5
H*Edgeworth expansion for Stirling numbers of the first kind We use the expansion and the notation from the paper "General Edgeworth expansions with applications to profiles of random trees" by Zakhar Kabluchko, Alexander Marynych, Henning Sulzbach available at http:arxiv.orgabs1606.03920 *L In[4]:= H*Parameters: phiHbetaL = Exp@betaD-1, LogW@betaD = LogGamma@thetaD-LogGamma@theta*Exp@betaDD, kappa@@jDD = j-th derivative of phiHbetaL=Exp@betaD-1 at beta=0, chi@@jDD = j-th derivative of LogW at beta=0, sigma@@jDD = 1 is ignored everywhere. *L kappa = Table@1, 8n, 1, 5<D LogW@beta_D = LogGamma@thetaD - LogGamma@theta * Exp@betaDD chi = List@D@LogW@xD,xD.x 0, D@D@LogW@xD,xD,xD.x 0, D@D@D@LogW@xD,xD,xD,xD.x 0D Out[4]= 81, 1, 1, 1, 1< Out[5]= LogGamma@thetaD - LogGamma@ª beta thetaD Out[6]= 9- theta PolyGamma@0, thetaD, - theta PolyGamma@0, thetaD - theta 2 PolyGamma@1, thetaD, - theta PolyGamma@0, thetaD - 3 theta 2 PolyGamma@1, thetaD - theta 3 PolyGamma@2, thetaD= H*Differential operators D_1,D_2,D_3. Here D stays for sigma^H-1L ddx *L In[7]:= D1 = kappa@@3DD 6 * D^3 + chi@@1DD * D^1 D2 = kappa@@4DD 12 * D^4 + chi@@2DD * D^2 D3 = kappa@@5DD 20 * D^5 + chi@@3DD * D^3 Out[7]= D 3 6 - D theta PolyGamma@0, thetaD Out[8]= D 4 12 + D 2 I- theta PolyGamma@0, thetaD - theta 2 PolyGamma@1, thetaDM Out[9]= D 5 20 + D 3 I- theta PolyGamma@0, thetaD - 3 theta 2 PolyGamma@1, thetaD - theta 3 PolyGamma@2, thetaDM

H We use the expansion and the notation from the paper by ... · by Zakhar Kabluchko, Alexander Marynych, Henning Sulzbach available at http:’’arxiv.org’abs’1606.03920 *L

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • H*Edgeworth expansion for Stirling numbers of the first kindWe use the expansion and the notation from the paper

    "General Edgeworth expansions with applications to profiles of random trees"

    by Zakhar Kabluchko, Alexander Marynych, Henning Sulzbach

    available at http:arxiv.orgabs1606.03920*L

    In[4]:= H*Parameters:phiHbetaL = Exp@betaD-1,LogW@betaD = LogGamma@thetaD-LogGamma@theta*Exp@betaDD,kappa@@jDD = j-th derivative of phiHbetaL=Exp@betaD-1 at beta=0,chi@@jDD = j-th derivative of LogW at beta=0,sigma@@jDD = 1 is ignored everywhere.

    *Lkappa = Table@1, 8n, 1, 5

  • In[10]:= H*Bell polynomials are

    B_0=1,

    B_1Hz_1L = z_1,B_2Hz_1,z_2L = z_1^2 + z_2,B_3Hz_1,z_2,z_3L = z_1^3 + 3z_1z_2 + z_3

    *LH*Probabilist Hermite polynomials are given by

    He_pHxL = 2^H-p2L*HermiteH@p, xSqrt@2DDTo check this,

    use: Table@Simplify@2^H-p2L*HermiteH@p, xSqrt@2DDD, 8p,0,6 2^H-p 2L * HermiteH@p, x Sqrt@2DDL .D -> 2^H-1 2L * HermiteH@1, x Sqrt@2DDD

    Out[11]=

    1

    6

    x I-3 + x2 - 6 theta PolyGamma@0, thetaDM

    In[27]:= A11 = Simplify@Coefficient@H1@xD, xDDA12 = Simplify@Coefficient@H1@xD, x^3DD

    Out[27]= -1

    2

    - theta PolyGamma@0, thetaD

    Out[28]=

    1

    6

    In[12]:= H2@x_D = Simplify@1 H2!L * Expand@D1^2 + D2D . D^p_ -> 2^H-p 2L * HermiteH@p, x Sqrt@2DDD

    Out[12]=

    1

    72

    I-6 + 27 x2 - 12 x4 + x6 - 12 theta x2 I-3 + x2M PolyGamma@0, thetaD +

    36 theta2 I-1 + x2M PolyGamma@0, thetaD2 - 36 theta2 I-1 + x2M PolyGamma@1, thetaDM

    In[32]:= A21 = Simplify@H2@0DDA22 = Simplify@Coefficient@H2@xD, x^2DD

    Out[32]=

    1

    12

    I-1 - 6 theta2 PolyGamma@0, thetaD2 + 6 theta2 PolyGamma@1, thetaDM

    Out[33]=

    1

    8

    I3 + 4 theta PolyGamma@0, thetaD +

    4 theta2

    PolyGamma@0, thetaD2 - 4 theta2 PolyGamma@1, thetaDM

    2 stirling.nb

  • In[15]:= H3@x_D = Simplify@1 H3!L * Expand@D1^3 + 3 D1 * D2 + D3D .D^p_ -> 2^H-p 2L * HermiteH@p, x Sqrt@2DDD

    Out[15]=

    1

    6480

    x I810 - 2115 x2 + 999 x4 - 135 x6 + 5 x8 + 540 theta2 I-3 - 4 x2 + x4M PolyGamma@0, thetaD2 -1080 theta

    3 I-3 + x2M PolyGamma@0, thetaD3 -540 theta

    2 I-3 - 4 x2 + x4M PolyGamma@1, thetaD + 90 theta PolyGamma@0, thetaDI6 - 27 x2 + 12 x4 - x6 + 36 theta2 I-3 + x2M PolyGamma@1, thetaDM +

    3240 theta3

    PolyGamma@2, thetaD - 1080 theta3 x2 PolyGamma@2, thetaDM

    In[34]:=

    A31 = Simplify@Coefficient@H3@xD, xDD

    Out[34]=

    1

    24

    I3 - 6 theta2 PolyGamma@0, thetaD2 + 12 theta3 PolyGamma@0, thetaD3 +

    6 theta2

    PolyGamma@1, thetaD + PolyGamma@0, thetaDI2 theta - 36 theta3 PolyGamma@1, thetaDM + 12 theta3 PolyGamma@2, thetaDM

    H*The first three terms in the expansion for x = aSqrt@wD.

    The term H4w^2 = constantw^2 +oH1w^2L is ignored because the constant does not depend on a.

    Error: oH1w^2L*LSeries@Exp@-t^2 2D, 8t, 0, 4

  • In[16]:=

    A = H1 + H1@a Sqrt@wDD Sqrt@wD + H2@a Sqrt@wDD w + H3@a Sqrt@wDD w^H3 2LL *H1 - a^2 H2 wL + 1 8 * a^4 w^2L;

    Collect@Coefficient@A, 1 wD, aDCollect@Coefficient@A, 1 w^H1 2LD, aDCollect@Coefficient@A, 1 w^H3 2LD, aDCollect@Coefficient@A, 1 w^2D, aD

    Out[17]= -1

    12

    -a2

    2

    -1

    2

    theta2

    PolyGamma@0, thetaD2 +

    a -1

    2

    - theta PolyGamma@0, thetaD +1

    2

    theta2

    PolyGamma@1, thetaD

    Out[18]= 0

    Out[19]= 0

    Out[20]=

    a4

    8

    + a3

    5

    12

    +1

    2

    theta PolyGamma@0, thetaD +

    a2

    5

    12

    +1

    2

    theta PolyGamma@0, thetaD +3

    4

    theta2

    PolyGamma@0, thetaD2 -

    3

    4

    theta2

    PolyGamma@1, thetaD +

    a

    1

    8

    +1

    12

    theta PolyGamma@0, thetaD -1

    4

    theta2

    PolyGamma@0, thetaD2 +

    1

    2

    theta3

    PolyGamma@0, thetaD3 +1

    4

    theta2

    PolyGamma@1, thetaD -3

    2

    theta3

    PolyGamma@0, thetaD PolyGamma@1, thetaD +1

    2

    theta3

    PolyGamma@2, thetaD

    In[21]:= H*Here we insert a = gam + chi@@1DD-12, where gam is the new variable*LPoly@gam_D = Simplify@Coefficient@A, 1 w^2D . a ® gam + chi@@1DD - 1 2D

    Out[21]=

    1

    384

    H-1 + 2 gam - 2 theta PolyGamma@0, thetaDL

    I1 + 18 gam + 44 gam2 + 24 gam3 + 4 H-19 + 6 gamL theta2 PolyGamma@0, thetaD2 +24 theta

    3PolyGamma@0, thetaD3 - 24 H-5 + 6 gamL theta2 PolyGamma@1, thetaD -

    2 theta PolyGamma@0, thetaD I13 + 44 gam - 12 gam2 + 72 theta2 PolyGamma@1, thetaDM +96 theta

    3PolyGamma@2, thetaDM

    In[22]:= H*Now we can compute the quantity denoted by s^*

    HthetaL in the paper "Asymptotic expansions for the Ewensdistribution and the Stirling numbers of the first kind"

    *LSimplify@Poly@1 2D - Poly@-1 2DD

    Out[22]=

    1

    2

    theta2 H2 PolyGamma@1, thetaD + theta PolyGamma@2, thetaDL

    4 stirling.nb

  • In[24]:= H*The resulting expression is positive*LPlot@Poly@1 2D - Poly@-1 2D, 8theta, 0, 1