?

EEEEEE

E

E

E

E

E

E

E

EEEEEEEEEEEEEEEEEEEEEEEEEEE0

50

100

150

200

250

300

350

400

450

0 0.5 1 1.5 2 2.5 3 3.5 4

EE

E

E

E

E

E

E

EEEEE

E

E

E

EEEEEE

EEEEEEEEEEEE

EEEEEEEEE

EEEEEEEEEEEEEEEEEEEEEEE

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6 7 8 9 10

FFT

a common approach: least-squares fit of spectrum

fit to:A

(ω −ω0)2 + Γ2

Decaying signal (t) Lorentzian peak (ω)

Page 30: From electrons to photons: Quantum-inspired modeling in ...dspace.mit.edu/bitstream/handle/1721.1/45575/18-325Fall-2005/NR/… · Photonic Crystals periodic electromagnetic media

Fits and Uncertaintyproblem: have to run long enough to completely decay

E E E E E

E

E E E E E0

5000

10000

15000

20000

25000

30000

35000

40000

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

EE

E

E

E

E

E

E

E

EEE

E

E

E

E

E

E

E

EEE

E

E

E

E

E

E

E

EEE

E

E

E

E

E

E

EEEEE

E

E

E

E

E

EEEEE

E

E

E

E

E

EEEE

E

E

E

E

E

E

EEEEE

E

E

E

E

E

EEEE

E

E

E

E

E

E

EEEEE

E

E

E

E

E

EEEE

E

E

E

E

E

E

EEEE

E

E

E

E

E

E

EEEEE

E

E

E

E

EEEEE

E

E

E

E

E

EEEEEEE

E

E

E

EEEEE

EE

E

E

E

EEEEE

EE

E

E

E

EEEEE

EE

E

E

EEEEEE

EEE

E

EEEEEEEEEE

EEEE

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10

actual

signalportion

Portion of decaying signal (t) Unresolved Lorentzian peak (ω)

There is a better way, which gets complex ω to > 10 digits

Page 31: From electrons to photons: Quantum-inspired modeling in ...dspace.mit.edu/bitstream/handle/1721.1/45575/18-325Fall-2005/NR/… · Photonic Crystals periodic electromagnetic media

Unreliability of Fitting ProcessResolving two overlapping peaks is

near-impossible 6-parameter nonlinear fit(too many local minima to converge reliably)

E E E E E E E E E E E E E E E E E E E EE

E

E

E

E

E E

E

E

E

EE

E E E E E E E E E E E E E E E E E E E0

200

400

600

800

1000

1200

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

ω = 1+0.033i

ω = 1.03+0.025i

sum of two peaks

Sum of two Lorentzian peaks (ω)

There is a better way, which gets

complex ωfor both peaksto > 10 digits

Page 32: From electrons to photons: Quantum-inspired modeling in ...dspace.mit.edu/bitstream/handle/1721.1/45575/18-325Fall-2005/NR/… · Photonic Crystals periodic electromagnetic media

Quantum-inspired signal processing (NMR spectroscopy):

Filter-Diagonalization Method (FDM)[ Mandelshtam, J. Chem. Phys. 107, 6756 (1997) ]

yn = y(n∆t) = ake−iω k n∆t

k∑Given time series yn, write:

…find complex amplitudes ak & frequencies ωkby a simple linear-algebra problem!

Idea: pretend y(t) is autocorrelation of a quantum system:

ˆ H ψ = ih ∂

∂tψ

say: yn = ψ(0) ψ(n∆t) = ψ(0) ˆ U n ψ(0)

time-∆t evolution-operator: ̂ U = e−i ˆ H ∆t / h

Page 33: From electrons to photons: Quantum-inspired modeling in ...dspace.mit.edu/bitstream/handle/1721.1/45575/18-325Fall-2005/NR/… · Photonic Crystals periodic electromagnetic media

Filter-Diagonalization Method (FDM)[ Mandelshtam, J. Chem. Phys. 107, 6756 (1997) ]

yn = ψ(0) ψ(n∆t) = ψ(0) ˆ U n ψ(0) ̂ U = e−i ˆ H ∆t / h

We want to diagonalize U: eigenvalues of U are eiω∆t

…expand U in basis of |ψ(n∆t)>:

Um,n = ψ(m∆t) ˆ U ψ(n∆t) = ψ(0) ˆ U m ˆ U ˆ U n ψ(0) = ym +n +1

Umn given by yn’s — just diagonalize known matrix!

Page 34: From electrons to photons: Quantum-inspired modeling in ...dspace.mit.edu/bitstream/handle/1721.1/45575/18-325Fall-2005/NR/… · Photonic Crystals periodic electromagnetic media

Filter-Diagonalization Summary[ Mandelshtam, J. Chem. Phys. 107, 6756 (1997) ]

Umn given by yn’s — just diagonalize known matrix!A few omitted steps:

—Generalized eigenvalue problem (basis not orthogonal) —Filter yn’s (Fourier transform):

small bandwidth = smaller matrix (less singular)

• resolves many peaks at once• # peaks not known a priori• resolve overlapping peaks• resolution >> Fourier uncertainty

Page 35: From electrons to photons: Quantum-inspired modeling in ...dspace.mit.edu/bitstream/handle/1721.1/45575/18-325Fall-2005/NR/… · Photonic Crystals periodic electromagnetic media

Do try this at home

Bloch-mode eigensolver:http://ab-initio.mit.edu/mpb/

Filter-diagonalization:http://ab-initio.mit.edu/harminv/

Photonic-crystal tutorials (+ THIS TALK):http://ab-initio.mit.edu/

/photons/tutorial/