57
Introduction to topological insulators and superconductors 古崎 (理化学研究所) topological insulators (3d and 2d) September 16, 2009

Introduction to topological insulators and superconductors...Topological (band) insulators Condensed-matter realization of domain wall fermions Examples: integer quantum Hall effect,

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

  • Introduction to topological insulators and superconductors

    古崎 昭 (理化学研究所)

    topological insulators (3d and 2d)September 16, 2009

  • Outline

    • イントロダクション

    バンド絶縁体, トポロジカル絶縁体・超伝導体

    • トポロジカル絶縁体・超伝導体の例:

    整数量子ホール系

    p+ip超伝導体

    Z2 トポロジカル絶縁体: 2d & 3d

    • トポロジカル絶縁体・超伝導体の分類

  • 絶縁体 Insulator

    • 電気を流さない物質

    絶縁体

  • Band theory of electrons in solids

    • Schroedinger equation

    ion (+ charge)

    electron Electrons moving in the lattice of ions

    rErrVm

    2

    2

    2

    rVarV

    Periodic electrostatic potential from ions and other electrons (mean-field)

    Bloch’s theorem:

    ruarua

    ka

    ruer knknknikr

    ,,, , ,

    kEn Energy band dispersion :n band index

  • 例:一次元格子

    2

    A A A A AB B B B B

    t

    n 1n1n

    B

    Aikn

    u

    uen

    B

    A

    B

    A

    u

    uE

    u

    u

    kt

    kt

    )2/cos(2

    )2/cos(2

    222 )2/(cos4 ktE

    k

    E

    0

    2

  • Metal and insulator in the band theory

    k

    E

    a

    a 0

    Interactions between electronsare ignored. (free fermion)

    Each state (n,k) can accommodateup to two electrons (up, down spins).

    Pauli principle

  • Band Insulator

    k

    E

    a

    a 0

    Band gap

    All the states in the lower band are completely filled. (2 electrons per unit cell)

    Electric current does not flow under (weak) electric field.

    2

    2

  • Topological (band) insulators

    Condensed-matter realization of domain wall fermions

    Examples: integer quantum Hall effect,

    quantum spin Hall effect, Z2 topological insulator, ….

    • バンド絶縁体

    • トポロジカル数をもつ

    • 端にgapless励起(Dirac fermion)をもつstable

    free fermions

  • Topological (band) insulators

    Condensed-matter realization of domain wall fermions

    Examples:

    • バンド絶縁体

    • トポロジカル数をもつ

    • 端にgapless励起(Dirac fermion)をもつ

    Topological superconductors

    BCS超伝導体 超伝導gap

    (Dirac or Majorana) をもつ

    p+ip superconductor, 3He

    stable

  • Example 1: Integer QHE

  • Prominent example: quantum Hall effect

    • Classical Hall effect

    B

    e

    E

    v

    W

    :n electron density

    Electric current nevWI

    Bc

    vE Electric field

    Hall voltage Ine

    BEWVH

    Hall resistancene

    BRH

    Hall conductanceH

    xyR

    1

    BveF

    Lorentz force

  • Integer quantum Hall effect (von Klitzing 1980)

    Hxy

    xxQuantization of Hall conductance

    h

    eixy

    2

    807.258122e

    h

    exact, robust against disorder etc.

  • Integer quantum Hall effect

    • Electrons are confined in a two-dimensional plane.

    (ex. AlGaAs/GaAs interface)

    • Strong magnetic field is applied

    (perpendicular to the plane)

    Landau levels:

    ,...2,1,0 , ,21 n

    mc

    eBnE ccn

    AlGaAs GaAsB

    cyclotron motion

    k

    E

  • TKNN number (Thouless-Kohmoto-Nightingale-den Nijs)TKNN (1982); Kohmoto (1985)

    Ch

    exy

    2

    Chern number (topological invariant)

    yxxy k

    u

    k

    u

    k

    u

    k

    urdkd

    iC

    **22

    2

    1

    yxk kkAkd

    i,

    2

    1 2

    filled band

    kkkyx

    uukkA ,

    integer valued

    )(ruek

    rki

  • Edge states

    • There is a gapless edge mode along the sample boundary.

    B

    Number of edge modes Che

    xy

    /2

    Robust against disorder (chiral fermions cannot be backscattered)

    Bulk: (2+1)d Chern-Simons theory

    Edge: (1+1)d CFT

  • xm

    x

    Effective field theory

    zyyxx xmivH

    zyyxx mivH

    parity anomaly mxy sgn2

    1

    Domain wall fermion

    i

    dxxmv

    ikyyxx

    y

    1''

    1exp,

    0

    vkE 0m 0m

  • Example 2:chiral p-wave superconductor

  • BCS理論 (平均場理論)

    ,,

    *

    ,,

    ,

    22

    '','','2

    1

    2

    rrrrrrrrrrdd

    rAiem

    rrdH

    dd

    d

    ''',, rrrrVrr 超伝導秩序変数

    S-wave (singlet) rrrrr 2

    1'',,

    0

    P-wave (triplet)

    +

    rrrr

    rr

    '

    '',,

    yxkk ikkk 0)(

    高温超伝導体22)( yxkk kkk

    22 yx

    d

    Integrating outGinzburg-Landau

  • Spinless px+ipy superconductor in 2 dim.

    • Order parameter

    • Chiral (Majorana) edge state

    )()( 0 yxkk ikkk

    k

    E

    2

    1

    2)()(

    )(2)(

    2

    122

    22

    k

    FFyx

    FyxF

    kh

    mkkkikk

    kikkmkkH

    Hamiltonian density

    k

    k

    m

    kkk

    k

    k

    k

    kh

    Fyx

    F

    y

    F

    xk

    2

    222

    khE

    Gapped fermion spectrum22 : SSh

    h

    k

    k

    winding (wrapping)number=1

    1zL

  • yxyxF

    iik

    im

    H

    22

    22

    rv

    rue

    tr

    triEt /

    ,

    ,

    v

    uE

    v

    u

    hii

    iih

    yx

    yx

    0

    0

    Hamiltonian density

    Bogoliubov-de Gennes equation

    *

    *

    ,u

    v

    v

    uEE Particle-hole symmetry (charge conjugation)

    zeromode: Majorana fermion

    Ht

    i ,

  • Majorana edge state

    v

    uE

    v

    u

    km

    ik

    i

    ik

    ikm

    Fyxyx

    F

    yx

    F

    Fyx

    222

    222

    2

    1

    2

    1

    E

    px+ipy superconductor: 0y 0

    v

    u

    y

    1

    1 cosexp 22 ykky

    k

    mikx

    v

    uF

    Fk

    k

    Fk

    kE

    k

    E

    2

    F

    FF

    k

    k

    ktxik

    k

    ktxikee

    dktx

    0

    //

    4,

    yydyk

    ik

    kdkH y

    F

    k

    kk

    F

    F

    0

    edge

  • • Majorana bound state in a quantum vortex

    vortex e

    hc

    Fn En / ,2

    000

    Bogoliubov-de Gennes equation

    v

    u

    v

    u

    he

    ehi

    i

    *

    0

    0 FEAepm

    h 2

    02

    1

    zero mode

    v

    u

    00 00 Majorana (real) fermion!

    energy spectrum of vortex bound states

    2N vortices GS degeneracy = 2N

  • interchanging vortices braid groups, non-Abelian statistics

    i i+11 ii

    ii 1

    D.A. Ivanov, PRL (2001)

  • Fractional quantum Hall effect at

    • 2nd Landau level

    • Even denominator (cf. Laughlin states: odd denominator)

    • Moore-Read (Pfaffian) state

    2

    5

    jjj iyxz

    4/2

    MR

    21Pf i

    z

    jiji

    ji

    ezzzz

    ijij AA det Pf

    Pf( ) is equal to the BCS wave function of px+ipy pairing state.

    Excitations above the Moore-Read state obey non-Abelian statistics.

    Effective field theory: level-2 SU(2) Chern-Simons theory

    G. Moore & N. Read (1991); C. Nayak & F. Wilczek (1996)

  • Example 3: Z2 topological insulator

    Quantum spin Hall effect

  • Quantum spin Hall effect (Z2 top. Insulator)

    • Time-reversal invariant band insulator

    • Strong spin-orbit interaction

    • Gapless helical edge mode (Kramers pair)

    Kane & Mele (2005, 2006); Bernevig & Zhang (2006)

    B

    B

    up-spin electrons

    down-spin electrons

    SEpSL

    ,,,

    spin

    ,,

    charge

    2

    0

    xyxyxyxy

    xyxyxy

    If Sz is conserved, If Sz is NOT conserved,

    Chern # (Z) Z2

    Quantized spin Hall conductivity

  • (trivial)Band insulator

    Quantum SpinHall state

    Quantum Hallstate

  • kykx

    E

    K

    K’

    K’

    K’

    K

    K

    Kane-Mele model (PRL, 2005)

    ij ij i

    iiiv

    ij

    jzijiRj

    z

    iijSOji cccdscicscicctH

    t

    SOi

    SOi

    i j

    ijd

    A B

    , ,, skke sBsArki

    zvyxxyRzzSOyyxxK sssivHK 2

    333 :

    (B) 1 (A), 1 i

    zvyxxyRzzSOyyxxK sssivHK 2

    333 :' '

    '

    *

    K

    y

    K

    y HisHis time reversal symmetry

  • • Quantum spin Hall insulator is characterized by Z2 topological index

    1 an odd number of helical edge modes; Z2 topological insulator

    an even (0) number of helical edge modes01 0

    Kane-Mele modelgraphene + SOI[PRL 95, 146802 (2005)]

    Quantum spin Hall effect

    2

    esxy

    (if Sz is conserved)

    0R

    Edge states stable against disorder (and interactions)

  • Z2 topological number

  • Z2: stability of gapless edge states

    (1) A single Kramers doublet

    zzyy

    x

    xx

    z sVsVsVVivsH 0

    HisHis yy *

    (2) Two Kramers doublets

    zzyyxxyxz sVsVsVVsIivH 0

    Kramers’ theorem

    opens a gap

    Odd number of Kramers doublet (1)

    Even number of Kramers doublet (2)

  • ExperimentHgTe/(Hg,Cd)Te quantum wells

    Konig et al. [Science 318, 766 (2007)]

    CdTeHgCdTeCdTe

  • Example 4: 3-dimensionalZ2 topological insulator

  • 3-dimensional Z2 topological insulatorMoore & Balents; Roy; Fu, Kane & Mele (2006, 2007)

    bulkinsulator

    surface Dirac fermionZ2 topological insulator

    bulk: band insulator

    surface: an odd number of surface Dirac modes

    characterized by Z2 topological numbers

    Ex: tight-binding model with SO int. on the diamond lattice[Fu, Kane, & Mele; PRL 98, 106803 (2007)]

    trivial insulator

    Z2 topologicalinsulator

    trivial band insulator: 0 or an even number of surface Dirac modes

  • Surface Dirac fermions

    • A “half” of graphene

    • An odd number of Dirac fermions in 2 dimensions

    cf. Nielsen-Ninomiya’s no-go theorem

    kykx

    E

    K

    K’

    K’

    K’

    K

    K

    topologicalinsulator

  • Experiments• Angle-resolved photoemission spectroscopy (ARPES)

    Bi1-xSbx

    p, Ephoton

    Hsieh et al., Nature 452, 970 (2008)

    An odd (5) number of surface Dirac modes were observed.

  • Experiments II

    Bi2Se3

    Band calculations (theory)

    Xia et al.,Nature Physics 5, 398 (2009)

    “hydrogen atom” of top. ins.

    a single Dirac cone

    ARPES experiment

  • トポロジカル絶縁体・超伝導体の分類

    Schnyder, Ryu, AF, and Ludwig, PRB 78, 195125 (2008)

    arXiv:0905.2029 (Landau100)

  • Classification oftopological insulators/superconductors

    Schnyder, Ryu, AF, and Ludwig, PRB (2008)

    Kitaev, arXiv:0901.2686

  • Zoo of topological insulators/superconductors

  • Topological insulators are stable against (weak) perturbations.

    Classification of topological insulators/SCs

    Random deformation of Hamiltonian

    Natural framework: random matrix theory (Wigner, Dyson, Altland & Zirnbauer)

    Assume only basic discrete symmetries:

    (1) time-reversal symmetry

    HTTH 1*0 no TRS

    TRS = +1 TRS with-1 TRS with

    TT

    TT (integer spin)

    (half-odd integer spin)

    (2) particle-hole symmetry

    HCCH 10 no PHS

    PHS = +1 PHS with-1 PHS with

    CC

    CC (odd parity: p-wave)

    (even parity: s-wave)

    HTCTCH 1 10133

    (3) TRS PHS chiral symmetry [sublattice symmetry (SLS)]

    yisT

  • (2) particle-hole symmetry Bogoliubov-de Gennes

    zkyyxxkk

    k

    kkk kkhc

    chccH

    2

    1

    px+ipy

    T

    xkxkx CChh *

    dx2-y2+idxy

    zkyyyxyxkk

    k

    kkkkkkkh

    c

    chccH

    22 2

    1

    T

    ykyky CiChh *

  • 10 random matrix ensembles

    IQHE

    Z2 TPI

    px+ipy

    Examples of topological insulators in 2 spatial dimensionsInteger quantum Hall EffectZ2 topological insulator (quantum spin Hall effect) also in 3DMoore-Read Pfaffian state (spinless p+ip superconductor)

    dx2-y2+idxy

  • Table of topological insulators in 1, 2, 3 dim.Schnyder, Ryu, Furusaki & Ludwig, PRB (2008)

    Examples:(a) Integer Quantum Hall Insulator, (b) Quantum Spin Hall Insulator,(c) 3d Z2 Topological Insulator, (d) Spinless chiral p-wave (p+ip) superconductor (Moore-Read),(e) Chiral d-wave superconductor, (f) superconductor,(g) 3He B phase.

  • Classification of 3d topological insulators/SCs

    strategy (bulk boundary)

    • Bulk topological invariants

    integer topological numbers: 3 random matrix ensembles (AIII, CI, DIII)

    • Classification of 2d Dirac fermions Bernard & LeClair (‘02)

    13 classes (13=10+3) AIII, CI, DIII AII, CII

    • Anderson delocalization in 2dnonlinear sigma models Z2 topological term (2) or WZW term (3)

    BZ: Brillouin zone

  • Topological distinction of ground states

    m filledbands

    n emptybands

    xk

    yk

    map from BZ to Grassmannian

    nUmUnmU2 IQHE (2 dim.)

    homotopy class

    deformed “Hamiltonian”

  • In classes AIII, BDI, CII, CI, DIII, Hamiltonian can be made off-diagonal.

    Projection operator is also off-diagonal.

    nU3 topological insulators labeled by an integer

    qqqqqq

    kdq

    1112

    3

    tr24

    Discrete symmetries limit possible values of q

    Z2 insulators in CII (chiral symplectic)

  • The integer number # of surface Dirac (Majorana) fermions q

    bulkinsulator

    surfaceDiracfermion

  • (3+1)D 4-component Dirac Hamiltonian

    mk

    kmmkkH x

    AII: kHikHi yy *

    TRS

    DIII: kHkH yyyy *

    PHS

    AIII: kHkH yy chS

    mq sgn2

    1

    zm

    z

  • (3+1)D 8-component Dirac Hamiltonian

    0

    0

    D

    DH

    imkikikD yyy 5CI:

    kDkDT

    CII: kDmkkD kDikDi yy *

    2sgn2

    1 mq

    0q

    zm

    z

  • Classification of 3d topological insulators

    strategy (bulk boundary)

    • Bulk topological invariants

    integer topological numbers: 3 random matrix ensembles (AIII, CI, DIII)

    • Classification of 2d Dirac fermions Bernard & LeClair (‘02)

    13 classes (13=10+3) AIII, CI, DIII AII, CII

    • Anderson delocalization in 2dnonlinear sigma models Z2 topological term (2) or WZW term (3)

  • Nonlinear sigma approach to Anderson localization

    • (fermionic) replica• Matrix field Q describing diffusion• Localization massive• Extended or critical massless topological Z2 term

    or WZW term

    Wegner, Efetov, Larkin, Hikami, ….

    22 ZM

    ZM 3

  • Table of topological insulators in 1, 2, 3 dim.Schnyder, Ryu, Furusaki & Ludwig, PRB (2008)

    arXiv:0905.2029

    Examples:(a) Integer Quantum Hall Insulator, (b) Quantum Spin Hall Insulator,(c) 3d Z2 Topological Insulator, (d) Spinless chiral p-wave (p+ip) superconductor (Moore-Read),(e) Chiral d-wave superconductor, (f) superconductor,(g) 3He B phase.

  • Reordered TableKitaev, arXiv:0901.2686

    Periodic table of topological insulators

    Classification in any dimension

  • Classification oftopological insulators/superconductors

    Schnyder, Ryu, AF, and Ludwig, PRB (2008)

    Kitaev, arXiv:0901.2686

  • Summary

    • Many topological insulators of non-interacting fermions have been found.

    interacting fermions??

    • Gapless boundary modes (Dirac or Majorana)stable against any (weak) perturbation disorder

    • Majorana fermionsto be found experimentally in solid-state devices

    Andreev bound states in p-wave superfluids 3He-B

    Z2 T.I. + s-wave SC Majorana bound state (Fu & Kane)