Hydrodynamics Lecture 1

  • Upload
    loveah

  • View
    215

  • Download
    0

Embed Size (px)

DESCRIPTION

the lecture describes the importance of hydrodynamics and its application in various fields

Citation preview

  • 7/21/2019 Hydrodynamics Lecture 1

    1/127

    Lecture One

    CENG 6601- Hydrodynamics

    Department of Civil EngineeringEi-!" !e#elle $niversity

    1

  • 7/21/2019 Hydrodynamics Lecture 1

    2/127

    Lecture 1Content%ntroduction

    &luid !ec'anics (pplications

    )roperties of &luid!at'ematical )reliminaries and ensor

    (nalysis*ector (nalysis

    Dot productCross product

    +inematics

    ,

    http://var/www/apps/conversion/tmp/scratch_5/Hydrodyamics%20Course%20outline.docxhttp://var/www/apps/conversion/tmp/scratch_5/Hydrodyamics%20Course%20outline.docx
  • 7/21/2019 Hydrodynamics Lecture 1

    3/127

    %ntroduction( &luid is a sustance .'ic' deforms continuously

    under t'e action of a s'earing stress/( olid is a sustance t'at resist a s'ear stress y

    static deformation

    &luids- li2uid and gas

    3

  • 7/21/2019 Hydrodynamics Lecture 1

    4/127

    'e study of t'e motion of

    4uids t'at are practicallyincompressile 5suc' as li2uids"

    especially .ater" and gases atlo. speeds is usually referredto as hydrodynamics.

    ( sucategory of'ydrodynamics is hydraulics,.'ic' deals .it' li2uid 4o.s in

    7

  • 7/21/2019 Hydrodynamics Lecture 1

    5/127

    &luids in )ure ciences

    ag o a c rcu a on ong-range.eat'er prediction8 analysis ofclimate c'ange 5gloal.arming

    mesoscale .eat'er patterns8

    s'ort-range .eat'er prediction8tornado and 'urricane.arnings8 pollutant transport

    ,/Oceanograp'yaocean circulation patterns

    causes of El Nino" e9ects ofocean currents on .eat'er andclimate

    e9ects of pollution on livingorganisms

    3/Geop'ysicsaconvection 5t'ermally-driven4uid motion in t'e Eart':smantle understanding of platetectonics" eart'2ua#es"volcanoes

    convection in Eart':s molten

  • 7/21/2019 Hydrodynamics Lecture 1

    6/127

    &luids in )ure ciences7/ (strop'ysicsagalactic structure and

    clusteringstellar evolution=fromformation ygravitational collapse

    to deat' as asupernovae" from.'ic' t'e asicelements are

    distriuted t'roug'outt'e universe" all via4uid motion

    iological sciences

    acirculatory and respiratorysystems in animals6

  • 7/21/2019 Hydrodynamics Lecture 1

    7/127

    &luids in tec'nology1/ %nternal comustionengines=all types of

    transportation systems,/uro?et" scram?et" roc#et

    engines aerospacepropulsion systems

    3/ @aste disposalac'emical treatment

    incineration

    cse.age transport and treatment

    7/ )ollution dispersal in t'e

    atmosp'ere 5smog8 inrivers and oceans

  • 7/21/2019 Hydrodynamics Lecture 1

    8/127

    Contd/5a crude oil and natural gas

    transferral

    5 irrigation facilities

    5c oBce uilding and'ouse'old pluming

    A/ &luidstructureinteraction5a design of tall uildings

    5 continental s'elf oil-drillingrigs

    5c dams" ridges" etc/

    5d aircraft and launc' ve'icleairframes and controlsystems

    / Heating" ventilatingand air conditioning5H*(C systems

    / Cooling systems for'ig'-densityelectronic devices

    digital computers

  • 7/21/2019 Hydrodynamics Lecture 1

    9/127

    Contd/

    10/olar 'eat and geot'ermal 'eatutiliFation

    11/(rti;cial 'earts" #idney dialysismac'ines" insulin pumps

    1,/!anufacturing processes5a spray painting automoiles" truc#s" etc/

    5 ;lling of containers" e/g/" cans of soup" cartonsof mil#" plastic ottles of soda

    5c operation of various 'ydraulic devices5d c'emical vapor deposition" dra.ing of synt'etic

    ;ers" .ires" rods" etc/

  • 7/21/2019 Hydrodynamics Lecture 1

    10/127

    Continuum (ssumption

    !icroscopic approac' (nalyFe molecularstructure and associated collisions 5e/g/pressure is due to t'e net ec'ange ofmomentum at a solid surface

    !acroscopic 5continuum approac' (nalyFeul# e'avior of 4uid 5e/g/ pressure is forceeerted y 4uid per unit area of solid surface

    @'ile a ody of 4uid is comprised of molecules"

    most c'aracteristics of 4uids are due toaverage molecular e'avior/

    'at is" a 4uid often e'aves as if it .erecomprised of continuous matter t'at is in;nitely

    divisile into smaller and smaller parts/10

  • 7/21/2019 Hydrodynamics Lecture 1

    11/127

    11

  • 7/21/2019 Hydrodynamics Lecture 1

    12/127

    &luid )roperties

    &luid properties a9ect 'o. a 4uid reacts toapplied forces" t'us t'e 4uid:s motion

    %ntensive and etensive properties%ntensive properties are independent of siFe or

    volume

    e/g/" density" pressure" temperatureEtensive properties are dependent of siFe or

    volume and are additive for susystems/

    e/g/" mass" volume" area" force%ntensive properties are otained from t'e ratio

    of etensive properties/

    e/g/" densitymassvolume" pressure1,

  • 7/21/2019 Hydrodynamics Lecture 1

    13/127

    Density 5mass%t is a ratio of t'e mass of 4uid element to

    its volume

    Density of a 4uid a9ects its 4o. in t.o.ays%t determines t'e inertia of a unit volume

    of 4uid t'us its

    acceleration .'en su?ected to a givenforcefor t'e same force" lo. density 4uids

    accelerate more readily t'an 'ig' density

    4uids

    13

  • 7/21/2019 Hydrodynamics Lecture 1

    14/127

    >ul# !odulus E CoeBcient of compressiility

    CoeBcient of 'ermal Epansion >

    &or .ater E ,/1 10E

    Nm3

    > 1/

  • 7/21/2019 Hydrodynamics Lecture 1

    15/127

    )ressure&luids do not support s'ear stresses)ressure is 5compression stress at a point

    in a static 4uid/

    Net to velocity " it is t'e most dynamicvariale in 4uid dynamics

    Di9erence in pressure causes a 4uid to 4o.

    (tmosp'eric pressure at m/s/l 101/3 #pa"

    .ill e set to Fero for convenience

    16

  • 7/21/2019 Hydrodynamics Lecture 1

    16/127

    emperature

    emperature is t'e measure oft'e internal energy of a 4uid/

    Generally" temperaturedi9erences cause 'eat transfer/

    %n t'is course" .e treat

    isot'ermal situation/

    1A

  • 7/21/2019 Hydrodynamics Lecture 1

    17/127

    *iscosity*iscosity 5also called dynamic viscosity" or

    asolute viscosity is a measure of a 4uidsresistance to deformation under s'earstress/

    &or eample" crude oil 'as a 'ig'erresistance to s'ear t'an does .ater/

    'e symol used to represent viscosity is

    5mu and its unit is 5#gm/s/%t is given y t'e ratio of t'e s'earing stress

    to rate of deformation/

    Ne.tonian and Non Ne.tonian &luids1

  • 7/21/2019 Hydrodynamics Lecture 1

    18/127

    Shear strain angle will grow as f(t)

    For fluids such as water, oil, air

    stress strain rate

    Viscosity = Resistance to shear

    1

    y

    u tt

    u

    x

    t

  • 7/21/2019 Hydrodynamics Lecture 1

    19/127

    However,

    As , , 0

    But

    here dyna!ic viscosity" #his is a constitutive

    relation, which relates forces to !aterial $fluid% &ro&erties"

    For fluids'

    (Stress is &ro&ortional to

    strain rate("

    For solids'(Stress is &ro&ortional to

    strain( $=)%

    ,0

    y

    tu

    =tan

    dy

    du

    dt

    d=

    t y

    dt

    d

    t

    dydu=

  • 7/21/2019 Hydrodynamics Lecture 1

    20/127

    Notes on shear stress

    $i% Any shear stress, however small, &roduces relative!otion"

    $ii% *f =0, du+dy=0, ut -0"$iii% Velocity &rofile cannot e tangent to a solid

    oundary . #his re/uires an infinite shear stress"

    (o.sli&( condition' u=0 at solid oundary"

    y

    10,1

  • 7/21/2019 Hydrodynamics Lecture 1

    21/127

    1

    Bingha! 2lastic

    Real 2lastic

    Shear.#hinning Fluid

    Newtonian

    Shear.#hic3ening Fluid

    Types of fluids

    ewtonian fluid' Stress is linearly &ro&ortional to strain rate"

    Shear.thinning' 4etchu&, whi&&ed crea!

    Shear.thic3ening' 5orn starch in water

    ,,

    dydu +

    =

    dy

    du

  • 7/21/2019 Hydrodynamics Lecture 1

    22/127

    Units

    6yna!ic Viscosity

    e"g" S*'

    ,3

    dydU +

    =

    7+87878 dydU =

    99978

    LT

    M

    LT

    ML

    Area

    Force==

    =

    dy

    dU

    TLT

    L ::==

    T

    ML

    LT

    M

    TLT

    M

    === 978s2as+!9

  • 7/21/2019 Hydrodynamics Lecture 1

    23/127

    e"g" S*'

    4ine!atic Viscosity

    ,7

    7+87878 =v

    T

    L

    M

    L

    LT

    Mv

    9;

    78 ==

    LT

    M=78

    ;78

    L

    M=

    Sto3es:+:0 9< = sm

    =v

  • 7/21/2019 Hydrodynamics Lecture 1

    24/127

    athe!atical &reli!inaries and tensor analysis

    ,6

  • 7/21/2019 Hydrodynamics Lecture 1

    25/127

    Di9erentiation%f a function is di9erentiale at a point "

    t'e derivative value at t'at point is"

    One sided limit

    ,A

  • 7/21/2019 Hydrodynamics Lecture 1

    26/127

    Vector AnalysisRight-handed, Cartesian coordinate system

    1nit vectors

    2osition vector

    here are co!&onents of

    ,

    ;xz

    :xx

    9xy;a

    :a

    9

    a

    >x

    ka

    ja

    ia

    ?%:,0,0$

    ?%0,:,0$

    ?%0,0,:$

    ;

    9

    :

    =

    =

    =

    ;

    ;

    9

    9

    :

    : xaxaxax ++=

    x%,,$ ;9: xxx

  • 7/21/2019 Hydrodynamics Lecture 1

    27/127

    Vector: 4undu. @Any /uantity whose co!&onents

    change li3e the co!&onents of a &osition

    vector under the rotation of the coord"

    syste!"

    Scalar: Any /uantity that does # change withrotation or translation of the coord" syste!

    e"g" density $% or te!&erature $#%

    ,

    : 9 ;>

    $ %x x x x

  • 7/21/2019 Hydrodynamics Lecture 1

    28/127

    Vector AnalysisConsider vectors and

    Dot )roduct

    Cross )roduct

    30

    AB

    A

    B B

  • 7/21/2019 Hydrodynamics Lecture 1

    29/127

    'e 5PDelQ" PGradientQ" or PGradQOperator

    (/'e Gradient 5Grad and DirectionalDerivatives

    'e rate of c'ange of a scalar function in an aritrary direction ise2ual to t'e scalar product of t'e gradient .it' t'e unit vector" " int'at direction/ince

    @$ % is &er&endicular to

    lines and gives !agnitude

    and direction of !ai!u! s&atial

    rate of change of

    31

    zk

    yj

    xi

    +

    +

    =

    ???

    zk

    yj

    xi

    ++=???

    :C=

    ;C=

    9C=

    C=

  • 7/21/2019 Hydrodynamics Lecture 1

    30/127

    'e 5PDelQ" PGradientQ" or PGradQOperator

    >/ Divergence and Divergence'eorem (pplication of to vector 2uantity

    Consider vector ;eld

    'e dot product of .it' is called t'edivergence

    %n volume terms" t'e net volume 4u out oft'e volume d* e2uals t'e product of and d*/

    3,

    kfjfiff zyx ??? ++=

    z

    f

    y

    f

    x

    f

    f zyx

    +

    +

    =

  • 7/21/2019 Hydrodynamics Lecture 1

    31/127

    Divergence 'eorem 5Gauss'eorem

    Given an aritrary volume "enclosed y t'e surface " .it'out.ard unit normal vector at allpoints on " t'e divergence t'eorem

    states

    $outward unit nor!al vector

    to surface ele!ent%

    $infinitesi!al surface area%

    $infinitesi!al volu!e%

    33

    dSnfdVfSV =

    >n

    dV

    dA

    AAreaSurface

    VVoume

  • 7/21/2019 Hydrodynamics Lecture 1

    32/127

    *f is a scalar, vector, or any order tensor

    S&ecifically, if is a vector

    or

    6ivergence #heore!' *ntegral over volu!e of divergence

    of flu = integral over surface of the flu itself37

    V A >i

    dV n dAC C

    =

    %$C x

    %$C x !

    CC

    =

    i

    i iV A

    i

    dV n dAx

    > = R RV A!dV ! n dA

  • 7/21/2019 Hydrodynamics Lecture 1

    33/127

    )a!&les@ $a%

    $%

    $c% *f a scalar is $advectively% trans&orted

    y the velocity>

    U

    or

    6ivergence of flu within volu!e et flu across

    3/ dV / n dA =

    V A ># dV # n dA =

    %$>>

    ii

    advadvUFUF ==

    =

    A advVi

    i

    advdAnFdV

    x

    F

    >>

    = AV adv dAnFdVF >>>

  • 7/21/2019 Hydrodynamics Lecture 1

    34/127

    C/ Curl and to#es: 'eorem'e cross product of .it' t'e

    vector is called t'e curl

    'e integral of around t'e contourenclosing e2uals t'e component of int'e direction normal to multiplied y

    36

    ky

    f

    x

    fj

    x

    f

    z

    fi

    z

    f

    y

    f

    fffzyx

    kji

    f xyzxyz

    zyx

    ???

    ???

    +

    +

    =

    =

  • 7/21/2019 Hydrodynamics Lecture 1

    35/127

    5 $ounding curve%

    A $o&en surface%

    to#es: 'eorem

    Let e a t.o-dimensional surfaceenclosed y C" t'en

    @Surface integral of the curl of a vector,>

    U , e/uals

    the line integral of>

    U along the ounding curve3A

    >

    n

    ds

    dA

    = CS dxfndSf

    > > >$ % = A Cu n dA u ds

  • 7/21/2019 Hydrodynamics Lecture 1

    36/127

    'e LaplacianDivergence of a gradient for scalar

    Descries t'e net 4u of t'e scalar2uantity into volume

    3

  • 7/21/2019 Hydrodynamics Lecture 1

    37/127

    ensors and %nde Notation

    ome .ays of multiplying scalars or vectorsresult in tensor

    calar is a tensor of ran# 5order Fero

    *ector is a tensor of order one

    %f order is not speci;ed" a tensor implies oforder t.o

    Order of tensor speci;es t'e numer of

    indices to descrie it

    3

  • 7/21/2019 Hydrodynamics Lecture 1

    38/127

    Tensor:Assigns a vector to each direction in s&ace $ 9nd

    order%

    e"g"

    Rows 5olu!ns

    $a% *sotro&ic D 5o!&onents are unchanged y a rotation of

    fra!e of reference $i"e" inde&endent of direction . e"g"4ronec3er 6elta iE%

    $% Sy!!etric ' AiE = AEi $in general AiE = A#Ei%

    $c% Anti.sy!!etric' AiE = .AEi

    $d% 1seful result' AiE = :+9 $AiEAiE%:+9 $AEi.AEi%

    = :+9 $AiEAEi%:+9 $AiE.AEi%=

    70

    11 12 13

    21 22 23

    31 32 33

    A A A

    A A A A

    A A A

    RRijA

  • 7/21/2019 Hydrodynamics Lecture 1

    39/127

    !instein summation convention

    A% *f an inde occurs twice in a ter! a su!!ation over the

    re&eated inde is i!&lied

    B% Higher.order tensors can e for!ed y !ulti&lying

    lower order tensors'

    a% *f 1iand VEare :st

    .order tensors then their &roduct1i VE= iE is a 9

    nd.order tensor" Also 3nown as

    vector outer &roduct $ %"

    % *f AiEand B3lare 9nd.order tensors then their &roduct

    AiE B3l = 2iE3l is a

    = U

    0

    9

    =

    =

    ji

    k

    ijkj

    k

    ijki xx

    U

    x

    U

    x

    > > > > > >$ % $ 9% = a a a a a a

    >> &aLet =

    ( )

    ( )

    mjkmijk

    mkm

    kk

    kjijki

    x

    aaaa

    x

    aa&And

    &a&a

    =

    ==

    =

    >>

    >

    >>

  • 7/21/2019 Hydrodynamics Lecture 1

    47/127

    : if : if : if : if

    7

    ( )

    mjjim

    mjjmi

    x

    aa

    x

    aaaa

    = >>

    i= mj= mi= j=

    >>

    >>

    >

    9

    %$%9+$

    aaaa

    aaaax

    x

    aa

    x

    aa

    jjmm

    i

    j

    ij

    i

    mm

    =

    =

    =

    ja%$>

  • 7/21/2019 Hydrodynamics Lecture 1

    48/127

    *elocity Gradient ensor

    Laplacian *elocity

  • 7/21/2019 Hydrodynamics Lecture 1

    49/127

    *f is a scalar, vector, or any order tensor

    S&ecifically, if is a vector

    or

    6ivergence #heore!' *ntegral over volu!e of divergence

    of flu = integral over surface of the flu itselfi

    dV n dAC C

    =

    %$C x

    %$C x !

    CC

    =

    i

    i iV A

    i

    dV n dAx

    > = R RV A

    !dV ! n dA

  • 7/21/2019 Hydrodynamics Lecture 1

    50/127

    C'ain Sule 5di9erentiation

  • 7/21/2019 Hydrodynamics Lecture 1

    51/127

    C'ain Sule

  • 7/21/2019 Hydrodynamics Lecture 1

    52/127

    Curvilinear Coordinates

  • 7/21/2019 Hydrodynamics Lecture 1

    53/127

    Cylindrical

  • 7/21/2019 Hydrodynamics Lecture 1

    54/127

    p'erical coordinate

  • 7/21/2019 Hydrodynamics Lecture 1

    55/127

    p'erical

  • 7/21/2019 Hydrodynamics Lecture 1

    56/127

    tudies 4uid motion .it'out concernfor t'e force causing t'e 4o.

    +inematics

  • 7/21/2019 Hydrodynamics Lecture 1

    57/127

    De;nition

  • 7/21/2019 Hydrodynamics Lecture 1

    58/127

    *elocity &ield

    &ield p'ysical 2uantity associated .it' every point in inspace-time continuously de;ned in t'e region/

    'e velocity at point C is otained y ta#ing t'e averagevelocity of t'e molecules in *T

    'e velocity ;eld at any point can e de;ned li#e .ise

    leading to *elocity &ield $/$ is continuous function of space and time" i/e/ $5"y"F

    $ is a vector function/ (t any point 5"y"F at any instanttime 5t it 'as t'ree component" u" v" ./

    u5"y"F"t- along -direction

    v5"y"F"t- along y-direction

    @5"y"F"t- along F direction

    60

  • 7/21/2019 Hydrodynamics Lecture 1

    59/127

    &lo. *isualiFations%f t'e 4o. ;eld 5velocity is #no.n eit'er y

    solving t'e motion e2uations or measuring itla;eld" t'e 4o. ;eld can e displayed usingpat'lines" strea#lines" streamlines/

    Pathlines

    ( pat' t'at a 4uid particle traces over time/

    'e position of a 4uid particle is given y t'reenumers 5" y" F/ 'e position is related to t'e

    instantaneous velocity y Given t'e velocity ;eld" t'e successive positions 51"

    y1" F1 of a 4uid particle from its initial position 50" y0"

    F0 can e determined8 and

    at'lines are generated eperimentally61

  • 7/21/2019 Hydrodynamics Lecture 1

    60/127

    Streaklines

    6,

    ( line t'at connects at some instant of time

    all particles t'at 'ave gone t'roug' a ;edposition or point/

    trea#lines are generated eperimentally/ (dye is in?ected continously at a c'osen

    point

    St li

  • 7/21/2019 Hydrodynamics Lecture 1

    61/127

    Streamline%t is a line in a 4o. ;eld t'at is every.'ere

    tangent to t'e velocity vector $ at eac'point along t'e streamline for any instant oftime t/

    treamlines display a snaps'ot of t'e entire

    4o. ;eld at a single instant in time"63

    s

    ds

    c

    o flu By definition' $i%

    *elocity is tangent to ds'ence parallel

    %,,$>

    'vuU=

    %,,$> dzdydxds=

    0>

    = dsU

    ;

    >

    9

    >

    :

    >

    ;

    >

    9

    >

    :

    >

    000%$

    %$%$

    aaaaudyvdx

    a'dxudzavdz'dy

    ++=++

    udyvdx'dxudzvdz'dy === KK

    '

    dz

    v

    dy

    u

    dx==

  • 7/21/2019 Hydrodynamics Lecture 1

    62/127

    treamtue

    treamlines never intersect eac' ot'erecause" at any point" t'ere can e onlyone direction of t'e velocity/

    ( streamtubeis a surface in t'e 4o.

    formed from streamlines and closed uponitself to form a tue of variale cross-section/

    67

    )article pat's and streamlines are not in

  • 7/21/2019 Hydrodynamics Lecture 1

    63/127

    )article pat's and streamlines are not ingeneral coincident/ >ut"teady &lo. streamlines" pat'lines and

    strea#lines coincide)at'line 5

    (rc lengt' along t'e pat'line is

    Di9erential e2uation for pat' lines and streamlines

    are t'e same

    $nsteady 4o. .'ic' direction doesnotc'ange .it' time

    6x

    >>xx +

    >x

    >u

    >>duu+

    L

    >x

    %,$ 0>>

    txu

    %,N$O 0>>>>

    txxudu ++

    #herefore after ti!e t

  • 7/21/2019 Hydrodynamics Lecture 1

    88/127

    #herefore, after ti!e

    Relative !otion of two &oints de&ends on the velocity

    gradient, , a 9nd.order tensor"

    to first order

    I

    '

    2I'

    #aylor series e&ansion of

    .. $A%

    $% !eans order of =

    &ro&ortional to

    0

    t

    ttxuxtx(tuxttxuxxx %,$%PP$PP%,$%$ 0>>>

    9

    >>>0

    >>>>

    L

    > ++++=

    t

    x

    uxtuxxxse)arationinC*an+e

    j

    ij

    ===

    >>>

    L

    >

    tuxxx >>>

    L

    >+=

    j

    i

    x

    u

    ttxux %,$ 0>>>

    +

    tx(uxtxuxx

    ttxxuxx

    %NPP$PP%,$O%$

    %,$%$

    9

    >>>0

    >>>>

    0>>>>>

    ++++=+++

    %,$ 0>>>

    txxu +

    $9% 6eco!&osition of otion

  • 7/21/2019 Hydrodynamics Lecture 1

    89/127

    $ % &

    @Any tensor can e re&resented as the su! of a sy!!etric

    &art and an anti.sy!!etric &art@

    =O rate of strain tensorN Orate of rotation tensorN

    ote'

    $i% Sy!!etry aout

    diagonal

    $ii% Q uni/ue ter!s

    inear angular straining1

    +

    +

    =

    i

    j

    j

    i

    i

    j

    j

    i

    j

    i

    x

    u

    x

    u

    x

    u

    x

    u

    x

    u

    9

    :

    9

    :

    iE iEe r= +

    +

    +

    +

    +

    +

    +

    =

    ;

    ;

    ;

    9

    9

    ;

    ;

    :

    :

    ;

    9

    ;

    ;

    9

    9

    9

    9

    :

    :

    9

    :

    ;

    ;

    :

    :

    9

    9

    :

    :

    :

    9

    9

    9

    9

    :

    x

    u

    x

    u

    x

    u

    x

    u

    x

    u

    x

    u

    x

    u

    x

    u

    x

    u

    x

    u

    x

    u

    x

    u

    x

    u

    x

    u

    x

    u

    eij

  • 7/21/2019 Hydrodynamics Lecture 1

    90/127

    ote'

    $i% Anti.sy!!etry aout

    diagonal

    $ii% ; uni/ue ter!s $r:9, r:;, r9;%

    Rotation

    #er!s in

    ,

    =

    0

    0

    0

    9

    :

    ;

    9

    9

    ;

    ;

    :

    :

    ;

    9

    ;

    ;

    9

    9

    :

    :

    9

    :

    ;

    ;

    :

    :

    9

    9

    :

    x

    u

    x

    u

    x

    u

    x

    u

    x

    u

    x

    u

    x

    u

    x

    u

    x

    u

    x

    u

    x

    u

    x

    u

    rij

    : :iE 9 9

    >$ % = ijk k ijk k r u

    ; 9

    ; :

    9 :

    0

    : 09

    0

    =

    ijr

    : ::9 :9; ; ;9 9

    : : :;9 ;9: : : :9 9 9

    " "

    $ %

    = =

    = = =

    e + r

    r

    I h 3 hi i

  • 7/21/2019 Hydrodynamics Lecture 1

    91/127

    etIs chec3 this assertion aout rij

    #he reci&e'$a% ! = i and l =E

    $% l = i and ! = E

    gives

    3

    9

    =

    =

    =

    =

    =

    mijk k ijk km

    mjik km

    mim j i jm

    ji

    j i

    ij

    u

    x

    u

    x

    ux

    uu

    x x

    r

    *nter&retation tu

    xxx ij

    =L

  • 7/21/2019 Hydrodynamics Lecture 1

    92/127

    *nter&retation

    Relative velocity due

    to defor!ation of

    fluid ele!ent

    Relative velocity due

    to rotation of

    ele!ent at rate :+9

    7

    >

    $ %

    :

    9

    :9

    :$ %

    9

    = +

    =

    = +

    = + R

    i j ij ij

    ij j ijk k j

    ij j ikj k j

    i ij j i

    u x e r

    e x x

    e x x

    u e x x

    tx

    xxxj

    j >>L

    > >

    = =

    ii j

    j

    x x uu x

    t x

    $;% #y&es of !otion and defor!ation "

  • 7/21/2019 Hydrodynamics Lecture 1

    93/127

    $i% 2ure #ranslation

    M9

    M:

    t:

    t0

    $ii% inear 6efor!ation . 6ilatation

    M9

    M:

    t:

    t0

    a

    >

    =V

    dVm

    'e La. of Conservation of!

  • 7/21/2019 Hydrodynamics Lecture 1

    103/127

    !ass

    @it'in some prolem domain de;ned y acontrol volume" t'e net mass of 4uidpassing from outside to inside t'roug' t'econtrol surfaces e2uals t'e net increase of

    mass in t'e control volume/%n its most general form t'e la. stat t'at

    P mass is neit'er created not destroyed ina closed systemQ

    10