59
HSR: SYSTEM INTEGRATION FOR HIGH LEVEL PERFORMANCE Eduardo Romo

HSR: SYSTEM INTEGRATION FOR HIGH LEVEL PERFORMANCE · PDF file§ Different transportation modes • Single, closed, system • Component by component § Different strategies and results

Embed Size (px)

Citation preview

HSR: SYSTEM INTEGRATION FOR HIGH LEVEL PERFORMANCE

Eduardo Romo

I. HSR, AN INTEGRATED SYSTEM

I

§ Different transportation modes

§ Different performance level

single unit system

multicomponent complex system

Pedestrian HS Train

I.1

ELECTRIFICATION

TRAIN

INFRASTRUCTURE

SIGNALING

PERMANENT WAY

I.2

I.2

§ Different transportation modes

• Single, closed, system• Component by component

§ Different strategies and results

• Purchase strategy• Suppliers selection process• Industrial development strategy• System management options

I.3

• The great integration level of the railroad system

• Different level of integration / different performance level

I.4

II. JOURNEY TIME AS THE MAIN GOAL

II

I.16

- Safety- Economy- Environmental issues

Lower level of integration

• Transportation systems main target minimum travel time

• Time versus speed (maximum, average, minimum)

• Other modes’ limits to speed

II.1

I.

COMPARISON WITH OTHER MODELS

Maximum speed test

Maximum operating speed

Km/h

700

600

500

400

300

200

100

01950 1960 1970 1980 1990 2000 2010 2020 2030

350

II.2

- Long term- Mid term- Short term

Efficient management

• Journey time is the main driverof the HSR system

• Capacity improvement is alsoat the origin of this technology(Japan, Paris-Lyon)

• Main components involved(infrastructure, rolling stock)

• Different time scale to beconsidered

- Infrastructure

- Permanent way

- Electrification

- Safety /signaling/communications

- Rolling stock

II.3

III. THE WAY, THE ALIGNMENT, THE INFRASTRUCTURE

III

llllllllllllllllllll

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

III.1

III.2

• Comparison with other modes- Road- Air- Shipping

…• Self guidance as key factor for journey time performance

• Advantages of a self guided system- Safety- Comfort level- Centralized traffic control

Reliability, cost effectiveness, high speed…

III.3

• Plan alignment and long profile play a main role in the speed / journey time definition

• Main parameter involved on the speed definition- Curve radius- Transversal acceleration- Cant- Slope (value and length)

• External factors to be considered- Environmental- Row availability- Costs

• Corridor study- Straight alignment- Intermediate cities- Final decision

options multicriteria analysis

16/17III.4

III.6

HS line curvature diagram

III.5

Existing line curvature diagram

III.7

• Main factors to take into account- Territory structure- Environmental condition- Orography- Urban areas- Hydrological and geotechnical conditions

…• Sequential development- Corridor analysis functionality/intermodality/connectivity- Route selection and predesign journey time/performance cost analysis- Detailed design detailed alignment geometry

§ International standards

§ Interpretation

• Limiting values

• Maximum speed

• Complex parameters

• Tilting trains

III.8

IV. THE ROLLING STOCK

IV

• Main role in journey time• Technology under continuous evolution• Compatibility / interoperability• Key factors- Adherence- Power- Traction effort- Mass

IV.1

20

TRAIN POWER DIAGRAM

IV.2

IV.3

• Technology trends- Acceleration capacity- Braking process- Tilting bodies

• Associated costs- Purchasing- Maintenance- Operational- Energy efficiency

V. TOOLS FOR ANALYSIS INTERACTION. SIMULATING TRAIN´S RUNS

V

V.1

• Multiple trains capacity analysis / timetable production• Single train speed / journey time

SIMULATORS

V.2

INPUTS / OUTPUTS

• Inputs

‒ Alignment geometry

‒ Rolling stock features

‒ Operation mode

‒ Main running parameters

• Outputs

‒ Speed/acceleration/journey time

‒ Value/diagrams

‒ Other results (energy consumption…)

V.3

V.3

V.4

V.5

V.6

V.6

VI. ALIGNMENT, ROLLING STOCK AND OPERATION MODE

INTEGRATED PERFORMANCE

VI

6.2

VI.1

ACCELERATION / BRAKING PROCESS

VI.2

LONG SLOPE

0

20

40

60

80

100

120

140

160

180

200

0+000 10+000 20+000 30+000 40+000 50+000 60+000

P.K.

VE

LO

CID

AD

(km

/h)

Velocidadmáxima: 160 km/h

Tiempo de recorrido: 27min36s

Velocidadmedia: 130,42 km/h

Velocidadmáxima: 190 km/h

Tiempo de recorrido: 23min16s

Velocidadmedia: 154,74 km/h

DIAGRAMA TEÓRICO DE VELOCIDADES

VI.a.1

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

320

340

00+000 10+000 20+000 30+000 40+000 50+000 60+000

P.K.

VE

LO

CID

AD

(km

/h)

Velocidadmáxima: 300 km/h

Tiempo de recorrido: 16min26s

Velocidadmedia: 219,11 km/h

DIAGRAMA TEÓRICO DE VELOCIDADES

VI.a.2

Velocidadmáxima: 335 km/h

Tiempo de recorrido: 15min48s

Velocidadmedia: 227,81 km/h

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

320

340

0+000 40+000 80+000 120+000 160+000 200+000

P.K.

VE

LO

CID

AD

(km

/h)

Velocidadmáxima: 300 km/h

Tiempo de

recorrido: 43 min59s

Velocidadmedia: 272,79 km/h

Velocidadmáxima: 335 km/h

Tiempo de recorrido: 40min38s

Velocidadmedia: 295,38 km/h

DIAGRAMA TEÓRICO DE VELOCIDADES

VI.a.3

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

320

00+000 40+000 80+000 120+000 160+000 200+000

P.K.

VE

LO

CID

AD

(km

/h)

Velocidadmáxima: 250 km/h

Tiempo de

recorrido: 1h07 min29s

Velocidadmedia: 177,82 km/h

Velocidadmáxima: 300 km/h

Tiempo de

recorrido: 1h03 min57s

Velocidadmedia:

187,64 km/h

VI.a.4

DIAGRAMA TEÓRICO DE VELOCIDADES

16%

4%

8%5%

VI.a.5

VI.b.1

VI.b.2

VI.b.3

VI.b.4

ROUTE TIMES AS A DESIGN OBJECTIVE

§Alignment geometry§Vehicle characteristics§Operation criteria

Running speed 100-120 km/h

Running speed 80-100 km/h

VI.c.1

§R

adiu

s of c

urva

ture

s (m

)

DIAGRAM OF CURVATURES. PRESENT CONDITION

VI.c.2

Tipe of train: TILTING

Maximum speed:220km/h

Tipe of train: INTERCITY

Maximum speed:220km/h

§Sp

eed

(km

/h)

SPEED DIAGRAM. PRESENT CONDITION

VI.c.3

39 min. 27s 38 min. 54s 34 min. 37s40 min. 35s

LOCAL INTERVENTIONS ON AN EXISTING LINE

VI.c.4

§R

adiu

s of c

urva

ture

(m)

VI.c.5

0+ 000 1 0+ 000 20+ 0 00 30+ 000 40+ 000 50+ 000 60 + 000P.K.

0

50

100

150

200

250

300

350

LOG

ROÑ

O

MIR

AND

AD

EEB

RO

Type of train:INTERCITY

Maximum speed:220km/h

LOCAL INTERVENTIONS ON AN EXISTING LINE THEORETICAL SPEED DIAGRAM

VI.c.6

Type of train: TILTING

Maximum speed:220km/h

21 min. 33s 21 min. 56s 24 min. 50s 20 min. 26s

Type of train:INTERCITY

Maximum speed:220km/h

§Sp

eed

(km

/h)

VI.c.7

LOCAL INTERVENTIONS ON AN EXISTING LINE THEORETICAL SPEED DIAGRAM. INCLUDING INTERMEDIATE STOPS

Type of train:

TILTINGMaximum speed:

220km/h

29 min. 48s 29 min. 51s 32 min. 45s 28 min. 43s

§R

adiu

s of c

urva

ture

(m)

CURVATURES DIAGRAM OF THE ALTERNATIVES

VI.c.8

§Sp

eed

(km

/h)

SPEED DIAGRAM OF THE ALTERNATIVES

VI.c.9

Tipo de tren: INTERCITY

Velocidad máxima:220km/h

Tipo de tren: TILTING

Velocidad máxima:220km/h

15 min. 31s 18 min. 03s 22 min. 34s 17 min. 54s

§Sp

eed

(km

/h)

SPEED DIAGRAM OF THE ALTERNATIVES INCLUDING INTERMEDIATE STOPS

VI.c.10

Type of train:INTERCITY

Maximum speed:220km/h

27 min. 42s 28 min. 06s 31 min. 39s

Actual situation

Local interventions on existing line

New alternativeTravel time

Average speed (km/h)

Length (km)

% time vs. Actual situation

LINE: LOGROÑO-MIRANDA DE EBRO (TRAIN: TALGO)

VI.c.11

Actualsituation

Interventionswithout stops

Local interventions

with stops

Alternative alignmentwith stops

Alternative alignment

without stops

COMPARISON OF TRAVEL TIME IN VARIOUS SITUATIONS

VI.c.12

AVEINTERCITYTRDTILTING TRAIN

Journey time

VII. FINAL COMMENTS

VII

VII.1

Final comments

• Integration in the origin of the high levelperformance

• Journey time versus maximum speed as maintarget

• Alignment, rolling stock and operation modedetermine the travel time

• Methodology to study a complex process