50
Instructions for use Title Thermal Sensation Analysis and its Application to Air-Conditioning Author(s) Ibamoto, Kan-ichiro; Nishi, Yasunobu Citation 北海道大學工學部研究報告, 46, 73-121 Issue Date 1968-01-29 Doc URL http://hdl.handle.net/2115/40854 Type bulletin (article) File Information 46_73-122.pdf Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

Instructions for use

Title Thermal Sensation Analysis and its Application to Air-Conditioning

Author(s) Ibamoto, Kan-ichiro; Nishi, Yasunobu

Citation 北海道大學工學部研究報告, 46, 73-121

Issue Date 1968-01-29

Doc URL http://hdl.handle.net/2115/40854

Type bulletin (article)

File Information 46_73-122.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

Page 2: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

Therma亙 Sensation Analysis aitd its

     to Air’Cond飯on豆ng

Appli’cation

Kan-ichiro IBAMOTO*          and

Yasu蔽obu NISH三**

(Receivecl September 8, !9.67)

                                  Abstract

    For half a century or more, many attempts have been made to establish therma/

conditions basecl on Nvhich optimal prorn.otjon of menta] a.nd phy$}cal g. tate to a ta$k

may be producecl. However, adequate scales of warmth. have not yet been proposed

inasmuch as the eomposition of theri:nal environment has been too complex to be

specified simply vvith a t-ew thermal factors.

    RevievLiing the earlier workg. on the subject, some of them were conducted from

a niedical point of vievg’ v,Thile others were carried out froin an engin.eering ftc ngle;

the former, being empirical scales based on experiments, may not be appHcable

under tmusual conditions, and the latter, theoretica} scales based on thermal. equi-

librium, have its drawback in physical accuracy.

    ”1’his pat)er is concerned with the development of a rational comfort index and

its application to heating and air-conditioning.

    1)art 1 deals with the fundamentals of heat and mass transfer between man and

environment, and a rational shape factor for rad;’ation will be induced.

    In Part II, the heat bahc nce equations 1)etween man and environmen,t are estab-

Iished. ln the ca}culation of the heat exchanges, mi an must be treated as a whoie

and mean values of each heat transfer coefficient ancl of each thermal factor must

be used. ll;’or such sinLplification of tliLe situatioii the physiological properties are

consul.ted. Further, into the experiment each o:” these approximations is verified.

    Part III deals with a rational comfort index and its application. ’1”his index

evaluates each compon.ent of the therinal environment, such as ambient temperature,

racliant temperature, humidity, air-movement, heat ancl vapor resistan¢e and emissivity・

of clothing, work rate, and .p. hysical properties of air.

                                   Content

                      Part 1, Fundainental.s of IMIeat Tran$fer

     Cha.pter !. Racliant luleat Transfer . . . . . . . . . . . . . . . . . . . .

             1-!. Surrounding litacliant Temperature . . . . . . . . . . . . .

            !-L. Shape Factor between Sphere Eiement and Rectanguiar XIX,’all. .

            1-3. Shape Factor between Cylincler Element and Rectangular XVail

’[; Professor, 1)epartrnent of Environment Control.

*’i‘ A$si$tant, 1’>epartment of Environinent Control.

75

75

76

77

Page 3: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

74

        1-4.

        1-5,

Chapter 2,

        2-1.

        2-2,

        LL3,

        ttL-4.

        2-5,

        L)一(5.

Chapter 3.

        3-1.

        3-L),

        3-3.

        3-4,

Chapter 4.

        4-!.

        4-2,

        4-3.

        4-4.

4-5.

Chapter 5.

        」一一1.

        5-L,

Chapter

C・ hapter

Chapter

5-3.

5-4.

5-5.

6.

6一工.

6-2.

6-3.

6-il.

7.

7一工.

7-2.

7-3.

7-4.

7-5,

7nt6a

7-7.

8.

8-1,

8-2.

8-3,

Kan-ichiro IBA)iiforro ancl Yasunobu )N4TlsHI

Comparison oLF Sha.pe FaL ctors . . . . . , . . . . . . . . . .

Summary .....................,....Convective Heat Transfey . . . . . . . . . , . ・ a ・ ・ ・ ・ ・

Physical Properties of Air . . . . . . . . . . . . . . . . . .

Convective Heat Transfer . . . . . . . . ・ ・ ・ ・ 一 一 ・ ・ ・ ・

Convective Heat Transfer Coefficient for Cylinder ancl Sphere .

Combined Forced and Natural Convection . . . . . ・ 」 ・ ・ J

Eff’ect of Atmospheric Pressure to Convective lsuleat Transfer

Coefflcient . . . . . . . . . . , . . . . . . . . . . . . . . .

Summary ..........................Evaporative Heac t ’1’ransfer . . . . . . . . . . . . . . . . . .

Analo.gy between I Iass ancl Heat Transfer . . . . . , , . , ,

“’lass. Transfer Coe£ficient . . . . . . . . . . . . . . , . . ,

Ei”iCect of Atmospheric Pressure on Evaporative lmleat Transfer

Coefficient . . . . . . , , . . . . . . . . . . . . . . . . . .

Summary . . . . . . . . . . . . . . . . . . . . , . . . . .

Experimental Verification of the Analogy . , . . . ・ ・ ・ ・ ・ 一

Procedure ...........,..............Results of Measurement . . . . . . . . . . . . . . . . . . .

Verification of the Analogy . . . . . . . . . . . . . . . . . .

Convective Heat and iMass Transfer Coefficient for Short

Cylindey ........,.................

Sulnmary ..................,...,...

    Part II. Heat Equ三1量br三um on H.uman Bo(ly

Radiative and Convective 工{eat Interchange , .

Racliant lnvleat Transfer Coefficient. . . . . . ,

Surrounding Rad三ant Temperature and Mean Ra(1iant

’1’einperature . . . . . . . . . . . . . . . ・ ・

Convective lmleat Transfer Coefficient . . . . .

E[,mCect of Clothing . . . ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ 一

Summary ..................Evaporative Heat Loss . . . . . . , . . . . .

.Vapor pressure over Sk三n Surface ...,、.

Simplification of Saturated Vapor Pressuye

Va.P・r Resistance・f Cloth三ng._..

Summary ..............

Thermoregulatory Mechanism of Man

Body Heat Production . . . . ・ ・ ・

Body 1-leat Lo$s . . . . . , . . , .

Insensible Perspiration . . . . . . .

Sweat Secretion . . . . . , , . , .

Eff’ect of Clothing on Sweat Evaporation

Heat Baiance Equation of IN([an . . . . .

Summary ,..............

Experimentai Verification

Procedure . . . . , . . . . . . . , . .

Experiment-A . . . . . . . . . , . . .

Experiment-B . . , . . . . . . . . . .

cf Heat Balance至£quとし£ion

              4      一      一      -      1 f      一

80

81

81

8!

82

82

83

83

83

84

84

85

85

86

86

86

87

88

88

89

89

89

89

90

90

c9()

90

90

91

91

9!

92

92

92

93

93

93

cj5

97

97

97

98

9fs

2

Page 4: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

3 Thermal Sensation Analyg.is and its Application to Air-Conditioning

8-4.

8-5.

Chapter 9.

        9-1,

        9-2.

        9-3.

        9. 一4.

        9-5.

        9-6.

Chapter 10.

       10-1.

       工0-2.

       10-3.

       10-4,

       10-5.

Chapter 1!.

       1レ1.

       !1-2.

       Ii一 3. .

A-1.

A-2.

A-3.

Experiment-C ......,................Summary . . . . . . . . , . . . . . . . . . . . . . . . .

Part肌De・elopment・ξWarmth Diagram ancl its

        Application to Air-Conditioning

Thermal Sensation ancl }vtlode} Sl〈in Temperature . . . . . .

Definition. of Comfort . . . . . . . . . . . . . . . . . . .

F.xpression of Thermal Sensation , . . . . . . . , . . . . .

Relat三〇n between Thermal Vote and Model Skin Temperature

Temperature-Humidity Chart ancl Mode} Skin Temperature .

Model Sl〈in Temi.)erature as a Scale of “Xarmth . . . . . . .

Sumlnary . . . . . . , , . . . . . . . . . . . . . . . . .

Warmth I)三agram and三ts A.pplicac tion........__

Principle of XVarmth DiatT:.am . . . . . . . 一 一 ・ J 一 J ・ ・

Graphical Soluti・on of Adodel Sl〈in Temperature . . . , . . .

Warmt旧:)iagram ....,........,.......

Evaluation of Thermal Env,lronnient with Warmth ll)iagram ,

Summary . . . . . . . . . . . . . . . . . . . . . ・ …

Comfort Detector .....,............・・一Mo(lel Man . . . . . . . . . . . ・ ・ 一 J J …    一 …    J

Thermal Sensation Coinputer . . . . . . ・ . ・ i ・ ・ ・ 一 ・ ・

Summary .......,........,...・・…

                 AP正)end三x

Discomfort lndex . . . . ・ 一 ・ 」 ・ ・ ・ ・ 一 一 ・ ’ ’ ’ ’ ’ ’

Corrected Effective Teniperature . . . . . . . . 一 一 ・ ・ 一 ・

ITIeat Stress ln(lex . . . . . . . . ・ ・ ・ 一 ・ ・ ・ ・ ・ 一 ・ ・ 一

9.9.

!oe

. 100

. 100

. 101

. 101

. 10!

. 103

. 104

. /04

. 104i

. }05

. 106’

. !!4

. !15

. 1!6

. !!6

. !16

. 1!7

. ,!18

. !1{

. 120

75

                  Part 1. Fundamentals of Heat Transfer

    The funclamentals of heat transfer, which form the basis for expressing the

heat balance equation between man and environment, are summarized.

  1-1.

    When a body O

emitted from a body

         Ω。一ε,パε。・一

In

             Chapter 1. Radiant Heat Transfer

S泌rrounding R哉dia無もTemperat磁re

             is enclosecl with several walls 〈!,2,3, i・・,n),

             O ancl absorbecl by wall 1, is given by

             I&ゼ乱…隅÷273ン罫

an analogous manner we obtain

2, ・=・…ゼ斎3鰍・(7玉+273 

      where ee, s,. == emissivity of a bocly or wall

             Se, Si == surface area of a body or wall

               goi == shape factor for radiation between ac

                To = surface temperature of a body

the racliant heat,

(1-1)

(!-2)

body and wall

Page 5: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4

Following Nusselti), it is possible in. the first approximation to neg}ect the refiection

from either surface. Then, with reciprecity theorem; goi’So==g.io’Si+

    The quantity of heat exchange per unit time between O ancl 1, is given by

        (20i.二=εo・ε,,、・σ・た⑪1.・(7.b-T,)・Se・~ρOl                           (!-3)

            where /e.,,. == 100 ’i ・ i’(rll”, 一i一 273)2+(T, 一t一 :Lt73)L’/i(T, +273)+(Ti +273’ )111

Then, we get

        (20ユ.=αズ、・(s‘.tei’7”e-geoi・ ”Ll’1)・ Se (!-4)

            where cv., =一 c一,,,・c-o・o・leoi r一”’ raclia・nt heat transfer ceefficient

               feot”一一tA7’= 20ec                                                      A7’二10℃               1・4                                               ∠ユ7需 5℃

               L2

               1.O

               O-8fito 20 30 40 so ec rJ

                  Fig. 1-1. Factor 1;/oi and soiid body・ t’einperature

    From Fig.1-1 we kn.ow that factor々。1 can be treated as a constan.t value in

common use. Thus, the quantity of heat exchange per unit time between. body O

and solid walls may be w.ritten by

                                    ね        Ω01+(202+…÷(20。 == a’、、・σ.”, 一Σ SOeガ7.1,か30        (レ5)

                                    玉.

            where(Y.1≒・α、.、≒…≒・α,。、藻α,,

Here, t1ユe surrounding radiant temperature is de責ned by

              マと

        7.∵一Σρ。ガ7.’,、                    (!…6)              1

Ancl w.e get simply

        H,、=α、.・(7一』一つr.∵)                                     (!-7)

            w.here ll,.:quantity of radiant heat fiow between body O and its

                         enclosure, per unit time per unit area

1-2。Shape Factor between Sphere Element and Rec£angular Wall

    Generally, it is impossible to determine the shape factor betva・een arbitrary

surface elemerLts.

    The shape factor for the geometrical arrangement, shown in Fig.レ2, is given

by the equati・n.

        嚇……’マf綴瓢あ・.tttt   (・一8)

Page 6: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

5 ’lkermal Sensation Analys. is and its Application to Air-Conclitioning 77

  ら勉ち

1

  ち%  1t

無糊

   吃

訪t1

目liE

e

Lr”T”1’

11

eos/一

E

HIII

る群柑歪『ヨヨ1::圭桂出i

    吃

  勉i    コ     

鴛 N  .よl    li

    肩

N

E

4

し.

LX..il

lir.].

1

1

1)

EE

1

十H.↓_滑

目iMI11

II

i i’

llll

ノo

s

6

4

2

i

.s

,6

.4

.2

9d

       ;24681245βノ0り                         矛

Fig. 1一一z. Shape faetor betxxreen sphere e}einent and rectangular xvall

  1-3. Shape Faetor between Cylind.er Element aRd. ReetaRgle

    It is only an, expedient to regarcl man as a sphere eleinen.t. The authors try

to originate a new shape facter, considering man to be a cylincler element.

    As shown in Fig. 1-3, turning the siiaall area element 1 around its vertica}

axis, it may compose the cylinder element. Fig. !-3 clenote the geometricai

relation.

Fig. 1-3.

JZL2 争8

  ,茶タ9!0ρ0

w

曲/η8η話2

θ

θ

o〃 ∠

配。θ々卯θρ’1

擢gZO〃θα θ

θ一ご・が1薯

  ,T910η 4

rt

一チ・θ    一チ

Elevation view o’f area el.ement 1 ancl rectangular area element 2

Page 7: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

78

(1)

(2)

                Kan-ichiro IBfuMo’i’O and Yasunobu NlsHI 6

Let element ! revolve from angular co-ordinate (一r,/2)

Region A The shape factor may be written by

    (φ・2)1一髪[・…七諾τ・・t・ガ1家賃劉

          一 tan’i (一一S一一……… sin cr) + sin ex・tan-i・一tl一一一一] (1-9)

Region B ln the interval (一一一C/…一…一+eN一//一一) all of the radiant energy leaving

element 1 will arrive at the wall 2. The shape factor is given by

(φ12>引・・…相舞ア・…一1諾ガマZ・畢碗一・一∵諸謝

       +・・…{…一・昊マZ爺r・・一…∵論ぞ}1 (且・)

L

io

8

6

4

2

.8

.6

.4

.2

・1.ノ

Fig. 1-4.

1 1 ト 1一一11一 1 一1一一{

→1

1 8 1

[「 \

1、 、 1\、

lt

 卜 、_へ  \

ト \\ \

h、、、

\\\

\\mJJ く 1㌃一 T↓lii『

1\吏4 」⊥l l

x

A\

一榔\

\\\\ \

一\\\ \

冥\T\

\\

1

\\、、__上1

\鮎\

i1

           N

                乙

                                     O, 112

                                     0.ll

                                     O,ノ05

                                     0,io

                                     O,OPs

                                     O,09                                     0.OBs

                                     O.D8                                     0.075                                     0.07

                                     ae6 ’

                                     O, 05

                                     0, 04

                                     D.D3

                                     ao2

                                     0.0/5

                                     0.oi

   .2 .4 .6 .B l 2 4 6  6 10                          泌                          ム

Shape factor between cyllnder element and verticai rectangle

Page 8: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

7 Thermal Sensation Analysis and its Application to Air-Conditioning 79

(3) Region C The shape factor can be written by

       (ψ・2)・一[・…嶺鴛・t・・…1諾ア、

           +_」L_…。t。n..阻_。互__ト_一斗__t。。田・_と璽.皇J             v”i”i”’+””i)’V”’i’ LL’LL’ ,f’i”i”1””lv2”’V’1 ’2”t/”’IZ)’i” “一’A’ v’II’1;”一2++ILi’1

           一・・nα・≠翻・n4マ十二亜+・・ガ1(H .一一一…一 sm cr五)1(ト・・)

   By integrating (¢’i2)i, (¢i2)2 ancl (¢’i3)3 over their defined regions and averaging by

£he angle at the circumference, we get the new shape factor by the equation

       gi2 = ’/’.,.’;’ [2 Slll!,,;etan’i(Q 一 sin ev)cicr

           ÷寓よ羊ゴ・1惜趨1鍔1些1暮宰1購葦留ゴ

           ・洗雛‡1器;職l11需1訓 (レ・2)

          wh。,e PJ尼田,Ω一…μ

                     .乙      ゐ

to

,ノ

Fig. 1-5ゆ

h   lo

   8

   6

4

2

.8

.6

.4

.2

『ノ

zh

.2 .4.6,8/ 2 468/O                       z

                        h

Shape fac ctor between cylinder eleinent and horizontal rectangle

Page 9: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

8e . Kan-ichiro IBAMo“ro and Yasunol)u NISHI 8

  1-4. Comparison of Shape Factgrs

    The characteristics of the shape factor for sphere element and cylinder element

may be made clear by. the following example.

    Example 1-1. Determine the shape factor between sph“vre or cylinder element

and rectangular wall (1,2,3,・4・), shown in Fig. 1-6.

                                                    B’

        (11                              グ                                                     M .;                                                     日 O                                                     Li

(1)

(2)

1・

〈3)

2 (2) 2ご

A■

β

2\こ

2 ∠) 2‘

o(4)

5 〆

5石

〃2

o 2 2o’

2

2ilI

         Fig. 1-6. Geoinetrical arrangement betw・een a body and walE

Solzttion: Each of the shape factors is shown in Table 1-1.

The example mal〈es clear the followings.

The difference between each of the shape factors is apparent.

If the wall area and the clistance are the same, each of the shape factors

between the cylincler element and the configurations, shown in (3), (4), is

different. These relations give a clear basis for racliant heating in practice.

                             Table 1-1.

shape factor for sphere 9 shape factor for cylinder

(1)

PiA =: O.0!6

9二二4・望1A

(L))

~ρ1A’二皿0.0!6

tコ腿4・~,1A’

1 o,ofs4

1 o.064

(3)

SP}E二〇.01.6, 硲1F二=0.033

sp’ 一,:: 2・ s・:,111・ 十2 ・ 9’1 lr

O.098

0.098

望圭A二〇.Ol9

9 :=: 4・ 9,1.t

vr・ 1 .・x , =: O.012

9=4 ’ 9”1.x. r

~銭E=一・ O.{) !9, 9,IF二二G.040

F・ =,= 2・ 91E十2 ・ 91 1・7

 9

0,076

0.048

0.118

(4)

~ク}E’嘉O.()i6, 撃フ1F・=0.033

亨り=・ 2・幹1E’十2・Y’TIF’

91Ei=O.0/9, “f,IF,=(),O:34

9.;・・ =2 ・ L’,’;・1・flJ十2 ・ S/ilI.,t

O.10C5

Page 10: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

9 Thermal Sensation Analysis and its Application to Air-Conditioning 81

  1-5. Summary

    The problems on radiant heat transfer, especially shape factor, have been. sum-

marized and the authors have proposed a new・ shape factor between cyiinder element

and rectangular wall.

ユ.> Gr6ber,王一1.,£rk, S.

      1-lijJ.

and Grittul],

    Reference

I.J, : Fundanientals of lileat IXransfer, (1961), p. 454, Mc()’raNv一一

                   Chapter Z. Convective Heat

  2-1. Physical Properties of Air

    The infiue.nce of temperature, humidity ancl

physical properties of air are summarized in Table

Table 2-1.

Transfer

atmospheric pressure to some2-!.

lnfluence of teniperature, huiniclity and atinog.pheric.

pressure to phy・sical. properties of air

alr telnp. atm. pressure

density

VISCOSItY

kinematic viscosity

specific heat.

heat concluctivgty

ther.nial c{i’ait‘:usivity

mass diffusivity

Prancltl nttml’)er

Sehmlclt number

ev三dent

little

Fi/./r. 2-!

little

a lit宅le

llAif,.,・f. 2-2

Fi,./r. 2一・//i

 ‘つ

nes.]ig.iible

negligible

evident

litt}e

Figr. 2-1

]ittle

little

Fig. 2-2

F三9.2-3

negi三9三ble

ne/gligibie

級プ励争

.xO

:5

エミ20り8.窒

ミちミ 1♪

ノ0

Z.S oim

Sb !0 20 3び 40 5卿           Ofr temperoture

Fig. 2-1. Kinematic viscosity ef air

 ,.一e ..xt,v m’;’S

v’ n

きミ

ミ3a.寒

20

hurrユid玉ty

little

.1.i.ttle

little

little

litt}e

little

nes,lis,ible

negligible

negi三9三ble

   .一.眠..γ

2/3 aim

’σ如

2aim

 tt・a 20”’30”’ 4・o so oo                  ・7’.!ど.8’脚砂ピ.酬.8

Fig. 2-2. Thermal dif±’usivity of air

Page 11: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

82 Kan-ichiro IBAMo’1’o and 1(’asunobu tNlsl-II IO

’w「%蕗

5グ

磐6伽ぎ

g;o

30

20

io

Fig. Z-3.

t atm

2adcr

                      5グ曽

              σ〆、弓岬9..v加

1~4aSS CIittiUSiV三tV Qf Wateτ VaりOr illtQ a{r

    It is known that clensity, kinematie visccsity, thermai diffusivity ancl mass

’diffusivity are affected by atmespheric preew・sure, but little by humidity.

  2-2. Convecti’ve Heat Transfer

    Natural convecticn is causecl by the density cl’ifference of the air between

heated surfac ces and fiuicl. Otherwise forced cenvection is caused on the air fiow.

The rate of the heat transfer by convection between a soiid boundary and fiuticl

may be evaluated by means of the equation

        耳,一αc・(7.1.,一η               (2-1)

            where ff. ==: quantity of }ieat transferecl by convection per unit time

                         per umt area

                    cr. ”一 convective heat transfer coefficient

                    7’1., :== temperature of solicl bounclary

                    T,, = fiuicl temperature

The above equation is a de丘nition of出e cOnvective heat transfer coe缶cientα、,.

    The convective heat transfer coefficient is a complicated function of the fluicl

fiow, the thermal properties of the fluicl medium and the geometry of the system.

  2-3. Convec重董ve Heat TTansfe測 CoerHeie睡t fol’Cy旦圭聾(迂er an{亘SpheTe

    Hilpelt summarized the perimeter-mean Table 2-2.heat transfer coeflicients for the fiow of air value. of “m” and “Cf・1)i“t’”’ 1/or Eq.(2-2)

            W㎞箆鎌総}1愚1。。一騰1億

Page 12: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

ll Thermal Sensation Analysis and its Appiication to Air-Conditioning 83

               Cf, m, n w shown in Tab!e 2-2

    Ranz & Marshall correlatecl the heat transfer coeflicients of air flow over

a sphere by the equatioR of the form3)

        Nu 一一 2.0+O.6・Prg・Rei 1〈 Re〈7× !04 (2-3)

  2-4. Combined Forced aRd Natural Conveetion

    In any heat transfer process density gradients occur and in. the presence of

a forced field natural convectien currents arise. lf the forced convection. effect is

very large, the influence of natural convection currents may be negligible. When

the forcecl convection effect can be neglected the convective heat traRsfer ccefllcients

are given by the equation of the form

        Nu==!(Pr Gフう                                          (2-4)

            where Gr=Granshof number

An analysis of the investigation of heat transfer over a small sphere by Yuge

states that if the velocity of air flow exceecls 3 cmfs the effect of natural convec-

tion current over the sphere of 30 cm in cliameter is neglectecl.‘)

  2-5. Effect of Atmospheric Pressure on Convective Heat Transfer CeeMcient

    As Eq. (2-2> involves some physical properties of air, at another atmospheric

pressure region the con.vective heat transfer cce伍cient takes the other value, as

shown in Fig. 2-4.

  川竹防r・Deg25

ぬ§20違

8

蓮J5凄

く ~0

§

§5

OV.1

の’〆加露rof30αη4わ〃θどθr

V砂かz勘ビ伽卿ど〃∂;勿℃

Totσ

lo糎

�U顔i

Fig● z-4ゆ

Zf,?一2 ’bl’3”r一’n’S” ”’b.’i5 /’ i. s 2 3 m/s

                             air vefoclty

 Effect of atinospheric pressure to convective heat t’ransfer

 ceefflcient

  2-6. Summary

    Estimating the rate of convective heat traBsfer over the human body, the

fol}owings must be considered.

Page 13: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

84 Kan-ichiro IBAMoTo and Yasunobu NISHI 12    The magnitude of the natural convection effects to forced convection may be

neglected.

    The fact that the atmospheric pressure affects the convective heat transfey

coeflicient suggests that the design of thermal environment in a pressurized cabin

for medical care or in a low pressure space capsule must be differentiated from

common design.

                                References

  2) ltsyZcAdams, XXi. lrml.: Heat Transmission, 3rd. ed., p. 260, McGraw-Hill.

  3)Gr6ber, H., Erk, S. an(l Gr三gull,導.:Fundamentals Qf Heat Transfer, p.412, McGraw一田.L

  4) Yu,ge, T.: Heat Transfer Experiment over Sphere, Annual Meeting of the Jap. Soc. of

        )vlech. Eng. (1956 April).

                 Chapter 3. Evaporative Heat Transfer

  3-1. Analogy between Mass and Heat TraRsfer

    The equation of eonvective mass transfer of an incompressible fluid in steady

flow, with constant fluid properties and in the absence of a pressure graclient and

any external force, can be vv’ritten in a form identical to the Fourier heat transfer

equatlon

        ・a…a・一S…一一 == D・72・C (3“)

            where C==concentration

                    t ==: tlme

                   D =:: mass diffusivity

    While, the corresponding equation for convective heat transfer takes the

form

        -t-AO・一一 一: a・V2・0 〈3-2)         at

            where ct 一一 thermal diffusivitv                                     v

    Further, in steady state mass flux is given by

        W’ 一= 一D-tl-2g一…… (3-3)

    The equivalent expression for heat transfer is written by

        ・一一礁.一一・4野      (3-4)

Each of the above equations is similar.

    The solutions of Eqs. (3-1) and (3-2) describe the fielcl of concentration

and temperature. lt is lmmediately apparent that in the ca$e where the mass

diffusivity is equal to the thermal diffusivity, the two fields are identicai to one

another as long as the boundary conditions for the two equations are the same.

Page 14: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

13 Thermal Sensation Analysis and its Application to Air-Conditioning 85

  3-2. Mass Transfer CoeMcient

    The rate of mass transfer, as an equivalent expression of Eq. (2-1), is given

by the equation

        IV ut le.・(C,一C,) (3-5)            where k.=mass transfer coethcient based on gas concentration

In a gaseous system the density of the diffusing substance can be replaced by

        c......P..”...一 (3-6)             Rv’T

    IiV[ass transfer coethcients must be evaluated experimentally, but direct experi-

mental data is lacking. Since the mechanism of mass and heat transfer are closely

relatecl, one might expect data taken for heat transfer to be useful in predictlng

the rate of mass transfer.

    Colburn. 」’一factor is defined by the following equations

        ノ“__亜。          (3-7)             Re・乃男

        ブバ論済       (3-8)

             where Sh == Sherwood number

                    Sc = Schmiclt number

    The analogy among heat aBcl mass transfer in forced convection systems may

be stated by using Colburn ifactors.

        ノ.、t=ノ.D                                                (3-9)

    Fuyther, frem Eqs. (2-2) ancl (3-9), one obtains for the mass transfer

        Sh-C,・Sc’t・Re”e (3-IO)where the exponent n of the Prandtl or Schmidt number takes the value of 1/3

respectively.

    As a result, convective mass transfer ceeflicient can be written as a function

of convective heat transfer coefllcient by

         ・・一殆δ1・跨1手}ε7・C8)晋・・c[k・/m2・h・・mmH・1 (・一・・)

             where le. =convective mass transfer coethcient

                    C. = specific heat

                     T= absolute temperature

   3-3. Effeet of Atrnospheric Pressure on Eyaporative Heat Transfer CoeMcient

     Multiplying the latent heat of evaporation L, into the mass transfer coef-

ficient, one obtains the evaporative heat transfer coefllcient by the equa£ion

Page 15: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

86 Kan-ichiro IBAiNc[oTo and Yasunobu NTIsHI 14

        β一・Lパle。一κ・α.

            [kcal/m2・hr・mmHg] (3-12)

In the above equation the physical properties,

such as density, thermal diffusivity and mass

diffusivity are affected by atmospheric pressure.

    So, the evaporative heat transfer coef-

ficient decreases at higher atmospheric pres-

sure regions in contrast with the convective

heat transfer coeflicient.

 rc

4.0

2.a

o

3     20℃,〃%斤.μ

Q2

勢 ノ              20ぜ!η

            0ど1η岬~アerio preSS(〃’e

Fig. 3-1. Effect of atmospheric

        pressure to factor ltr

紘σ〃〆・んr・mmHg

養30

登20

ミノORg.

0

F呈9。3-2。

    」

フ〃7伽of 300加ψσ1ηθfθr

コ如が睡9んωη1dめ弓60%

ソη∂勧ぎぎθ卯θ砂加昭」勿『『

ζ〃 6え203 0.タ O.75 /  /5 .2    3碗                                    air レ’efOC/ty

Efr’ect of atmospher三。!〕ressure to evaPorati、・e heat transfer coe拓icient

  3-4. Summary

    By drawing an analogy between mass ancl heat transfer, evaporative heat

transfer coefllcients can be predicted as the function of convective heat transfer

coel丑cien毛.

Chapter 4. Experimental Verification of the Analogy

  4-1. Procedure

    IBstead of evaporating liquids, sublimating solids such as naphthalene can be

usecl in mass transfer measurements. The naphthalene was cast in molds that

proclucecl different sizes of cylindrical nap’hthalenes of 2 ancl 3 cm in diarneter and

6 and 9 cm in height respectively. The temperature drop of solicl surfaces with

the latent heat of the sublimation is calculated to be almost O.20C and was neglectecl.

    In the test roorn, ambient ancl wall temperatures were maintainecl at 35 tr O.50C

for the cluration of the experiment.

    Both ends of the naphthalene cylinders were either coated with a thin film

or exposed.

Page 16: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

i5 Thermal Sensation Analysis and its Application to Air-Conditioning 87

  4-2. Results of Measurement

    Measurecl convective mass transfer coefllcients are .expressecl in Figs. 4-1 anc1

4-2, ancl by the following dimensionless equations.

4.4

4,2

4.0

3,P

o: both ends coafed

x : both ends exposed

Sh =a54s・ReO・5i5

!劉

              一            一 /6          /       o !   )v;」itgg〈ILsh..Reas

// @美

/Z

ノ〆Z!

x

eノbL

      6,0 8.2 B.4 8.6                                             乙〃CRe.)

Fig. 4-1. )vlass transfer coefficient for naphthalene cylinclers

          in cross flow

へ§46

4.4

4,2

o: both ends eoated

x:botん印誌即硲θゴ

5ん諾02・Re o一”li

 o o

oX -/

e/ /ン/

4催。

//

 o/ /x /

gix//

                       /                      /                  レ/

                ノl

       s//           /

    。,.〆一踊2/,融娚

    /   /x   洋 /   x-

F量9.4-29

 8.2 a4 8,6 B.g                                   Ln (,?e)

1,ltk$s transfer coefficient for naphthalene cylinders

in paraliel floNxT

(1) ln cross fiow:

both ends coatee

    Sh === Reo・s (4-1)

Page 17: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

88 Kan-ichiro IBAMo’ro and Yasunobu iNTIsl{1 16

    both ends exposed

        Sh == O.54s ・ Reo・s7s

    (z)In par盆11e田ow:

    both ends coateci

        Sh. = O.20 . Ree・706

    both ends exposecl

        Sh ==] O.213 ・ Ree・6tj3

            where 2700〈.1〈e〈7000

  喋一3。.翫Ver澁cation ofもhe An&logy

    If{’the analogy can be applied, experimental clata

fo!lowing equations, derived from Eq. (3-10).

        Sh = 1.052・ReO”i66 40〈Re〈4000

        .Sh = O.298 ・ .lxltee’6i8 4000〈1i〈e〈40000

The above relation closely parallels the analogy between

〈4-L)

(4-3)

(4-4)

may correspond to the

             (4-5)

             (4-6)

mass and heat transfer.

8ミ

ミミ

200

100

80

60

40

30

20

77//Z

(4-4)

7クx

ti/

                      /f

俸㌧//ラ

        ’

   ///̂/

(4一か

(4 一2)

‘4-5ろ64-6)

              700a         20a〃         4000    uaoO      脚         200zaク

                                               Re/nolds number

            Fig. 4-3. Comparison between experimental data ancl analogous

                     equatlons

  4-4. Convective Heat and Mass Transfer CoeMcient for Short Cylinder

    Eq. (2-2) is for long cylinders in cross fiow, but the relation for short cylinders

in multiple flow is required. As shown in Fig. 4-2, mass transfer coefllcients

for short cylinders, both ends exposed in parallel flow, closely corresponds to the

ancalogous equations from Eq. (2-2).

    As a result, convective heat and mass transfer coeflicients for short cylinder

Page 18: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

ユ7 Thermal Sensation Analysis and its Application to Air-Condltioning 89

can be obtained based on Eq. (2-2).

  4-5. Summary

    Mass transfer experiments using naphthalene sublimation laave verified the

・aRalogy among mass and heat transfer, and suggest that convective heat and mass

transfer coefficients for short cylinders may be given by Hilpert’s equation.

               Part H・Heat Eq磁ibriu燃on Huma獄Body

    The characteris£ics of racl iative, convective and evaporative heat interchange

.over the human body are investigatecl and steady state heat balance equations are

produced.                             ・

    Sudden changes of environmental condition cause heat shock or heat storage

in. the body, nameユy, it三s a transient problem, and 三n such a case the heat balance

equations can.1/0t be apPlied.

                                             x〃5紛σ伽’・カr

 Chapter 5. Radiative aぬd Convective                                              8            Heat l雌erchange

                                            ヤ  5-1. Radiant NeaもTransfer CoeMcien{;    G?

    The distribution of black body radiation   6

in a relatively low毛emperature range is shown

in Fig.5-1 and in an average room situation

the radian.t intensity shows its maximum value                                              4at a wa▽e le.ngth of about 10 micron.

    It is said that玉n the long wave length

range the absorption of either the nude or                                              2clo宅hed body may be taken as complete and

電he radiation of water vapor or carbon dioxide

三n the ro・m can be negleced.

    Substituting the numerical value at the   oo    /ク   20   ヲoA

・ub・t・・ti・1・・vi・…・・ti・t・Eq・(1-4)・w・g・t F、9.5一、. Vari。、i。。。f、h。i。、ens・、y

the radiant heat tran.sfer coef丘cient as             of radiat三〇n with wave!.ength

        α、.:: 5 [kcal/m2・hr・Deg]                     (5-1)

             where le 一!.1,ε。・ε,。一〇.93

    0n the other hand, if the emissivities of walls are difだerent,‘‘αノ’can not be

expressed as simply as the ab・ve.

  5-2. Surrounding Radiant「℃emperature and Mean Radiant【滑emperature

    In estimating the surrounding radiant te盤perature, the problem changes to the

question as to what k:ind of simpllfied shape factor can be used in place of the

cornpllcated shape factor between the human body and玉£s enclGsures. In this

.paper, the authors propose to use the shape factor for the cylinder element as an

approximate shape factor for the human body.

373ツf

ご _    α」6一λ5{θλPぐ&μη一1}

 i卿

3α7

2Z9

Page 19: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

90 .Kan-ichiro IBAMoTo and Yasunobu NISHI i8

    NVhile the mean racliant ternperature in a wide sense corresponQis to the

surrouncling radiant temperature, its inaccuracy is evident. iLVforeover the mean

radiant temperature clerived from the arithmetical average of the boundary surface

temperatures or from weightecl averaging ornit even. the shape factor.

  5-3. Convective Heat Transfer CoeMcient

    The geometrical shape of the human body is too complicated to cletermine the

exact convective heat transfer coethcient, so the human form must be treatecl as

some simplifiecl object ; namely a sphere or cylinder.

    The authors propose to treat a cyliRcler of 30 cm in diameter in lieu of the

human form.

  5-4. Effeet of Clothimg

    (1) 0無rad量atio難

    By decreasing the emissivity of clothing, the rate of radiative heat transfer

can be reduced to the ultimate value of zero. This is very effective for protecting/

against the heat or the colcl.                                                          Table 5-1.

    (2) en conduction Clo. vague of clothings    “Clo.” is one of the 1)ractical un.its ef tine heat clothing 11/ ao, value

resistance of clothing. ””””1”/””””’…””””’”””i””””///”””””

5.5.、論α!8[ 9/㎞11(5’2)灘聖一:1

器1∴鷹野慧四四t瀦計1黙総蜜    Determining the cenvective and evaporative heat

transfer coeflicients for men, the authors have proposecl to regarcl man as a cylincler

of 30 cm in diameter.

                    Chapter 6. Evaporative Heat Loss

  6-1. Vapor Pressure over Skin Surfaces

    In an ordinary situatioB skin surfaces are nearly dry, ancl with the secretion

of the perspiration wettecl, parts gradually appear.

    In estimating the vapor pressure over such an indefinite surface the following.

methc・ds may be appliecl.

    (1) Average vapor pressure

    The skin surface is maintained at avercage vapor pressure ancl sweat evaporation

depencls on the graclient between average vcfi.por pressure and ambient vapor pressure,

as expressecl by the equation

        W==: kp(9s’“iils-Pa) (6-1)            where y,,, pm一 factor for average vapor pressure

                    R, = saturated vapor pressure at mean skin temperatuye

Page 20: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

19 Thermal Sensation Analysis ancl its Application to Air-Conditioning 91

                  /). = ambient vapor pressure

The actual value of g, can not be cleterminecl, but in the case of the skin surface

beiRg completely wet it takes the ultimate value of 1.0 ancl in the case of zero

moisture, gs=P./ll,・

    (2) Wetted area ratio

    Sweat evaporation may occurs over specifiecl wet sl〈in surfaees, which have

been saturated at mean sl〈in temperature,

    Imlere,

        W皿=たP(瓦一君‘)・ε                                     (6-2)

            Wh・・……器畿濃1§鍔一一W・…d-a…

    The proportion of wettecl area to the total surface area are to be called “wettecl

area ratio”. The actual value of “E” is also uncletermined, but when fully wetted it

tal〈es the ultirnate value of !.0 and in the case of zero moisture, E =O.

    The idea of wettecl area ratio becomes more effective for cletermining the

comfort index.

  6-2。 S量磁P墜i負cation of Sa加rated Vap◎r Perssure

    Over a reasonable range of skin. ancl ambient temperature, the vapor pressure

may be approximatecl by the equatioBs

        2, 一一 2.15・T,一31.91 [mmHg] (6-3)

        1)a..,鑑0.031・7” 一〇.031・7.∴、+5.69  [lnln正一{g]                (6-4)

  6-3. Vapor Resistanee of Clothing

    Heat resistance of clothing can be evaluated cluantitatively ag. shown in Table

o”

D一I, but the vapor resistance of clothing, being. cllstinguishecl fi”om that of fabric,

has not been cletermined.

    The authors try to sim-plify t})一is complicatecit relaL tion by the following form

        to, t= {; . p (6-5)            where 4 =:= permeance ratio

    The actuac l value of permeance ratio may vary accorcling to clothing type, but

in the case of nuclity it takes the ultimate value of 1.0, as in the case of perfect

clamp-proof clothing, C=O. Fureher, in Chapter 7 the substantial value of perme-

ance ratio may be approximately obtainecl by the clata of some experiments.

  6-4. Summary

    Estimating the rate of sweat evaporation, the authers hac ve proposecl a simpli-

fiecl equation ; the wetted area ratio, the approximation of saturatecl vac por pressure

ancl the permeanee ratie of clothing.

Page 21: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

92 Kan-ichiro IBi,x)L(oTO and ”E(”asunobu NISI-II 20

times that of the basal rate. There is a re.crion

of temperature, 25 N290C, over which the

metabolic rate is almost constant. ’When the

ambient temperature falls, the beclily heat

procluction rises to maintain a constant tem-

pe,rature, ancl when the ainbien.t temperature

rises the be(My heat precluction rises alse,

due to the increasecl rates of chemical reaction.

    /Met. an(1 R.M.R. (relative metaboiic rate)

care the stanc!ard expressions of metabolism.

    Here,

            Chapter 7. Thermoregulatory Mechanism of Man

  ”i-1. Body Heat Production

    Under the basal metabolic condition it is said that normal man produces,at least

40 kilogram calories per unit of skin surface area per hour, and in viole,nt exercise

the metabolic rate can be as much as 10 to 16                                             κ0σ//,m2・かノ『                                           Joa

蓑,“

;} 60

ミ40

 Xux     \勉

\遮こ\こづグ               h-O’

2グ ジ        ノρ        2P        ヲβ        ijO ev

                ot7 temperature

Fig. 7-1. Variation oi bodi}y heat

    production 〈Houssay・, Human

    PhysioL, p.518, McGraw一田1)

        ・M・・一・・[kcal醐・nd R・MR・一二9器器1譜。壷

    Comparing the two indexes, R.M.R. is used as aR index of intensity of manua!

work, but it cloes not indicate the metabolic rate clirectly.

    The Met. value for typical work categories is shown in Tac ble 7-1.

Table 7-1. rvlet. vaiue t’or typical xvorl〈 categories

sleel).ing,

Slttln⊆ア   e

seclentary wo.rk

Iight “Tork in a standiRg

1)OSture

-Tall〈ing 4・ knYhr

      5.C’ km!hr

      5,6. kni!hr

(“Tith 2 kg. “reight)

Met.

O,8

1.C)

/.6’

ttt.e

3.0

4.0

6.C

kcal!m2’・hr   t

   40

   50

   80

   100

   150,

   200

   300

  7-2. Body Heat Loss

    The heat generatec/ within the body is baianced by losses to the atmosphere

as radiation, convection, evaporation and in xvarming food ancl inspired air, but

the proportion of heat losses by the three principal ways to the total heat loss is

large ellongh to neglect the others. The rate of heat losses by radiation, convection

and evaporation depends on the condition of the environment and the amount of

work. Fig. 7-2 is an example, clerivecl from Fahnestock’s report.5)

Page 22: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

21 Thermai Sensaticn Analysis and its Application to Air-Conditioning 93

  7-3. lnsensible Perspiration

    Insensible perspiration is an imperceptible

loss of water through the skin ancl is clis-

tinguished from sweat secretion.

    At the rate of approximately 23 grams

per unit of skin surface area per hour, bet-

ween 800tv!LtOO grams of water are evapo-

rated by insensible evaporation every 24 hours,

and this evaporation accounts for one-quarter

of the heat loss in a resting subject. This

fact is very important for the analysis.

    Insensible perspiratien is greatest on the

palms of the hands, and the soles of the feet;

next on the bacl〈 of the hand, the neck ancl

the face: and least on the remainder of the        ,

bo(ly surface. Thus, even with clothing, the

rate of insensible perspiratien is niaintainecl

at a constant value.

  15a

ミノoo

g

艶ミ

5V

Kcal/m2・hr

讃が

x//

olo

lefi

  貼

  E15誌  鳶  ミ

  鳶

50ミ  tii

  登

25 ¥

  戟

  7-4. Sweat Secretion

    When. the ambient tempercature rises the

sweat secretion begins over all the skin sur-

face, especia11y at the exposed parts, with the

exception of the palms of the hands and soles

of the feet.

    Fig. 7-3 shovkrs the relation between

evap・rative hea貝oss of man at rest and

ambiellt tempera加re, derived from Winslow’s

report6), and we know that when the ambient

temperature rises above 280C there is an i

  rvi-5.

    Analyzing Gagge and Nagata’s

ratio of clothing, defined in Chapter 6,

    (1) Gagge’s experiment’)

    Gagge and his associates presented data

was made with two clothed and four nude

The standard cloth1ng employed consisted

a cotton shirt,

coat and a fu11y }ined vest.

    Fig. 7-4 shows that in an average

clothing upon

  0  /      2      ヲ帽,0

                   個θご。か。億〃

           F三9.7-29

Variation of the rate of each heat loss

60

婁・・

も。

妻・・

?o

/0

龍σ伽2・ゐノ

肋儒htimidi4・ x 〉・ 7e’ e/”

 0  5ノー一75哩己島

 . 50s・s>

e

e

        o

        計

     ㌔。’

  ㌃ 葦。ス    コ

」  。 ・

一 一

  ・ ●   ●  ■

、事● ・ 

o ●x

e

o

mcrease

  OJtmut 30 40V                   ambient fempetature

Fig. 7-3. Variation of evaporative heat

       loss with ambient temperature

  m persplratlon secretlon.

Effects of Clothing on Sweat Evaporation

                         experimental data, the magnitude

                             become eviclent.

of permeance

                           on sweat evaportion. The experlment

                            subjects in a semi-reclining position.

                         of a two plece suit of cotton underwear,

socks, shoes ancl a darl〈 gray single-ply suit with three-quarter lined

                          room sltuatlon

sweat evaporation was almost negligible.

the blocking effect of

Page 23: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

94 Kan-ichiro iBAMOTQ and Yasunobu NIsH工 22

Kba伽7・hr

き一g“

F.80

.R

C〉“

ce.)s 60

ts“

}t

as@40

20

 o :・ nude

 X;0/bあθ4

rθ/7tlve hu〃/Zガピン」40~50%

afr ifefocity ; /0em/sec

              。。5ゆ蝦粟細安

x×× xx x××

  x

x oo

o

o  x

x

o

x

                     f5 20 25一 30 35 40 eC                                              卯θ如ぎ惚temperature

                 Fig. 7-4. Effect of clothing on sxveat evaporation-a

    (2) Nagata’s experiment8>

    The sweat evaporation of four subjects in the nuc!e and with various types of

underwear was observecl.

    The test room was maintainecl at approximately ・10eC clbt ancl 50% rh respec-

tively, and both radiant heat and air motion. were not sensible.

    In that experiment the amount of secretecl sweat vLras 200N250 grams per

unlt tlme per person.

    Table 7-2 shows that when the rate of sweat secietion reaches several times

as much as the normal condition, only 10・一v!5% of secretecl sweat remains in・ the

clothlng or drips off.

               Table 7-Z. Effect of Clothing on Sweat Evaporation-b

inudity ’1 iinen heinp hemp & rayon i cotton 1 nylon

...ρ塑9璽g“..景.寮賦....

secreted sweat(%〉 9. ,O.:1

81,8 84.L) 87.6 86.2 88,:)

   e....M..,{,...p.ro一;.a..,1.e-d一...g..w...e,..Fl,}.1ww..一.一..

                    (90) li loo

secreted sw.一dripped sw.84 89 88 89 9.!

    Further, Nagata observed the sweat evaporation on the subjects with underwear

and outer garment.

    The test room was maintained at 30eC dbt ancl 75・一v85% rh respectively.

Two subjects were clothed in various ty-k es of clothing ancl were made to walk

around at a rate of thirty steps per minute for two hours. ln this test the amount

of perspiration secretion was about 150 grams per unit time per person.

    Table 7-3 shows that when the subjects put on damp-proof clothing, they

Page 24: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

23 Thermal Sensation Analysis and its Application te Air-CQnditioning 95

on1y blcck about 2090 of the secreted perspiratien.

    Gagge and Nagata’s observations suggest that the vapor resistance of light

clothing ’may be neglected ancl its permeance ratio seems to take the value of

nearly 1.0.

Table 7-3. Effect of Clothing on Sweat E・vaporation-c

Cl C2 C3L

C4evaporatecl sweat              (%>

secreted sweat76.4 78.0 78.0 81.4

C5

E

86.0

      The five types o’f outer gfarmients used were as follows:

         Cl: a knee-length vinyl raincoat

         C2: a knee-length v・inyl raincoat vvrith very fine holes

         C3: a waist-length viny・1 raincoat

         C4:awaist-length v三nyl ra三ncoat wlth a spedal rift in the})ack

         C5: a knee-length cotton coat

  7-6. Heat Balance EquatioR ef Man

    The expression of the ecluati6n is slightly different in each case of nudity and

c}othing, because of the existence of heat and vapor resistance.

    (1)

    In

powers

    Generally,

(7-2).

an unsteady state heat exchange.

    As mentioned in Chapter 6, the vapoy pressure over skin

air can be expressecl simply by

        瓦一α・鶴+b

and

        瓦一(A・T,1+B7隔+C)・ρ.

            where y,, .== relative humiclity

    Substituting the above relations lnto Eq. (7-2) we get

        H一α,.・仏一:τD+a,,・([Z”’s rm Ta)

where

Heat balance equatien of the nude man

a steacly state, t’i e heat produced within the body is balanced by cooiing

of the envirenment as radiation H. convection H. and evaporation H,

 .五τ罵1=乙,+五乙,+瓦                                       (7-1)

    J・=αヂ(7.ls-T,.)+αバ(T,・一7う、)+β・(疏一.ε、)・ε            (7-2)

     where H== prcclucecl heat per u.nit of skin surface area per unit time

             T, = mean skin temperature

             P, 一一 saturated vapor pressure at T.,

             P,, =:pac rtial vapor pressure in the air

              e == wetted area ratio

       the term of heat storage is joined to the right-hand side of Eq.

The authors clo not deny the existence of heat storage, but it appears as

surface and in the

(7-3)

(7-4)

(7-5)

Page 25: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

96 Kan-ichiro王BAMOTO alld Yasunobu NエsHI

ど1. 痺ソ+α・ε・κ)・α。

ノ,、」些焦狸・‘14二τ妊B.T・・土9一々楓

                1十aiE+ rc

P ==: rc ’ cr.

(7-6)

(7-7)

(7-8)

24

thar

1

ac

1

a・E+K・ac

Pa 一b

0

Hlll・舳伽

Hbi伽・伽

HIlt’ Eyaporotfon

Fig. 7-5. Tiiermal netxv・ork ’for Ec/,. 〈7-5)

    (2) Heat balance equation ef the clothed man

    When clothed, the following equations may be obtained.

       H= crr’(Tc ww Tn)+crc’(Te-Ta)+g” ’P’(Rs-Prt)’E (7-9)

and

       crr’〈Tc-Tr)+crc’(Te-Ta) mm ”1””’〈Ts-Tc) 〈7-10)                              Rc

           where T. :== surface temperature of clothing

                 R. = heat resistance of clothing

and therefere,

       仏取∴墜碗ゲαい7し)+葺πf㍍;凝7、一勾 (7一”)

where

       御斗+・一ζ・{蜘・・’+州・・tT   (7一・2)

       f酒孔±蟹ゑ溢泌盈(璽・±磁巳蝶土B二・.辺型塑臼3)                                 {1÷R,,(α、.+α,,)}                      1+ cz ・e・ ig ・4・

The above heat balance equations can quantitatively evaluate each component of

the thermal environment, and will be applied in determining the comfort inclex.

Page 26: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

25 Thermai Sensation Analysis and its Application to Air-Conditioning 97

震   .ミ,

薙lii Radiatiqn

ト樋・繍〃

Hli・i E・ap・伽

Fig. 7-6. Thermal network ’for Eqs. (7-9) and (7-10)

  7-7. Summary

    In expressing the heat equilibyium between nian ancl thermal environment with.

the engineering methGd, the physioiegical characteristics of the human were taken

into consideration. Then, on the basis of the above the heat balance equations

were proposed.

                              References

5) Fahnestock, )ivl. 1〈, et al. : Comfort and Physiological Response to Worl〈 in an Environment

      of 75 F ac nd 4590 R.H., ASHRA}“一’. Journal (!963 March), p. 25.

6) Vgi.inslow, C. E. A. et al.: Physiological. Reaetion of the Elumftc n Body to Variou$ Atmos-

      pheric Humidities, Arn. J. of Physiol. Vol. 120 〈1937) .p, 290.

7)Gagge, A. P. et al.;The In伽ence of Clotl翻g on亡h.e Physiological Reaction of the Human

      Bocly to Varying, Environmental Temperature, Am. J. e’f Physiol. Voi. 1.24 (!938) p. 30..

8> Nagata, H.: Evaporation of Sweac t on Clothecl Subject, Jap. J’. of 1’一lyg. XJol. 17(3) (1962>

      p. !55.

    Chapter 8. Experimental Verification of Heat Balance Equati,on

  8-1. Precedure

    The skin temperatures and thermal sensations of two ma}e subjects, ages 22,

were observed. The (letac ilecl physical clata en the subjects are summarizecl ln.

Table 8-!.

    The clothing employecl was as follows: a) nucle with bathing trunks, b)

Table 8-1. Physical data of the subjects

subjectheight

,.(,.n.1.」,..

weight i surface area

鰯、….L...(熱・)physique

1) 1,67 54 王、.66

1

t slender

 inetaboki¢ rate

(3 measurements)  Clsf...g!.(in-2,.,r.!.,.,x..L................

50.3

s !.60 58 1.61 [ sliglitly fat 60.7

Page 27: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

98 Kan-ichiro IBAMoTO and Yasunobu Nlspa 26cotton underwear and underdrawers, c) cotton underwear and underdrawers fully

saturated with water.

    Skin temperatures were measured with a copper-constantan thermocouple and

the mean skin temperatures were calculated by the equations

        mean skin temp. ==: O.1 × forehead +O.05 × forearm+O.05

                          >〈 back of the haRd“O.4×chest+O.2’

                          xthigh十〇.2×leg 〈8-1)

and

        m,an ski。、。即。、 w。,t。d p。,、一.触興吐gh釜㌻.±晦的±.!皇銭田(8.2)

                                                   4

AIlalyzing the exper玉mental data, some therma.1 factors were assumed as foi.工ows:

    1 ) convective and evaporative heat transfer coefficients are calculatecl! based

on llqs. (2-2) and (3-!2) for the cylincler of 3〈) cm in diameter.

    2) racliant heat transfer coeflicient is the va}vte of 5 [kcal/m2・hr・Deg].

    3) heat resistance and wetted area ratio of the subject with fully wette(1

clothing are the value of R.==O [m2・hr・Degfkeall and g”一一1.O respectively.

    4) metabolic rate of the subject in. a seated position is the value of H==’50

[1〈calfm2・hr] 〈1 Met.).

    5) permeance ratio is the value of (;=!.0.

  8-2. Experiment A

    The heat balance equation suggests that, u.nder very hot circumstances where・

even radiative and convective heat fiow is allowed into the body, maB would feel

cold so/ong as capacity of the env玉ronment to accept£he evaporation is sufHcien亡ly

large.

    The test room was maintainecl at 47.40C dbt, 2090 rh and O.7NO//.8 m/sec air-

movement respectively, and the subjects were in a seated pesition.

    From Table 8-2 we know that in v・ery hot environments, the irnpssecl heat

load cannot be compensated for by man’s thermoregulatory ability, burt the cooliRg

                       Tab!e’ 8-2. 1)ata of Experiment A

condition of clothing dry, O.3 Clo. fully saturated, O C]e.

watted area ratio E == O.35 E=1.0

sweat secretlon much, but surfaces are clrying none

mean skin temp.

Skin tel丁」P. frQln 難eat

balance equation

36.50C 〈foreheacl ; 35.4CC・, back

 af hftt nd ; 37.4“C)

33.00C (forehead; 39. .40C, back

 of hand ; 40.2LC)

3!.30C (average of wetted parts)’

36.5eC (where c一 ’L:O.3’5) :’51,60C (where E == 1.0)

thermal vote very hot cold

Page 28: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

27 Thermal Sensation Analysis and its Application to Air-Conditioning 99

effect of the evaporation of supplied water is large enough to maintain a heat

equilibrium. This fact may be of some value for improvlng sports conditions or

industrial environments.

  8-3. Experiment B

    The higher the velocity of the air flow, the more the evaporative heat loss

increases, but in the case when ambient temperature exceeds the skin temperature,

the convective heat gain increases also. When the heat loss ancl gain offset each

other, the mean skin temperature is scarcely concerned with the air movement.

    The test room was maintained at 34.40C dbt and the surrounding radiant

temperature, 8590 rh and !.5, 2, 3, 4 m/sec air-movement respectively.

    The subjects were in a seated position and were clothecl with underwear and

underdrawers fully sa加rated with water.

    In spite of changing the air-movemens from 1.5 m/sec to 4 m/sec, the clrop

in mean sl〈in temperature was only O.40C. Furthermore, the differeBce between

experimenta} data and calcu!atecl values was sufficiently small. At that time the

thermal vote of the subjects gradually changed from ceol to slightly cold.

薪蓬

N.S

蓑・3

sミ

32

3i

ooκ〃/∂ねゴ

!ηθ(泌rθσ

肥  加ノδ でθ!η.

1・5 2

Fig. 8-1.

            3 4m/s                       Oノ1’ 1/θ/001≠ン

Variation of skin temperature

  8-4. Experimaent C

    The relatien between measured skin temperatures and calculated values was

examined. 26.4N38.40C clbt, !7N39 mmHg humidity, and O.7tN・4.O m/sec air-

movement, constituted 46 test conditions, and the surrounding radiant temperatures

approximately coincicled with the ambient temperature.

    The subjects were remained seated and put on underwear and underclrawers

fully saturatecl with water.

    In Fig. 8-2, if the heat ba!ance equation ls idealistically precise, each dotted

point must be superposed on the sdlid line, and should approximate its location.

Page 29: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

lee Kan-ichiro IB.tu,forro ancl Yasunobu INISI-II 28

  361

ミミ

聡34t-ny

{ 32℃t

B・ts

  30

2B

26

           242ftt6 2s 30 32 34 360C                                      α伽后加.〃θση轟ηte!npe!uture

         Fig. S-Z. Comparison between experimental data and calculated values

  8-5. Summary

    The experiments have verified that calculated skin temperatures were approxi-

mate to measure6. values. ’£hus, it may be saicl that the heat balance eqnations

are rational.

   oOOo

モ偽

Oc◎

o  o

@ 80

o  O    o潤@ o

@oOo

o

OD

o

           Part III. Development of Warmtk Diagram axxd its

                    Application to Air・Conditioning

    On the basis of the heat balance equation “the model skin temperature”, that

expresses the therm//一t,1 sensation, i/nay be clecluced, ancl to simplify the calculatin.a

process of mQdel skin temperature“the War胆th Diagram”and“Comfor由etector”

may be propvsed.

      Chapter 9. Thermal Sensati.on and Model Skin Temperature

  9-1. Definition of Comfort

    From a engineering Po三nt Gf view the authors de飴e‘‘comforゼ’as follows;‘‘the

condition in which man is emitting the entire produced heat steadily at the

optimum ancl constant body temperature without any additional aid of a thermo-

regulatory mechanism”.

    The following condition may be assumed to be a comfortable condition.

Page 30: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

29 Thermal Sensation Analysis and its Application to Air-Conditioning IGI

Envirenmental side :

    ambient temperatare (surrounding radiant temp.): 27.50C

    relative humidity : 50%    air paovement : IO cm/secPhysical side :

    clothing : OCIo.    work rate :IMet.    mean skin temperature : 33.00C    percentage of evaporative heat loss : 259(o    (by insensible perspiration)

    If the wetted area ratio takes the value of O.16, the above physical conclition

is realizecl at the above thermal environrnent. This relation suggests that in

a comfortable condition without perspiration secretion, the wetted area ratio of

the human body may be maintained at the value of O.16.

    In other worcls, any environment, at which mean skin temperature is 33.00C

with E=O.16, may be assumed to be a comfortable condition.

  9-2. Expression of Thermal Sensation

    In hot or cold circumstances men are obliged to set the thermoregulatory

mechanism to work in order to maintain a constant bocly temperature. Then, the

quac ntity of the expended effort is concemed with the thermal sensation.

    To extract the quantity of the expencled effort we consicler “the moclel man”

having the same thermal characteristic as that of the man in the comfortable con-

clition.

    In aBy environment, the difference between the skin teinperature of moclel

man and the comfortable skin temperature of 33.00C seems to be clirectly related

with the quantity of the expendecl effort.

    The authors propose to express the thermal sensation by the following defini-

tion; “the difference between the moclel man’s skin temperature, in. short, the

model skin temperature and the cemfortable skin temperatuye of 33.00C expresses

the deviation of the sensation from the comfortable condition.”

  9-3. Relation between Thermal Vote and Model Skin Temperature

    The relation be£ween the thermal sensation and the model skin temperature

can be examined by the subjects’ thermal votes.

    The test conditions were as follows ; room temperature : 20・一一・490C, humiclity :

10・一v18 mmHg, air-movement: O.!tv l m/sec, work: in a seated position (1 Met.),

clothing: in the nucle or with underwear and uBderclrawers (O.3 Clo.), subjects: D

and S.

    The results were summarized in Fig. 9-1.

  9-4. Teinperature-Humidity Chart and Model Skin ’remperature

    OR the basis of }arge scale experlments, Nevins and his associates proposed

“the Temperature-Humidity Chart”.9)

    Test conditions were as follows; room temp.: 19N280C (9 dbt), humidity:

Page 31: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

102 Kan-ichiro IBAMOTo and Yasunobu :K4TlsHf

gN叢

R

  ゆ  c45

43

41

39

37一

35

33

31

29

21

25

23

o

o’

o’

o

o

曾。

o o ⑳

わ o

, o  o

:ミ :ミ

9    b

fo sミ  さく)   q)鳶   〉

 Fig. 9-1.

、へqo

xD x

Q一一一

x電く.偽

ミも

8

孕り

((29 marks were derivediT,from Nevins’ reDort

k)

’1“hermal vote and model skin temperature

           i・一.irom Nevins’ report)

15tv85 cr/o (8 rh at each of 9 dbt), air-move-

ment: assumed to be 15 cm/sec, work: in

a seated po$ition (1 Met.), clothing : standard-

ized clothing 〈O.52 Clo.), subjects: 360 male

and 360 female students raRging from !8 to

23 玉n age.

    From the thermal votes of the subjects,

the following equation has been propos6cl.

額vミ

ぬミ

Table 9-1. Comfort vote $eate

value of Yc thermal s.ensation

1

2

3

4

5

6

7

coEcl

coo}

slightly ¢ool

comfortable

s難9htiy xxrar工n

’warmhot

30

Page 32: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

31 Thermal Sensation Anftc lysis and its Application to Air-Conclitioning 103

        Y,,一一!0.749+O.183・T+OOOO17・T・U (9-1)

            where Y.=estimated population mean vote for males and females

                        combined in equal numbers. Comfort vote scale is

                        shown in Table 9-1

                    T = dry bulb temperature OF

                    H=:: relative humidity in percentage

    Nevins’ comfort lines and authors’ equal model skin temperature lines are

given in Fig. 9-Lt.

         oC

       30

cet

tsb 26

g茎

奎22

/8

ノ4

       fO

         20 22 24 26 28 30 eC                                                  amblent temperafure

               Fig. g-2. Comfort line and modei slcin temperature line

  9-5. Model Sl〈in Temperature as a Scale of Warmth

    From Figs. 9-1 and 9-2, we can recognize that model skin temperature is

closely relatecl with thermal sensatien.

    The model skin temperature dees sy.nthetically evaluate many thermal factors,

such as ambient temperature, surrouncling radiant temperature, humidity, air-move-

ment, heat ancl vapor resistance ancl emissivity of clothing, work rate and physical

properties of air. So, the model skin temperature may be used as a ratienal

comfort index.

Page 33: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

le4 Kan-ichiro IBAMoTo and Yasunobu NlsHI 32

  9-6. Summary

    By means of a engineering method, the human thermal sensation has been

expressecl with the model skin temperature that defined by the authors.

                                  Reference

  9.) Nevins, R. G, et al,: A Temperature Humidity・ Chart for Thermal Comfort of Seatecl

        Person, ASHRAE J. 〈1966, April) p. 55.

            Chapter 10. Warmth Diagram and its Application

  le-1. Principle of the Warmth Piagram

    K. lbamota, one of the authors, first proposed the principle of NVarmth

Diagram.

    Radiative and convective heat interchange Hn are expressed by

        ffD ==: crr’(Tc-Tr)+a’c’〈Tc’Ta) (!0-!)

            ;(α,,+α、.,)・(ア1,一丁,})                               (10-2)

            where [zr, == 一9一(一!:一1一一Zl,’一L一等一一q・i;・一:一一7…[lfi,一 == operative temperature

                             αブ十αc

    And transformed to

        T・・ :== ”cr”t7”’(Tc-Tft)+Tc一”ll’ 1””{?”’ (10’3)

              α,・                 αノ・

Then, Eq. (10-3) can be expressecl in Fig. 10-1.

               lr    ぺ

w    認る%)

@      石一佑仰

S5σ @       4プ

砺μ’

V     レ

@   ク

                 eHD/a.一 Ta fo fc

                   Fig・10-1。  Schematic expression of Eq.ほ0-3)

    In Fig. 10-1, the line V, expressing the air-movement, is characterized by

the angle of e==tan’icr,,/cr. The point M expresses the operative temperature, but in

the case of the heat production being zero it gives the surface temperatgre of the

Page 34: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

33 Thermal Sensation Ana}Ysis and its Al)plication to Air-Conditioning

body.

    From the above relation we get the following concrete scheme.

                      alrフηotremθnl/加θ

虞ミ

ー一¥.

ミs9麸

   説試

0

                              CL FL                              ミ       ミ

                              as q                              一+・J           「り

                              st.) M                              Cこ           Q                              碧   曼.

                              ミ        こ}                              b         (つ

                    Fig. 10-2. Principle of warmth diagram

  le-2.” Graphical Solution of Mede! Skin Temperature

    (1) For the nude model

    In a similar way as Eq. (!0-3), from Eq. (7-5) we get

        T、.一.鉱朋。(Ts-Tf、)+Tr.旦

             α,・               αノ・

While, substituting the following Sprupg’s formula, with respect to

bulb temperature, lnto Eq. (7-7) we get Eq. (!0-6).

        瓦峨・一三瓦・・(7’”,, 一 T,,,)

         o io 20 po 40 Ta

le5

Fig. 10-3. Graphical solution of rf’a

  (10-4)

wet and dry

(10-5)

50 ZC

 o

   ミ

4葦,量

i2 h“早fg

16毫

20壽

 t Deg.

Page 35: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

106 Kan-ichiro IBixMoTo and Yasunobu NISI-II 34

      T・《百振)・{A‡瓢・嘘:麓繊蒲一、.。.(c一∂)}

                                                                     (!0-6)

    £q.(!0-6)inv・1ves s・m・v・・i・bl¢s,・u・h・・T。, t・T,、一丁,の君、、,・and・・王f

,・m。v。,i。bles a,e丘xed, as・P,、、一!・tm,’c・一一 2.2・nd・==O.16, the va・i・bl・T”,, can b・

graphically solved with Fig.10-3.

    (2)For the do重hed modeI

    The Eq.(7-!!)can be transformed to

         z..=..生(T,s・ 一 fra)孤_...理       (・o-7)

              α.!.             α.,・

where

         U’・…{・+R、,(・,・+・,,)}・H        (・0-8)

    The algebraical symbols;「1’,、,9i,。 and.1,,1,t involve the heat resistance of clothing

R,respectively。 Hence, diagrams should be constructed, treating the variable R,,

as a parameter.

    Further,7■。 and H’{n.v・1ve the variableα、,. In an average ind・・r situati・n,

the var1ation ofα、, a狂ects H’in several areas, but has little effect on 7■,、.

             ...            10-3.War瓢th Diagram            ドぞ  ヨ  ご フごド ワ  ぴダこしマリも リピ

      、.∫   The com・le亡ed Wa「mth Diag「ams a「e

      い                 譜                                 、㌦こ:摯

                                f群

fA

 ’ltt.1・ fnodei skir] ft”,np.

}’lf 1 ; therrvai str’fisoitbn

t’:

                        G),

            ee.difo4gCtl’

               /etpp

Fig◆10-4。 Procedure for(1eterm三ning

   model skin temperature or thermal

   sensatlon

一一ゥ一《蓼南一.r。

      燭婦          鰯吻..

shown in Figs. 10-5・一v!O-11.

   (1) Select the proper diagram, acc,ording to

O atmospheric pressure, @ Clo. value and @ emis-

siv三ty of dothing.

   {2) Draw vertical iine from inter$ection ./’1, of

@ ambient temperature and @ relative humidity (or

(S)” clifference bet“reen T(t and T?t・).

   (3) At @ surrouncling radiant temperature

clraw horizontal line; thus get intersection /’i

   (4) Passing through intersection B. draw the

e air-movenient }ine Y of slope 0=’ tan’i cv,Vcv,・,

   (5) From the intersection C of line V and (g)

一g〈’zl woyk rate & air-movement 11ne of slope 450,

draw vertical line clown“,ac rd and deterniine niocle}

skin temperature or thermal sensation.

     If one adheres to the above regulations

the Diagram can be used in many ways

to obtain other thermal factors.

Page 36: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

35 Thermal Sensation Analysis ancl its App]ication to Air-ConcHtioning 107

eC

se

40

gq’

.S.一

曇・〃

,4

ノ0

f

Ofi

鉱%

     {lhp¢

       ee/o       /0

      ?0

    う

   毫甲憲巳

//

/0tm,, iVude

・//

/tt.

ド/

///

//

/§§∠墾§

過“

/ao%

/,

f-

g/a 20 so

4ク

0

/O

ff

//

1タ〆’

%砺、》

   暢%ohcP 90

 彩影 ♂

穿1

0

4

 岐sE”

 .6

12

1ti tS

20

Deg

Fig・ 10-5. Warcmth Dirs.ram;latn)., nude

Page 37: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

IG8 Kan-lchiro IBAMo’ro andi Yasunobu Nls!一II36

eC

50

 1.o

:t

E.

遷§ヲ。ミ

薯foS

Dミ

 2E

/0 t一

oi

啄、

忽%

  駕

 喜慧

?0

cr./.

!ov

ノatm.,05G/0.

//

//

    //

     誉

  諺濃ett//

二㌘!

0  じ ノ,  /./

ノ  客、   . /tw・ /D1

.p狽

 z/rsxzぐう/ ・1

.・」ii{’1

/f i /pt,  f/

極奔/./暢%が

   c)  /

   Oo「T       g      8穂

tftosgx“NX“t/76.:1’1

撃一{20

Peg

Fig. 10-6. X)Varmth Diagram; l atm., O,5 Clo.

Page 38: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

37 Thermal Sensation Ana}ysisland its Application to Air-Conditioning le9

eC

50

40

g謹

ts’

C.‘“

刀C30

ggL

8

20

》グ

05

啄、

飽媛

 毫Nq

1

eo

1

1atm.. 1 Cfo.

   7

x x

ミ/9b

10 20 0 4a

0づ

一eD6.&ti診

%隔㌶

   x・h“

   翅箔05〃忽

30一・

劾ド

4

  deE.

  s・

12

1誌

2a

/Fig. 10-7. Warmth Diagram;latm., I CIo.

peg

Page 39: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

11e Kan-ichiro IBAMo’ro and Yasunobu NlsHI

S..

:t

sgx

鳶ミヲ。ミ

.ミ}

g:t

10ど〃ワ20’o.

℃50

飯匿駕

4・

鯨珍多ψ

40\ち申 o}

NO亀 o

ヲ。

20 評

   三

§

  》@誘ソ

ミ ミ鳥   もQ   9 垂鉢00

/0         2〃 3〃 4〃

 /〃%   o”ぢ

o吻 4

β㊧

β

惨贈

譜 ノ2

㍉鰯% / 璽鱈16

駕匁珍i 暑1

2〃隊 漕捌綾δ 鞠

r

Fig. 10-S. Warmth Diagram; !atm., 2 Cio.

気ミ

ミミ

む婁1

38

Page 40: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

39 Thermal Sensation Analysis and its Application to Air-Conditioning 111

50

  40:t

gこミ

這30g...

ge.

8

20

ノ0

0

/・畝a5αα,動ノ∬励顔

咳、

覧駕

蕊亀

診一茄

  鶏Nる

巳。

 く評

u

 今回証》

 譜吹@、 、ゆ 轡 、’

層  1

§ミ ミ

0 ノ 20 3ク 40

  1鋤   050τ

〃励 4

φ β

ψ

〃 謎 γゆ

.蝉12

%%診 軍 16

纏 隔%珍調

∫汐

2〃

∂ 勿

/縛

s導

Fig. 10-9. Warmth Diagram; !atm,, O.5 Clo., emissivity O.5

Page 41: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

112 Kan-ic}.iiro IBi,xMOTO and Yasunobu LN]sl…II 40

Rミs・

sミ

8g

勿σ畝/0/0..

ρβ

  竃@  葱    駕

@    駕@     券      ウ

@   2@ §毯

@                         試

@   , §ぐシ1茎、 ㌦一剃轟一暉」一  ”Oo 10 2〃        3ク        4〃 5〃℃

誕吻 1

o

勿づ

惨評 紳

,    煙

@矯㍉診@%

く婁華

1箋劾% i

20

Q4

マ彰

% ≧多   o

@   /

gs,

s“.

jくコ.

誌}

Fig. 10-10. Warmth Diac .crram; L,・”3 atm., I CIo.

Page 42: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

41 Thermal Sensation tX, nalysis and its .gXpplication to Air-Conditioning 113’

.C

50

 40ミ

ミミ

奏3・

sミ

8

20

ノa

豚、

勉駕ざ

12 afm., /cfo.

  /

ob

 忌”C一f.)

…属き

gg

諺禰 x”T“

s“

Y

漣Xx

γ甥ω

/a 2a / 30 40 so rc

/?ti

//

,/7e5!ki2EE..2

go

%縁ゼ彰

難評

ゼ譜

調/

4 軋

 s6 S.

“筆

 書J6

0

Oeg

Fig. 10-11. NVarinth Diac gram; 2 atm., I CIo.

Page 43: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

114 Kan-ichiro IBAMoTo ancl Yasunobu NlsHI 42

  10-4. Evaluation of Therrnal Environment with Warmth Diagram

    By the use of Warmth Diagram one can easily evaluate the condition of the

thermal environment.

Exa皿p正e 10-1

    1n a room at ambient temperature: 250C, surrouncling racliant temperature:

200C, air movement : !0 cm/sec, a man is in a seated position (! Met.) with 1 Clo.

cloth三ng.  If the relative humidity takes the value of 20, 40, 60 and 90%

respective}y, the comfort sensation in each case may be estimated.

Solutioiz

    Using Fig. 10-7, the following relatien is derivecl.

                         Isi’c

              s/igh t/y vearm 35

                        ヲ4

               comfortabfe 33

               ’” 32

              s/ight/y coo/ 3i

                           20 40 tiO 90 ”/o                                           re/atlve h〃〃彫か

                Fig. 10-IZ. lnfluence of humidity in the substantial

                           room sltuatlon

    As show.n above, in a substantial room situation the effect of the humidity to

comfort sensation is almest negligible.

Example 10-2

    1n a rocm at ambient temperature:35℃, surrounding radiant temperature二

300C, air movement: 10 cm/sec, a man is in a seated position (1 Met.) with O.5

                    fs ec

                                                         1yer/ hot 41

     40

  hot 39

 吻7〃η37

     ヲ6

         20 40 tiO 90%                            畑/0加功σ!η!(塘

Fig. 10一一13. lnfluence of humidity in the hot environment

Page 44: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

43 Thermal Sensation Analy・si$ ancl its Appiication to Air-Conclitioning 115,

Clo. clothing. lf the relative humiclity takes the value of 20, 40, 60 ancl 90e/o

respectively, the comfort sensation in each case can. be estiinated.

Solt(.tio7t

    Frorri Fig. !0-6, the result is given in Fig. 10-!3.

    1,n the hot environment, the humiclity advances to one of the esscntial thcrmal

factors.

Example 10-3

    A man is in a seatecl position (I Met.), with I CIo. clothing, uncler the

atniospheric pressu;“e of 2/3, 1 and 2 atin. respectively. The other therinal factors

for tlrie comfortabie condition. n/iay be clecicled, wiLere air movement is flxecl at

20 cm/sec

.S’fo/ution

    From Figs. 10-10, !0-7 and !0-!!, we get the following iliustration.

                   oC

                  28

ミミ

dj 27気ミ

起26.ミ

bミ

書253/

自24ご

gt 23

g

22

2/3 atm

/ otm

2 atm

                  2」2dito bo so loo o/e

                                     re/atルθhumidity

             Fig. 10-14. Coiniortable condit’on and atmospheric pressure

    As shown in 1一”ig. 10-14 uncler the higher atmospheric pressure region, inan.

feels slightly warmer, due to the reduction of the evaporative heat transfer coeflicient.

  le-5. Summary

    The authors have proposed the Warmth Diagrain for eva}uating the condition.

of thermal environment or estimating the thermal sensation., and have shown its

effectiveness by solvi.ng. some examples.

Page 45: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

116 ’1〈an-iel“ro 1.BAr ・lo’1’o anc! ’Yasunol)u NI$1・11 44

                      Chapter 11. Comfort Detector

  11-i. Model Man

     In the existing methods of heating ancl air-conditioning control, the conditions

of the thermal environments have been specifiecl in terms of ambient temperature

only, or of the temperature and humidity. However, considering the complexities

of the thermai sensation the defects of the usual methocls are apparent. For

cletecting the comfort sensation. directly the authors propose the rationai metheds.

    The heat balance equation, that induces tlte model skin temperature, can be

realized on the folloxxTing “moclel man”.

    !ユ.) The model man is the circular cylin.der of 30 c加in diameter an.d 90 cm

i.n height, emitting the same rate of heat as man does, per unit time per unit

surface area.

    (2 〉’ !6 percent of the entire surface is completely saturated with water.

    〈3) The surface is covered with some mac terial having the same heat and

vapor resistance ancl emissivity as that of clothing.

    The inner temperature of the model man indicates the model skin temperature

directly.

    Further, in an attempt to make a smal}er scale model, the sensitivities to each

of the thermal factors were found to vary inclependently, so scaling clown may

have causecl the clistortion.

  ll-2. Therma! Sensatien Computer

    By cletecting. each of the thermai factors as an electrical. signal, the model

ski.n temperature can be co.mputecl automcatically.

    Fro.m Eq.(7-5)the model skin temperature 7いs given by

        7ド佑∴7∴・廿..田τ・・ナ.…耳.田       (1且)                   cv,, + tl’.

an.cl t’roni Eq. 〈2-2) we get

        (/t. r一 in!・V” (!!-2)’            where V=::air-movement

    ’xVhi}e, if the temperature of the black cylinder thermometer (a sort of globe

thermometer) is known, the surrouncling racliant temperature may be given by the

e’曹浮≠狽撃盾

        T,.一7∵。+.儀・・...α隔.,,一7悔)        (11-3)                   cu.,.,”

            where TB.,, 一= temperature of the black cylinder thermometer

The above relations can be expressecl by the following computing n.etwork.

Page 46: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

4r) ’S.’1・itrmal Sensation t’iLnalysls ttnd its i‘iLpplicat/ion to iXir-ConditiQnlng

乏)/σck cア〃ηdθr ビθmρ.TB ・e

P,

air-moyementv

u:iet butb temp.

兀シ

ambient temp,

x

F・G

Xm

Y

MULT.

X・Y

4c・c

F・G

一αン弄

  acPs

Ps

X2P.

一ac’ Ta

MULZX

Y

X・Y

Pt = ar

9柵”Ps =” m’

R=E・lt・A

〆ヲ篇ε・lt・fO.5十8)

0ノ区

117

X

al c+atr

dc

arH

P,e

Y

凶Y

ノ宅二1-a5・ε・κ

P, 一M E・re一(C-b)

!言扁1+ε・κ・a

Pp =: ar

島一〃

UNIT

               Fig. 11-1. Computing network for thermal sensatiui’i

  11-3. Sununary

    LMoclel skin temperature can be obtained by inoclel man or by thermal sen-

sation computer, airicl these devices may becoine the funclamentals for rational

autoniatic control of heating ancl air-conditioni.ng.

Page 47: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

118 1〈an.ichiro iBAMQTo and. Y.aSUnobu LNTiS正..1工 46

                               Appe捻.d圭x

    The attthors had presented. soine reports with

These are summarized below.

respect to comfort indexe$.

  A-1. Discon!fort lndex

    The discomfort ir].dex (o,r U. S. ’X’Veather Bureau Temperature-Humiclity lndex)

is one of the simple and comprehensib}e comfort indexes, and is given by the

combination of ambient temperatux”e and wet bulb temperature as

        D.1==] O.72(7’i,, 一一 tl’」,.,) 一im 40・6 (a-!)

            む                   0.1

ミ象

s-

s、くb

ミミ

50

40

30

20

1ts @                 一一一一・一一 E.τ (baS10 0んort♪

、、 @       、、、、       E・ z(OF?  o, f

一一一_ @一一_≡、一〃・__ごoo、

こ一一 こミ≡≡s’≡一嘉こ

へ ヘ

                40 bO 80 /00.%                                              rθノ。加θ加〃グ!か

        Fig. a-1. Relation between 1)isconxt’ort/ lndex and Effeetive ’lteniperature’

    ’XVhile, Fig. a-1 shows the re’la一 3?1

tioii between. Discoinfort lnclex ancl

Effective Temperature, where the

solicl and broken lines nearly coincide

uncler vLTindless circutmstances. Froin

the above, we can perceive that the

Discomfort lnclex is a siinplified

methocl to obtain the E’{1’ective Te.m-

perature under restrictecl conditioi/is.

    Setting aside its non-allowance

for radiation, ac s Yaglou has pointe(1

0utiO) the Effective Temperature over-

estiinates the influence of humidity,

as shown in Fig. a-2.

    As a resu}t it may be conc}udecl

that in the presence of contro}c’d air

inotion, coolecl or heated panel, sig一一

n.i丘can.t error wil/be in.troducecl, if

ミ .iO

ミミ

ミ L’6

ミミ

きレ

ミ竈 26ミミ

T)

・ミ 24

gミ

2態

\  \1!準!5翻/∫

一  一  一

〃醜5々〃ノどゆ

テ.1國

、 一  『∠).∫

\ 一  卿  一 鞠幡撚の\ \ \

\ \

今②  噂

\』。  \‘.,

\i

~\

、 坐慢   な卦    \

翻こ\\

\\

\\

Fig+ a…Z.

 40             cto             θ0            ノ(70%

               .・~~.ott ve humtゴ”自・

C・ornparison bet’“,een 1)is.cotn/fort lndex

ancl the other lnde’xes.

Page 48: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

47 Therinal Senstation .Anal>’sis and its ,tXppllcation ’to .Air-Conditioning

the Discomfort lnclex is usecl for evaluating. the thermal environ.ment.

119

  A-2. Correeted Eff’eetive Temaperature lndex

    Vernon and his associate app}ied a radiation. correction to Effective Tempera-

ture by using the globe thermometer in. place of the dry-bulb temperaturei’U.

Further, in the URited States the equivalent wet-bulb temperature,, as shown in Fig,.

a・一3, was proposed to replace the wet-bulb temperatureiL}.

    The problem in the subject is whether a globe thermometer of 15 cni in

diameter can evaluate the same radiatio.n ef.fect as that imposed on man. Fig. a-4

shows that the reading of eac’n globe thermometer depends on its cliameter.

RC’t

t“一

μ卿加ノη認廊charf

1

Q9

   碗

一一一oa

       乃      奄

         F三9・a-3・

Elquivalent ivet bui.1) tein.perature

20

/0

06

Q

 を

φC印3

xss

       ℃繊も

絶講殊

V =: 50 CM/S

Ta == l s Oc

Tr=: s Oc

ar== 5 Kca//m2・hr・Deg

Fig. a. 一…4・

     la 20 Oe               amblent temp・

1〈eading, of each gJlobe t/herinoniet/er     b w一・ vuv一.L to

    As mentioned in Chapter 5, the equivalent body of the human may be assumed

to be a circular cylinder of 30 cm in cliameter, and in the low air-velocity range,

from Eqs. (2-2) ancl (2-3) we know the correspondintt. sphere of this cylinder

being of 40 cm in diameter.

    In other words the reading of a g. Iobe thermometer of 40 cm in diameter

must be usecl for the proper racliation correction.. The following example shows

that the Corrected Effeetive Temperatures is improved by this inodification.

Example A-1 A room is maintained at dbt:250C, wbt: 200C, air一一moveme,nt:

1m/sec and the reading of the globe thermometer: 300C.

    Estimate E.T, C.E.T (15, Y”) and C.E.T (4()’‘) respectively.

βoZZ’廊0〃

    We fincl 7L, =::38.20C ancl T,(40S”)==3!.70C by the similar manner on IEq. (11-3).

The equivalent wet bulb temperatures are T侭15{ラ)=2ユ.5QC and 7.ll,,(40φ)=22.OQC,

and the followin,cr.. result is obtaine(1.

Page 49: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

120 Kan-ichiro .1.B. ixpt4.orl”o an.(1 }t”asunobu Nls}tl.

    lin spite of a radiation correction,. it

seems that the usual. Correctecl Effective Tem-

perature can not evaluate the ra(liation effect

properly. Besides, xKre must notice that the

modification of this stucly is useless for cor-

recting the deviation of Effective Temperature

itsel.f.

Table a”1. Coinparis, on between itl.’1’,

C.li’;.’1“ (15f”) and C.1’,..T (,40; ),

48

.正t).戸.1.、

c. }i,”r (lsti )

C.E.T [40f’・)

basic chart

   18.8

   L72.7

   23.8

normal ehart

   2ユ.2

   L4.5

   25,6

  A-3. Heat Stress lndex

    Belding. and Hatch proposecl the Heat Stress lndex which measured the magni-

tucle of heat stress imposed on indiviclua!s exposecl to different combinations of the

four components of the thermal. environment,(radia撹and air te・nperature、 air-

motion an.d humidity)an.cl operating at different levels of activitジ:s)

    Apart from the question of approximations ancl assumptions in this index, the

authors have a few poin.ts i.n question on the physical accuracy of each heat

transfer coefllcient.

    The convective and evaporative heat transfer coefllcients for human bod[y are

expresg. ed by

        (a,,)”,.s・.,一 =T一 6.9. 5・VO’”’ [kcal/in2・hr・Degl (.a-21

         (P>.,,,.,=!1.7・VO”i lkcal/mL・hr・mmHg] (a-3)

            where 1,」=:air一一velocity [m/sec]

    Further, in.ユ.963, .Hatch correctecl these heat transfer coef丑cients by reex-

ainining the original datai’i・i5)

        〈(u.),,,,=(3 .35 VO’6 (aHtcl,)         (β).〃~,一ユ.3ユ「[/o’6                                        (a-5)

Kco//,刀2・hr・Deg

ノ5

装・ミ

$v

.b“

禽・・

S’L

Xk

8s 5

E

O i-狽?.i

Fig. aL5.

a2 a.ヲ  〃5 0.75 /   /.5  2     3嬬                                  o/?’ ye/oGftit

  Reiation bet/“’een conve’ c.t/ive hea!’ transfer coef”ficients

Page 50: Instructions for use - HUSCAP · 2019-03-18 · 76 1〈an-ichiro IBsxMoTo ancl ’EE’asunebu INIsl-lf 4 Following Nusselti), it is possible in. the first approximation

49 TiLernrLal S. ensation t’一Xnal>.Tsis and its tis.pplicat.i.c)n to Air一(ll・oiTiditloirLiirLg,. IL)1

Kca//m”hr・mm”g

  タ〃

z,

tt

R馨20ミ

t

ミ10量

0 L狽秩C

ヲ0物 の伽詑γ

    ’

〃∂ど6カ 1%3〃ス1・ シ伽 轡    ノ ノ

F

     ’@〆 〆Y7ノ      〆

f

〆!

     〆@  ノ@ノm

θ,∫乏. 動4θ石μ7・〆4 ノ

4!!11!

!!

Fig. a-6.

O,2 a.3 as a7s / /.5 2 3 m!s                                 oir ve/ocfty

  Relation bet’ween evaporat/ive heat transfer coeflicients

    Figs. a-5 and a-6 show the relation between the above equatio.ns and each

heat transfer coeflflcient of circular cylinders.

    From the above we 1〈now that on Heat Stress lnclex the equivalent body to

the human with respect to convective heat transfer is a cyliBder of !5N25 cm

in diameter and that with respect to evaporative heat transfer is a fairly large

cylinder in higher air-velocity range. This may be the very cause for overestimating

the e{モect of the air temperature and underestlmating the e脆ct of the hulnidity.

References

/0)

/1.1 )

12)

13)

/l4>

IL 5)

Yag, lou, C. 1?,: A }vlethocl for lmproving the lt)ffect/ive ”l/”emperat/ure ’rnclex, tA.S. HVE Trang..

   Vol. 53 (1947) p. 307.

X,’ernon, 1-1. iN,1. et al.: IFhe lnf/luence o.f the lmlunitidity of the IXir on Capacity /for XN」ork at

   I-ligh ’1“eniperature, IL of ILIyg. London, XJol. 32 (19.3Lt) p, 431.

A.ni. J. of Public ltlealth and Nation’s lileait;i Yearbook, XJol. tl() (1950) p. !4:,i

Beldlng, 1-1. S. and 1-latch, T. F, : Ilndex for llt..valuat5ng ’Heat Stres$ in Terin$ of Resui.ting.,

   Physiologi・cal Strains, ILIeatin.g, Piping & Air-Conclitioning, (1955, fiLu.gust) p. 129.

Irla, tch, ’1). IF.: Assessnient of 1±leat Stress, ”1”einperature, lts Measureinent and Control in

   Science and Iln(luf)’try. Reinhold, Ne“’ Y()rl〈 (1963) p. 3()7.

Nielson, N, et al,: ’!l’hernial F.xchange of ’t}V[an at ’ILIigh ’1)eniperature, A.ni. J. {/)f Physio].,

   Vol, 1,51., (194.7, Dec.〉 p. 626.