Hog Gatt

Embed Size (px)

Citation preview

  • 7/26/2019 Hog Gatt

    1/9

    A POWER IDENTITY FOR SECOND-ORDER RECURRENT SEQUENCES

    V . E . Hoggatt , J r . , San Jose State Col leg e, San Jose, Ca l i f .

    and D . A . L i nd , Un ivers ity o f V i rg i n i a , Char l o t tesv i l l e , V a .

    1.

    INTRODUCTION

    The following hold for all integers

    n

    and

    k:

    F

    n+k

    ~

    F

    k

    F

    n + i

    + F

    k-l

    F

    n

    F

    n

    +

    k = k , )

    F

    ^

    +

    (

    F

    k

    F

    k -

    2

    )

    F

    n

    + 1

    ( W k - ^ '

    F

    n

    +

    k

    =

    (

    F

    k

    F

    k - i

    F

    k -

    2

    / 2

    >

    F

    n

    +

    3

    +

    3 J + I ) / 2

    f o r i n t e g r a l n . I n p a r t i c u l a r z

    n

    = F ^ o b e y s ( 2 . 1 ) . C a r l i t z , [ 1 , S e c t i o n 1 ] h a s

    s h o w n t h a t t h e d e t e r m i n a n t

    p + 1

    J

    n - j

    D

    n + r + s

    ( r , s = 0 , l , - , p )

    h a s t h e v a l u e

    D

    p

    = ( - l )

    P ( P + 1

    ) (

    n + 1

    )

    / 2

    | (

    P

    ) . ( F ^ . - F p ) ^ 0

    i=o \ J /

    i m p l y i n g t h a t t h e p + 1 s e q u e n c e s { F } , { F

    P

    } , , {F

    P

    } a r e l i n e a r l y

    i n d e p e n d e n t o v e r t h e r e a l s . S i n c e e a c h of t h e s e s e q u e n c e s o b e y s t h e ( p + 1 )

    o r d e r r e c u r r e n c e r e l a t i o n ( 2 . 1 ) , t h e y m u s t s p a n t h e s p a c e of s o l u t i o n s of ( 2 . 1 ) .

    T h e r e f o r e a n e x p a n s i o n o f t h e f o r m ( 1 . 1 ) e x i s t s .

    T o ev a lu a te the coe f f i c i en t s a . (k , p ) in (1 . 1 ) we f i r s t pu t k 0 , l

    s

    , p ,

    g iv i ng a . (k , p ) = 6 .

    7

    f o r 0 < j

    ?

    k < p , w h e r e

    6.-.

    i s t h e K r o n e c k e r - d e l t a d e -

    fi ne d by

    r ( r + 1) /2

    r=o

    p + 1

    r

    a .( k - r , p ) = 0 ( j = 0 , l , - - - , p )

  • 7/26/2019 Hog Gatt

    3/9

    276

    A POWER IDENTITY FOR [Oct.

    Now consid er b.(k,p) = (F, F, F , ) /F , . (F.F . " F F

    > 0 0

    F .

    ) for

    j = 0, , ,p - 1, b (k,p) = I p j , together with the convention that F

    0

    /F

    0

    = 1.

    Clearly bj(k,p) =

  • 7/26/2019 Hog Gatt

    4/9

    1966]

    SECOND-ORDER RECURRENT SEQUENCES

    277

    a result parallel to (2.2)

    3. EXTENSION TO SECOND-ORDER RECUR RENT SEQUENCES

    We now gene ra l ize the resu l t of Sec tion 2 . Consider the seco nd-o rder

    l i ne a r r e c u r r e nc e r e l a t i on

    (3.1) y

    n + 2

    =

    P

    y

    n + 1

    - q y

    n

    (q * 0) .

    Let a and b be the roots of the auxil iary polynomial x

    2

    - px + q of (3.1),

    Let w be any seque nce sat isfying

    (3,1)

    ?

    and define u by u = ( a

    n

    - b

    n

    ) /

    (a - b) if a + b , and u = na if a = b

    s

    so that u also sat is f ies (3.1) .

    n

    fml

    Following [4 ] , we define the u-gen era l ized binomia l coef fic ients I I by

    [

    T

    u u u , ,

    r

    i

    m l

    =

    _m _m -i rn^r+ i Tm l

    =

    r j

    u

    U iU

    2

    - - -u

    r

    | _ 0 j

    u

    Jar de n [4] has shown that the prod uct x of p sequ ence s each obeying (3.1)

    sa t i s f ies the (p + 1) ord er r ec ur r en ce re la t io n

    p + i

    3.2) ^ T V l ) ^

    1

    ) /

    2

    J=o

    p + 1

    J

    ^ =

    If a l l of the se seq uen ces a re w , then i t fol lows that x = w

    p

    obey s (3.2).

    I t is o ur aim to give the corresp ond ing gen eraliz ation of (1.1) for the

    le

    that

    seque nce w ; that is , to show the re exi sts coefficients a .(k,p,u) = a .(k) such

    (3

    '

    3)

    ^

    +

    k

    =

    I ]

    a

    3

    ( k ) w J

    P

    n+j

    j=o

    and to give an explici t form for the a .(k)

    e

    Car l i tz [ 1 , Sec t ion 3 ] proved tha t

    V

    W ) =

    K + r + s l