45
Intro QCD@Graz Spectroscopy Hadron Structure Pion FF N e.m. FF N axial FF Decays Wave Functions Multiplets Reactions πN, πΔ p¯ p Λc ¯ Λc Outlook Addenda Hadrons in QCD Willibald Plessas Theoretical Physics / Institute of Physics University of Graz, Austria Vienna, March 13th, 2009

Hadrons in QCD - NuPECCWillibald Plessas Theoretical Physics / Institute of Physics University of Graz, Austria Vienna, March 13th, 2009 Intro QCD@Graz Spectroscopy Hadron Structure

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    Hadrons in QCD

    Willibald Plessas

    Theoretical Physics / Institute of PhysicsUniversity of Graz, Austria

    Vienna, March 13th, 2009

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    Outline

    IntroductionThe realm of hadrons

    Approaches to QCDMethods available in Graz

    Meson and baryon spectra

    Electroweak structure of mesons and baryonsPion and nucleon form factors

    Hadronic decays of baryon resonances

    Baryon rest-frame wave functions

    Baryon flavor multiplet classification

    Meson-baryon and p-p̄ reactions

    Outlook

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    Mesons and Baryons

    Hadrons in SU(3)F

    Mesons Baryons

    Particle Data Group: Phys. Lett. B 667, 1 (2008)

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    Nucleon Resonances

    Excitations of the nucleon

    Similar spectra for other hyperons: ∆,Λ,Σ,Ξ,Ω,ΛC ,ΣC etc.

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    Approaches to Hadrons in QCD

    Methods for dealing with hadron states and hadronicphenomena pursued in Graz:

    ◮ Lattice QCD◮ Effective field theories and functional methods,

    especially Dyson-Schwinger equations (DSE)together with Bethe-Salpeter equation (BSE) andFaddeev equation

    ◮ Effective models, especially relativisticconstituent-quark models (RCQM)

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    Hadron Spectroscopy

    Meson and baryon spectra

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    Light and Strange Baryon Spectra from RCQM

    900

    1000

    1100

    1200

    1300

    1400

    1500

    1600

    1700

    1800

    M[MeV]

    1

    2

    + 1

    2

    − 3

    2

    − 5

    2

    N

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    1

    2

    − 3

    2

    + 3

    2

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    900

    1000

    1100

    1200

    1300

    1400

    1500

    1600

    1700

    1800

    M[MeV]

    1

    2

    + 1

    2

    − 3

    2

    − 5

    2

    Λ

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . .

    . . . . . . .

    . . . . . . . .

    . . . . . . .

    . . . . . . . .

    . . . . . . .

    . . . . . . . .

    . . . . . . .

    . . . . . . . .

    . . . . . . .

    . . . . . . . .

    . . . . . . .

    . . . . . . . .

    . . . . . . .

    . . . . . . . .

    . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    1

    2

    + 1

    2

    − 3

    2

    + 3

    2

    − 5

    2

    Σ

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    . . . . . . . .

    . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . .

    . . . . . . . .

    . . . . . . .

    . . . . . . . .

    . . . . . . .

    . . . . . . .

    . . . . . . . .

    . . . . . . .

    . . . . . . . .

    . . . . . . .

    . . . . . . . .

    . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    . . . . . . . .

    left levels : OGE RCQM right levels : GBE RCQM

    W. Plessas: Few-Body Syst. Suppl. 15, 139 (2003)

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    Lattice QCD for Ground States

    Dynamical quarks with chirally improved action

    Nucleon ∆

    0 0.4 0.8 1.2mπ

    2 [GeV

    2]

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    2.2

    mN

    [G

    eV]

    ABCexp. value

    0 0.4 0.8 1.2mπ

    2 [GeV

    2]

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    2.2

    2.4

    m∆

    [GeV

    ]

    ABCexp. value

    C. Gattringer, C. Hagen, C.B. Lang, M. Limmer, D. Mohler, and A. Schäfer: Phys. Rev. D 79, 054501 (2009)

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    Lattice QCD for Excited States

    Quenched QCD with chirally improved action

    T. Burch, C. Gattringer, L.Ya. Glozman, C. Hagen, D. Hierl, C.B. Lang, and A. Schäfer:Phys. Rev. D 74, 014504 (2006)

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    N and ∆ Masses from DSE + Faddeev Equ.

    Evolution of N and ∆ masses with π massin rainbow-ladder truncation of the quark-gluon vertex,i.e. the three-quark-core contribution to the baryon masses(dashed lines: lattice QCD results with chiral extrapolations)

    !

    ["#$]

    %& ["#$&]

    0.10.0 0.2 0.3 0.4 0.50.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    '(

    ') !"

    #$

    %&

    %'( [)*+(]

    [)*+]

    0.7

    0.8

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6

    0.10.0 0.2 0.3 0.4 0.5

    #$

    !"

    D. Nicmorus, G. Eichmann, A. Krassnigg, and R. Alkofer: arXiv:0812.1665

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    Chiral Symmetry Restoration

    Parity doublets as signatures for restoration ofspontaneously broken chiral symmetry in high-lyingnucleon resonances:

    * * * *

    * *

    3000

    2500

    2000 * *

    1 3

    [MeV]

    ** * *

    * *

    1500

    21197 135

    2

    1000

    222222

    L.Ya. Glozman: Phys. Lett. B 587, 69 (2004); Phys. Rev. Lett. 99, 191602 (2007)

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    Chiral Symmetry Restoration

    Parity doublets as signatures for restoration ofspontaneously broken chiral symmetry in high-lyingmeson resonances:

    1

    2

    π ρ ω ηρ π ω ρ ωf a a h b f a a h b f a ρ η π ω ρ a h21 1 1 1 1 1 2 2 2 22

    f3 3 3 3 3 3 4 4 4 4 4 4

    f5 5 5

    ...ω50 00

    η0

    .....

    .

    . .... .

    .

    .

    .. .. .

    . ... ..

    M

    ...

    .

    .

    .

    .

    ..

    L.Ya. Glozman: Phys. Rep. 444, 1 (2007)

    These spectra can be investigated experimentally at FLAIR !

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    Electroweak Structure

    Meson and baryon form factors

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    Pion Form Factor: Spacelike and Timelike

    Fπ(Q2) computed with the full q-γ vertex structure from itsinhomogeneous (rainbow-ladder) Bethe-Salpeter equation

    -0.5 0 0.5 1 1.5 2 2.5 3

    Q2 [GeV

    2]

    10-1

    100

    101

    |Fπ(

    Q2 )

    |Amendolia et al.Ackermann et al.Brauel et al.Tadevosyan et al.

    Horn et al.Barkov et al.DSE calculationVMD ρ monopole

    A. Krassnigg et al.: Private Communication (2009)

    Extension of P. Maris and P. C. Tandy: Nucl. Phys. Proc. Suppl. 161, 136-152 (2006)

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    Pion Form Factor: Point-Form Rel. QM

    Fπ(Q2) from coupled-channel approach (qq̄e + qq̄eγ)in point-form relativistic quantum mechanics

    æ

    æææææææææ

    ææ

    ææææ

    æææ

    æææ

    æ

    æ

    æ

    æ

    ææ

    ææ

    æ

    æ

    æ

    æ

    æææ

    æ

    æ

    ææ

    æ

    ææ

    æææ

    ææ

    mq=0.21 GeV, a=0.35 GeV

    S¹1

    S=1

    Amendolia 1986

    0 0.15 0.30

    0.5

    1.

    Q2@GeV2D

    F2HQ2L

    æ

    ææ

    æ

    æ

    æ

    æ

    ææ

    à

    à

    à

    à

    à

    à

    ì

    ìì

    ì

    ìì

    ò

    ò

    òòòò ò

    ô

    ô

    ô

    ô

    ôô

    mq=0.21 GeV, a=0.35 GeV

    S¹1S=1

    Huber 2008Bebek 1978Bebek 1976Bebek 1974Brown 1973

    0 5 100

    0.8

    1.6

    Q2@GeV2DQ2FHQ2L@GeV2D

    E.P. Biernat, W. Schweiger, K. Fuchsberger, and W.H. Klink: arXiv:0902.2348

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    Electromagnetic Form Factors of the Nucleons

    Covariant RCQM predictions in point-form spectator model:

    0 1 2 3 4

    Q2 [(GeV/c)

    2]

    0.0

    0.5

    1.0AndivahisWalkerSillHoehlerBartelPFSANRIAPFSA-NRC

    GEp

    0 1 2 3 4

    Q2 [(GeV/c)

    2]

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5AndivahisWalkerSillHoehlerBartelPFSANRIAPFSA-NRC

    GMp

    0 1 2 3 4

    Q2 [(GeV/c)

    2]

    0.00

    0.05

    EdenMeyerhoffLungHerbergRoheOstrickBecker (corr. Golak)PasschierZhuPFSANRIAPFSA-NRC

    GEn

    0 1 2 3 4

    Q2 [(GeV/c)

    2]

    -2.0

    -1.5

    -1.0

    -0.5

    LungMarkowitzRockBruinsGaoAnklin 98Anklin 94XuKubonPFSANRIAPFSA-NRC

    GMn

    R.F. Wagenbrunn, S. Boffi, W. Klink, W. Plessas, and M. Radici: Phys. Lett. B 511 (2001) 33

    T. Melde, K. Berger, L. Canton, W. Plessas, and R.F. Wagenbrunn: Phys. Rev. D 76 (2007) 074020

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    Electric Radii and Magnetic Moments

    Electric radiiBaryon GBE PFSM Experimentp 0.82 0.7569 ± 0.0139n −0.13 −0.1161 ± 0.0022Σ− 0.72 0.61 ± 0.12 ± 0.09

    Magnetic moments

    Baryon GBE PFSM Experimentp 2.70 2.792847351n −1.70 −1.91304273Λ −0.64 −0.613 ± 0.004Σ+ 2.38 2.458 ± 0.010Σ− −0.93 −1.160 ± 0.025Ξ0 −1.25 −1.250 ± 0.014Ξ− −0.70 −0.6507 ± 0.0025∆+ 2.08 2.7+1.0

    −1.3 ± 1.5 ± 3∆++ 4.17 3.7 − 7.5Ω− −1.59 −2.020 ± 0.05

    K. Berger, R.F. Wagenbrunn, and W. Plessas: Phys. Rev. D 70, 094027 (2004)

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    Axial Nucleon Form Factors

    Covariant RCQM predictions in point-form spectator model:

    0 1 2 3 4 5

    Q2 [(GeV/c)

    2]

    0.0

    0.5

    1.0

    1.5 Pion world dataPion MainzNeutrino world dataPFSANRIARC/no boosts

    GA

    0.01 0.1 1

    Q2 [(GeV/c)

    2]

    0.01

    0.1

    1

    10

    100

    BardinChoiwith pion polewithout pion pole

    GP

    L.Ya. Glozman, M. Radici, R.F. Wagenbrunn, S. Boffi, W. Klink, W. Plessas: Phys. Lett. B 516 (2001) 183

    S. Boffi, L.Ya. Glozman, W. Klink, W. Plessas, M. Radici, and R.F. Wagenbrunn: Eur. Phys. J. A 14, 17 (2002)

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    Strong Decays of Baryon Resonances

    π, η, and K Decay Modes

    of

    N∗, ∆∗, Λ∗, Σ∗, Ξ∗ Resonances

    T. Melde, W. Plessas, and R.F. Wagenbrunn: Phys. Rev. C 72, 015207 (2005); ibid. 74, 069901 (2006)

    T. Melde, W. Plessas, and B. Sengl: Phys. Rev. C 76, 025204 (2007)

    B. Sengl, T. Melde, and W. Plessas: Phys. Rev. D 76, 054008 (2007)

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    π Decay Widths of N∗ and ∆∗

    N∗, ∆∗ Experiment Relativistic Nonrel. EEM→ Nπ [MeV] GBE OGE GBE OGE

    N(1440) (227 ± 18)+70−59 30 59 7 27

    N(1520) (66 ± 6)+ 9− 5 21 23 38 37

    N(1535) (67 ± 15)+28−17 25 39 559 1183

    N(1650) (109 ± 26)+36− 3 6.3 9.9 157 352

    N(1675) (68 ± 8)+14− 4 8.4 10.4 13 16

    N(1700) (10 ± 5)+ 3− 3 1.0 1.3 2.2 2.7

    N(1710) (15 ± 5)+30− 5 19 21 8 6

    ∆(1232) (119 ± 1)+ 5− 5 35 31 89 85

    ∆(1600) (61 ± 26)+26−10 0.5 5.1 93 86

    ∆(1620) (38 ± 8)+ 8− 6 1.2 2.8 76 177

    ∆(1700) (45 ± 15)+20−10 3.8 4.1 10.4 9.1

    With theoretical masses

    T. Melde, W. Plessas, and R.F. Wagenbrunn: Phys. Rev. C 72, 015207 (2005); ibid. 74, 069901 (2006)

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    Baryon Ground and Resonant States

    Baryon wave functionsand

    baryon flavor multiplets

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    Structure of Baryon Wave Functions

    Examine the spin , flavor , and space symmetries of thestates in the various baryon multiplets

    For the spatial structure consider:

    Spatial probability density distribution

    ρ(ξ, η) = ξ2η2∫

    dΩξdΩη

    Ψ⋆MΣMΣTMT (ξ,Ωξ, η,Ωη)ΨMΣMΣTMT (ξ,Ωξ, η,Ωη)

    where ~ξ and ~η are the usual Jacobi coordinates

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    Pictures of Baryons (rest frame)

    N GBE CQM

    Ξ

    Η

    Ξ

    N OGE CQM

    Ξ

    Η

    Ξ0 0.5 1 1.5 2

    Ξ

    0

    0.5

    1

    1.5

    2

    Η

    N

    NH1440L GBE CQM

    Ξ

    Η

    Ξ

    NH1440L OGE CQM

    Ξ

    Η

    Ξ0 0.5 1 1.5 2

    Ξ

    0

    0.5

    1

    1.5

    2

    Η

    NH1440L

    T. Melde, W. Plessas, and B. Sengl: Phys. Rev. D77, 114002 (2008)

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    Spatial Probability Density Distributions

    ρ(ξ, η) for the 12+ octet baryon ground states N(939), Λ(1116), Σ(1193), Ξ(1318):

    0 0.5 1 1.5 2Ξ

    0

    0.5

    1

    1.5

    2

    Η

    N

    0 0.5 1 1.5 2Ξ

    0

    0.5

    1

    1.5

    2

    Η

    L

    0 0.5 1 1.5 2Ξ

    0

    0.5

    1

    1.5

    2

    Η

    S

    0 0.5 1 1.5 2Ξ

    0

    0.5

    1

    1.5

    2

    Η

    X

    ρ(ξ, η) for the 12+ octet baryon states N(1440), Λ(1600), Σ(1660), Ξ(1690):

    0 0.5 1 1.5 2Ξ

    0

    0.5

    1

    1.5

    2

    Η

    NH1440L

    0 0.5 1 1.5 2Ξ

    0

    0.5

    1

    1.5

    2

    Η

    LH1600L

    0 0.5 1 1.5 2Ξ

    0

    0.5

    1

    1.5

    2

    Η

    SH1660L

    0 0.5 1 1.5 2Ξ

    0

    0.5

    1

    1.5

    2

    Η

    XH1690L

    T. Melde, W. Plessas, and B. Sengl: Phys. Rev. D77, 114002 (2008)

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    Spatial Probability Density Distributions

    ρ(ξ, η) for the 32+ decuplet baryon states ∆(1232), Σ(1385), Ξ(1530), Ω(1672):

    0 0.5 1 1.5 2Ξ

    0

    0.5

    1

    1.5

    2

    Η

    DH1232L

    0 0.5 1 1.5 2Ξ

    0

    0.5

    1

    1.5

    2

    Η

    SH1385L

    0 0.5 1 1.5 2Ξ

    0

    0.5

    1

    1.5

    2

    Η

    XH1530L

    0 0.5 1 1.5 2Ξ

    0

    0.5

    1

    1.5

    2

    Η

    WH1672L

    ρ(ξ, η) for the 32+ decuplet baryon states ∆(1600), Σ(1690):

    0 0.5 1 1.5 2Ξ

    0

    0.5

    1

    1.5

    2

    Η

    DH1600L

    0 0.5 1 1.5 2Ξ

    0

    0.5

    1

    1.5

    2

    Η

    SH1690L

    T. Melde, W. Plessas, and B. Sengl: Phys. Rev. D77, 114002 (2008)

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    SU(3) Flavor Multiplets

    Classification of baryon resonances by the PDG (2008)

    multiplet (LS)JP

    octet (0 12 )12

    + N(939) Λ(1116) Σ(1193) Ξ(1318)

    octet (0 12 )12

    + N(1440) Λ(1600) Σ(1660) Ξ(?)

    octet (0 12 )12

    +N(1710) Λ(1810) Σ(1880) Ξ(?)

    octet (1 12 )12− N(1535) Λ(1670) Σ(1620) Ξ(?)

    octet (1 32 )12−

    N(1650) Λ(1800) Σ(1750) Ξ(?)

    octet (1 12 )32−

    N(1520) Λ(1690) Σ(1670) Ξ(1820)

    octet (1 32 )32− N(1700) Λ(?) Σ(?) Ξ(?)

    octet (1 32 )52− N(1675) Λ(1830) Σ(1775) Ξ(?)

    decuplet (0 32 )32

    + ∆(1232) - Σ(1385) Ξ(1530)decuplet (0 32 )

    32

    + ∆(1600) - Σ(?) Ξ(?)

    decuplet (1 12 )12−

    ∆(1620) - Σ(?) Ξ(?)

    decuplet (1 12 )32−

    ∆(1700) - Σ(?) Ξ(?)

    singlet (1 12 )12− - Λ(1405) - -

    singlet (1 12 )32−

    - Λ(1520) - -

    Particle Data Group: Phys. Lett. B 667, 1 (2008)

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    New Quark Model Classification

    multiplet (LS)JP

    octet (0 12 )12

    + N(939)100 Λ(1116)100 Σ(1193)100 Ξ(1318)100

    octet (0 12 )12

    + N(1440)100 Λ(1600)96 Σ(1660)100 Ξ(1690)100

    octet (0 12 )12

    + N(1710)100 Σ(1880)99

    octet (1 12 )12− N(1535)100 Λ(1670)72 Σ(1560)94

    octet (1 32 )12−

    N(1650)100 Λ(1800)100 Σ(1620)100

    octet (1 12 )32− N(1520)100 Λ(1690)72 Σ(1670)94 Ξ(1820)97

    octet (1 32 )32− N(1700)100 Σ(1940)100

    octet (1 32 )52− N(1675)100 Λ(1830)100 Σ(1775)100 Ξ(1950)100

    decuplet (0 32 )32

    + ∆(1232)100 Σ(1385)100 Ξ(1530)100 Ω(1672)100

    decuplet (0 32 )32

    + ∆(1600)100 Σ(1690)99

    decuplet (1 12 )12−

    ∆(1620)100 Σ(1750)94

    decuplet (1 12 )32−

    ∆(1700)100

    singlet (1 12 )12−

    Λ(1405)71

    singlet (1 12 )32−

    Λ(1520)71

    singlet (0 12 )12

    +Λ(1810)92

    T. Melde, W. Plessas, and B. Sengl: Phys. Rev. D 77, 114002 (2008)

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    Meson-Baryon Interaction

    Meson-baryoninteraction vertices

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    Meson-Baryon Interaction Vertices

    Microscopic description of meson-baryon form factors

    directly from the relativistic constituent-quark model

    π − N π − ∆

    0 0.5 1 1.5 2 2.5

    Q2

    0

    0.5

    1

    RCQMSato-LeePolinder-RijkenLiu et al.Alexandrou et al. AAlexandrou et al. BErkol et al.

    0 0.5 1 1.5 2 2.5

    Q2

    0

    0.5

    1

    RCQMSato-LeePolinder-RijkenAlexandrou et al. AAlexandrou et al. BAlexandrou et al. C

    T. Melde, L. Canton, and W. Plessas: arXiv:0811.0279, to appear in Phys. Rev. Lett.

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    p-p̄ Collisions

    pp̄ → ΛcΛ̄c

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    pp̄ → ΛcΛ̄c

    ’Hand-bag model’ calculation of total cross section and spincorrelation functions

    p̄ (q, ν)

    p (p, µ)

    k′

    2, λ′

    2

    c

    k′

    1, λ′

    1

    Λ̄c

    q′

    , ν′

    Λc

    p′

    , µ′

    u (k1, λ1)

    ū (k2, λ2)

    pp̄ → Λc Λ̄c spin-correlation functionsintegrated cross section −CLL (· · · · ·) and DLL (- - - - -)

    20 25 30 35 40s @GeV^2D1

    2

    5

    10

    20

    50Σ @nbD

    0.0 0.2 0.4 0.6 0.8 1.0cosHΘcL0.0

    0.2

    0.4

    0.6

    0.8

    1.0OHLLL

    A.T. Goritschnig, P. Kroll, and W. Schweiger: arXiv:0902.4109

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    Outlook

    A Selective wish-list

    ◮ Lattice QCD◮ Meson and baryon resonances with dynamical quarks◮ Ground state electromagnetic structure (form factors)

    ◮ DSE + BSE/Faddeev◮ Dressing of bare results for ground states◮ Extension to meson and baryon resonances◮ Re-investigation of electromagnetic form factors etc.

    ◮ Covariant RCQM◮ Development of coupled-channel RCQM◮ Electromagnetic transition form factors◮ Re-investigation of hadronic resonance decays◮ Study point form, instant form, and front form relativistic

    quantum mechanics on equal footing

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    Thank you very much

    for

    your attention!

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    GBE Hyperfine Interaction

    Level shifts due to hyperfine interaction:

    N Λ

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1g8

    2/4π

    800.0

    900.0

    1000.0

    1100.0

    1200.0

    1300.0

    1400.0

    1500.0

    1600.0

    1700.0

    1800.0

    1900.0

    2000.0

    M [M

    eV]

    N

    N(1440)

    N(1535)−N(1520)

    +

    −+

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1g8

    2/4π

    800.0

    900.0

    1000.0

    1100.0

    1200.0

    1300.0

    1400.0

    1500.0

    1600.0

    1700.0

    1800.0

    1900.0

    2000.0

    M [M

    eV]

    Λ

    Λ(1405)−Λ(1520)Λ(1600)

    Λ(1670)−Λ(1690)

    +

    +

    L.Ya. Glozman, Z. Papp, W. Plessas, K. Varga, and R.F. Wagenbrunn, Phys. Rev. C 57, 3406 (1998)

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    Chiral Interaction

    GBE CQM Lattice calculation(Kentucky Group)

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1g8

    2/4π

    800.0

    900.0

    1000.0

    1100.0

    1200.0

    1300.0

    1400.0

    1500.0

    1600.0

    1700.0

    1800.0

    1900.0

    2000.0

    M [

    Me

    V]

    N

    N(1440)

    N(1535)−N(1520)

    +

    −+

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    Chiral Interaction

    GBE CQM Lattice calculation(Kentucky Group)

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1g8

    2/4π

    800.0

    900.0

    1000.0

    1100.0

    1200.0

    1300.0

    1400.0

    1500.0

    1600.0

    1700.0

    1800.0

    1900.0

    2000.0

    M [

    Me

    V]

    N

    N(1440)

    N(1535)−N(1520)

    +

    −+

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    Chiral Interaction

    GBE CQM Lattice calculation(Graz Group)

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1g8

    2/4π

    800.0

    900.0

    1000.0

    1100.0

    1200.0

    1300.0

    1400.0

    1500.0

    1600.0

    1700.0

    1800.0

    1900.0

    2000.0

    M [

    Me

    V]

    N

    N(1440)

    N(1535)−N(1520)

    +

    −+

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    Relativistic Constituent Quark Model (RCQM)

    Interacting mass operator

    M̂ = M̂free + M̂int

    M̂free =√

    Ĥ20 −~̂P2free

    M̂int =3

    i

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    GBE CQM

    Goldstone-Boson-Exchange CQM

    H0 =3

    i=1

    ~p2i + m2i

    Vconf (~rij) = V0 + Crij

    Vhf (~rij) =

    [

    3∑

    F=1

    Vπ(~rij)λFi λ

    Fj +

    7∑

    F=4

    VK (~rij)λFi λ

    Fj

    + Vη(~rij)λ8i λ

    8j +

    23

    Vη′(~rij)]

    ~σi · ~σj

    L.Ya. Glozman, W. Plessas, K. Varga, and R.F. Wagenbrunn: Phys. Rev. D 58, 094030 (1998)

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    OGE CQM

    One-Gluon-Exchange CQM

    (Relativistic version of the Bhaduri-Cohler-Nogami OGE CQM)

    H0 =3

    i=1

    ~p2i + m2i

    Vconf = V0 + Crij

    Vhf = −2b3rij

    +αs

    9mimjΛ2

    e−Λrij

    rij~σi · ~σj

    L. Theussl, R.F. Wagenbrunn, B. Desplanques, and W. Plessas: Eur. Phys. J. A 12, 91 (2001)

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    Transition Matrix Elements

    Incoming baryon state: |V , M, J, Σ〉 equiv. |P, J, Σ〉Outgoing baryon state: |V ′, M ′, J ′, Σ′〉 |P′, J ′, Σ′〉Transition operator: Ô

    ˙

    V ′, M ′, J ′, Σ′˛

    ˛ Ô |V , M, J, Σ〉 =2

    MM ′X

    σi σ′

    i

    X

    µi µ′

    i

    Z

    d3~k2d3~k3d

    3~k ′2d3~k ′3

    ×

    s

    `

    P

    i ω′

    i

    ´3

    Q

    i 2ω′

    i

    Y

    σ′i

    D⋆ 12σ′i µ

    i

    ˘

    RWˆ

    k ′i ; B`

    V ′´˜¯

    Ψ⋆M′J′Σ′“

    ~k ′1, ~k′

    2, ~k′

    3; µ′

    1, µ′

    2, µ′

    3

    ×˙

    p′1, p′

    2, p′

    3; σ′

    1, σ′

    2, σ′

    3

    ˛

    ˛ Ôrd |p1, p2, p3; σ1, σ2, σ3〉

    ×

    s

    `

    P

    i ωi´3

    Q

    i 2ωi

    Y

    σi

    D12σiµi {RW [ki ; B (V )]}ΨMJΣ

    ~k1, ~k2, ~k3; µ1, µ2, µ3”

    ×2MV0δ3“

    M~V − M ′~V ′ − ~q”

    where pi = Bc(V )ki , p′i = Bc(V′)k ′i , and ωi =

    q

    ~k2i + m2i

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    Point-Form Spectator-Model (PFSM) Currents

    Electromagnetic current˙

    p′1, p′

    2, p′

    3; σ′

    1, σ′

    2, σ′

    3

    ˛

    ˛ Ĵµrd |p1, p2, p3; σ1, σ2, σ3〉 =3N

    ˙

    p′1, σ′

    1

    ˛

    ˛ Ĵµspec |p1, σ1〉 2p20δ`

    ~p2 − ~p′2´

    2p30δ`

    ~p3 − ~p′3´

    δσ2σ′2δσ3σ′3

    with˙

    p′1, σ′

    1

    ˛

    ˛ Ĵµspec |p1, σ1〉 =

    e1ū`

    p′1, σ′

    1

    ´

    »

    f1(Q̃2)γµ +

    i2m1

    f2(Q̃2)σµν q̃ν

    u (p1, σ1)

    Axial current:˙

    p′1, p′

    2, p′

    3; σ′

    1, σ′

    2, σ′

    3

    ˛

    ˛ µa,rd |p1, p2, p3; σ1, σ2, σ3〉 =3N

    ˙

    p′1, σ′

    1

    ˛

    ˛ µa,spec |p1, σ1〉 2p20δ`

    ~p2 − ~p′2´

    2p30δ`

    ~p3 − ~p′3´

    δσ2σ′2δσ3σ′3

    with˙

    p′1, σ′

    1

    ˛

    ˛ µa,spec |p1, σ1〉 =

    ū`

    p′1, σ′

    1

    ´

    "

    gqAγµ +

    2fπeQ2 + m2π

    gqqπeqµ

    #

    γ512

    τau (p1, σ1)

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    Spectator Model Decay Operator

    ˙

    V ′, M ′, J ′, Σ′, T ′, MT ′˛

    ˛ D̂mrd |V , M, J, Σ, T , MT 〉 =

    2MM ′

    X

    σiσ′

    i

    X

    µi µ′

    i

    Z

    d3~k2d3~k3d

    3~k ′2d3~k ′3

    s

    `

    P

    i ω′

    i

    ´3

    Q

    i 2ω′

    i

    s

    `

    P

    i ωi´3

    Q

    i 2ωi

    ×Y

    σ′i

    D⋆ 12σ′i µ

    i

    ˘

    RWˆ

    k ′i ; B`

    V ′´˜¯

    Ψ⋆M′J′Σ′T ′MT ′

    ~k ′1, ~k′

    2, ~k′

    3; µ′

    1, µ′

    2, µ′

    3

    ×˙

    p′1, p′

    2, p′

    3; σ′

    1, σ′

    2, σ′

    3

    ˛

    ˛ D̂mrd |p1, p2, p3; σ1, σ2, σ3〉

    ×Y

    σi

    D12σi µi {RW [ki ; B (V )]}ΨMJΣTMT

    ~k1, ~k2, ~k3; µ1, µ2, µ3”

    with the hadronic decay operator in the point-form spectator model˙

    p′1, p′

    2, p′

    3; σ′

    1, σ′

    2, σ′

    3

    ˛

    ˛ D̂mrd |p1, p2, p3; σ1, σ2, σ3〉 =

    − 3N igqqm2m1

    1√2π

    ū`

    p′1, σ′

    1

    ´

    γ5γµFmu (p1, σ1) qµ

    × 2p20δ`

    ~p2 − ~p′2´

    2p30δ`

    ~p3 − ~p′3´

    δσ2σ′2δσ3σ′3

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    Charmed Baryons

    Λc (predicted by the GBE CQM)

    2100

    2200

    2300

    2400

    2500

    2600

    2700

    2800

    2900

    3000

    3100

    3200Λc

    1

    2

    + 1

    2

    − 3

    2

    + 3

    2

    GBEM

    [MeV]

    ...........................................................

    ...........................................................

    ...............................

    ........

    ..........

    ...........

    ........

    .......

    ......

    ......

    ****

    *...........................................................

    ........

    ............................................................

    .......

    ..........

    .......

    .......

    ***

    ......**

    ...........................................................

    ........

    ........

    ..................

    ..................

    ..................

    ...........................................................

    ........

    ............................................................

    .......

    ..........

    .......

    ....... ......

    ***

    **

  • Intro

    QCD@Graz

    Spectroscopy

    HadronStructurePion FF

    N e.m. FF

    N axial FF

    Decays

    WaveFunctions

    Multiplets

    ReactionsπN , π∆

    pp̄ → Λc Λ̄c

    Outlook

    Addenda

    Charmed Baryons

    Λc (predicted by the GBE CQM)

    Λc

    JP = 12

    +JP = 3

    2

    +

    L, S Conf GBE Exp L, S Conf GBE Exp

    0, 12

    2546 2307 2285

    0, 12

    2979 2733 2765

    2, 12

    3029 2815

    0, 12

    3051 2932

    0, 32

    3051 3056

    2, 32

    3097 3107 2, 32

    3097 3107

    JP = 12

    JP = 32

    L, S Conf GBE Exp L, S Conf GBE Exp

    1, 12

    2801 2585 2593 1, 12

    2801 2585 2625

    1, 12

    2871 2860 1, 12

    2871 2860

    1, 32

    2871 2880 2880 1, 32

    2871 2880 2880

    1, 12

    3185 2964 1, 12

    3185 2964

    IntroductionThe realm of hadrons

    Approaches to QCDMethods available in Graz

    Meson and baryon spectraElectroweak structure of mesons and baryonsPion and nucleon form factors

    Hadronic decays of baryon resonancesBaryon rest-frame wave functionsBaryon flavor multiplet classificationMeson-baryon and p- reactions

    OutlookAddenda