Graph trạng thái

Embed Size (px)

Text of Graph trạng thái

HBK H NI n iu khin logic THIT K MN HC :IU KHIN LOGIC

I.

Nhim v :Thit k h thng iu khin cho cng ngh cho truyn ng bn my bo ging nh hnh v di y

II.Ni dung: 1.Thit k s nguyn l 2.Tnh chn thit b 3.thit k s lp rp III.Thuyt minh v bn v 1.Mt quyn thuyt minh 2.Hai bn A2 cho s nguyn l v s lp rp T T Nguyn Anh Sn Lng Thi Trnh Nguyn vn Long V Hong Giang Ma trn trng thi Ma trn trng thi GRAFCET GRAFCET H tn sinh vin Phng php thit k Phng n mch lc,iu khin in-in (tip im) in-in (khng tip im) in-in (tip im) in-in (khng tip im)

Created by AnhSon

Page 1

HBK H NI n iu khin logic

GVHD :Nguyn Tr Cng

Li m u Ngy nay khi m lnh vc t ng ha i su vo tng ng ngch ca tt c cc khu trong qu trnh to ra sn phm .Cc quc gia, cc hng sn xut u khng ngng nng cao mc t ng ha trong tng quy trnh sn xut .Nhm nng cao cht lng ,gim gi thnh ,tit kim chi phNc ta tuy l 1 nc cn ngho nhng cng khng nm ngoi quy lut chung .Nhng nm gn y cng vi s i hi ca sn xut v s hi nhp vo nn kinh t th gii th vic p dng cc thnh tu khoa hc k thut v t ng ha vo qu trnh sn xut c nhng bc tin ng k to ra nhng sn phm c hm lng cht xm cao tin ti hnh thnh nn kinh t tri thc . Mt trong nhng ng dng ca cng ngh l cng ngh my bo ging m em thit k. H thng s gip iu khin bn my chy theo yu cu t trc thc hin gia cng ct gt chi tit c kh .Vi phng n thc hin l :Ma trn trng thi Bng s n lc ca bn thn v s hng dn tn tnh ca thy Nguyn Tr Cng em hon thnh n ng thi hn.Tuy cn nhiu thiu st v hn ch m em bit m khng th trnh khi song bn thit k l n lc v c gng khng mt mi ca em trong hc k va qua.Em mong cc thy ch bo thm Created by AnhSon Page 2

HBK H NI n iu khin logic

em c th hon thin n ny . Sau y em xin trnh by phn thit k ca em :

---------------------------------*--------------*-------------*-----------------------------------

CHNG I.YU CU CNG NGHPHNG PHP THIT K :MA TRN TRNG THI PHNG N MCH LC,IU KHIN :IN _IN (TIP IM)

Thit k h thng iu khin cng ngh cho truyn ng bn my bo ging c s cng ngh nh sau:

Created by AnhSon

Page 3

HBK H NI n iu khin logic

N, V21 T, V 13 V < V D C B1 < 2

a

V3

A E

Chuyn ng ca bn my mang tnh cht chu k.Qu trnh ct gt ch xy ra hnh trnh thun ,hnh trnh ngc l hnh trnh chy khng ti a my v v tr ban u. Ban u khi ta n nt khi ng ,ng c s ko bn my chuyn ng theo hnh trnh thun tng tc n vn tc V1 .Ti y sau khi chuyn ng n nh th dao bt u ct vo chi tit (dao ct vo chi tit tc thp trnh st m chi tit). Khi bn my n B, cn phi gia tc bn my chuyn ng vi vn tc V2 > V1 thc hin chuyn ng n dao nh ct gt..Qu trnh ny kt thc im C. Ti C ng c ko bn my gim tc xung V1 phc v cho qu trnh o chiu.Sau khi chy n nh vi vn tc V1 bn my n D. Ti D ng c bt u o chiu vi vn tc V3 v ko bn my chuyn ng theo hnh trnh thun cho n khi vn tc

Created by AnhSon

Page 4

HBK H NI n iu khin logic

bng khng .Sau tip tc theo hnh trnh ngc cho n khi gp E . tng nng sut, yu cu trong hnh trnh t D E , iu khin bn my chy vi vn tc V3 > V2 > V1 nhm a nhanh bn my v u hnh trnh thun. on EA l on bn my thc hin gim tc theo hnh trnh ngc v vn tc V1 phc v cho qu trnh o chiu sang hnh trnh thun. Khi bn my v n u hnh trnh thun s t ng dng li ngi vn hnh ly sn phm ra. Chu trnh s tip tc khi c tn hiu t ng vn hnh . 1. Xc nh cc tn hiu iu khin & cc tn hiu chp hnh. T phn tch trn, ta xc nh nguyn tc iu khin chuyn ng thun nghch ca bn my l nguyn tc hnh trnh. V vy, cc tn hiu iu khin a, b, c ,d,e xc nhn v tr ca bn my ti A, B, C, D, E trong mi chu k chuyn ng thun nghch. Quy c cc trng thi ca cc tn hiu iu khin nh sau:

+ a =1: Nu bn my qua A & ra lnh iu khin bn my chy thun vi vn tc V1 (nu bn my ang ng yn ti A). + a =0: Khi bn my ri khi A. + b =1: Xc nhn bn my ti B. Ra lnh bn my tip tc chuyn ng thun vi V2 nu trc bn my chuyn ng thun vi V1; cn ra lnh cho bn my gim tc t V3 xung V1, nu trc bn my ang chuyn ng ngc vi vn tc V3. + b =0: Khi bn my ri khi v tr B. + c =1: Xc nhn bn my qua C. Ra lnh cho bn my gim tc t V2 xung V1 v tip tc chuyn ng thun, nu trc bn my chuyn ng thun vi V2; cn nu trc ang chuyn ng ngc vi V3 th tip tc duy tr trng thi c. + c =0: Khi bn my ri khi C.Created by AnhSon Page 5

HBK H NI n iu khin logic

+ d=1: Xc nhn bn my ti D. Ra lnh cho bn my chy ngc vi V3. + d =0: Khi bn my ri khi D. +e=1 :Xc nhn bn my ti E .Ra lnh cho bn my gim tc theo hnh trnh ngc v vn tc V1 +e=0 :khi bn my ri khi E Nh vy, cc tn hiu a, b, c, d,e l cc tn hiu xung. Cc tn hiu chp hnh (tn hiu ra) l: T, N, V1, V2, V3. Trong : T _ l tn hiu chp hnh ng tip im bn my chy thun. N _ l tn hiu chp hnh ng tip im bn my chy ngc. V1 _ l tn hiu chp hnh ng tip im bn my chuyn ng vi vn tc V1. V2 _ l tn hiu chp hnh ng tip im bn my chuyn ng vi vn tc V2. V3 _ l tn hiu chp hnh ng tip im bn my chuyn ng vi vn tc V3. Cc tn hiu chp hnh s xut hin khi mt t hp nht nh ca cc tn hiu iu khin tc ng nhm iu khin bn my chy ng thit k.

Created by AnhSon

Page 6

HBK H NI n iu khin logic

---------------------------------*--------------*-------------*-----------------------------------

CHNG II:XY DNG HM IU KHIN

abcdeTNV1V2V3=vora

Graph trng thi:1000010100

0000010100

0100010010

00000 10010

0010010100

00000 01100 0000101100 0000001001 0001001001 0000010100

Created by AnhSon

Page 7

HBK H NI n iu khin logic

1,Hnh trnh thunvora

= abcTV1V2

000000100110000110010101000101001110001110

1

2

3

4

5

6

7

c ba

tt 1 2 3 4 5 6 7

000 (1) 3 (3) 5 (5) 7 (7)

001

011

010

110

111

101

100 2 (2)

T 0 1 1 1 1 1 1

V1 0 1 1 0 0 1 1

V2 0 0 0 1 1 0 0

4 (4) 6 (6)

Bng M2

ctt 00 00 011 010

b110 111

ca 101 100 X YPage 8

Created by AnhSon

HBK H NI n iu khin logic

0 1 (1)

1 2 4 6 (6) (4) (2) 0 0 1 1 0 1 1 0

2+3 (3) 4+5 (5) 6+7 (7)

Do c 4 hng nn chn 2 bin trung gian l X ,Y Bng CacNo cho X:

c ba

000 001 011 x y 0 0 0 0 0 1 1 1 1 1 1 1 1 0

010

110

111

101

100 0

1 1

0

X= X +b Bng CacNo cho Y:

c ba

Created by AnhSon

Page 9

HBK H NI n iu khin logic

00 x 0 0 0 0 1 1 1 1 0

00 1

011 y 0 1 1

010

110

111

101

100 1

1 1

1

0 0

0

Y= c Y + a

Bng CacNo cho T:

c ba

00 x 0 0 0 0 1 1 1 1 1

00 1

011 y 0 1 1

010

110

111

101

100

1 1

1

0

T= X + Y Bng CacNo cho V1 :

Created by AnhSon

Page 10

HBK H NI n iu khin logic

c ba

00 x 0 0 0 0 1 1 0 1 1

00 1

011 y 0 1 1

010

110

111

101

100

1 0

1

0

V1 = X Y + X Y Bng CacNo cho V2 :

c ba

Created by AnhSon

Page 11

HBK H NI n iu khin logic

00 x 0 0 0 0 1 1 0

00 1

y 011 0 1 1 0

010

110

111

101

100

0 1

0

V2 = X Y 2,Hnh trnh ngcdeNV1V2= vora

Graph trng thi0000010101001010111000110

1d e

2

3

4

5

tt 1 2 3 4 5 Bng M2:

00 (1) 3 (3) 5 (5)

01

11

10 2 (2)

N 0 1 1 1 1

V1 0 0 0 1 1

V3 0 1 1 0 0

4 (4)

d eCreated by AnhSon Page 12

HBK H NI n iu khin logic

Tt 1 2+3 4+5

N 0 1 1

00 (1) (3) (5)

01

11 V1 0 0 1

10 2 (2)

4 (4)

Chn bin trung gian l N, V1 Ba CacNo cho bin N:

d e

Tt 1

N 0

00 0

01

11 V1 0

10 1

2+3 4+5

1 1

1 1

1 1

0 1

1

N= N +d

Created by AnhSon

Page 13

HBK H NI n iu khin logic

Ba CacNo cho bin V1:

d e

Tt 1

N 0

00 0

01

11 V1 0

10 0

2+3 4+5

1 1

0 1

1 1

0 1

0

V1 = e + d V1 N Ba CacNo cho bin V3:

d e

Tt 1

N 0

00 0

01

11 V1 0

10

2+3 4+5

1 1

1 0 0

0 1

1

V3 = d + N V1

Created by AnhSon

Page 14

HBK H NI n iu khin logic

Tng hp h thng ta dng phng php xp chng cc tn hiu ra bi ton thun v bi ton nghch ta c:

N= N +d X=X+b Y=cY+a T= X+ Y

V1 = Y X + X Y + e + d V1 N V2 = X Y V3 = d + N V1 Tuy nhin 2 s thun v nghch cha c s lin h nn ta hiu chnh li : Ta ch thay i X , N v T X=(X+b ) N N= ( N +d ) Y T T=(X+Y+T d) N

Created by AnhSon

Page 15

HBK H NI n iu khin logic

--------------------------------*--------------*-------------*-----------------------------------

CHNG III: XY DNG S NGUYN LI,Mch nguyn l T hm iu khin xy dng t chng II ta c mch nguyn l sau :

Created by AnhSon

Page 16

HBK H NI n iu khin logic

Created by AnhSon

Page 17

HBK H NI n iu khin logic

II, Xy dng mch iu khin Qu trnh tng hp mch iu khin chng I a ra c mt cu trc iu khin v c bn p ng c yu cu ca cng ngh. Tuy vy, nu em ngay cu trc ny vo lp rp th thc t l khng p ng c cc yu cu v bo v cc s c ( ngn mch, qu ti ngn hn, di hn ). hon thin mch iu khin ta s b sung thm vo cu trc iu khin c mt s mch ph tr phc v mc ch bo v v nng cao tin cy ca s . 1.Cc mch bo va.Bo v ngn mch.

Ta bit dng ngn mch ln hn nhiu ln dng in bnh thng, gy cc tc hi to ln l lm hng dng c, cc thit b iu khin. Yu cu ca thit b bo v l phi tc ng ct nhanh h thng ra khi li in trc khi dng