8
Neils Bohr Different wavelengths of light are “bent” or refracted at different angles when they enter and leave the glass. This separates the different wavelengths, making them visible to the naked eye. Name_____________________ Introduction to Quantum Mechanics "I think it is safe to say that no one understands quantum mechanics." – Physicist Richard P. Feynman Neils Bohr (1885 – 1962) Neils Bohr came to the Cavendish laboratory, headed by Ernest Rutherford in 1912. He had decided to investigate the structure of the atom, but instead of using radiation like Rutherford, he was intrigued by earlier work with a technique known as spectroscopy. Spectroscopy was used to observe the unique pattern of spectral lines produced by elements. When a solid mass, such as iron, is heated strongly, it radiates a range of electromagnetic waves. This includes visible light, which we can observe, and infrared light, which we can feel as heat. However, when a gas is heated, it only emits electromagnetic waves with very specific frequencies. If the light from a gas discharge tube containing the vapour of an element is passed through a prism, the individual electromagnetic waves it emits can be observed as lines. These are called spectral lines. The lines observed are unique to the vaporous element, like a fingerprint. In fact, the element helium was discovered this way by looking at the sun. For a long time, helium was thought to only exist in the sun (in fact, the name helium means “of the sun”). Bohr sought an explanation for spectral lines. He used Max Plänck’s idea that energy is quantized to suggest that if light comes in discrete quanta, then perhaps electrons are also only “allowed” certain energy levels.

I think it is safe to say that no one understands quantum ...Note+Quantum.pdfIntroduction&to&Quantum&Mechanics& & "I think it is safe to say that no one understands quantum mechanics."

  • Upload
    lylien

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

Neils  Bohr  

Different  wavelengths  of  light  are  “bent”  or  refracted  at  different  angles  when  they  enter  and  leave  the  glass.    This  separates  the  different  wavelengths,  making  them  visible  to  the  naked  eye.    

                    Name_____________________      

Introduction  to  Quantum  Mechanics    

"I think it is safe to say that no one understands quantum mechanics." – Physicist Richard P. Feynman

 Neils  Bohr  (1885  –  1962)  Neils  Bohr  came  to  the  Cavendish  laboratory,  headed  by  Ernest  Rutherford  in  1912.  He  had  decided  to  investigate  the  structure  of  the  atom,  but  instead  of  using  radiation  like  Rutherford,  he  was  intrigued  by  earlier  work  with  a  technique  known  as  spectroscopy.  Spectroscopy  was  used  to  observe  the  unique  pattern  of  spectral  lines  produced  by  elements.      When  a  solid  mass,  such  as  iron,  is  heated  strongly,  it  radiates  a  range  of  electromagnetic  waves.  This  includes  visible  light,  which  we  can  observe,  and  infrared  light,  which  we  can  feel  as  heat.  However,  when  a  gas  is  heated,  it  only  emits  electromagnetic  waves  with  very  specific  frequencies.    If  the  light  from  a  gas  discharge  tube  containing  the  vapour  of  an  element  is  passed  through  a  prism,  the  individual  electromagnetic  waves  it  emits  can  be  observed  as  lines.  These  are  called  spectral  lines.    The  lines  observed  are  unique  to  the  vaporous  element,  like  a  fingerprint.  In  fact,  the  element  helium  was  discovered  this  way  by  looking  at  the  sun.  For  a  long  time,  helium  was  thought  to  only  exist  in  the  sun  (in  fact,  the  name  helium  means  “of  the  sun”).    Bohr  sought  an  explanation  for  spectral  lines.  He  used  Max  Plänck’s  idea  that  energy  is  quantized  to  suggest  that  if  light  comes  in  discrete  quanta,  then  perhaps  electrons  are  also  only  “allowed”  certain  energy  levels.    

 Figure  1.  Set-­‐up  for  Observing  Bright-­‐line  Spectra  

   The  idea  that  electrons  can  only  exist  at  specific  energy  levels  allowed  Bohr  to  explain  the  spectral  lines  as  the  energy  emitted  by  electrons  when  they  move  from  a  high  energy  level  to  a  lower  one.  From  this  idea,  it  followed  that  atoms  only  emit  photons  with  energies  equivalent  to  the  differences  between  energy  levels.    

                                     Bohr’s  First  Postulate  The  orbits  of  electrons  are  stationary  states.    Electrons  do  not  emit  energy  in  these  stationary  states.    Bohr’s  Second  Postulate  Electrons  can  only  gain  or  lose  energy  by  making  a  transition  between  different  stationary  states.    

An  atom  in  its  ground  state.  Its  electron  encounters  a  source  of  energy.

The  electron  transitions  to  a  higher  energy  level.    The  atom  is  now  in  an  excited  state.

The  electron  returns  to  a  lower  energy  level  and  emits  a  photon  of  energy  equal  to  the  transition  of  the  electron.

To  summarize,  when  electrons  encounter  a  source  of  energy,  such  as  high  energy  photons,  they  provide  the  energy  to  for  the  electron  to  make  a  transition  to  a  higher  energy  level.  However  this  state  is  unstable,  and  electrons  quickly  return  to  their  former  energy  levels.  When  electrons  fall  back  to  their  original  stationary  state,  they  emit  a  photon  of  energy  equal  to  the  energy  required  to  make  the  transition.  This  is  what  results  in  spectra  lines.    Although  Bohr  described  electrons  as  ‘orbits’,  physically  that  is  not  what  is  meant.  Orbits  are  a  symbol  for  the  energy  states  of  electrons.        Erwin  Schrödinger  (1887  –  1961)  Using  the  idea  of  electrons  as  waves,  Erwin  Schrödinger  developed  a  set  of  mathematical  equations  that  treated  electrons  as  waves.    He  assigned  electrons  a  waveform  function,  ϕ. Schrödinger’s  equations  defined  a  region  space  around  which  an  electron  is  most  like  found.    This  gives  a  definite  shape  to  orbitals,  defined  by  the  volume  around  the  nucleus  the  electron  in  a  particular  orbital  is  most  likely  found.    The  development  of  these  equations  was  the  one  of  the  earliest  formulations  of  Quantum  mechanics.    In  this  sense,  the  orbital  can  be  thought  of  as  an  electron  cloud.    This  cloud  that  surrounds  the  nucleus  is  a  probability  map  of  where  electrons  are  most  likely  found,  with  the  opacity  of  the  cloud  proportional  to  the  probability  density.    I.e.  the  denser  the  cloud,  the  more  likely  an  electron  will  be  found  there.  Orbitals  can  thus  be  viewed  as  a  3D  electron  probability  density  map  that  outlines  the  area  the  electron  is  probably  found.      Werner  Heisenberg  (1901  –  1976)  Simultaneous  to  Schrödinger,  Werner  Heisenberg  also  developed  a  set  of  equations  that  explained  the  behaviour  of  electrons.    However,  the  math  was  so  complicated,  that  Heisenberg  himself  did  not  fully  understand  why  it  explained  the  quantum  nature  of  electrons.    Nonetheless,  Heisenberg  and  Schrödinger’s  discoveries  gave  birth  to  quantum  mechanics.    

I knew of [Heisenberg's] theory, of course, but I felt discouraged, not to say repelled, by the methods of transcendental algebra, which appeared

difficult to me, and by the lack of visualizability.

-Schrödinger in 1926

 One  of  the  consequences  of  quantum  mechanics  is  that  it  is  not  possible  to  simultaneously  know  the  position  and  momentum  (speed  and  direction)  of  a  particle.  This  was  determined  by  Heisenberg,  and  is  hence  called  the  Heisenberg  Uncertainty  Principle.    Imagine  you  are  trying  to  determine  the  speed  and  position  of  a  runner  in  a  race.    To  do  this,  you  might  use  a  laser  device  and  timer  to  measure  the  distance  to  the  runner  and  how  fast  they  are  traveling.    This  is  very  

similar  to  how  police  determine  the  speed  of  cars  using  radar  guns.    The  device  fires  photons  at  the  object.    The  photons  are  reflected  off  the  object  and  back  to  the  observer.    The  time  it  takes  for  the  photons  to  return  can  be  used  to  determine  the  speed  and  position  of  the  runner.    Now  imagine  you  are  trying  to  determine  the  speed  and  position  of  an  electron  around  a  nucleus.    If  you  use  the  same  methods  as  for  the  runner  or  the  car,  you  fire  a  photon  at  the  electron.    However,  the  big  difference  here  is  that  the  electron  is  quite  a  bit  smaller  than  the  runner.    When  the  photons  strike  the  runner,  their  effect  on  the  runner’s  position/speed  is  negligible.    However,  for  the  electron,  the  photon  can  have  a  large  effect  on  the  motion  of  the  electron.    This  makes  your  observation  of  the  electron’s  motion  very  uncertain.    Basically,  the  smaller  the  system  you  are  trying  to  observe,  the  more  uncertain  any  measurements  you  make  on  that  system  will  be.          Structure  &  Bonding  –  Electron    Orbitals,              Quantum  Numbers  Bohr’s  model  of  the  atom  did  not  correctly  predict  the  correct  spectral  lines  for  elements  other  than  hydrogen.    Following  Bohr’s  contributions,  other  scientists  continued  research  into  spectral  lines,  which  further  improved  our  understanding  of  the  electron  structure  of  atoms.      The  system  used  today  describes  each  electron  in  an  atom  using  four  numbers.  This  is  similar  to  your  address.    For  example,  you  might  use  four  values  to  describe  where  you  live:  province,  city,  street,  number.    The  numbers  used  to  describe  electrons  in  an  atom  are  called  quantum  numbers.        Orbitals  An  orbital  is  a  region  of  space  around  the  nucleus  of  an  atom  that  an  electron  may  be  found  in.    Although  the  word  orbital  is  derived  from  the  word  ‘orbit’,  this  is  not  meant  to  imply  that  electrons  move  in  an  orbit-­‐like  path  around  the  nucleus.    They  do  not!    

Principal  Quantum  Number,  n  The  principal  quantum  number  describes  the  stationary  state,  or  energy  shell  an  electron  is  found  in.  This  also  describes  how  far  the  electron  is  from  the  nucleus  of  the  atom.  Therefore,  the  larger  the  value  of  n,  the  larger  the  orbital  will  be.        

 Energy  Level  Diagrams  • Now  when  we  draw  energy  level  diagrams,  we  must  include:  

o the  sublevels  of  each  shell  o the  spin  of  each  electron  

• When  creating  energy  level  diagrams  for  elements,  there  are  two  important  rules  we  must  obey:  o Pauli’s  Exclusion  Principle  

§ No  two  electrons  may  have  the  same  set  of  quantum  numbers.  o Hund’s  Rule  

§ One  electron  must  occupy  each  orbital  of  the  same  energy  level  before  a  second  electron  occupies  an  orbital.  

• When  adding  electrons  in  electron  configurations,  we  can  use  the  Aufbau  principle  to  help  us  (aufbau  =  “building  up”).    (see  diagram  on  next  page)  

 Rules  for  Anions  • Add  the  extra  electrons  corresponding  to  the  ion  charge  to  the  total  number  of  electrons  before  

distributing  electrons  in  orbitals.    Rules  for  Cations  • Create  the  energy-­‐level  diagram  for  the  neutral  atom  first,  then  remove  the  number  of  electrons  

equivalent  to  the  charge  from  the  orbital  with  the  highest  principle  quantum  number  first.                                        

      Sublevel  Distribution  of  the  Periodic  Table  of  Elements    

         

     

     

     

     

     

     

     

   

 

Energy  Level  Diagram      

     

   

   

   

4n    

 

 

   

3n    

 

 

2n    

1n    

 Every  orbital  can  hold  2  electrons  with  opposite  spin.    Indicate  electrons  with  arrows: