44
Fundamentals of Optoelectronic Materials and Devices 光電材料與元件基礎 Hsing-Yu Tuan (段興宇) Department of Chemical Engineering, National Tsing- Hua University

Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

  • Upload
    lenhi

  • View
    221

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

Fundamentals of Optoelectronic Materials and Devices

光電材料與元件基礎

Hsing-Yu Tuan (段興宇)

Department of Chemical Engineering, National Tsing-Hua University

Page 2: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

A PN junction photovoltaic device

pnandττppDLp τ≡

eee DL τ≡

:life time

Only electrons within the Le to the depletion Layer can contribute to the photovoltaic effect

-Silicon’s electron diffusion length is longer than the hole diffusion length -we make a device with very narrow n region and longer p region -n side: 0.2 μm or less ; p-side: 200-500 μm Reason: (1) the electron diffusion length in Si Is longer than the dole diffusion length (2) At long wavelengths, around 1-1.2 μm, the absorption coefficient α of Si is small and the absorption depth (1/ α) is typically greater than 100 μm.

Electron diffusion length

200-500 μm 0.2 μm

Page 3: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

Device structure of a Si solar cell

and to allow more photons into the device

Finger electrodes

p

n

Bus electrode for current collection

- finger electrodes were made to allow light pass through the device - a thin antireflection coating on the surface reduces light reflection and allow more lighte to enter the device -surface texturization to for multiple light reflection and increase light path

0.2 μm

200 μm

In order to capture more light

surface texturization Incident light

(1)

(2)

(3)

Page 4: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

(very short)

Page 5: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

p-n junction and p-i-n junction

Page 6: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

Vacuum-based techniques for CIGS film deposition

Drawbacks: -difficult to achieve controlled-stoichiometry over large device areas -manufacturing equipment is “very” expensive (> NT 0.1 billion) -the deposition process is time-consuming -low materials utilization (30-50%) -low throughput

Heater and substrate

Evaporation sources

CIGS film deposition method: Multistage coevaporation process in a vacuum chamber

-Highest efficiency (lab scale: 18~20%) -Usually UHV/MBE -Cost prohibitive (but <cryst-Si)

Page 7: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

7

Non-Vacuum Processing

-Synthesize colloidal nanocrystals with controlled CIGS stoichiometry and deposit layer -Roll-to-roll manufractruing process

Page 8: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

ISET’s non-vacuum process

8 Kapur V.K. thin solid film, 2003

Substrate Efficiency Air Mass

Soda lime Glass 13.6% AM 1.5

Molybdenum Foil

13.0% AM 1.5

Titanium foil 9.5% AM 1.5

Polyimide film 10.4% AM 1.5

Stainless Stell 9.6% AM 1.5

Page 9: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

Silicon Wafer cells

Vacuum-based thin film

Roll-printed thin film

Process Si wafer processing

High vacuum depositon

Roll-to-roll printing

Process Yield

Robust Fragile Robust

Materials Utilization

30% 30-60% Over 97%

Throughput 1 2-5 10-25

Page 10: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

Comparison of three thin film solar cell

Semiconductor Taiwan 2008

Page 11: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

PV industry in Taiwan

Page 12: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

PV industry in Taiwan

Page 13: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

Integrated circuit (IC) manufacturing processes

Page 14: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

Today’s lecture references

• Hitchman, M.L. and K.F. Jensen, “Chemical Vapor Deposition – principles and applications,” ed., Academic Press, San Diego, USA, 1993

• Zant, P.V., “Microchip Fabrication,” McGraw-Hill, New York, 4th ed., 2000

• 林明獻, “矽晶圓半導體材料技術,” 全華科技圖書, 台北, 2007

Page 15: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

Overview of Integrated Circuits (IC) industry in Taiwan

中美晶、綠能 台積電(世界第一)、聯電、漢磊

聯發科等IC設計公司 台灣光罩

日月光

向外國購買

Page 16: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

Si, Si, Si, why Silicon??? Silicon has smallest carrier mobility compared with Ge and GaAs. Drawback of Ge -Ge’s device easily to leak at high temp. -GeO2 is water soluble -melting point of Ge is only 937 C Drawback of GaAs -hard to get high quality and large size wafer -need additional procedures to form dielectic materials Advantage of Si -Cheap raw materials, e.g., rock, sand, second most abundant element on earth, appear as SiO2 - High melting point: 1415C - stable silicon oxide (SiO2) as dielectric materials

Page 17: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

Pizza vs microchip fabrication

Page 18: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication
Page 19: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

RCA clean for silicon wafer surface

Organic clean: remove insoluble organic contaminants -solution: H2O:H2O2:NH4OH with 5:1:1 Oxide Strip: remove thin silicon dioxide layer -solution: H2O: HF with 50:1 Ionic Clean: remove ionic and heavy metal ionics contaminants -solution: H2O:H2O2:HCl with 6:1:1

Like a baby

Contamination includes organics, metals, and silicon oxide

Page 20: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

MOS transistor

Intel's 65nm nMOS transistor

P n n

Passivation layer metal layer

Oxide layer

-A MOS (Metal-oxide-semiconductor) transistor consists of different metal, oxide, and semiconductor layers.

Page 21: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

Four wafer-fabrication operations

Layering -Add metal, insulator, semiconductor thin layers onto the wafer surface Patterning -form pattern by removing selected portions of added surface layers Doping -incorporate dopants into a wafer Heat treatment -remove contaminates, repair crystal structure of treated wafers

Grown SiO2

deposited layers

hole island

diffusion

Ion implantation

annealing

Page 22: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

Layering

Various layering methods were developed to layer a thin film on a wafer Materials -Metal, oxide, and semiconductor

Grown SiO2

deposited layers

P n n

Passivation layer metal layer

Oxide layer

Page 23: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

Layering materials and methods

Ref.: Zant p 77

(CVD) (PVD) (PVD)

Methods include: thermal oxidation, chemical vapor deposition, evaporation, electroplating, and sputtering

Page 24: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

Thermal oxidation mechanism (layering)

Zant P164

Si (solid) +O2 (gas) SiO2 (solid) -Growth of SiO2 between 900-1200C -Control thickness of SiO2 layer depending on applications including surface passivation , doping barrier and device dielectric -SiO2 growth stage *Linear growth oxygen atoms combine readily with the silicon atoms X=B/A*t *Parabolic growth oxygen needs to diffuse into the wafer react with Si (diffusion limited reaction X=(Bt)1/2

X=oxide thickness B=parabolic rate constant B/A=linear rate constant t = oxidation time

Silicon dioxide growth states

initial

linear

parabolic

Page 25: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

Patterning

-Create the desired shapes in the exact dimensions required by the circuit design -Locate them in their proper location on the wafer surface and in relation to the other parts -the most critical step of the four basic operations, typically need 20-40 individual patterning steps

P n n

Passivation layer metal layer

Oxide layer hole island

Page 26: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

Patterning = photolithography+etching

-Put a photoresist (here is negative resist) by spinning coating on the surface of oxide layer -Put a photomask on the top of wafer and expose the layer to the light -Negative resist undergoes polymerization when exposed to light -Development of unexposed photoresist -Etch exposed oxide layer -Remove the photoresist again

resist development projection

etching

Photo mask

remove

Page 27: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

photomask and photoresist

Mask-reticle polarities

Clear field dark field

Photoresist polarity -negative: polymerize when exposing to light -positive: not polymerize when exposing to light

Photoresist polarity

Negative Positive

Clear field

dark field

hole

hole

island

island

result hole

negative photoresist

Clear field

An example:

Page 28: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

Coating of photoresisit

spread

spin spin even faster Uniform thin film

Page 29: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

Ten steps patterning process 1. Surface preparation – clean and dry wafer surface 2. Photoresist apply – spin coat a thin layer of photoresist on surface 3. Softbake - partial evaporation of photoresist solvents by heating 4. Alignment and exposure – Precise alignment of mask, exposure of photoresist 5. Development – Removal of unpolymerized resist 6. Hard bake – Additional evaporation of solvents 7. Develop inspect – inspect surface and check alignment and defects 8. Etch – Removal of top layer of wafer 9. Photoresist – remove photoresist layer from wafer 10.Final inspection – Surface inspection

Page 30: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

Doping

• Incorporate specific amounts of electrically active dopants (p-type or n-type) into the wafer surface

• Formation of P-N junction • Doping techniques - thermal diffusion - ion implantation

Page 31: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

Formation of P-N junction by doping

P-type wafer made before

-Junction- the location where the number of N-type and P-type dopants are equal -PN junction is very important for making field effect transistor (FET), Light emitting diode (LED), solar cell etc….

Page 32: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

Doping by thermal diffusion

Diffusion : -the movement of one material through another due to concentration gradient -continue until the concentration is under equilibrium Thermal diffusion : -deposition and drive-in oxidation

Page 33: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

Thermal diffusion with Deposition

vancancy movement Interstitial movement Diffusion rate is controlled by

1. diffusivity of particular dopant 2. maximum solid solubility Deposition steps 1. Preclean and etch – etched in HF to remove oxide formed on the surface 2. Deposition – loading cycle, actual doping cycle, exit cycle, all under nitrogen 3. Deglaze – diluted HF to remove thin oxide layer formed in 2 4. Evaluation – test the electrical properties

Page 34: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

Thermal diffusion – Drive-in Oxidation

Redistribution of the dopant in the wafer -heat to drive the dopant atoms deeper and wider into the wafer Growth of a new oxide on the exposed silicon surface -perform the oxidation on the surface -operate as the oxidation process

Page 35: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

Challenge of doping via thermal diffusion

-lateral diffusion -ultra thin junction -poor doping control -surface contamination interference -dislocation generation, due to high temperature operation

Future MOS transistor needs two requirements -Low dopant concentration control -Ultra thin junction

Challenge

Page 36: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

Ion implantation

A physical process Like a cannon shoot a ball to penetrate the wall and go the inside of the wall Advantages -No side diffusion, operate at room temperature -good control of the dopants location -majority of doping steps for advanced circuits

Page 37: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

Ion implantation system

E- BF3 B+ BF+ BF2+

..etc

-Ionization chamber : a electron created from a filament collide with the dopant source mass analyzing/ion selection by magnetic field -acceleration tube : accelerate the ion to a high velocity -neutral beam trap : collect netralized ions Challenge: lattice damage, damage cluster, and vacancy-interstitial

Page 38: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

Heat treatment

Goals: • to heal the wafer damage due to ion

implantation: anneal the wafer at 1000 C to recover the crystal structure

• To alloy metal with Si to metalsilide as electrical contact at about 450 C • To soft bake or hard bake the wafers with

photoresisit layers • Deposition

Page 39: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

Silicon gate MOS transistor process steps:

combination of four basic operations

layering

patterning, layering

layering

Pattering, layering, , heat treatment , doping

P n n

passivation layer metal layer

Oxide layer

Page 40: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

Packaging

Procedures -Die separation -lead bonding -chip/package connection -enclosure -Glod wire bonding

http://www.siliconimaging.com

Page 41: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

Integrated circuits (ICs)

Courtesy of wiki

- Combination of transistors, diodes, capacitors in a chip - Ultra large scale integration (ULSI) >1,000,000 components per chips - Morre’s law: the number of transistors on a chip were doubling every 18 months - Intel four core Itanium CPU- Tukwila has over 2 billion transistors on a chip

Page 42: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

Cleanroom

Courtesy of wiki

-Most of IC devices are made in class 1 clean room

Class maximum particles/ft³(0.027m3) ISO equivalent ≥0.1

µm ≥0.2 µm

≥0.3 µm

≥0.5 µm

≥5 µm

1 35 7 3 1 ISO 3 10 350 75 30 10 ISO 4

100 750 300 100 ISO 5 1,000 1,000 7 ISO 6

10,000 10,000 70 ISO 7 100,000 100,000 700 ISO 8

How clean? Ex: The land area of Taiwan: 35960 km2 190km so there is only one particle larger than 0.3 m

Page 43: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

Clean cloth

Page 44: Fundamentals of Optoelectronic Materials and Devices …mx.nthu.edu.tw/~hytuan/courses-files/2012optoelectronic/lecture6.pdf · Si wafer processing ; High vacuum ... Four wafer-fabrication

Work environment