56
Solution to John David Jackson Classical Electrodynamics FOR THIRD EDITION Jackson Consortium Rev. 41

JD Jackson Solution Chapter 1 and 2

Embed Size (px)

DESCRIPTION

contain solutions of JD Jackson Classical Electrodynamics chapter 1 and 2(Incomplete)

Citation preview

  • Solution to

    John David Jackson

    Classical

    Electrodynamics

    FOR THIRD EDITION

    Jackson Consortium

    Rev. 41

  • iii

    Introduction

    John David Jackson ClassicalElectrodynamics () Creative CommonsBY-NC-SA1)

    (y) (z)

    Copyright c Jackson Consortium 2010Y.Hotta, M.Hyuga, T.Matsuda, Y.O^no

    1) http://creativecommons.org/licenses/by-nc-sa/3.0/deed.ja

  • vContents

    Introduction iii

    Chapter 1 Introduction to Electrostatics 1

    1.2 Dirac delta function for a general orthogonal coordinate system . . . . 1

    1.4 Electric elds produced by a spherically symmetric charge density . . . 2

    1.6 The capacitance of simple capacitors . . . . . . . . . . . . . . . . . . 4

    1.8 Energy densities of certain capaciters . . . . . . . . . . . . . . . . . . 6

    1.10 The mean value theorem (for electrostatics) . . . . . . . . . . . . . . 7

    1.11 Normal derivertive of the electric eld at the surface of a curved conductor 9

    1.12 Green's reciprocation theorem . . . . . . . . . . . . . . . . . . . . . 10

    1.14 The behavior of Green functions for Poisson equation . . . . . . . . . 11

    1.16 Energy decreasing with introduction of a conductor . . . . . . . . . . 12

    1.18 The variational principal for capacitance . . . . . . . . . . . . . . . . 14

    1.20 Theory of the capacitance estimation . . . . . . . . . . . . . . . . . . 15

    1.22 The mathematical bases for relaxation method . . . . . . . . . . . . . 17

    1.24 Numerical analysis performed by the relaxation method II . . . . . . . 18

    Chapter 2 Boundary-Value Problems in Electrostatics: I 23

    2.4 A point charge placed outside a conducting sphere . . . . . . . . . . . 23

    2.8 Two straight parallel line charges with equal and opposite charge densities 25

    2.12 Poisson's integral form of the potential . . . . . . . . . . . . . . . . . 31

    2.16 The potential on a unit square area with a uniform charge density . . 33

    2.20 Four symmetrically placed line charges . . . . . . . . . . . . . . . . . 35

    2.24 The completeness relation for sine functions . . . . . . . . . . . . . . 38

    2.28 The potential at the center of a regular polyhedron . . . . . . . . . . 39

    Referential Sites 43

  • vi Contents

    About us 47

  • 1Chapter 1

    Introduction to Electrostatics

    1.2 Dirac delta function for a general orthogonal coordinate system

    D(;x; y; z) ! 0

    (x; y; z) 6= 0 lim!0D(;x; y; z) = 0 (x; y; z) = 0) lim!+0D(;x; y; z) =1 lim!+0

    RD(;x; y; z) = 1

    , U; V;W metric coecients

    U1 =@~x@u

    (1.2.1)V 1 =

    @~x@v (1.2.2)

    W1 = @~x@w

    (1.2.3)x = x(u; v; w); y = y(u; v; w); z = z(u; v; w) 1 1 (u; v; w) (u0; v0; w0)

  • 2 Chapter 1 Introduction to Electrostatics

    D(;x x0; y y0; z z0) (1.2.4)

    =(2)3=23 exp 122

    [(x x0)2 + (y y0)2 + (z z0)2]

    (1.2.5)

    =(2)3=23 exp 122

    @x

    @uu+

    @x

    @vv +

    @x

    @ww

    2+

    @y

    @uu+

    @y

    @vv +

    @y

    @ww

    2+

    @z

    @uu+

    @z

    @vv +

    @z

    @ww

    2(1.2.6)

    (* u = u u0 )

    (u; v; w)@~r

    @u;@~r

    @v;@~r

    @w

    =(2)3=23 exp 122

    (U2u2 + V 2v2 +W2w2)

    (1.2.7)

    =(2)1=21 expU

    2u2

    22

    (2)1=21 exp

    V

    2v2

    22

    (2)1=21 exp

    W

    2w2

    22

    (1.2.8)

    lim!+0

    D(;x x0; y y0; z z0) = (u)(v)(w)UVW (1.2.9)

    1.4 Electric elds produced by a spherically symmetric charge density

    E = E(r)er (1.4.1)

    Gauss ()Z

    @V

    E dS = 10

    ZV

    dV (1.4.2)

    Gauss 1)

    1) r

  • 1.4 Electric elds produced by a spherically symmetric charge density 3

    1.1

    4r2E(r) =Q

    0(1.4.3)

    E(r) =Q

    4r20(1.4.4)

    E(r; ; ) =

    Q

    4r20er (1.4.5)

    rn n = 0

    = 0 Gauss

    E = 0 (1.4.6)

    1.1

    rn(n > 3) r Q(r)

  • 4 Chapter 1 Introduction to Electrostatics

    1.2 rn

    Q(r) = Q

    Z r0

    4r02r0ndr0Z a0

    4r02r0ndr0(1.4.7)

    = Q

    Z r0

    r0n+2dr0Z a0

    r0n+2dr0(1.4.8)

    = Q

    rn+3

    n+ 3

    r0

    rn+3

    n+ 3

    a0

    (1.4.9)

    = Q ra

    n+3(1.4.10)

    Gauss

    E(r)4r2 =Q(r)

    0(1.4.11)

    ) E(r) = Qrn+1

    40an+3(1.4.12)

    E(r; ; ) =Qrn+1

    40an+3er (1.4.13)

    n = 0;2 1.2

    1.6 The capacitance of simple capacitors

    (a)

  • 1.6 The capacitance of simple capacitors 5

    E =

    0=

    Q

    0A(1.6.1)

    V = Ed

    C = Q=V = 0A

    d(1.6.2)

    (b)

    r

    Q

    0= 4r2E (1.6.3)

    or

    E =Q

    40

    1

    r2(1.6.4)

    V =

    Z ba

    Edr =Q

    40(1

    b+1

    a) (1.6.5)

    C =Q

    V= 40

    ab

    b a (1.6.6)

    (c)

    (b), r

    Q

    0= 2rLE (1.6.7)

    V =

    Z ba

    Edr =Q

    2L0ln

    b

    a

    (1.6.8)

    C =Q

    V= 20L

    ln

    b

    a

    1(1.6.9)

  • 6 Chapter 1 Introduction to Electrostatics

    (d)

    (c) a = 1mm, C=L = 3 1011F=m, 0 = 8:9 1012F=m , b =6:5mm C=L = 3 1012 b = 1:2 105m

    1.8 Energy densities of certain capaciters

    (a)

    W :=

    02

    ZE2dV (1.8.1)

    1.6

    Q V

    (a)d

    20AQ2

    0A

    2dV 2

    (b)Q2

    80

    1

    a 1b

    20V

    2

    1

    a 1b

    1(c)

    Q2

    40Lln

    b

    a0LV

    2

    ln

    b

    a

    1

    W =QV

    2(1.8.2)

    A;B +Q;Q

  • 1.10 The mean value theorem (for electrostatics) 7

    W =02

    ZE2dV (1.8.3)

    =02

    Zr' r'dV (1.8.4)

    =02

    ['r']

    Z'4'dV

    (1.8.5)

    = 02

    Z'4'dV (* 0)

    =1

    2

    Z'dV (1.8.6)

    =1

    2(+Q'(A) + (Q'(B))) (1.8.7)

    =Q

    2('(A) '(B)) (1.8.8)

    =QV

    2(1.8.9)

    1)

    (b)

    ()

    W /(a) 1

    (b) r4

    (c) r2

    1.3

    1.10 The mean value theorem (for electrostatics)

    Green V; S R Z

    V

    (~y)r2yG(~x; ~y)G(~x; ~y)r2y(~y)

    dVy

    =

    ZS

    ((~y)ryG(~x; ~y)G(~x; ~y)ry(~y)) !dSy (1.10.1)

    1) (p. 43 (1.62) )

  • 8 Chapter 1 Introduction to Electrostatics

    1.3

    G(~x; ~y) = R := 1=(j~x ~yj) r2G = 4;r2(~y) = =0 = 0

    () = 4(~x) (1.10.2)

    () =ZS

    r

    1

    R

    1Rr

    !dS (1.10.3)

    = 1R2

    ZS

    dS +1

    R

    ZV

    r ~EdV (*) (1.10.4)

    = 1R2

    ZS

    dS (1.10.5)

    y

    y(Editor's note) Chapter 2 28 Gauss I

    SErdS = 0 (1.10.6)

    Er E r

    (r) = (0) +

    Z R0

    Erdr (1.10.7)

    IS(r)dS =

    IS(0)dS +

    ISdS

    Z R0

    drEr (1.10.8)

    = 4R2(0) +

    Z R0

    dr

    ISdSEr| {z }

    =0 (*(1:10:6))

    (1.10.9)

    = 4R2(0) (1.10.10)

  • 1.11 Normal derivertive of the electric eld at the surface of a curved conductor 9

    1.4

    1.5 1.4 ()

    1.11 Normal derivertive of the electric eld at the surface of a curved conductor

    R11 R22 n V Gauss ( 1.5)Z

    S=@V

    E dS = 10

    ZV

    dV (1.11.1)

    = 0 1)E(0) n E(n) 2)

    1) n 2) i n

  • 10 Chapter 1 Introduction to Electrostatics

    Gauss

    E(n) (R1 +n)1 (R2 +n)2 E(0)R11 R22 = 0 (1.11.2)

    E(n) E(0)n

    R1R2 + E(n)(R1 +R2) + E(n)n = 0 (1.11.3)

    n! +0 @E

    @n(0)R1R2 + E(0)(R1 +R2) + 0 = 0 (1.11.4)

    1

    E

    @E

    @n=

    1

    R1+

    1

    R2

    (1.11.5)

    1.12 Green's reciprocation theorem

    (x) =1

    40

    ZV

    (x0)jx x0jd

    3x0 +ZS

    (x0)jx x0jda

    0

    (1.12.1)

    (LHS) =

    ZV

    (x)0(x)d3x+ZS

    (x)0(x)da (1.12.2)

    =1

    40

    ZV

    d3x(x)

    ZV

    0(x0)jx x0jd

    3x0 +ZS

    0(x0)jx x0jda

    0+Z

    S

    da(x)

    ZV

    0(x0)jx x0jd

    3x0 +ZS

    0(x0)jx x0jda

    0

    (1.12.3)

    =1

    40

    ZV

    d3x00(x0)Z

    V

    (x)

    jx x0jd3x+

    ZS

    (x)

    jx x0jda+Z

    S

    da00(x0)Z

    V

    (x)

    jx x0jd3x+

    ZS

    (x)

    jx x0jda

    (1.12.4)

    =

    ZV

    0(x0)(x0)d3x0 +ZS

    0(x0)(x0)da0 (1.12.5)

    = (RHS) (1.12.6)

  • 1.14 The behavior of Green functions for Poisson equation 11

    1.14 The behavior of Green functions for Poisson equation

    (a)

    Dirichlet Green

    GD(~x; ~y) = 0 (~y S) (1.14.1)

    ZV

    GD(~x; ~y)r2GD(~x0; ~y)GD(~x0; ~y)r2GD(~x; ~y)

    dV

    =

    ZS

    GD(~x; ~y)rGD(~x0; ~y)GD(~x0; ~y)rGD(~x; ~y)

    !dSy (1.14.2)

    or

    4GD(~x; ~x0) + 4GD(~x0; ~x) = 0 (1.14.3)

    GD(~x; ~x0) = GD(~x0; ~x) (1.14.4)

    (b)

    Neumann Green

    @GN (~x; ~y)

    @ny= 4

    S(~y S) (1.14.5)

    GreenZV

    GN (~x; ~y)r2GN (~x0; ~y)GN (~x0; ~y)r2GN (~x; ~y)

    dV

    =

    ZS

    GN (~x; ~y)

    @GN@ny

    (~x0; ~y)GN (~x0; ~y)@GN@ny

    (~x; ~y)

    day (1.14.6)

    i.e.,

    4GN (~x; ~x0) + 4GN (~x0; ~x) = 4S

    ZS

    GN (~x; ~y)day +4

    S

    ZS

    GN (~x0; ~y)day

    (1.14.7)

  • 12 Chapter 1 Introduction to Electrostatics

    (c)

    Neumann

    (~x) = hSi+ 140

    ZV

    (~x0)GN (~x; ~x0)d3x0 +1

    4

    ZS

    @

    @n0GNda

    0 (1.14.8)

    GN ! GN F

    ()!hSi+ 140

    ZV

    (~x0)(GN (~x; ~x0) F (~x))d3x0

    +1

    4

    ZS

    @

    @n0(GN (~x; ~x0) F (~x))da0 (1.14.9)

    = (~x) F (~x)40

    ZV

    (~x0)d3x0 F (~x)4

    ZS

    @

    @n0da0 (1.14.10)

    = (~x) (* ) (1.14.11)

    1.16 Energy decreasing with introduction of a conductor

    (0)

    W =02

    ZV

    jEj2dV (1.16.1)

    W 0 =02

    ZV

    jE0j2dV (1.16.2)

    E := E0 E

    W =W 0 +02

    ZV

    jEj2 dV 2ZV

    E0 EdV

    (1.16.3)

    Z

    V

    E0 EdV = ZV

    r0 EdV (1.16.4)

    = ZS

    0E da+ZV

    0r (E0 E)dV (1.16.5)

  • 1.16 Energy decreasing with introduction of a conductor 13

    ZS

    0E da =Xi

    0i

    ISi

    (E0i Ei) da

    () (1.16.6)

    =Xi

    0i

    qi0 qi0

    (1.16.7)

    = 0 (1.16.8)

    ZV

    0r(E0 E)dV = 10

    Xi

    ZVi

    0i(0i i)dV +

    ZVins

    0(0 )dV!

    (1.16.9)

    = 10

    Xi

    0i

    ZVi

    (0i i)dV +0ZVins

    (0 )dV!

    (* ) (1.16.10)= 0 (* ) (1.16.11)

    ZV

    E0 EdV = 0 (1.16.12)

    (1.16.3)

    W =W 0 +02

    ZV

    jEj2 dV (1.16.13)

    W >W 0 (1.16.14)

    y the surfaces lowers the electrostatic energyz W = W 0 = W 0 =W + 02

    RVjEj2 dV

  • 14 Chapter 1 Introduction to Electrostatics

    RVins

    (0 )dV 0

    1.18 The variational principal for capacitance

    (a)

    G(~x; ~x0) ~x0 S 0

    (~x) =1

    4

    ZV

    d3x0(~x0)G(~x; ~x0) +1

    4

    ZS

    dS0G(~x; ~x0)

    @

    @n0 (~x0) @G

    @n0

    (1.18.1)

    =1

    4

    ZS1

    da0G(~x; ~x0)@

    @n0 14

    ZS1

    !dS r0G(~x; ~x0) (1.18.2)

    ~x0 S r0G(~x; ~x0) = 0 0

    W =1

    2

    ZV

    dV (~x)(~x) =1

    80

    ZS1

    da

    ZS1

    da01(~x0)G(~x; ~x0)1(~x0) (1.18.3)

    (b)

    dC1[]d

    (1.18.4)

    =1

    40

    1RS1da(~x)

    4ZS1

    da

    ZS1

    da0G(~x; ~x0)((~x) + (~x0))Z

    S1

    da(~x)

    2

    2ZS1

    da(~x)

    ZS1

    da

    ZS1

    da

    ZS1

    da0G(~x; ~x0)(~x)(~x0)

    (1.18.5)

    (a)dC1[1]

    d= 0 (1.18.6)

    1 1 !

  • 1.20 Theory of the capacitance estimation 15

    1.20 Theory of the capacitance estimation

    (a)

    1 = 01 1, 1' 1 1' (r) ' (r) 1.17

    trial function

    0(r) 1.17

    C 0 6 C 0[] (1.20.1)

    = 0

    ZV

    jrj2d3x (1.20.2)= C (1.20.3)

    (b)

    () ()1) R E = Er(r)er r > R Gauss

    Er(r) =Q

    40

    1

    r2(1.20.4)

    Q

    V = Z R1

    Er(r)dr =Q

    40

    1

    R(1.20.5)

    C =Q

    V= 40R (1.20.6)

    1) ()Jackson

  • 16 Chapter 1 Introduction to Electrostatics

    a

    p32 a

    (1.20.6)

    C" := 0:866 40a (1.20.7)

    a a2 (1.20.6)

    C# := 0:5 40a (1.20.8)

    0:683 40a 0:655 40a (4 %)2)

    (c)

    (a) 0 0 1.7 1.7 y (a)

    2)

  • 1.22 The mathematical bases for relaxation method 17

    fCijg

    Q1Q2

    =

    C11 C12C12 C22

    V1V2

    (1.20.9)

    1.7 (1 ) +Q (2 ) Q V1 V2

    C =Q

    V1 V2 (1.20.10)

    C =C11C22 C212

    C11 + C22 + 2C12(1.20.11)

    (1) C12 3)(a) C11 4) C C11

    @C

    @C11=

    (C12 + C22)2

    C11 + C22 + 2C12> 0 (1.20.12)

    C C11 C11 1.7

    1.22 The mathematical bases for relaxation method

    f well-behaved

    f(x1 + h1; x2 + h2; ; xn + hn) =1Xk=0

    (dkf)(x1;x2; ;xn)(h1; h2; ; hn) (1.22.1)

    A := fx1; x2; ; xng Sk :=kMi=1

    A (1.22.2)

    3) y ()4) V1 = V; V2 = 0

  • 18 Chapter 1 Introduction to Electrostatics

    (dkf)(x1;x2; ;xn)(h1; h2; ; hn) :=X

    (1;2; ;k)2Sk

    @kf(x1; ; xn)@1@2 @k hl1hl2 hlk

    (1.22.3)

    (hli i )

    (a) (b)

    ()

    f (a; b) (a; b) R C

    f(a; b) =1

    2R

    ZC

    dsf(x; y) (1.22.4)

    4 ( 8 )

    1.24 Numerical analysis performed by the relaxation method II

    p.49 (1.82) :

    new(i; j) = hhold(i; j)ii+ h2

    5

    0+h2

    10

    0

    C

    +O(h6) (1.24.1)

    hf(i; j)iC := 14

    f(i 1; j) + f(i+ 1; j) + f(i; j 1) + f(i; j + 1) (1.24.2)

    hf(i; j)iS := 14

    f(i1; j1)+f(i+1; j1)+f(i1; j1)+f(i+1; j+1) (1.24.3)

    hhf(i; j)ii := 15hfiS + 4

    5hfiC (1.24.4)

    1) = 1 (0:25; 0:25) 1 (0:25; 0:5) 2 (0:5; 0:5)

    1)

  • 1.24 Numerical analysis performed by the relaxation method II 19

    1.1 Jacobian () Gauss-Seidel ()PPPPPPPPP

    Jacobian Gauss-Seidel 1 2 3 1 2 3

    0 1:0000 1:0000 1:0000 1:0000 1:0000 1:0000

    1 0:6463 0:9160 1:2356 0:6463 0:7745 0:9845

    2 0:6245 0:8132 1:0977 0:5554 0:7125 0:9167

    3 0:5765 0:7667 1:0111 0:5272 0:6814 0:8862

    4 0:5536 0:7255 0:9642 0:5132 0:6667 0:8716

    5 0:5348 0:7028 0:9267 0:5066 0:6596 0:8646

    6 0:5238 0:6855 0:9048 0:5034 0:6562 0:8613

    7 0:5158 0:6750 0:8888 0:5019 0:6546 0:8597

    8 0:5108 0:6676 0:8788 0:5012 0:6539 0:8589

    9 0:5073 0:6628 0:8718 0:5008 0:6535 0:8586

    10 0:5051 0:6596 0:8673 0:5007 0:6533 0:8584...

    ......

    ......

    ......

    100 0:5005 0:6532 0:8583 0:5005 0:6532 0:8583

    () 0:5691 0:7205 0:9258 0:5691 0:7205 0:9258

    3 40i i : 8>:

    new1 = 0:42 + 0:053 +16

    new2 = 0:41 + 0:12 + 0:23 +11160

    new3 = 0:21 + 0:82 +340

    (1.24.5)

    i = 1:0 Jackson Java ( 1.1) 1.1 1.6 Jacobian Gauss-Seidel Jacobian (?) 0.07

  • 20 Chapter 1 Introduction to Electrostatics

    1.6 Jacobian Gauss-Seidel

    n 0 4n () () ( 1.2)2) 1.2

    1.1 Relaxation.java

    1 import java.io.*;2 import java.awt .*;3 import java.awt.image .*;4 class Relaxation{5 public static final int WIDTH = 500;6 public static final int HEIGHT = WIDTH;7 public static final int TRY = 100;8 public static final double PRECISE [] = {0.5691 , 0.7205 , 0.9258};9 public static void main(String args []){

    10 double x[] = new double [3], y[] = new double [3], z[] = new double [3];

    2) O(n2) ( x+y 2 O(n) ) 100

  • 1.24 Numerical analysis performed by the relaxation method II 21

    1.2 4 8 12 16 20 24 28 32 361 0:50053 0:55254 0:56177 0:56498 0:56646 0:56726 0:56775 0:56806 0:568272 0:65316 0:70401 0:71320 0:71639 0:71787 0:71867 0:71916 0:71947 0:719683 0:85826 0:90929 0:91848 0:92168 0:92316 0:92396 0:92444 0:92476 0:92497

    40 44 48 52 56 60 64 681 0:56843 0:56854 0:56863 0:56870 0:56875 0:56879 0:56883 0:568862 0:71984 0:71995 0:72004 0:72010 0:72016 0:72020 0:72024 0:720273 0:92513 0:92524 0:92533 0:92539 0:92545 0:92549 0:92553 0:92556

    72 76 80 84 88 92 96 1001 0:56888 0:56890 0:56892 0:56893 0:56895 0:56896 0:56897 0:568982 0:72029 0:72031 0:72033 0:72034 0:72036 0:72037 0:72038 0:720393 0:92558 0:92560 0:92562 0:92563 0:92565 0:92566 0:92567 0:92568

    11 double jacobi [][] = new double[TRY +1][3];12 double gauss [][] = new double[TRY +1][3];13 x[0] = x[1] = x[2] = 1.0;14 z[0] = z[1] = z[2] = 1.0;15 for(int i=0; i

  • 22 Chapter 1 Introduction to Electrostatics

    49 try{50 System.out.println(51 javax.imageio.ImageIO.write(img , "PNG", new File("relaxation.png")) ?52 "Success" : "Fail"53 );54 }catch(IOException e){55 e.printStackTrace ();56 }57 }58 }

    1.2 Relaxation2.java1 class Relaxation2{2 public static void main(String args []){3 int cases = 25;4 for(int i=1; i

  • 23

    Chapter 2

    Boundary-Value Problems in

    Electrostatics: I

    2.4 A point charge placed outside a conducting sphere

    q Q = rq 1) p.61 (2.9)

    F =1

    40

    q2

    d2

    r R

    3(2d2 R2)d(d2 R2)2

    (2.4.1)

    (i)

    () F = 0

    F = 0 (2.4.2)

    ,rd(d2R2)2 = R3(2d2 R2) (2.4.3),r5 2r3 22 + r + 1 = 0 (2.4.4)

    :=

    d

    R(2.4.5)

    1) (a), (b) r = 1:0 (c) r = 0:5; 2:0

  • 24 Chapter 2 Boundary-Value Problems in Electrostatics: I

    > 1 r = 0:5; 1:0; 2:0 Mathematica :

    2.1 ( = dR)

    r

    0:5 1.8823

    1:0 1.6180

    2:0 1.4276

    r = 1 2)

    (ii)

    d := a+R(a R) (2.4.1)

    F =1

    40

    q2

    (R+ a)2

    r R

    3(R2 + 4aR+ 2a2)

    (R+ a)(2aR+ a2)2

    (2.4.6)

    a! 0

    F 140

    q2

    R2

    0 R

    3 R2R(2aR)2

    = q

    2

    160a2(2.4.7)

    Q = rq Q = rq ( r) | | +1 Q

    F 140

    q (q)(2a)2

    (2.4.8)

    a ( 2.1)

    2) Mathematica

  • 2.8 Two straight parallel line charges with equal and opposite charge densities 25

    a

    ( )

    a

    image charge

    2.1

    2.2

    2.8 Two straight parallel line charges with equal and opposite charge densities

    (a)R

    2; 0

    +

    R2; 0

    x-y

    (x; y; z) =

    40 ln

    0BBB@x R

    2

    2+ y2

    x+R

    2

    2+ y2

    1CCCA (2.8.1)

  • 26 Chapter 2 Boundary-Value Problems in Electrostatics: I

    (x; y; z) = () (2.8.2)

    ,

    x R

    2

    2+ y2

    x+R

    2

    2+ y2

    = () (2.8.3)

    A x R

    2

    2+ y2

    x+R

    2

    2+ y2

    A1 (2.8.4)

    (A 1)x2 + y2 +

    R2

    4

    (A+ 1)Rx = 0 (2.8.5)

    A = 1 x 0 y-z A 6= 1

    x 12

    A+ 1

    A 1R2

    + y2 =A

    (A 1)2R2 (2.8.6)

    1

    2

    A+ 1

    A 1R; 0

    pA

    jA 1jR 1)

    (b)

    2:3 \"

    1)

  • 2.8 Two straight parallel line charges with equal and opposite charge densities 27

    ""

    2.3 "" (d > a+ b; )

    (a) 8>>>>>>>>>>>>>>>>>>>>>>>>>>>:

    1

    2

    Aa + 1

    Aa 1R = xa (2.8.7a)pAa

    jAa 1jR = a (2.8.7b)1

    2

    Ab + 1

    Ab 1R = xb (2.8.7c)pAb

    jAb 1jR = b (2.8.7d)xa xb = d (2.8.7e)

    Aa; Ab (a) A

    V :=

    40 lnA1a 40 lnA1b (2.8.8)

    =

    40

    ln AbAa (2.8.9)

    C :=

    V= 40

    ln AbAa1 (2.8.10)

  • 28 Chapter 2 Boundary-Value Problems in Electrostatics: I

    (2.8.7a)

    Aa = 1 +2R

    2xa R =2xa +R

    2xa R (2.8.11)

    (2.8.7b) ()

    a2 =1

    4(4x2a R2) (2.8.12)

    b2 =

    1

    4(4x2b R2) (2.8.13)

    (2.8.7e)

    d2 a2 b2 = (x2a + x2b 2xaxb)1

    4(4x2a R2)

    1

    4(4x2b R2) (2.8.14)

    =1

    2(R2 4xaxb) (2.8.15)

    (2ab)2 =

    1

    4(4x2a R2)(4x2b R2) (2.8.16)

    d > a+ b d2 a2 b2 > 0 2ab > 0

    d2 a2 b22ab

    =(R2 4xaxb)p

    (4x2a R2)(4x2b R2)(2.8.17)

    =

    vuuuut4xaR

    xbR 1

    4xaR

    2 1

    4xbR

    2 1

    (2.8.18)

    2xaR

    =Aa + 1

    Aa 1 (2.8.19)

    4xaR

    xbR 1 = 2 Aa +Ab

    (Aa 1)(Ab 1) (2.8.20)

    4xaR

    2 1 = 4 Aa

    (Aa 1)2 (2.8.21)

  • 2.8 Two straight parallel line charges with equal and opposite charge densities 29

    d2 a2 b22ab

    =

    s2

    Aa +Ab(Aa 1)(Ab 1)

    2 14

    (Aa 1)2Aa

    14

    (Ab 1)2Ab

    (2.8.22)

    =1

    2

    rAbAa

    + 2 +AaAb

    (2.8.23)

    =1

    2

    rAbAa

    +

    rAaAb

    !(2.8.24)

    = cosh

    ln

    rAbAa

    !(2.8.25)

    arccosh

    d2 a2 b2

    2ab

    =

    lnr

    AbAa

    = 12ln AbAa

    (2.8.26) (2.8.10)

    C = 40

    ln AbAa1 = 20

    arccosh

    d2 a2 b2

    2ab

    (2.8.27)

    (c)

    N := d2 a2 b2

    2ab(2.8.28)

    arccoshN = ln (2.8.29)

    cosh

    N = cosh(ln) = 12(+1) (2.8.30)

    = NpN2 1 (2.8.31)

    arccosh > 1 +

    = N+pN2 1 (2.8.32)

  • 30 Chapter 2 Boundary-Value Problems in Electrostatics: I

    ""

    2.4 "" (d < ja bj; )

    a d; b d N

    2N (2.8.33)

    arccoshN ln 2N (2.8.34)

    C

    20lnd2 (a2 + b2)

    2ab

    1(2.8.35)

    a2 + b2 d2 a2 + b2 Taylor

    C 0ln

    dpab

    1+1

    20

    ab(a2 + b2)

    d4

    ln

    dpab

    2(2.8.36)

    1.7

    (d)

    (b)

  • 2.12 Poisson's integral form of the potential 31

    (b)

    d2 a2 b22ab

    = cosh ln

    rAbAa

    !(2.8.37)

    arccosh

    a2 + b2 d2

    2ab

    =

    1

    2

    ln AbAa (2.8.38)

    C

    C =20

    arccosh

    a2 + b2 d2

    2ab

    (2.8.39)d = 0

    arccosha2 + b2

    2ab= ln (2.8.40)

    , = baor

    a

    b(2.8.41)

    arccosha2 + b2

    2ab=

    ln ba (2.8.42)

    C = 20

    ln ba1 (2.8.43)

    1.6 (c)

    2.12 Poisson's integral form of the potential

    77 (2.71)

    (; ) = a0 +1Xn=1

    (ann cos(n) + bn

    n sin(n)) (2.12.1)

    = b

    (b; ) = a0 +1Xn=1

    (anbn cos(n) + bnb

    n sin(n)) (2.12.2)

    (b; ) Fourier

  • 32 Chapter 2 Boundary-Value Problems in Electrostatics: I

    (b; ) =02+

    1Xn=1

    (n cosn+ n sinn) (2.12.3)

    n =1

    Z 20

    (b; 0) cosn0d0 (2.12.4)

    n =1

    Z 20

    (b; 0) sinn0d0 (2.12.5)

    (2.12.2) (2.12.3) 8>>>:a0 =

    02

    (2.12.6a)

    an = bnn (n > 1) (2.12.6b)

    bn = bnn (2.12.6c)

    (2.12.1)

    (; ) =1

    2

    Z 20

    (b; 0)d0

    +1Xn=1

    b

    2Z 20

    (b; 0) cosn0d0cosn

    +b

    2Z 20

    (b; 0) sinn0d0sinn

    (2.12.7)

    =1

    2

    Z 20

    (b; 0)

    1 + 2

    1Xn=1

    b

    n(cosn0 cosn+ sinn0 sinn)

    !d0

    (2.12.8)

  • 2.16 The potential on a unit square area with a uniform charge density 33

    21Xn=1

    b

    n(cosn0 cosn+ sinn0 sinn) (2.12.9)

    = 21Xn=1

    b

    ncosn(0 ) (2.12.10)

    =

    1Xn=1

    b

    n(exp(in(0 )) + exp(in(0 ))) (2.12.11)

    =

    1Xn=1

    bei(

    0)n

    +bei(

    0)n

    (2.12.12)

    =b e

    i(0)

    1 b ei(0)+

    b ei(0)

    1 b ei(0)(2.12.13)

    *bei(

    0) =

    bei(

    0) =

    b< 1

    =

    2b cos(0 ) 22b2 + 2 2b cos(0 ) (2.12.14)

    (; ) =1

    2

    Z 20

    (b; 0)b2 2

    b2 + 2 2b cos(0 )d0 (2.12.15)

    2.16 The potential on a unit square area with a uniform charge density

    p.39 (1.44) 2.15

    (x; y) =1

    40

    Z 10

    dx0Z 10

    dy0G(x; y;x0; y0) (2.16.1)

    =2

    0

    1Xn=1

    sin(nx)

    n sinh(n)

    Z 10

    sin(nx0)dx0| {z }

    (2.16.2)

    sinh(n(1 y))

    Z y0

    sinh(ny0)dy0 + sinh(ny)Z 1y

    sinh(n(1 y0))dy0

    | {z }F

    (2.16.3)

  • 34 Chapter 2 Boundary-Value Problems in Electrostatics: I

    = 1n

    cos(nx0)

    10

    (2.16.4)

    = 1n

    (cos(n) 1) (2.16.5)

    =1 (1)n

    n(2.16.6)

    F = sinh(n(1 y)) 1n

    cosh(ny0)

    y0 sinh(ny) 1

    n

    cosh(n(1 y0))1

    y

    (2.16.7)

    =1

    n

    sinh(n(1 y)) cosh(ny)| {z } sinh(n(1 y)) sinh(ny) + sinh(ny) cosh(n(1 y))| {z } (2.16.8)

    =1

    n

    sinh(n(1 y) + ny) sinh(ny) + sinh(n(1 y)) (2.16.9)

    =1

    n

    sinh(n) 2 sinh

    n2

    cosh

    n

    y 1

    2

    (2.16.10)

    =2

    0

    1Xn=1

    sin(nx)

    n sinh(n) 1 (1)

    n

    n 1n

    sinh(n) 2 sinh

    n2

    cosh

    n

    y 1

    2

    (2.16.11)

    =2

    30

    1Xn=1

    sin(nx)

    n3(1 (1)n)

    1 cosh(n(y

    12 ))

    cosh(n2 )

    (2.16.12)

    =4

    30

    1Xm=0

    sin[(2m+ 1)x]

    (2m+ 1)3

    1 cosh[(2m+ 1)(y

    12 )]

    cosh[ (2m+1)2 ]

    !(2.16.13)

  • 2.20 Four symmetrically placed line charges 35

    2.5 2.16

    2.20 Four symmetrically placed line charges

    (a)

    (; ) =1

    40

    ZS

    (0; 0)G(; ; 0; 0)da0 (2.20.1)

    =1

    40

    a

    3Xn=0

    (1)2Z 20

    d0Z 10

    0d0(0 a)0 n

    2

    G(; ; 0; 0)

    (2.20.2)

    =1

    40

    a

    3Xn=0

    (1)2aG; ; a;

    n

    2

    (2.20.3)

    =

    20

    3Xn=0

    1Xm=1

    (1)n 1m

    mcos

    hm n

    2

    i(2.20.4)

    n m m 4 2 4 cos(m)

    (; ) =

    20

    1Xk=0

    1

    4k + 2

    4k+24 cos[(4k + 2)] (2.20.5)

    =

    0

    1Xk=0

    1

    2k + 1

    4k+2cos[(4k + 2)] (2.20.6)

  • 36 Chapter 2 Boundary-Value Problems in Electrostatics: I

    (b)

    (; ) =2

    0Re

    " 1Xk=0

    1

    4k + 2

    4k+2exp[i(4k + 2)]

    #(2.20.7)

    =2

    0Re

    266641Xk=0

    1

    4k + 2

    0BBB@ exp(i)| {z }

    1CCCA4k+237775 (2.20.8)

    ln(1 + z) = z z2

    2+

    z3

    3 z

    4

    4+

    ln(1 z) = z z2

    2 z

    3

    3 z

    4

    4

    ln(1 + iz) = +iz +z2

    2 iz

    3

    3 z

    4

    4+

    ln(1 iz) = iz + z2

    2+ i

    z3

    3 z

    4

    4

    1

    4[ln(1 + iz) + ln(1 iz) ln(1 + z) ln(1 z)] = z

    2

    2+z6

    6+ (2.20.9)

    ) 14ln

    1 + z2

    1 z2=

    1Xk=0

    z4k+2

    4k + 2(2.20.10)

    (; ) =2

    0Re

    1

    4ln

    1 + 2

    1 2

    (2.20.11)

    =

    20Re

    ln

    2 + 1

    2 1

    (* Re[ln(z)] = Re[ln(z)]) (2.20.12)

    =

    20Re

    ln

    2e2i + a2

    2e2i a2

    (* > a a < )(2.20.13)

    =

    20Re

    ln

    (ei ia)(ei + ia)(ei a)(ei + a)

    (* < = ; > = a) (2.20.14)

    = Rew(ei) (2.20.15)

  • 2.20 Four symmetrically placed line charges 37

    (; ) =

    20ln

    (ei ia)(ei + ia)(ei a)(ei + a) (2.20.16)

    =

    40lnjei iaj2jei + iaj2jei aj2jei + aj2 (2.20.17)

    =

    40ln(x2 + (y a)2)(x2 + (y + a)2)((x a)2 + y2)((x+ a)2 + y2) (2.20.18)

    2.3

    (c)

    < a (a)

  • 38 Chapter 2 Boundary-Value Problems in Electrostatics: I

    2.6

    k = 1 k = 0 xa

    4(2.20.26)

    2.24 The completeness relation for sine functions

    () :=1Xn=1

    An sin

    n

    (2.24.1)

    Z 0

    (0)2

    1Xm=1

    sin

    m

    sin

    m0

    d0 = () (2.24.2)

    Z 0

    sin

    n

    sin

    m

    d (2.24.3)

    = 12

    Z 0

    cos

    (n+m)

    cos

    (nm)

    d (2.24.4)

    = 12(n;m n;m) (2.24.5)

    (2.24.2)

  • 2.28 The potential at the center of a regular polyhedron 39

    ((2.24.2)-LHS) =2

    1Xn=1

    An

    1Xm=1

    sin

    m

    2 (n;mn;m)z }| {Z 0

    (0)2

    sin

    m0

    d0

    (2.24.6)

    = 1Xn=1

    An

    1Xm=1

    sin

    m

    (n;m n;m) (2.24.7)

    =

    1Xn=1

    An sin

    n

    (2.24.8)

    = () (2.24.9)

    (2.24.1)

    ( 0) = 2

    1Xm=1

    sin

    m

    sin

    m0

    (2.24.10)

    2.28 The potential at the center of a regular polyhedron

    n 0 k V 0 0(r) k lV l0(r)

    (1; 2; ; n) i Vi (r) fgi(r)g

    (r) =nXi=1

    gi(r)Vi (2.28.1)

    i Vi 1 1) V1

    1) 0V

  • 40 Chapter 2 Boundary-Value Problems in Electrostatics: I

    (r) = A(r;V2; V3; )V1 + (r;V2; V3; ) (2.28.2)

    V1 V2 () V := V1 = V2 A(r;V2; V3; ) V2 2) A V3; V4; A V2

    (r) = A(r)V1 +B(r;V3; V4; )V2 + (r;V3; V4; ) (2.28.3)

    B V3; V4;

    (r) =nXi=1

    gi(r)Vi + C(r) (2.28.4)

    V1 = V2 = = 0 0 C 0 (2.28.1)

    rC

    gi(rC) = (const.) (2.28.5)

    gC

    (rC) = gC

    nXi=1

    Vi (2.28.6)

    gC V (r) V

    V = gC

    nXi=1

    V = gCnV (2.28.7)

    2) * V1 V2

  • 2.28 The potential at the center of a regular polyhedron 41

    gC = 1=n

    (rC) =1

    n

    nXi=1

    Vi (2.28.8)

    ()

    Green

    Green Green G(r; r0)

    (r) = 14

    IS

    (r0)@G

    @n0dS0 (2.28.9)

    Vi(i = 1; 2; ; n) n

    (r) = 14

    nXi=1

    Vi

    ISi

    @G

    @n0dS0| {z }

    =:4gi(r)

    (2.28.10)

    =nXi=1

    gi(r)Vi (2.28.11)

    (2.28.1)

    (the mean value theorem)

    V S := @V 0(r) (* Laplace )S 0(r) n n Vi

  • 42 Chapter 2 Boundary-Value Problems in Electrostatics: I

    (r) =nXi=1

    gi(r)Vi (2.28.12)

    n ! 1 0(r)

    (r) =

    IS

    g(r; r0)(r0)dS0 (2.28.13)

    Green

    @G

    @n0=: 4g(r; r0)

    rC

    g(rC ; r0) = (const.) (2.28.14)

    gC

    (r) = gC

    IS

    (r0)dS0 (2.28.15)

    (r0) V

    V = gC 4R2 (2.28.16)

    ( R )

    (r) =1

    4R2

    IS

    (r0)dS0 (2.28.17)

  • 43

    Referential Sites

    Ocial Sites, etc.

    F J. D. Jackson Home Page(http://www-theory.lbl.gov/jdj/)

    John David Jackson

    F Errata(2010).pdf(http://www-theory.lbl.gov/jdj/Errata%282010%29.pdf)

    Classical Electrodynamics

    F UT2010(https://sites.google.com/site/jacksonut2010/)

    Solutions

    F Jackson Electrodynamics Solutions(http://www.airynothing.com/jackson/)

    "Solutions in the left column are the problems I did myself. Solutions in the

    right column were sent to me by Azar Mustafayev, ..." :(

    F Jackson Physics Solutions(http://www-personal.umich.edu/~pran/jackson/)

    "The only way to survive Jackson E&M is by standing on the

  • 44 Referential Sites

    shoulders of those who've gone before."

    F Solutions to Jackson's Electrodynamics(http://www-personal.umich.edu/~jbourj/em.htm)

    F Jackson's Electrodynamics solutions(http://web.ipac.caltech.edu/staff/turrutia/public_html/jackson/jackson.html)

    "These are all I have. Maybe in the vast World Wide Web, the rest are hidden."

    F Rudy's Physics Resource Page(http://www.physics.rutgers.edu/~rmagyar/physics/)

    PDF http://www.physics.rutgers.edu/~rmagyar/physics/jackson.pdf

    F Solutions to problems of Jackson's Classical Electrodynamics byKasper van Wyk

    (http://samizdat.mines.edu/jackson/)

    Chapter 1, 2, 8+

    F Walter Johnson - Electromagnetism(http://www.nd.edu/~johnson/Classes/E&M/probNN.pdf)

    "NN" 1-11

    http://www.nd.edu/~johnson/Classes/E&M/prob1.pdf http://www.nd.edu/~johnson/Classes/E&M/prob2.pdf http://www.nd.edu/~johnson/Classes/E&M/prob3.pdf http://www.nd.edu/~johnson/Classes/E&M/prob4.pdf http://www.nd.edu/~johnson/Classes/E&M/prob5.pdf http://www.nd.edu/~johnson/Classes/E&M/prob6.pdf http://www.nd.edu/~johnson/Classes/E&M/prob7.pdf http://www.nd.edu/~johnson/Classes/E&M/prob8.pdf

  • 45

    http://www.nd.edu/~johnson/Classes/E&M/prob9.pdf http://www.nd.edu/~johnson/Classes/E&M/prob10.pdf http://www.nd.edu/~johnson/Classes/E&M/prob11.pdf

  • 47

    About us

    Jackson (Y.Hotta, M.Hyuga, T.Matsuda,Y.O^no)

    Y.Hotta

    4 2 :

    M.Hyuga

    4 0 : 1.11

    T.Matsuda

    4 3 :

    Y.Ohno

    4 1 :

  • ? M E M O ?

  • ? M E M O ?

  • Solution to Classical Electrodynamics

    Built on 2010/4/20 (Rev. 41)

    / Jackson Consortium

    (https://sites.google.com/site/jacksonut2010/)

    This document is licensed under

    the Creative Commons BY-NC-SA license.

    Free to use, but absolute no warranty.

    c Jackson Consortium 2010 Edited in Japan

    IntroductionChapter 1 Introduction to Electrostatics1.2 Dirac delta function for a general orthogonal coordinate system1.4 Electric fields produced by a spherically symmetric charge density1.6 The capacitance of simple capacitors1.8 Energy densities of certain capaciters1.10 The mean value theorem (for electrostatics)1.11 Normal derivertive of the electric field at the surface of a curved conductor1.12 Green's reciprocation theorem1.14 The behavior of Green functions for Poisson equation1.16 Energy decreasing with introduction of a conductor1.18 The variational principal for capacitance1.20 Theory of the capacitance estimation1.22 The mathematical bases for relaxation method1.24 Numerical analysis performed by the relaxation method II

    Chapter 2 Boundary-Value Problems in Electrostatics: I2.4 A point charge placed outside a conducting sphere2.8 Two straight parallel line charges with equal and opposite charge densities2.12 Poisson's integral form of the potential2.16 The potential on a unit square area with a uniform charge density2.20 Four symmetrically placed line charges2.24 The completeness relation for sine functions2.28 The potential at the center of a regular polyhedron

    Referential SitesAbout us