214
Introduction to Aspen Plus Speaker: Bor-Yih Yu(余柏毅) Date: 2013/09/02 [email protected] PSE Laboratory Department of Chemical Engineering Nation Taiwan University (綜合 room 402) Edited by: 程建凱/吳義章/余柏毅

Introduction to Aspen Plus --2014.pdf

Embed Size (px)

Citation preview

Page 1: Introduction to Aspen Plus --2014.pdf

Introduction to Aspen Plus

Speaker: Bor-Yih Yu(余柏毅)

Date: 2013/09/02

[email protected]

PSE Laboratory

Department of Chemical Engineering

Nation Taiwan University

(綜合 room 402)

Edited by: 程建凱/吳義章/余柏毅

Page 2: Introduction to Aspen Plus --2014.pdf

2

Introduction to Aspen Plus

Part 1: Introduction

Page 3: Introduction to Aspen Plus --2014.pdf

What is Aspen Plus

• Aspen Plus is a market-leading process modeling tool for conceptual design, optimization, and performance monitoring for the chemical, polymer, specialty chemical, metals and minerals, and coal power industries.

3 Ref: http://www.aspentech.com/products/aspen-plus.cfm

Page 4: Introduction to Aspen Plus --2014.pdf

What Aspen Plus provides

• Physical Property Models – World’s largest database of pure component and phase equilibrium

data for conventional chemicals, electrolytes, solids, and polymers

– Regularly updated with data from U. S. National Institute of Standards and Technology (NIST)

• Comprehensive Library of Unit Operation Models – Addresses a wide range of solid, liquid, and gas processing equipment

– Extends steady-state simulation to dynamic simulation for safety and controllability studies, sizing relief valves, and optimizing transition, startup, and shutdown policies

– Enables you build your own libraries using Aspen Custom Modeler or programming languages (User-defined models)

Ref: Aspen Plus® Product Brochure

4

Page 5: Introduction to Aspen Plus --2014.pdf

More Detailed

• Properties analysis

– Properties of pure component and mixtures (Enthalpy, density, viscosity, heat capacity,…etc)

– Phase equilibrium (VLE, VLLE, azeotrope calculation…etc)

– Parameters estimation for properties models (UNIFAC method for binary parameters, Joback method for boiling points…etc)

– Data regression from experimental deta

• Process simulation

– pump, compressor, valve, tank, heat exchanger, CSTR, PFR, distillation column, extraction column, absorber, filter, crystallizer…etc 5

Page 6: Introduction to Aspen Plus --2014.pdf

What course Aspen Plus can be employed for

• MASS AND ENERGY BALANCES

• PHYSICAL CHEMISTRY

• CHEMICAL ENGINEERING THERMODYNAMICS

• CHEMICAL REACTION ENGINEERING

• UNIT OPERATIONS

• PROCESS DESIGN

• PROCESS CONTROL

6

Page 7: Introduction to Aspen Plus --2014.pdf

Lesson Objectives

• Familiar with the interface of Aspen Plus

• Learn how to use properties analysis

• Learn how to setup a basic process simulation

7

Page 8: Introduction to Aspen Plus --2014.pdf

Outline • Part 1 : Introduction

• Part 2 : Startup

• Part 3 : Properties analysis

• Part 4 : Running Simulation in Aspen Plus (simple units)

• Part 5 : Running Simulation in Aspen Plus (Reactors)

• Part 6 : Running Simulation in Aspen Plus (Distillation)

• Part 7 (additional): Running Simulation in Aspen Plus (Design, spec and vary)

8

Page 9: Introduction to Aspen Plus --2014.pdf

Introduction to Aspen Plus

9

Part 2: Startup

Page 10: Introduction to Aspen Plus --2014.pdf

Start with Aspen Plus

Aspen Plus User Interface

Page 11: Introduction to Aspen Plus --2014.pdf

Aspen Plus Startup

11

Page 12: Introduction to Aspen Plus --2014.pdf

Interface of Aspen Plus

Process Flowsheet Windows

Model Library (View| Model Library )

Stream

Help

Setup

Components

Properties

Streams

Blocks

Data Browser

Next

Check Result

Stop

Reinitialize

Step

Start

Control Panel

Process Flowsheet Windows

Model Library (View| Model Library )

Status message 12

Page 13: Introduction to Aspen Plus --2014.pdf

More Information

Help for Commands for Controlling Simulations 13

Page 14: Introduction to Aspen Plus --2014.pdf

Data Browser

• The Data Browser is a sheet and form viewer with a hierarchical tree view of the available simulation input, results, and objects that have been defined

14

Page 15: Introduction to Aspen Plus --2014.pdf

Setup – Specification

Run Type

Input mode

15

Page 16: Introduction to Aspen Plus --2014.pdf

Input components

Remark: If available, are

16

Page 17: Introduction to Aspen Plus --2014.pdf

Properties

Process type(narrow the number of methods available)

Base method: IDEAL, NRTL, UNIQAC, UNIFAC…

17

Page 18: Introduction to Aspen Plus --2014.pdf

Property Method Selection—General Rule

18

Example 1: water - benzene

Example 2: benzene - toluene

Page 19: Introduction to Aspen Plus --2014.pdf

Typical Activity Coefficient Models

Non-Randon-Two Liquid Model (NRTL)

Uniquac Model

Unifac Model

Page 20: Introduction to Aspen Plus --2014.pdf

Typical Equation of States

Peng-Robinson (PR) EOS

Redlich-Kwong (RK) EOS

Haydon O’Conell (HOC) EOS

Page 21: Introduction to Aspen Plus --2014.pdf

Thermodynamic Model – NRTL

NRTL

21

Page 22: Introduction to Aspen Plus --2014.pdf

NRTL – Binary Parameters

Click “NRTL” and then built-in binary parameters

appear automatically if available.

22

Page 23: Introduction to Aspen Plus --2014.pdf

Access Properties Models and Parameters

23

Review Databank Data

Page 24: Introduction to Aspen Plus --2014.pdf

Review Databank Data

Description of each parameter

Including: Ideal gas heat of formation at 298.15 K

Ideal gas Gibbs free energy of formation at

298.15 K

Heat of vaporization at TB

Normal boiling point

Standard liquid volume at 60°F ….

24

Page 25: Introduction to Aspen Plus --2014.pdf

Pure Component Temperature-Dependent Properties

CPIGDP-1 ideal gas heat capacity

CPSDIP-1 Solid heat capacity

DNLDIP-1 Liquid density

DHVLDP-1 Heat of vaporization

PLXANT-1 Extended Antoine Equation

MULDIP Liquid viscosity

KLDIP Liquid thermal conductivity

SIGDIP Liquid surface tension

UFGRP UNIFAC functional group

25

Page 26: Introduction to Aspen Plus --2014.pdf

Example: PLXANT-1 (Extended Antoine Equation)

?

Corresponding Model

Click “↖?” and then click where you don’t know

26

Page 27: Introduction to Aspen Plus --2014.pdf

Example: CPIGDP-1 (Ideal Gas Heat Capacity Equation)

?

Corresponding Model

27

Page 28: Introduction to Aspen Plus --2014.pdf

Basic Input---Summary

• The minimum required inputs to run a simulation are:

– Setup

– Components

– Properties

– Streams

– Blocks

Property Analysis

Process Simulation

28

Page 29: Introduction to Aspen Plus --2014.pdf

29

Introduction to Aspen Plus

Part 3: Property analysis

Page 30: Introduction to Aspen Plus --2014.pdf

Overview of Property Analysis Use this form To generate

Pure Tables and plots of pure component properties as a function of temperature and pressure

Binary Txy, Pxy, or Gibbs energy of mixing curves for a binary system

Residue Residue curve maps

Ternary Ternary maps showing phase envelope, tie lines, and azeotropes of ternary systems

Azeotrope This feature locates all the azeotropes that exist among a specified set of components.

Ternary Maps Ternary diagrams in Aspen Distillation Synthesis feature: Azeotropes, Distillation boundary, Residue curves or distillation curves, Isovolatility curves, Tie lines, Vapor curve, Boiling point

30

***When you start properties analysis, you MUST specify components ,

thermodynamic model and its corresponding parameters. (Refer to Part 2)

Page 31: Introduction to Aspen Plus --2014.pdf

Find Components

31

Component ID : just for distinguishing in Aspen.

Type : Conventional, Solid….etc

Component name : real component name

Formula : real component formula

Page 32: Introduction to Aspen Plus --2014.pdf

Find Components

32

TIP 1: For common components, you can

enter directly the common name or molecular

equation of the components in “component

ID”.

(like water, CO2, CO, Chlorine…etc)

Page 33: Introduction to Aspen Plus --2014.pdf

Find Components

33

TIP 2: If you know the component name

(like N-butanol, Ethanol….etc), you can

enter it in “component name”.

Page 34: Introduction to Aspen Plus --2014.pdf

Find Components

34

TIP 3: You can also enter the formula of the

component. (Be aware of the isomers)

You can also click “Find” to search for

component of given CAS number,

molecular weight without knowing its

molecular formula, or if you don’t know the

exactly component name

Page 35: Introduction to Aspen Plus --2014.pdf

Select Thermodynamic Model

35

Select NRTL

Page 36: Introduction to Aspen Plus --2014.pdf

Check Binary Parameter

36

Click This, it will automatically change to

red if binary parameter exists.

Properties

Parameters

NRTL-1

Page 37: Introduction to Aspen Plus --2014.pdf

Find Components

37

TIP 2: If you know the component name

(like N-butanol, Ethanol….etc), you can

enter it in “component name”.

Page 38: Introduction to Aspen Plus --2014.pdf

Find Components

38

You can enter

the way of

searching…

Page 39: Introduction to Aspen Plus --2014.pdf

Properties Analysis – Pure Component

39

Page 40: Introduction to Aspen Plus --2014.pdf

Available Properties

Property (thermodynamic) Property (transport)

Availability Free energy Thermal conductivity

Constant pressure heat capacity

Enthalpy Surface tension

Heat capacity ratio Fugacity coefficient Viscosity

Constant volume heat capacity

Fugacity coefficient pressure correction

Free energy departure Vapor pressure

Free energy departure pressure correction

Density

Enthalpy departure Entropy

Enthalpy departure pressure correction

Volume

Enthalpy of vaporization

Sonic velocity

Entropy departure 40

Page 41: Introduction to Aspen Plus --2014.pdf

Example1: CP (Heat Capacity)

1. Select property (CP)

2. Select phase

3. Select component

4. Specify range of temperature

5. Specify pressure

6. Select property method

7. click Go to generate the results

Add “N-butyl-acetate”

41

Page 42: Introduction to Aspen Plus --2014.pdf

Example1: Calculation Results of CP

Data results 42

Page 43: Introduction to Aspen Plus --2014.pdf

Properties Analysis – Binary Components

Page 44: Introduction to Aspen Plus --2014.pdf

Binary Component Properties Analysis

Use this Analysis type To generate

Txy Temperature-compositions diagram at constant pressure

Pxy Pressure-compositions diagram at constant temperature

Gibbs energy of mixing

Gibbs energy of mixing diagram as a function of liquid compositions. The Aspen Physical Property System uses this diagram to determine whether the binary system will form two liquid phases at a given temperature and pressure.

Page 45: Introduction to Aspen Plus --2014.pdf

Example: T-XY 1. Select analysis type (Txy)

2. Select phase (VLE, VLLE)

2. Select two component

4. Specify composition range

5. Specify pressure

6. Select property method

3. Select compositions basis

7. click Go to generate the results

Page 46: Introduction to Aspen Plus --2014.pdf

Example: calculation result of T-XY

Data results

Page 47: Introduction to Aspen Plus --2014.pdf

Example: Generate XY plot

Click “plot wizard” to generate XY plot

Page 48: Introduction to Aspen Plus --2014.pdf

Example: Generate XY plot (cont’d)

Page 49: Introduction to Aspen Plus --2014.pdf

Properties Analysis – Ternary (add one new components)

Page 50: Introduction to Aspen Plus --2014.pdf

Properties Analysis – Ternary (Check NRTL binary parameter)

3 components -> 3 set of binary parameter

(How about 4 components??)

Page 51: Introduction to Aspen Plus --2014.pdf

Properties Analysis – Ternary

Page 52: Introduction to Aspen Plus --2014.pdf

Ternary Map

4. Select phase (VLE, LLE)

1. Select three component

5. Specify pressure

3. Select property method

2. Specify number of tie line

7. click Go to generate the results

6. Specify temperature

(if LLE is slected)

Page 53: Introduction to Aspen Plus --2014.pdf

Calculation Result of Ternary Map (LLE)

Data results

Page 54: Introduction to Aspen Plus --2014.pdf

Property Analysis – Conceptual Design

Use this form To generate

Pure Tables and plots of pure component properties as a function of temperature and pressure

Binary Txy, Pxy, or Gibbs energy of mixing curves for a binary system

Residue Residue curve maps

Ternary Ternary maps showing phase envelope, tie lines, and azeotropes of ternary systems

Azeotrope This feature locates all the azeotropes that exist among a specified set of components.

Ternary Maps Ternary diagrams in Aspen Distillation Synthesis feature: Azeotropes, Distillation boundary, Residue curves or distillation curves, Isovolatility curves, Tie lines, Vapor curve, Boiling point

54

(Optional)

Page 55: Introduction to Aspen Plus --2014.pdf

Conceptual Design

Page 56: Introduction to Aspen Plus --2014.pdf

Azeotrope Analysis

Page 57: Introduction to Aspen Plus --2014.pdf

Azeotrope Analysis

4. Select phase (VLE, LLE)

1. Select components (at least two) 2. Specify pressure

3. Select property method

5. Select report Unit

6. click Report to generate the results

Page 58: Introduction to Aspen Plus --2014.pdf

Error Message

Close analysis input dialog box (pure or binary analysis)

Page 59: Introduction to Aspen Plus --2014.pdf

Azeotrope Analysis Report

Page 60: Introduction to Aspen Plus --2014.pdf

Ternary Maps

Page 61: Introduction to Aspen Plus --2014.pdf

Ternary Maps

4. Select phase (VLE, LLE) 1. Select three components

2. Specify pressure

3. Select property method

5. Select report Unit

6. Specify temperature of LLE

(If liquid-liquid envelope is selected)

6. Click Ternary Plot to generate the results

Page 62: Introduction to Aspen Plus --2014.pdf

Ternary Maps

Ternary Plot Toolbar:

Add Tie line, Curve,

Marker…

Change pressure or

temperature

Page 63: Introduction to Aspen Plus --2014.pdf

63

Introduction to Aspen Plus

Part 4: Running simulation

Simple Units

(Mixer, Pump, valve, flash, heat exchanger)

Page 64: Introduction to Aspen Plus --2014.pdf

Example 1: Calculate the mixing properties of two stream

1

23

4

Mixer Pump

1 2 3 4

Mole Flow kmol/hr

WATER 10 0 ? ?

BUOH 0 9 ? ?

BUAC 0 6 ? ?

Total Flow kmol/hr 10 15 ? ?

Temperature C 50 80 ? ?

Pressure bar 1 1 1 10

Enthalpy kcal/mol ? ? ? ?

Entropy cal/mol-K ? ? ? ?

Density kmol/cum ? ? ? ? 64

Page 65: Introduction to Aspen Plus --2014.pdf

Setup – Specification

Select Flowsheet

65

Page 66: Introduction to Aspen Plus --2014.pdf

Reveal Model Library

View|| Model Library

or press F10

66

Page 67: Introduction to Aspen Plus --2014.pdf

Adding a Mixer

Click “one of icons”

and then click again on the flowsheet window

Remark: The shape of the icons are meaningless

67

Page 68: Introduction to Aspen Plus --2014.pdf

Adding Material Streams

Click “Materials” and then click

again on the flowsheet window

68

Page 69: Introduction to Aspen Plus --2014.pdf

Adding Material Streams (cont’d)

When clicking the mouse on the flowsheet window,

arrows (blue and red) appear.

69

Page 70: Introduction to Aspen Plus --2014.pdf

Adding Material Streams (cont’d)

When moving the mouse on the arrows, some description appears.

Blue arrow: Water

decant for Free water

of dirty water.

Red arrow(Left) Feed

(Required; one ore more

if mixing material

streams)

Red arrow(Right):

Product (Required; if

mixing material streams)

70

Page 71: Introduction to Aspen Plus --2014.pdf

Adding Material Streams (cont’d)

After selecting “Material Streams”, click and pull a stream line.

Repeat it three times to generate three stream lines.

71

Page 72: Introduction to Aspen Plus --2014.pdf

Reconnecting Material Streams (Feed Stream)

Right Click on the stream and

select Reconnect Destination

72

Page 73: Introduction to Aspen Plus --2014.pdf

Reconnecting Material Streams (Product Stream)

Right Click on the stream and

select Reconnect Source

B1

1

2

3

73

Page 74: Introduction to Aspen Plus --2014.pdf

Specifying Feed Condition

Right Click on the stream

and select Input

74

Page 75: Introduction to Aspen Plus --2014.pdf

Specifying Feed Condition (cont’d)

1 2

75

Page 76: Introduction to Aspen Plus --2014.pdf

Specifying Input of Mixer

Right Click on the block and select Input

76

Page 77: Introduction to Aspen Plus --2014.pdf

Specifying Input of Mixer (cont’d)

Specify Pressure and valid phase

77

Page 78: Introduction to Aspen Plus --2014.pdf

Run Simulation

Click ► to run the simulation

Check “simulation status”

“Required Input Complete” means the input is ready to run simualtion

Run Start or continue calculations

Step Step through the flowsheet one block at a time

Stop Pause simulation calculations

Reinitialize Purge simulation results

78

Page 79: Introduction to Aspen Plus --2014.pdf

Status of Simulation Results

Message Means

Results available The run has completed normally, and results are present.

Results with warnings

Results for the run are present. Warning messages were generated during the calculations. View the Control Panel or History for messages.

Results with errors Results for the run are present. Error messages were generated during the calculations. View the Control Panel or History for messages.

Input Changed

Results for the run are present, but you have changed the input since the results were generated. The results may be inconsistent with the current input.

79

Page 80: Introduction to Aspen Plus --2014.pdf

Stream Results

Right Click on the block and

select Stream Results

80

Page 81: Introduction to Aspen Plus --2014.pdf

1 2 3

Substream: MIXED Mole Flow kmol/hr

WATER 10 0 10

BUOH 0 9 9

BUAC 0 6 6

Total Flow kmol/hr 10 15 25

Total Flow kg/hr 180.1528 1364.066 1544.218

Total Flow cum/hr 0.18582 1.74021 1.870509

Temperature C 50 80 70.08758

Pressure bar 2 1 1

Vapor Frac 0 0 0

Liquid Frac 1 1 1

Solid Frac 0 0 0

Enthalpy kcal/mol -67.81 -94.3726 -83.7476

Enthalpy kcal/kg -3764.03 -1037.77 -1355.82

Enthalpy Gcal/hr -0.6781 -1.41559 -2.09369

Entropy cal/mol-K -37.5007 -134.947 -95.6176

Entropy cal/gm-K -2.0816 -1.48395 -1.54799

Density kmol/cum 53.81564 8.619647 13.36534

Density kg/cum 969.5038 783.851 825.5604

Average MW 18.01528 90.93771 61.76874

Liq Vol 60F cum/hr 0.1805 1.617386 1.797886

Pull down the list and select

“Full” to show more properties

results.

81

Enthalpy and Entropy

Page 82: Introduction to Aspen Plus --2014.pdf

Change Units of Calculation Results

82

Page 83: Introduction to Aspen Plus --2014.pdf

Setup – Defining Your Own Units Set

83

Page 84: Introduction to Aspen Plus --2014.pdf

Setup – Report Options

84

Page 85: Introduction to Aspen Plus --2014.pdf

Stream Results with Format of Mole Fraction

85

Page 86: Introduction to Aspen Plus --2014.pdf

Add Pump Block

86

Page 87: Introduction to Aspen Plus --2014.pdf

Add A Material Stream

87

Page 88: Introduction to Aspen Plus --2014.pdf

Connect Streams

88

Page 89: Introduction to Aspen Plus --2014.pdf

Pump – Specification

2. Specify pump outlet specification

(pressure, power)

1. Select “Pump” or “turbine”

3. Efficiencies (Default: 1)

89

Page 90: Introduction to Aspen Plus --2014.pdf

Run Simulation

Click ► to generate the results

Check “simulation status”

“Required Input Complete”

90

Page 91: Introduction to Aspen Plus --2014.pdf

Block Results (Pump)

Right Click on the block and select Results

91

Page 92: Introduction to Aspen Plus --2014.pdf

92

Page 93: Introduction to Aspen Plus --2014.pdf

Streams Results

93

Page 94: Introduction to Aspen Plus --2014.pdf

Calculation Results (Mass and Energy Balances)

1

23

4

Mixer Pump

1 2 3 4

Mole Flow kmol/hr

WATER 10 0 10 10

BUOH 0 9 9 9

BUAC 0 6 6 6

Total Flow kmol/hr 10 15 25 25

Temperature C 50 80 70.09 71.20

Pressure bar 1 1 1 10

Enthalpy kcal/mol -67.81 -94.37 -83.75 -83.69

Entropy cal/mol-K -37.50 -134.95 -95.62 -95.46

Density kmol/cum 969.50 783.85 825.56 824.29 94

Page 95: Introduction to Aspen Plus --2014.pdf

Exercise

1

2 46

Mixer Pump3

5

1 2 3 4 5 6

Mole Flow kmol/hr

Water 10 0 0 ? ? ?

Ethanol 0 5 0 ? ? ?

Methanol 0 0 15 ? ? ?

Total Flow kmol/hr 10 15 15 ? ? ?

Temperature C 50 70 40 ? ? ?

Pressure bar 1 1 1 1 4 2

Enthalpy kcal/mol ? ? ? ? ? ?

Entropy cal/mol-K ? ? ? ? ? ?

Density kmol/cum ? ? ? ? ? ?

95 Please use Peng-Robinson EOS to solve this problem.

Page 96: Introduction to Aspen Plus --2014.pdf

Example 2: Flash Separation

Saturated Feed

P=1atm

F=100 kmol/hr

zwater=0.5

zHAc=0.5

T=105 C

P=1atm

What are flowrates and compositions of the two outlets?

0.0 0.2 0.4 0.6 0.8 1.0100

105

110

115

120

T (

oC

)x

Water and y

Water

T-x

T-y

Page 97: Introduction to Aspen Plus --2014.pdf

Input Components

Page 98: Introduction to Aspen Plus --2014.pdf

Thermodynamic Model: NRTL-HOC

Page 99: Introduction to Aspen Plus --2014.pdf

Check Binary Parameters

Page 100: Introduction to Aspen Plus --2014.pdf

Association parameters of HOC

Page 101: Introduction to Aspen Plus --2014.pdf

Binary Parameters of NRTL

Page 102: Introduction to Aspen Plus --2014.pdf

Binary Analysis

Page 103: Introduction to Aspen Plus --2014.pdf

T-xy plot

1. Select analysis type (Txy) 2. Select phase (VLE, VLLE)

2. Select two component

4. Specify composition range

5. Specify pressure

6. Select property method 3. Select compositions basis

7. click Go to generate the results

Page 104: Introduction to Aspen Plus --2014.pdf

Calculation Result of T-xy

Data results

Page 105: Introduction to Aspen Plus --2014.pdf

Generate xy plot

Page 106: Introduction to Aspen Plus --2014.pdf

Generate xy plot (cont’d)

Page 107: Introduction to Aspen Plus --2014.pdf

Add Block: Flash2

Page 108: Introduction to Aspen Plus --2014.pdf

Add Material Stream

Page 109: Introduction to Aspen Plus --2014.pdf

Specify Feed Condition

Saturated Feed

(Vapor fraction=0)

P=1atm

F=100 kmol/hr

zwater=0.5

zHAc=0.5

Page 110: Introduction to Aspen Plus --2014.pdf

Block Input: Flash2

Page 111: Introduction to Aspen Plus --2014.pdf

Flash2: Specification

T=105 C

P=1atm

Page 112: Introduction to Aspen Plus --2014.pdf

Required Input Complete

Click ► to run simulation

**Before running simulation, property

analysis should be closed.

Page 113: Introduction to Aspen Plus --2014.pdf

Stream Results

Page 114: Introduction to Aspen Plus --2014.pdf

Stream Results (cont’d)

Saturated Feed

P=1atm

F=100 kmol/hr

zwater=0.5

zHAc=0.5

T=105 C

P=1atm

42.658 kmol/hr

zwater=0.501

zHAc=0.409

57.342 kmol/hr

zwater=0.432

zHAc=0.568

Page 115: Introduction to Aspen Plus --2014.pdf

HEAT EXCHANGE

熱物流 入口温度:200℃、入口壓力:0.4 MPa 流量:10000kg/hr 组成:苯 50%,苯乙烯 20%,水 10%

冷卻水 入口温度:20℃、入口压力:1.0 MPa 流量:60000 kg/hr。

熱流出口氣相分率為 0 (飽和液相)

Page 116: Introduction to Aspen Plus --2014.pdf

116

COMPONENTS – SPECIFICATION

Page 117: Introduction to Aspen Plus --2014.pdf

117

Thermodynamic Model – NRTL

Page 118: Introduction to Aspen Plus --2014.pdf

ADD BLOCK: HEATX

Page 119: Introduction to Aspen Plus --2014.pdf

Feeds Conditions

HOT-IN CLD-IN

Page 120: Introduction to Aspen Plus --2014.pdf

BLOCK INPUT

Page 121: Introduction to Aspen Plus --2014.pdf

121

Check result

Page 122: Introduction to Aspen Plus --2014.pdf

122

Check result

Page 123: Introduction to Aspen Plus --2014.pdf

123

Introduction to Aspen Plus

Part 5: Running simulation

Reactor Systems

(RGIBBS, RPLUG,RCSTR)

Page 124: Introduction to Aspen Plus --2014.pdf

124

Equilibrium Reactor: RGIBBS

1. Reaction Kinetics are unknown.

2. There are lots of products

RGIBBS unit predicts the product by

minimizing GIBBS energy in the system

It is very Useful When…:

Page 125: Introduction to Aspen Plus --2014.pdf

125

Equilibrium Reactor: RGIBBS

222

2422

242

24

3

HCOOHCO

OHCHHCO

OHCHHCO

Reactions:

Fresh Feed

Flow rate 1000 (kmol/h)

CO 0.2368

H2 0.7172

H2O 0.0001

CH4 0.0098

CO2 0.0361

T=300 k

P=470 psia

Page 126: Introduction to Aspen Plus --2014.pdf

126

Equilibrium Reactor: RGIBBS

Page 127: Introduction to Aspen Plus --2014.pdf

Equilibrium Reactor: RGIBBS

Inside the Block:

Page 128: Introduction to Aspen Plus --2014.pdf

128

Check result

Page 129: Introduction to Aspen Plus --2014.pdf

KINETICS REACTORS: RPLUG

Reaction :Exothermic & reversible

222 HCOOHCO )/(09.41 molKJH

)85458

exp(1.3922

)47400

exp(545.51

)(222

RTk

RTk

skgcat

kmolYYkYYkRate

r

f

HCOrOHCOf

Rate [=] Kmol/Kgcat/s

Activation Energy [=] KJ/Kmol

Page 130: Introduction to Aspen Plus --2014.pdf

KINETICS REACTORS: RPLUG

Reaction :Exothermic & reversible

222 HCOOHCO )/(09.41 molKJH

Catalyst Loading = 0.1865 Kg

Bed Voidage = 0.8928

Feed Temperature = 583K

Feed Pressure = 1 bar

Reactor Length = 10 m

Reactor Diameter = 5m

Fresh Feed

Flow rate 200 (mol/h)

CO 0.030

H2 0.430

H2O 0.392

CO2 0.148

Page 131: Introduction to Aspen Plus --2014.pdf

KINETICS REACTORS: RPLUG

Feed Stream:

Page 132: Introduction to Aspen Plus --2014.pdf

KINETICS REACTORS: RPLUG

Reaction Setting:

Page 133: Introduction to Aspen Plus --2014.pdf

KINETICS REACTORS: RPLUG

Reaction Setting:

Page 134: Introduction to Aspen Plus --2014.pdf

KINETICS REACTORS: RPLUG

RPLUG Setting:

Page 135: Introduction to Aspen Plus --2014.pdf

KINETICS REACTORS: RPLUG

RPLUG Setting:

Page 136: Introduction to Aspen Plus --2014.pdf

KINETICS REACTORS: RPLUG

RPLUG Setting:

Page 137: Introduction to Aspen Plus --2014.pdf

137

Check result

Page 138: Introduction to Aspen Plus --2014.pdf

138

Check result

Page 139: Introduction to Aspen Plus --2014.pdf

139

Check result

Select Reactor Length column

Plot -> x-Axis variable

Select Temperature Column

Plot -> y-Axis variable

Display Plot

Page 140: Introduction to Aspen Plus --2014.pdf

140

Check result Block B2 (RPlug) Profiles Process Stream

Reactor length MIXED meter

TE

MP

ER

AT

UR

E K

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

58

5.0

58

7.5

59

0.0

59

2.5

59

5.0

59

7.5

60

0.0

60

2.5

60

5.0

60

7.5

Temperature MIXED

Page 141: Introduction to Aspen Plus --2014.pdf

141

Check result

Page 142: Introduction to Aspen Plus --2014.pdf

142

Check result

Select Reactor Length column

Plot -> x-Axis variable

Select all other columns

Plot -> y-Axis variable

Display Plot

Page 143: Introduction to Aspen Plus --2014.pdf

Check result Block B2 (RPlug) Profiles Process Stream

Reactor length MIXED meter

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

0.0

50

.10

.15

0.2

0.2

50

.30

.35

0.4

0.4

50

.5

Mole fraction MIXED CO

Mole fraction MIXED H2O

Mole fraction MIXED CO2

Mole fraction MIXED H2

Page 144: Introduction to Aspen Plus --2014.pdf

KINETICS REACTORS: RCSTR

Reaction :Exothermic & Irreversible

Aniline + Hydrogen Cyclohexylamine (CHA)

C6H7N + 3H2 C6H13N

Page 145: Introduction to Aspen Plus --2014.pdf

Reactor Conditions

Reactor :

Reactor

condition

Reactor type

Reactor liquid level

595 psi

250 F

1200 ft3

Temperature

Volume

Vertical cylindrical vessel

80%

Pressure

Page 146: Introduction to Aspen Plus --2014.pdf

Reactor Conditions Input

Page 147: Introduction to Aspen Plus --2014.pdf

Reaction Kinetics

CHA R A HR kV C C

8

0 10k

0 exp( )Ek kRT

3lbmole

ft

Reaction rate :

Where

VR: reactor volume

CA: concentration of Aniline

CH: concentration of Hydrogen

• Reaction kinetics :

Where

E : activity energy

T : temperature (R) 2000 BtuE

lbmole

3lbmole

ft

3ft

Page 148: Introduction to Aspen Plus --2014.pdf

Reaction Kinetics Input

Page 149: Introduction to Aspen Plus --2014.pdf

Reaction Kinetics Input

Page 150: Introduction to Aspen Plus --2014.pdf

Reaction Kinetics Input

Page 151: Introduction to Aspen Plus --2014.pdf

Feeds Conditions

1100 lbmolhr1400 lbmolhr

Two fresh feed stream :

Aniline feed Hydrogen feed

mole rate

temperature

pressure

100 F 100 F

650 psia 650 psia

Page 152: Introduction to Aspen Plus --2014.pdf

Feeds Conditions

Page 153: Introduction to Aspen Plus --2014.pdf

153

Check result

(1) Compare the conversion between RSTOIC and RCSTR.

(2) Compare the net duty inside the RSTOIC and RCSTR Question:

Page 154: Introduction to Aspen Plus --2014.pdf

154

Introduction to Aspen Plus

Part 6: Running simulation

Distillation Process

(DSTWU, RADFRAC)

Page 155: Introduction to Aspen Plus --2014.pdf

1

2

39

Saturated Feed

P=1.2atm

F=100 kmol/hr

zwater=0.5

zHAc=0.5

xwater=0.99

xHAc=0.99

40

20

Distillation Separation

• There are two degrees of freedom to manipulate distillate composition and bottoms composition to manipulate the distillate and bottoms compositions.

• If the feed condition and the number of stages are given, how much of RR and QR are required to achieve the specification.

RR ?

QR ?

Page 156: Introduction to Aspen Plus --2014.pdf

Distillation Separation Example :

A mixture of benzene and toluene containing 40 mol% benzene is to be separated to dive a product containing 90 mol% benzene at the top, and no more than 10% benzene in bottom product. The feed enters the column as saturated liquid, and the vapor leaving the column which is condensed but not cooled, provide reflux and product. It is proposed to operate the unit with a reflux ratio of 3 kmol/kmol product. Please find:

(1) The number of theoretical plates.

(2) The position of the entry.

(Problem is taken from Coulson & Richardson’s Chemical

Engineering, vol 2, Ex 11.7, p.564)

Page 157: Introduction to Aspen Plus --2014.pdf

1. By what you learned in Material balance and unit operation

1

Saturated Feed

P=100 Kpa

F=100 kmol/hr

xben=0.4

xtol=0.6

xben=0.9

xben<0.1

n

From Overall Material Balance:

100 = D+B

From Benzene Balance:

100*0.4 = 0.9 * D+ 0.1* B

Thus, D=37.5 and B=62.5.

37.5

62.5

Page 158: Introduction to Aspen Plus --2014.pdf

1. By what you learned in Material balance and unit operation

From thermodynamic phase equilibrium, and the calculation of operating line:

We can get the number of theoretical plate to be 7.

Page 159: Introduction to Aspen Plus --2014.pdf

2. By the shortcut method in Aspen Plus (DISTWU) (Add components)

Built in the components

Page 160: Introduction to Aspen Plus --2014.pdf

2. By the shortcut method in Aspen Plus (DISTWU) (Select property method)

Select NRTL

Page 161: Introduction to Aspen Plus --2014.pdf

2. By the shortcut method in Aspen Plus (DISTWU) (Select property method)

Check the binary parameters

Page 162: Introduction to Aspen Plus --2014.pdf

2. By the shortcut method in Aspen Plus (DSTWU)

Add the unit “DSTWU”

The red arrows are the required material stream!

Page 163: Introduction to Aspen Plus --2014.pdf

2. By the shortcut method in Aspen Plus (DSTWU)

Connect the required material stream

Page 164: Introduction to Aspen Plus --2014.pdf

2. By the shortcut method in Aspen Plus (DSTWU)

“Feed1” Stream specification

Page 165: Introduction to Aspen Plus --2014.pdf

2. By the shortcut method in Aspen Plus (Column Specification)

From the problem Assume no pressure drop

Inside the column

Page 166: Introduction to Aspen Plus --2014.pdf

2. By the shortcut method in Aspen Plus (Column Specification)

Light Key recovery

= (mol of light component in distillate) /

(mol of light component in feed)

= (37.5*0.9)/(100*0.4)

= 0.84375

Page 167: Introduction to Aspen Plus --2014.pdf

2. By the shortcut method in Aspen Plus (Column Specification)

Heavy Key recovery

= (mol of heavy component in distillate)

/ (mol of heavy component in feed)

= (37.5*0.1)/(100*0.6)

= 0.0625

Page 168: Introduction to Aspen Plus --2014.pdf

2. By the shortcut method in Aspen Plus (Column Specification)

Get results by varying the

number of stages. (Initial

Guess)

Page 169: Introduction to Aspen Plus --2014.pdf

2. By the shortcut method in Aspen Plus (DSTWU)

RUN THE SIMULATION

Page 170: Introduction to Aspen Plus --2014.pdf

2. By the shortcut method in Aspen Plus (Stream Results)

Click right button on the unit, and select “Stream

Results”

Page 171: Introduction to Aspen Plus --2014.pdf

2. By the shortcut method in Aspen Plus (Stream Results)

The required product

quality

Page 172: Introduction to Aspen Plus --2014.pdf

2. By the shortcut method in Aspen Plus (RR vs number of stage)

For RR=3, at least 7

theoretical stages are

required.

Page 173: Introduction to Aspen Plus --2014.pdf

3. More rigorous method in Aspen Plus (RADFRAC)

Add the unit “RADFRAC”

The red arrows are the required material stream!

Page 174: Introduction to Aspen Plus --2014.pdf

3. More rigorous method in Aspen Plus (RADFRAC)

Connect the required material stream

Page 175: Introduction to Aspen Plus --2014.pdf

3. More rigorous method in Aspen Plus (RADFRAC) (Feed Specification)

Same as Case 2

Page 176: Introduction to Aspen Plus --2014.pdf

3. More rigorous method in Aspen Plus (RADFRAC) (Column Specification)

Double click left button on the unit….

Page 177: Introduction to Aspen Plus --2014.pdf

3. More rigorous method in Aspen Plus (RADFRAC) (Column Specification)

RR=3 from the problem, distillate rate = 37.5

(kmol/h) from previous calculation

7 stages from previous

calculation.

Page 178: Introduction to Aspen Plus --2014.pdf

3. More rigorous method in Aspen Plus (RADFRAC) (Column Specification)

Specify the feed stage.

Page 179: Introduction to Aspen Plus --2014.pdf

3. More rigorous method in Aspen Plus (RADFRAC) (Column Specification)

Specify the pressure at the top of column

Page 180: Introduction to Aspen Plus --2014.pdf

3. More rigorous method in Aspen Plus (RADFRAC) (Calculation of tray size—Tray Sizing)

Page 181: Introduction to Aspen Plus --2014.pdf

3. More rigorous method in Aspen Plus (RADFRAC) (Calculation of tray size—Tray Sizing)

*Calculation from 2th tray from the top to

2th tray from the bottom. (WHY??)

*Select a tray type.

Page 182: Introduction to Aspen Plus --2014.pdf

3. More rigorous method in Aspen Plus (RADFRAC) (Pressure drop calculation– Tray Rating)

Page 183: Introduction to Aspen Plus --2014.pdf

3. More rigorous method in Aspen Plus (RADFRAC) (Pressure drop calculation– Tray Rating)

*Calculation from 2th tray from the top to

2th tray from the bottom. (WHY??)

*Initial guess of the tray size

Page 184: Introduction to Aspen Plus --2014.pdf

3. More rigorous method in Aspen Plus (RADFRAC) (Pressure drop calculation– Tray Rating)

Page 185: Introduction to Aspen Plus --2014.pdf

3. More rigorous method in Aspen Plus (RADFRAC) (Stream Results)

Click right button on the unit, and select “Stream

Results”

Page 186: Introduction to Aspen Plus --2014.pdf

3. More rigorous method in Aspen Plus (RADFRAC) (Stream Results)

Different from the shorcut method.

(WHY??)

Page 187: Introduction to Aspen Plus --2014.pdf

187

Introduction to Aspen Plus

Part 7: Running simulation

(Additional)

Design, spec, and vary in RADFRAC

Page 188: Introduction to Aspen Plus --2014.pdf

3. More rigorous method in Aspen Plus (RADFRAC) (Design , Spec and Vary)

Page 189: Introduction to Aspen Plus --2014.pdf

3. More rigorous method in Aspen Plus (RADFRAC) (Design , Spec and Vary)

What do we want??

--- 90% Benzene at top.

Select “Mole Purity”…

Page 190: Introduction to Aspen Plus --2014.pdf

3. More rigorous method in Aspen Plus (RADFRAC) (Design , Spec and Vary)

What do we want??

--- 90% Benzene at top.

Select “Mole Purity”…

And the target is 0.9.

Page 191: Introduction to Aspen Plus --2014.pdf

3. More rigorous method in Aspen Plus (RADFRAC) (Design , Spec and Vary)

Select “Benzene”

Page 192: Introduction to Aspen Plus --2014.pdf

3. More rigorous method in Aspen Plus (RADFRAC) (Design , Spec and Vary)

Select the distillate stream

Page 193: Introduction to Aspen Plus --2014.pdf

3. More rigorous method in Aspen Plus (RADFRAC) (Design , Spec and Vary)

Add a Vary

(1 Design Spec 1 Vary)

Page 194: Introduction to Aspen Plus --2014.pdf

3. More rigorous method in Aspen Plus (RADFRAC) (Design , Spec and Vary)

Varying Reflux ratio to

reach the design target.

Page 195: Introduction to Aspen Plus --2014.pdf

3. More rigorous method in Aspen Plus (RADFRAC) (Design , Spec and Vary)

Specify the varying range.

(Should contain the initial value)

Page 196: Introduction to Aspen Plus --2014.pdf

3. More rigorous method in Aspen Plus (RADFRAC) (Design , Spec and Vary)

2nd Design Spec

Page 197: Introduction to Aspen Plus --2014.pdf

3. More rigorous method in Aspen Plus (RADFRAC) (Design , Spec and Vary)

What do we want??

--- 10% Benzene at bot.

Select “Mole Purity”…

Page 198: Introduction to Aspen Plus --2014.pdf

3. More rigorous method in Aspen Plus (RADFRAC) (Design , Spec and Vary)

What do we want??

--- 10% Benzene at bot.

Select “Mole Purity”…

And the target is 0.1.

Page 199: Introduction to Aspen Plus --2014.pdf

3. More rigorous method in Aspen Plus (RADFRAC) (Design , Spec and Vary)

Select the Benzene

Page 200: Introduction to Aspen Plus --2014.pdf

3. More rigorous method in Aspen Plus (RADFRAC) (Design , Spec and Vary)

Select the bottom stream

Page 201: Introduction to Aspen Plus --2014.pdf

3. More rigorous method in Aspen Plus (RADFRAC) (Design , Spec and Vary)

2nd Vary

Page 202: Introduction to Aspen Plus --2014.pdf

3. More rigorous method in Aspen Plus (RADFRAC) (Design , Spec and Vary)

Varying distillate rate to

reach the design target.

Specify the varying range.

(Should contain the initial value)

Page 203: Introduction to Aspen Plus --2014.pdf

3. More rigorous method in Aspen Plus (RADFRAC) (Design , Spec and Vary)

RUN THE SIMULATION,

and click right button on

the unit, select “Stream

results”

Page 204: Introduction to Aspen Plus --2014.pdf

3. More rigorous method in Aspen Plus (RADFRAC) (Stream Results)

The required product

quality

Page 205: Introduction to Aspen Plus --2014.pdf

3. More rigorous method in Aspen Plus (RADFRAC) (Column Results--top)

Calculated Reflux Ratio = 6.14

(from problem: 3)

Page 206: Introduction to Aspen Plus --2014.pdf

3. More rigorous method in Aspen Plus (RADFRAC) (Column Results--bottom)

The required heat duty for

separation is 2341.8 (KW)

Page 207: Introduction to Aspen Plus --2014.pdf

3. More rigorous method in Aspen Plus (RADFRAC) (Profile Inside the Column)

T : Temperature

P : Pressure

F : Liquid and vapor flow rate.

Q: Heat Duty

Page 208: Introduction to Aspen Plus --2014.pdf

3. More rigorous method in Aspen Plus (RADFRAC) (Profile Inside the Column)

You can select the vapor or

liquid composition profile.

(also in mole or mass basis)

Page 209: Introduction to Aspen Plus --2014.pdf

3. More rigorous method in Aspen Plus (RADFRAC) (Plotting Temp. Profile)

Select the column “Stage”

Click “Plot”

Select “X-axis variable”

Page 210: Introduction to Aspen Plus --2014.pdf

3. More rigorous method in Aspen Plus (RADFRAC) (Plotting Temp. Profile)

Select the column “Temp.”

Click “Plot”

Select “Y-axis variable”

Page 211: Introduction to Aspen Plus --2014.pdf

3. More rigorous method in Aspen Plus (RADFRAC) (Plotting Temp. Profile)

Then, select “Display

Plot”

Page 212: Introduction to Aspen Plus --2014.pdf

3. More rigorous method in Aspen Plus (RADFRAC) (Plotting Temp. Profile)

Page 213: Introduction to Aspen Plus --2014.pdf

Exercise Example:

Typically, 90 mol% product purity is not enough for a product to sale. In the same problem, assume the number of stages increase to 10. Try the following exercises:

(1) Is it possible to separate the feed to 95 mol% of benzene in the distillate, and less than 5% of benzene in the bottom product? If yes, what is the RR and Qreb?

(2) As in (1), is it possible to separate the feed to 99 mol% of benzene in the distillate, and less than 1% of benzene in the bottom product? If yes, what is the RR and Qreb?

(3) As in (2), if no, how many number of stages is required to reach this target?

(Hint: Use design, spec, and vary to do this problem)

Page 214: Introduction to Aspen Plus --2014.pdf

214

Thanks for your attention!

PSE Laboratory Department of Chemical Engineering

Nation Taiwan University (綜合 room 402)