ISOSTÁTICA v2016

Embed Size (px)

Citation preview

  • 8/20/2019 ISOSTÁTICA v2016

    1/43

    Pontifícia Universidade Católica do Rio Grande do Sul

    FACULDADE DE ENGENHARIA

    Isostática

    Notas de Aula

    v. 2014

    Profa. Mauren Aurich

    Profa. Paula Manica Lazzari

  • 8/20/2019 ISOSTÁTICA v2016

    2/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    2

    Pontifícia Universidade Católica do Rio Grande do Sul

    FACULDADE DE ENGENHARIA

    FACULDADE DE ARQUITETURA

    Código da Disciplina:4421C-04

    Nome da Disciplina: ISOSTÁTICA

    Período:2014/1

    Professoras:Mauren Aurich – [email protected]

    Paula Manica Lazzari – [email protected]

    EMENTA:

    Grau de Liberdade. Vínculos. Morfologia das estruturas. Classificação das estruturas quanto àestaticidade. Sistema de cargas. Reações externas. Solicitações internas. Vigas. Pórticos.

    PROGRAMA GERAL:

    CAP I. SISTEMAS ESTRUTURAISConceito, importância e sistemas construtivos fundamentais.

    CAP II. MORFOLOGIA DAS ESTRUTURASEsforços internos e deformações associadas. Tipos, denominação e classificação das estruturas.

    CAP III. CARGAS ATUANTES NAS ESTRUTURASNBR 6120. Classificação. Avaliação e transmissão de cargas. Carga resultante.

    CAP IV. ESTRUTURAS ISOSTÁTICAS - NOÇÕES INICIAISGraus de Liberdade. Vínculos. Classificação estrutural. Grau de conexão e retenção total. Estaticidade.

    CAP V. REAÇÕES EXTERNAS

    Reações em estruturas simples. Reações em estruturas rotuladas (vigas Gerber e pórticos tri-articulados).

    mailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]

  • 8/20/2019 ISOSTÁTICA v2016

    3/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    3

    CAP VI. SOLICITAÇÕES INTERNASOrigem. Denominação. Deformações associadas. Cálculo das solicitações pelo método das equações

    Relações diferenciais. Traçado do diagrama das solicitações. Método direto de traçado de diagrama Vigas simples e Gerber.

    CAP VII. PÓRTICOS PLANOSConceitro e classificação. Cálculo das solicitações e traçado de diagrama.

    BIBLIOGRAFIA:

    Estas notas de aula foram escritas baseadas em apostilas antigas de Morfologia Estrutural e EstruturaIsostáticas dos seguintes Professores: José Campos, Henrique Gutfreind, Maria Regina Leggerini, Adã Villaverde, Silvia Baptista e Silvia Dutra. Foram também consultadas as seguintes obras:

    1. CAMPANARI, Flávio Antônio. Teoria das Estruturas. Editora Guanabara Dois -1985-RJ2. FONSECA, Adhemar. Curso de Mecânica. Vol I e II. Livros Técnicos e Científicos Editora SA.3. SÜSSEKIND, José Carlos. Curso de Análise Estrutural. Vol I. Estruturas Isostáticas. Editora Globo

    - 1984 - RJ4. AMARAL, Otávio Campos do. Estruturas Isostáticas. Edições Engenharia e Arquitetura - 1992 MG5. GOMES, Sérgio Concli. Estática. Editora Unisinos - 1994 - RS6. HIBBELER, R.C. Mecânica. Vol I. Estática. Editora Campos7. BEER, Ferdinand P.e JOHNSTON, E. Russel. Mecânica Vetorial para engenheiros. Vol I. Estática.Editora McGraw-Hill - SP8. MERIAN, J.L. Estática. Livros Técnicos e Científicos Editora SA.

  • 8/20/2019 ISOSTÁTICA v2016

    4/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    4

    CAPÍTULO ISISTEMAS ESTRUTURAIS

    1. Conceito

    A palavra estrutura tem significado de considerável amplitude. De modo genérico significa a

    maneira essencial por que estão dispostas em relação umas as outras as diferentes partes de um

    corpo. De maneira especial, entretanto, a palavra estrutura é usada para designar a composição,

    construção, organização e disposição arquitetônica de um edifício.

    Neste conceito, estrutura compreende todas as partes que compõem o edifício, e, de modoainda mais particularizado, quando falamos de “estrutura”, em engenharia civil e em arquitetura, pordefinição, designamos as partes que suportam as cargas de uma construção e as transmitem às

    fundações. Neste caso, estamos diante da estrutura resistente, ou simplesmente, da estrutura, do

    SISTEMA ESTRUTURAL.

    2. Importância

    A própria conceituação anterior já caracteriza a importância do sistema estrutural de um

    prédio. De outra forma, ela em inúmeras ocasiões é explorada a nível estético, tendo outro

    significado sob o ponto de vista arquitetônico.

    Na etapa criativa, este processo é, basicamente, intuitivo. É necessária a ligação da intuição

    consciente com o formulário matemático, para a representação da realidade física. Para isso, há que

    se compreender o funcionamento do sistema estrutural, seu regime de trabalho em estado de carga

    parcial ou total. É impossível, pois, conceber um sistema estrutural corretamente, sem conhecer asrazões e implicações desta escolha, através das tensões que nele estão acontecendo.

    A importância do sistema estrutural está na mesma razão da compreensão do seu

    funcionamento quando de sua concepção, com toda a simplicidade possível, sem recorrer ao

    conhecimento formal de matemática. Isto não significa tratar o sistema estrutural de forma

    simplificada, e sim, reconhecer, nas situações arquitetônicas práticas, os pontos mais delicados do

    projeto estrutural, dar-lhe as proporções corretas, deixando para o calculista a parte matemática e o

    detalhamento.

  • 8/20/2019 ISOSTÁTICA v2016

    5/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    5

    3. Sistemas construtivos fundamentais

    A estrutura é constituída pela superestrutura e infraestrutura.

    Superestrutura é a construção feita acima do solo, que compreende pilares, vigas, lajes, paredes portantes, sobre os quais estão fixados todos os demais elementos (subsistemas) dos

    prédios, tais como paredes de vedação, coberturas, esquadrias, revestimentos...

    A infraestruturaé a parte que promove a ligação da “estrutura visível” do prédio com o solo,em outras palavras, a parte inferior de uma construção, que compreende os elementos de

    sustentação da superestrutura (fundações). A escolha desta solução estrutural adequada depende de

    vários fatores, dentre outros: a constituição geológica do solo, a topografia do terreno, as dimensões

    da edificação, as cargas que deverão ser transmitidas ao solo (intensidade, direção, permanente ou

    não, situação em relação à divisa), a função e características da edificação, o material do sistema

    estrutural, as construções vizinhas e o custo.

    As principais soluções de fundações, quando o solo superficial é resistente, são as chamadas

    fundações em superfície:

    - sapata corrida de alvenaria de pedra de grés, granito ou basalto,

    - sapata corrida de concreto armado;

    - sapata isolada de concreto armado;

    - radier em concreto armado.Já, para solos superficiais pouco resistentes e grandes cargas, são utilizadas as denominadas

    fundações profundas, que visam atingir camadas de solo mais resistentes:

    - tubulão de concreto;- estaca de concreto, aço ou madeira, pré-moldada ou moldada no local.

  • 8/20/2019 ISOSTÁTICA v2016

    6/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    6

    4. Escolha do sistema estrutural

    A escolha do sistema estrutural de uma edificação depende de vários fatores, mais ou menos

    na seguinte ordem de importância:

    a) FATORES FUNCIONAIS: A função a que se destina a edificação. A mais comum é a de

    habitação com os edifícios residenciais; os prédios comerciais e industriais; as vias de

    transporte, como as pontes e viadutos; as de armazenagem ou contenção, como os

    reservatórios, silos e barragens;

    b) FATORES TÉCNICOS: Materiais e cálculo estrutural empregados (soluções adotadas). O

    custo do sistema estrutural varia entre 18 a 30% do preço total nas edificações correntes e o

    custo do projeto estrutural de 0,5 a 1,5%. Dependendo das características do sistema

    estrutural, estes valores podem ser diferentes. Além disso, a técnica construtiva utilizada,

    bem como a disponibilidade de materiais e de mão-de-obra na região, e a administração da

    obra determinam alterações no custo e dão relevância a este fator;

    c) FATORES ESTÉTICOS E DE ARQUITETURA: O sistema estrutural é um elemento de

    grande importância na concepção arquitetônica e, em todos os tempos foi explorada com tal

    finalidade o que caracteriza seu grande valor;

    Ressalta-se que os três fatores acima enumerados tornam-se desprezíveis quando à segurança da

    estrutura não está compatível com a sua finalidade. É óbvio, portanto, que a resistência dos

    materiais utilizados e a escolha do sistema estrutural adequado são condições indispensáveis dasobrevivência da estrutura e, por conseguinte, da edificação, merecendo todo o cuidado no projeto e

    na execução, o que, em algumas ocasiões, impede o funcionamento previsto.

  • 8/20/2019 ISOSTÁTICA v2016

    7/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    7

    CAPÍTULO IIMORFOLOGIA ESTRUTURAL

    1. Partes componentes de uma estrutura resistente

    a) Estruturas UNIDIMENSIONAIS: são aquelas em que

    uma das dimensões (comprimento) é muito maior do que as

    outras duas (medidas da seção transversal). A representação

    estrutural é feita pelo eixo longitudinal.

    Vigas: carga perpendicular ao eixo Pilares: carga ao longo do eixo (compressão)

    Tirantes: carga ao longo do eixo (tração) Arcos: cargas de compressão

  • 8/20/2019 ISOSTÁTICA v2016

    8/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    8

    Treliças: Pórticos: Grelhas:

    b) Estruturas BIDIMENSIONAIS: são aquelas em que duas dimensões (plano médio: a x b) são

    muito maiores do que a terceira (espessura).

    A sua representação estrutural é feita pela superfície média.

    Poliédricas: Curvas:

    Paredes: carga ao longo do eixo(compressão)

    Lajes: carga perpendicular ao eixo

    Estruturas Compostas: formadas por elementos de barras

    Cascas:estruturas em que a superfície média não é formada por um único plano:

    Membranas: estruturas laminares em que a superfície média é curva e sua espessuramuito reduzida em presença das demais dimensões

  • 8/20/2019 ISOSTÁTICA v2016

    9/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    9

    c) Estruturas TRIDIMENSIONAIS: São estruturas em que as três dimensões tem a mesma ordem de

    grandeza.

    2. Caráter tridimensional das construções:

    Considere-se uma laje apoiada em 4 vigas no seu contorno, as quais se apoiam em 4 pilares,

    presos na base e livres no topo. A estrutura possui um elemento bidimensional, a laje, que é

    representada pelo seu plano médio, e 8 elementos unidimensionais (vigas e pilares) representados

    pelos seus eixos. Para a determinação dos esforços na estrutura, deve-se criar o seu arranjoestrutural, que desdobra a estrutura em planos, onde, matematicamente, é possível de calcular os

    esforços.

    O caráter tridimensional é ilustrado pela figura abaixo, que pode ser chamada de piso

    elementar:

  • 8/20/2019 ISOSTÁTICA v2016

    10/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    10

    O arranjo estrutural mais simples possível é formado por uma laje simplesmente apoiada

    sobre as 4 vigas, que por sua vez, são apoiadas na extremidade dos 4 pilares presos na base e livres

    no topo.

    Para a mesma situação, são possíveis outros arranjos alternativos, sob a forma de pórticos.

  • 8/20/2019 ISOSTÁTICA v2016

    11/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    11

    CAPÍTULO IIICARGAS ATUANTES NAS ESTRUTURAS

    1. NBR 6120 – Cargas para o cálculo de estruturas de edificações:

    A NBR 6120, publicada em novembro de 1980, fixa as condições para a determinação dos

    valores das cargas que devem ser consideradas no projeto de estrutura de edificações, qualquer que

    seja sua classe e destino, excetuando-se os casos previstos em normas especiais.

    2. Classificação das cargas quanto ao tempo de duração:

    a) cargas PERMANENTES: atuam durante toda ou quase toda a vida útil de uma estrutura, por

    exemplo: o peso próprio da estrutra, revestimentos...

    b) cargas ACIDENTAIS: podem estar ou não atuando, por exemplo: vento, mobiliário...

    3. Classificação das cargas quanto ao ponto de aplicação:

    a) cargas FIXAS: atuam em determinados pontos de uma estrutura, podendo variar em intensidade,

    como por exemplo, o peso de uma parede, dos revestimentos...

    b) cargas MÓVEIS: percorrem a estrutura, ou seja, podem atuar em vários de seus pontos como por

    exemplo, um caminhão atravessando uma ponte.

    4. Classificação das cargas quanto ao modo de distribuição:

    a) cargas CONCENTRADAS: são aquelas que atuam em áreas muito reduzidas em relação às

    dimensões da estrutura. Neste caso ela é considerada concentrada no centro de gravidade da área de

    atuação.

  • 8/20/2019 ISOSTÁTICA v2016

    12/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    12

    b) cargas MOMENTO: são momentos aplicados em determinados pontos de uma estrutura (fixos)

    que podem se originar de binários ou cargas excênricas:

    Binários:

    Cargas excêntricas:

    c) cargas DISTRIBUÍDAS: são aquelas que atuam em uma área com dimensões na mesma ordem

    de grandeza da estrutura.

    Podem ser distribuídas sobre uma superfície (representam a quantidade de carga aplicada

    por unidade de área – kN/m2, kgf/cm2, kN/cm2). Exemplo: peso próprio em uma laje de concreto

    Ou podem ser distribuídas sobre uma linha (são cargas que se distribuem numa área em que

    uma das dimensões é muito maior que a outra). Neste caso considera-se que a carga esteja atuando

    na linha média da referida área, indicando a quantidade de carga desenvolvida por unidade decomprimento. Exemplo: peso próprio de uma viga (unidade: kN/m, kgf/m, kN/cm)

    A resultante de uma carga distribuída é igual à área da figura limitada pela linha da carga e

    pelo segmento de eixo correspondente, aplicada no centro de gravidade desta área.

    A tabela a seguir pode ser utilizada para a resolução dos casos mais comuns:

    =

    Pd

  • 8/20/2019 ISOSTÁTICA v2016

    13/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    13

  • 8/20/2019 ISOSTÁTICA v2016

    14/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    14

    CAPÍTULO VIESTRUTURAS – NOÇÕES INICIAIS

    1. Vínculo:

    É todo o elemento de ligação entre as partes de uma estrutura ou entre a estrutura e o meio

    externo, cuja finalidade é restringir um ou mais movimentos de um corpo. Os vínculos podem ligar

    elementos de uma estrutura entre si ou ligar a estrutura ao meio externo e, portanto, se classificam

    em vínculos internos e externos:

    a) Vínculos EXTERNOS: são vínculos que unem os elementos de uma estrutura ao meio externo ou

    a outra estrutura. No caso plano, este tipo de vínculo pode impedir até 3 movimentos (duastranslações – em X e Y, e uma rotação) e, portanto se classificam em 3 espécies:

  • 8/20/2019 ISOSTÁTICA v2016

    15/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    15

    b) Vínculos INTERNOS: são aqueles que unem partes componentes de uma estrutura. No caso

    plano podem ser, somente, de 2ª e 3ª espécie.

    O vínculo de 2ª espécie interno é chamado de RÓTULA.

    A representação estrutural de uma rótula é:

    O vínculo de 3ª espécie interno é chamado de SOLDA, e sua representaçãoestrutural é a união entre as barras.

    2. Classificação estrutural:

    Considera-se GL (ou Grau de Liberdade) o número de movimentos possíveis que umaestrutura pode realizar, e RT o número de movimentos impedidos ou (ResTringidos) da mesma.

    De acordo com a sua estaticidade uma estrutura pode ser:

    a) HIPOSTÁTICA: quando o número de movimentos restringidos (RT) for menor do que o número

    de graus de liberdade (GL). Uma estrutura é hipostática quando os vínculos estão em número

    insuficientes, ou seja, está em equilíbrio instável.

    b) ISOSTÁTICA: quando o número de restrições (RT) for igual ao número de movimentos

    possíveis (GL). Uma estrutura é isostática quando os vínculos estão em número suficientes, ou seja,está em equilíbrio estável.

    c) HIPERESTÁTICA: quando o número de restrições (RT) for maior do que o número de

    movimentos possíveis (GL). Uma estrutura é hiperestática quando os vínculos estão em número

    mais que suficiente, ou seja, está em equilíbrio estável.

  • 8/20/2019 ISOSTÁTICA v2016

    16/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    16

    Para classificar uma estrutura deve-se verificar se ela é hiper, hipo ou isostática, tanto no seu

    conjunto externo quanto internamente. De acordo com a classificação já vista pode-se resumir que

    uma estrutura será:

    Hipostática, quando: RT < GLIsostática, quando: RT = GLHiperestática, quando: RT > GL

    O número de movimentos impedidos em um vínculo de classe r onde concorrem n barras é: r.(n-1) Onde: n: número de barras ligadas pelo vínculo

    (n-1): grau de conexão de um vínculo

    r: número de movimentos impedidos por este vínculo (classe do vínculo)

    Sendo:

    C1 = ∑(n -1): soma dos graus de conexão dos vínculos de primeira espécie.C2 = ∑(n -1): soma dos graus de conexão dos vínculos de segunda espécie.

    C3 = ∑(n -1): soma dos graus de conexão dos vínculos de terceira espécie.

    Tem-se:

    1 x C1: número de movimentos impedidos pelos vínculos de primeira espécie2 x C2: número de movimentos impedidos pelos vínculos de segunda espécie

    3 x C3: número de movimentos impedidos pelos vínculos de terceira espécie

    Pode-se então, definir número de movimentos restringidos (RT) por todos os vínculos de uma

    estrutura como: RT = 1 x C1 + 2 x C2 + 3 x C3

    Define-se o grau de estaticidade total de uma estrutura como a diferença entre o número de

    movimentos impedidos e o número de graus de liberdade que ela pode apresentar: gh = RT – GL. No caso plano cada barra livre possui 3 movimentos possíveis (duas translações e uma rotação)

    logo, se tivermosm barras o número de GL do conjunto será 3 x m.

    Desta forma:gh = RT – 3.m ou

    gh = (C1 + 2 . C2 + 3 . C3) - 3.m

  • 8/20/2019 ISOSTÁTICA v2016

    17/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    17

    Se gh < 0 significa que foram impedidos menos movimentos que os existentes, ou seja, aindaexistem movimentos possíveis na estrutura, que é HIPOSTÁTICA.

    Se gh = 0 significa que foram impedidos tantos movimentos quanto os existentes, ou seja, eestrutura é ISOSTÁTICA.

    Se gh > 0 significa que foram impedidos mais movimentos que os existentes, ou seja, aestrutura é HIPERESTÁTICA.

    Quando deseja-se verificar a vinculação externa de uma estrutura, considera-se a mesma como um

    conjunto monolítico, como se fosse uma barram = 1 e somente os vínculos externos:

    gext = (C1 + 2 . C2 + 3 . C3)vínculos externos - 3

    E, o grau de estaticidade interno é a diferença entre a estaticidade total e a estaticidade externa:

    gint = gh - gext

    EXERCÍCIOS:Determine o grau de estaticidade total , interno e externo das estruturas abaixo.

    1.

    R: gh = 0 (isostática)gext = 0gint = 0

    2.R: gh = -2 (hipostática)

    gext= 0gint = -2

    3.

    R: gh = 0 (isostática)gext = 1gint = -1

  • 8/20/2019 ISOSTÁTICA v2016

    18/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    18

    4.

    R: gh = 1 (inef. vinc)gext = 5gint = -4

    5.

    R : gh = 4 (hiperestática)gext = 1gint = 3

    6.

    R: gh = 0 (isostática)gext = 0gint = 0

    7.

    R : gh = 3 (hiperestática)gext = 3gint = 0

  • 8/20/2019 ISOSTÁTICA v2016

    19/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    19

    CAPÍTULO IVEQUILÍBRIO EXTERNO – REAÇÕES EXTERNAS

    Reações externas são os esforços que os vínculos devem desenvolver para manter em

    equilíbrio estático uma estrutura. Os vínculos são classificados de acordo com o número de

    movimentos impedidos e só pode-se restringir um movimento mediante a aplicação de um esforço

    (força ou momento) na direção deste movimento.

    A determinação das reações de apoio de uma estrutura isostática é feita por intermédio de

    um sistema de equações algébricas, que estabelece as condições de equilíbrio da estrutura, supondo-

    se rígidas todas as barras. No caso plano a estrutura possui 3 movimentos possíveis (translação nas

    direções x e y e rotação em torno do eixo z), portanto o número de equações a serem satisfeitas para

    que a estrutura permaneça imóvel são 3: ∑ F x = 0 ∑ F y = 0 ∑ M z = 0

    1. Cálculo das reações externas em estruturas isostáticas simples:

    Uma estrutura isostática é classificada como simples quando possui apenas um elemento, possuindo apenas vínculos externos. A fim de se determinar o valor das reações externas procede-se

    da seguinte forma:

    a. Redesenha-se a estrutura, transformando-a num corpo livre, substituindo-se todos os

    vínculos externos pelas reações vinculares que o mesmo pode desenvolver,

    abribitrando qualquer sentido para as mesmas,

    b. Substituem-se as cargas distribuídas por suas respectivas resultantes e calculam-se as

    decomposições das cargas inclinadas,

    c. Aplicam-se as 3 equações de equilíbrio:Fx = 0, Fy = 0 e MVÍNCULOS = 0 d. As reações encontradas que possuírem sinal negativo, devem ter seu sentido (que foi

    arbitrado em a.), trocado

    Exemplo:

    VA = 20 kN VB = 20 kN HB = 0 4,0 m

    10 kN/m

  • 8/20/2019 ISOSTÁTICA v2016

    20/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    20

    2. Cálculo das reações externas em estruturas isostáticas compostas:

    Uma estrutura isostática é classificada como composta quando for constituida por elementos

    ligados entre si por rótulas que formam um conjunto estável. Rótulas são articulações internas quenão absorvem momento. Portanto, para que uma rótula esteja em equilíbrio a soma dos momentos

    em relação a ela deve ser nula. Então, além das equações fundamentais da estática surge uma nova

    condição de equilíbrio: soma dos momentos à esquerda e à direita de uma rótula deve ser zero. A fim de se determinar o valor das reações externas procede-se da seguinte forma:

    a. Redesenha-se a estrutura, transformando-a num corpo livre, substituindo-se todos os

    vínculos externos pelas reações vinculares que o mesmo pode desenvolver,

    abribitrando qualquer sentido para as mesmas,

    b. Substituem-se as cargas distribuídas por suas respectivas resultantes e calculam-se as

    decomposições das cargas inclinadas,

    c. Aplicam-se as 3 equações de equilíbrio:

    Fx = 0, Fy = 0, MVÍNCULOS = 0

    Mrótula à esquerda= 0 e Mrótula à direira = 0 d. As reações encontradas que possuírem sinal negativo, devem ter seu sentido (que foi

    arbitrado em a.), trocado

    Exemplos:

  • 8/20/2019 ISOSTÁTICA v2016

    21/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    21

    Exercícios:

    1.VA = 69,65 kNVB = 55,35 kN

    HB = 0

    2.

    VA = 108 kN

    VB = 112 kN

    HB = 0

    3.HA = 0

    VA = 41 kgf

    VB = 59 kgf

    4.HA = 0

    VA = 53 kgf

    VB = 17 kgf

    5. HA = 0VA = 14 kgf

    VB = 16 kgf

    6.HA = 0

    VA = 20 kgf

    VB = 30 kgf

    2,0 4,0 3,0 (m)

    10 kN/m

    20 kN

    15 kN/m

    10 kN 10 kN 20 kN20 kN

    10 kN/m 20 kN/m

    2,0 4,0 2,0 4,0 (m)

  • 8/20/2019 ISOSTÁTICA v2016

    22/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    22

    7.

    HA = 0

    VA = 10 kgfMA = 40 kgf.m (horário)

    8. HA = 0

    VA = 60 kgf

    MA = 180 kgf.m (anti horário)

    9.HA = 0

    VA = 30 kgf

    MA = 100 kgf.m (anti horário)

    10.

    VA = VB = 27,5 KN

    HA = 25,98 KN

    11.

    VA = - 5 kN

    VB = 95 kN

    HA = 0

  • 8/20/2019 ISOSTÁTICA v2016

    23/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    23

    12.

    VA = 0,59 kN

    VB = 51,05 kN

    HB = 14 kN ( )

    13.

    14.

    VA = - 8,75 kN

    VB = 8,75 kN

    HA = 0

    15.

    VA = 60 kN

    VB = 0

    HA = 0

    16.

    VA = 27,5 kN

    VB = 62,5 kN

    HB = 0

    15 kN.m

  • 8/20/2019 ISOSTÁTICA v2016

    24/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    24

    17.VA = 40 kM

    HA = 0

    MA = 75 kN.M (anti horário)

    18.

    VA = 70 kN

    HA = 0

    MA = 140 kN.m (anti horário)

    19.

    20.

    VA = 48,96 kN

    VB = 40,94 kN

    HB = 29,9 kN ( )

  • 8/20/2019 ISOSTÁTICA v2016

    25/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    25

    21.

    22.

    23.

  • 8/20/2019 ISOSTÁTICA v2016

    26/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    26

    24.

    VA = - 3,5 kN

    HA = 14 kN ( )

    VB = 55,5 kN

    VC = 22 kN

    25.

    VA = 48,75 kNVB = 83,75 kN

    HB = 43,3 kN ( )

    VC = 42,5 kN

    26.VA = 21,25 kN

    HA = 0

    MA = 3,75 kN.m (anti horário)

    VB = 43,75 kN

    27.

    VA = 40 kN

    VB = 50 kN

    MB = 20 kN.m (horário)HB = 0

  • 8/20/2019 ISOSTÁTICA v2016

    27/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    27

    28.

    VA = 30 kN

    VB = 110 kNVC = 110 kN

    VD = 130 kN

    VE = 10 kN

    29.

    VA = 2,5 kN

    VB = 5 kN

    VC = 180 kN

    VD = - 37,5 kN

    30.

    VA = 60 kN

    VB = 0VC = 180 kN

    VD = 120 kN

    MD = 160 kN.m (hor ant)

    31.

  • 8/20/2019 ISOSTÁTICA v2016

    28/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    28

    32.

    VA = 65,2 kNVB = - 25,2 kN

    HB = 30 kN ( )

    MB = 215,4 kN.m (anti horário)

    33.

    VA = 11,3 kN

    HA = 35,8 kN ( )

    VB = 28,65 kN

    HB = 5,9 kN ( )

    34.

    VA = 24,33 kN

    HA= 16,22 kN ( )

    VB = 25,67 kN

    HB = 6,22 kN ( )

    35.VA = 51,46 kN

    HA = 12,08 kN ( )

    VB = 38,54 kN

    HB = 42,08 kN ( )

  • 8/20/2019 ISOSTÁTICA v2016

    29/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    29

    CAPÍTULO VISOLICITAÇÕES INTERNAS

    Estudou-se que quando existe um sistema de cargas ativas atuando em um corpo sãodesenvolvidas cargas externas reativas, capazes de manter o equilíbrio do corpo, que calculamos

    com a aplicação das equações fundamentais da estática.

    Mas, de uma maneira geral pode-se dizer que o equilíbrio externo não leva em conta o modo

    como o corpo transmite as cargas para os apoios. Desta forma quando o corpo recebe carregamento

    vai gradativamente deformando-se até atingir o equilíbrio, onde as deformações param de aumentar

    (são impedidas internamente), gerando solicitações internas. E, cabe ressaltar que o equilíbrio

    ocorre na configuração deformada, que admitimos ser bem próxima da inicial (campo das pequenas

    deformações).

    O estudo das solicitações internas analisa quais os efeitos que a transmissão deste sistema de

    cargas externas aos apoios provoca nas diversas seções que constituem o corpo em equilíbrio.

    Para tanto, suponha o corpo em equilíbrio sob efeito de um carregamento qualquer. Se

    cortarmos este corpo por um plano qualquer (), rompemos o equilíbrio, pois destruímos sua cadeia

    molecular, na seção "S" de interseção do plano com o corpo.

    Para que as partes isoladas pelo corte permaneçam em equilíbrio, deve-se aplicar, por

    exemplo, sobre a parte da esquerda, a ação que a parte da direita exercia sobre ela, ou seja,resultante de força (R) e resultante de momento (M). O mesmo deve ser feito com a parte da

    esquerda, cujas resultantes estão também representadas.

    R - Resultante de forças da parte retiradaM - Resultante de momentos da parte retirada

  • 8/20/2019 ISOSTÁTICA v2016

    30/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    30

    As resultantes nas seções de corte de ambos os lados devem ser tais que reproduzam a

    situação original quando as duas partes forem ligadas novamente, ou seja, pelo princípio da ação e

    reação devem ser de mesmo módulo, mesma direção e sentidos opostos.

    Quando queremos saber o que acontece em uma seção S de uma peça, devemos cortar a peçana seção desejada, isolar um dos lados do corte (qualquer um) e podemos dizer que no centro de

    gravidade esta seção deve aparecer os esforços internos (resultante de força e de momento) que

    mantém o corpo isolado em equilíbrio.

    Estes esforços representam a ação da parte retirada do corpo. E, a seção de referência a ser

    adotada será sempre a seção transversal das peças em estudo.

    1. Classificação das solicitações:

    Os esforços estão associados às deformações que provocam e se classificam de acordo com

    elas. Decompondo os vetores resultantes

    R e M segundo as três direções (x, y e z, perpendiculares

    entre si) e tem-se:

    Denominam-se as componentes (que são as SOLICITAÇÕES INTERNAS) da seguinte

    maneira, sendo que cada solicitação tem associada a si uma deformação:

    N - Esforço Normal

    Q - Esforço CortanteM - Momento FletorMt - Momento Torsor

    a) Esforço Normal (N): define-se esforço normal em uma seção de corte como sendo a soma

    algébrica das componentes de todas as forças que atuam ao longo do eixo da peça. As fibras

    longitudinais que constituem estas seções permanecem paralelas entre si, porém com seus

    comprimentos alterados (sofrem alongamentos ou encurtamentos). O esforço normal seráconsiderado positivo quando alonga a fibra longitudinal, e negativo no caso de encurtamento.

  • 8/20/2019 ISOSTÁTICA v2016

    31/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    31

    b) Esforço Cortante (Q) : define-se esforço cortante em uma seção de referência como sendo a soma

    algébrica das componentes de todas as forças que atuam perpendicularmente ao eixo da peça. O

    efeito do esforço cortante é o de provocar o deslizamento no sentido do esforço de uma seção sobre

    a outra infinitamente próxima acarretando o corte ou cisalhamento da mesma.

    c) Momento Fletor (M) : define-se momento fletor em uma seção de referência como a somaalgébrica dos momentos provocados, separadamente, dos momentos em relação aos eixos y e z. O

    efeito do momento fletor é provocar o giro a seção transversal em torno de um eixo contido pela

    própria seção, resultando que as fibras de uma extremidade são tracionadas enquanto que na outra

    são comprimidas (as seções giram em torno do eixo na qual se desenvolve o momento, mas

    permanecem planas). O momento fletor M é considerado positivo quando traciona as fibras de baixo da estrutura.

    d) Momento Torsor (Mt) : define-se momento torsor em uma seção de referência como a somaalgébrica das componentes dos momentos das forças externas de um dos lados da referência em

    relação ao eixo longitudinal da peça (eixo x). O efeito do momento torsor é o de provocar o giro daseção em torno do eixo longitudinal da peça, torcendo-a ou deslocando-a angularmente em relação à

    seção vizinha.

  • 8/20/2019 ISOSTÁTICA v2016

    32/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    32

    2. Cálculo das solicitações internas em uma seção: MÉTODO DAS EQUAÇÕES:

    Roteiro de cálculo:

    1. Cálculo das reações externas2. Identificação dos pontos de transição criando trechos pré-estabelecidos

    Ponto de força aplicada

    Ponto de momento aplicado Ponto de troca da taxa de carregamento (descontínua)

    3. Usar o método de corte de seções em cada um destes trechos, adotando como posição genérica

    desta seção a variável x, que valerá dentro dos limites dos trechos.

    4. Supomos em cada seção cortada o aparecimento das solicitações previstas, que devem ser

    arbitradas com o sentido convencionado positivo.

    5. Aplicam-se as equações de equilíbrio estático em cada um dos cortes, obtendo-se as equações

    desejadas.

    Σ Fx = 0 Σ Fy = 0 Σ M = 0 6. Representação destas equações sob a forma de um diagrama, conforme convenção abaixo:

  • 8/20/2019 ISOSTÁTICA v2016

    33/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    33

    EXERCÍCIOS:

    Determinar o diagrama das solicitações internas das vigas abaixo, usando o método das equações:

    1.

    3.

    15 kN/m 10 kN12 kN.m2.

    4.

  • 8/20/2019 ISOSTÁTICA v2016

    34/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    34

    5.

    6. 7.

  • 8/20/2019 ISOSTÁTICA v2016

    35/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    35

    3. Cálculo das solicitações internas: MÉTODO DAS EQUAÇÕES:

    Roteiro de cálculo:

    1. Cálculo das reações externas2. Identificação dos pontos de transição criando trechos pré-estabelecidos

    Ponto de força aplicada

    Ponto de momento aplicado Ponto de troca da taxa de carregamento (descontínua)

    3. Aplicam-se as equações de equilíbrio estático em cada um dos pontos de transição, ou antes e

    depois dos mesmos – dependendo da descontinuidade, observando a convenção positiva:

    Σ Fx = 0 Σ Fy = 0 Σ M = 0

    CONVENÇÃO POSITIVA:

    4. Unir os resultados encontrados em diagramas, conforme convenção abaixo:

  • 8/20/2019 ISOSTÁTICA v2016

    36/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    36

    EXERCÍCIOS:

    Determinar o diagrama das solicitações internas das vigas abaixo, usando o método direto:

    1. 2. 3. 4. 5. 6. 7. Lista do Método das Equações

    8.

    9.

    10.

  • 8/20/2019 ISOSTÁTICA v2016

    37/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    37

    11.

    12.

    13.

    14.

  • 8/20/2019 ISOSTÁTICA v2016

    38/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    38

    CAPÍTULO VIIPÓRTICOS PLANOS

    Pórtico são estruturas formadas por barras, que formam quadros entre si. Existem quatro

    tipos fundamentais de quadros isostáticos planos, que associados entre si, da mesma forma com que

    associamos vigas simples para formar vigas compostas (GERBER), formam os chamados quadros

    compostos. São eles:

    1. Cálculo das solicitações internas de um pórtico:

    No estudo das solicitações internas dos pórticos, identifica-se os lados internos das barrascom a parte inferior de uma estrutura linear horizontal, baseados no artifício de linearizar a

    estrutura, podendo-se, então, utilizar as convenções já adotadas.

    CONVENÇÃO POSITIVA:

    Ressalta-se que linearizar a estrutura é apenas um artifício usado para a adaptação dasconvenções já estabelecidas, porém não é válida para o cálculo das solicitações, pois com a

  • 8/20/2019 ISOSTÁTICA v2016

    39/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    39

    mudança de direção das barras altera-se o funcionamento da estrutura. O cálculo das solicitações,

    assim como em vigas, pode ser realizado pelométodo das equaçõesou pelo método direto.Deve-se salientar o fato de que o eixo longitudinal (x) de cada barra, continua sendo o eixo

    que passa pelo centro de gravidade das seções transversais, e os eixos y e z, perpendiculares à este e

    contidos pela seção de corte (eixos principais centrais de inércia).

    EXERCÍCIOS:

    1.

    VA = 0,67 kNHA = 10 kN ( )VB = 3,33 kN

  • 8/20/2019 ISOSTÁTICA v2016

    40/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    40

    2.

  • 8/20/2019 ISOSTÁTICA v2016

    41/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    41

    3.

    VA = 70 kNVB = 0HB = 10 kN ( )

    10 kN/m

  • 8/20/2019 ISOSTÁTICA v2016

    42/43

    Isostática – Profas. Mauren Aurich e Paula Manica Lazzari

    42

    4.

    - 14,75

  • 8/20/2019 ISOSTÁTICA v2016

    43/43

    43

    5.

    -6

    -6

    - 6(-)

    - 18 - 12