8
JSCSEN 7 ( ) (200 ) 3 12 1139 1 269 8 ISSN 0352–5139 UDC 54:66 BELGRADE 2008 NO 12  VOLUME 73 Available on line at www.shd.org.rs/JSCS The full search of JSCS is available through www.doaj.org e lectronic ersion v   Electronic offprint for author’s personal use

Jockovic Et Al., 2008_JSCS-3795

Embed Size (px)

Citation preview

Page 1: Jockovic Et Al., 2008_JSCS-3795

8/3/2019 Jockovic Et Al., 2008_JSCS-3795

http://slidepdf.com/reader/full/jockovic-et-al-2008jscs-3795 1/8

JSCSEN 7 ( ) – (200 )3 12 1139 1269 8

ISSN 0352–5139UDC 54:66

B E L G R A D E 2 0 0 8

NO 12

 VOLUME 73Available on line at

www.shd.org.rs/JSCS

The full search of JSCSis available through

www.doaj.org

electronic

ersionv   

Electronic offprintfor author’s personal use

Page 2: Jockovic Et Al., 2008_JSCS-3795

8/3/2019 Jockovic Et Al., 2008_JSCS-3795

http://slidepdf.com/reader/full/jockovic-et-al-2008jscs-3795 2/8

  J. Serb. Chem. Soc. 73 (12) 1161–1167 (2008)  UDC 54+582.33:547.261:547.56 

  JSCS–3795 Original scientific paper 

doi: 10.2298/JSC0812161J1161 

HPLC–DAD of phenolics in bryophytes Lunularia cruciata, Brachytheciastrum velutinum and Kindbergia praelonga 

 NEBOJŠA JOCKOVIĆ1, PAULA B. ANDRADE2, PATRÍCIA VALENTÃO2 

and MARKO SABOVLJEVIĆ3

* 1 Institute of Pharmaceutical Biology, Martin-Luther-University Halle-Wittenberg,

 Hoher Weg 8, 06120 Halle/Saale, Germany, 2 Requimte,  Institute of Pharmacognosy,

 Faculty of Pharmacy, University of Oporto, Rua Aníbal Cunha, 4050-047, Porto,

 Portugal and 3 Institute of Botany and Garden, Faculty of Biology, University of 

 Belgrade, Takovska 43, 11000 Belgrade, Serbia

(Received 27 March, revised 30 May 2008)

 Abstract : The chemistry of bryophytes is not well known. The available dataindicate interesting chemical constitutions of some bryophyte species, i.e., ac-tive and new compounds are to be found within bryophytes, especially liver-worts. In this study, one liverwort and two moss species were studied:  Lunu-

laria cruciata (L.) Dumort,   Brachytheciastrum velutinum (Hedw) Ignatov &

Huttunen and   Kindbergia praelonga (Hedw) Ochyra. The phenolic compo-sitions of these bryophyte species have not hitherto been reported. Their metha-nolic extracts were analyzed by reversed-phase HPLC, coupled to a diode-arraydetector (DAD). Luteolin-7-O-glucoside and quercetin were found in the  L.

cruciata extract. The extract obtained from   B. velutinum contained four phe-nolic acids (4-O-caffeoylquinic, 5-O-caffeoylquinic, caffeic and ellagic acids)and three flavonoids (apigenin-7-O-glucoside, luteolin and apigenin). The  K.

 praelonga extract was characterized by the presence of several phenolic acidsand their derivatives (4-O-caffeoylquinic, 5-O-caffeoylquinic, caffeic,  p-cou-maric, ferulic and ellagic acids, and caffeic and  p-coumaric acid derivatives)and three flavonoids (apigenin-7-O-glucoside, luteolin, apigenin and an un-identified flavanone).

 Keywords: bryophytes; phenolics; Lunularia cruciata; Brachytheciastrum velu-

tinum; Kindbergia praelonga.

INTRODUCTION

Bryophytes (mosses, liverworts and hornworts) with approximately 15,000–  –25,000 species1 are, after flowering plants, worldwide the most diverse plantgroup. They are to be found in all ecosystems, from desert to alpine, except ma-rine, and the bryophyte biomass productivities can vary in each ecosystem, from

* Corresponding author. E-mail: [email protected]

Author's personal copy

(c) 2008 Serbian Chemical Society.

 Available on-line at www.shd.org.rs/JSCS/

Page 3: Jockovic Et Al., 2008_JSCS-3795

8/3/2019 Jockovic Et Al., 2008_JSCS-3795

http://slidepdf.com/reader/full/jockovic-et-al-2008jscs-3795 3/8

1162 JOCKOVIĆ et al .

negligible to the most significant producers. However, the ecological role of  bryophytes in any ecosystems is significant.

The chemistry of bryophytes is poorly known and the results on are veryscattered.2–4 The reason for this is the difficulty in identification and smallamount of the same species available for analyses, usually by sophisticated me-thods. Liverworts are very interesting for chemical analysis due to their oil bo-dies containing many scientifically new compounds.

However, worldwide bryophytes are known to be used in ethno-botany andare applied to cure diseases, threat to plants and animals, or in the household.5–7 Therefore, bryophytes are indicated as a source of chemically new and unknowncompounds.3,4,8–10 Studies of the chemical constituents of bryophytes were re-cently performed but are still inadequate and neglected.2,11–18 These data help inthe systematics of barely morphologically classified bryophytes.19 Also, somescattered data on the biological activities of bryophyte extracts and/or chemicalconstituents are available for not very many bryophyte taxa.20–23 

Generally, based on the species studied to date, bryophytes are known to possess extremely high amounts of terpenoids, phenolics (flavonoids and biben-zyl derivatives), glycosides, fatty acids and also some rare aromatic compounds.Bryophytes are considered as a “remarkable reservoir” of new, natural productsor secondary compounds, many of which have shown interesting biological acti-vity. These activities of bryophytes include antimicrobial, antifungal, cytotoxic,

antitumor, vasopressin (VP) antagonist, cardiotonic, allergy causing, irritancyand tumour effecting, insect anti-feedant, insecticidal, molluscicidal, pesticidal,

 plant growth regulatory, superoxide anion radical release inhibition and 5-lipo-xygenase, calmodulin, hyaluronidase and cyclooxygenase inhibition features.Some latest results also predict a beneficial influence of bryophytes in AIDStherapy (some bibenzyls of liverworts).24–36 

The liverwort Lunularia cruciata, a Mediterranean Atlantic species, expres-ses antimicrobial and, to a less extent, antifungal activities.37–39 The plant--growth-regulator lunularic acid was isolated for the first time from this spe-cies.40 The chemical constituents of  L. cruciata are unknown.4,41 

The palearctic mosses  Brachytheciastrum velutinum and Kindbergia prae-

longa have hitherto not been chemically screened; nor are their bioactive effectsknown.4 

EXPERIMENTAL

Samples

Fresh material was collected in July 2003 in the Oporto City Park (Portugal). A voucher of each Bryophyte sample is deposited in the Bryophyte Collection of Belgrade University(BEOU).

The material was cleaned and dried to constant weight at room temperature.

Author's personal copy

(c) 2008 Serbian Chemical Society.

Page 4: Jockovic Et Al., 2008_JSCS-3795

8/3/2019 Jockovic Et Al., 2008_JSCS-3795

http://slidepdf.com/reader/full/jockovic-et-al-2008jscs-3795 4/8

  HPLC–DAD OF PHENOLICS IN BRYOPHYTES 1163 

 Extraction of phenolics

5 g dry mass of each bryophyte sample was used for the extraction of the phenolics. Thematerial was previously ground in an electric mill to a rough powder. The extraction consistedof two consecutive steps employing 175 and 125 mL methanol, respectively, on a magneticstirrer for 10 min. These two extracts were combined and the solvent removed under reduced

 pressure at 30 °C To this residue, 20 mL of 2.0 M HCl were added and the obtained solutionwas passed through a C18 Bond Elut cartridge, preconditioned with methanol and 2.0 M HCl.The retained phenolics were eluted with methanol. This solution was taken to dryness under reduced pressure (30 °C), dissolved in methanol and 20 µL were analyzed by HPLC–DAD.

 HPLC–DAD analysis of the phenolics

The extracts were analyzed on an analytical HPLC instrument (Gilson), using a Sphe-risorb ODS2 column (25.0 cm0.46 cm; 5 µm particle size Waters, Milford, MA, USA) witha C18 ODS guard column. The mobile phase consisted of solvent A (water–formic acid(19:1)) and solvent B (methanol) (Table I).

The flow rate was 0.9 mL/min and the injection volume 20 μL. Detection was performedusing a Gilson diode array detector. The phenolic compounds in each sample were identified

  by comparing their retention times and UV–Vis spectra in the 200–600 nm range with in-dividual standards. The chromatograms were registered at 280, 320 and 350 nm.

TABLE I. Gradient flow

Time, min Solvent A content, % Solvent B content, %0.00 95 53.00 85 15

13.00 75 25

25.00 70 3035.00 65 3539.00 60 4042.00 55 4544.00 50 5047.00 45 5550.00 30 7056.00 25 7560.00 0 10062.00 5 95

RESULTS AND DISCUSSION

The chromatogram of the methanol extract of  Lunularia cruciata is pre-

sented in Fig. 1. Based on a comparison of the retention time ( Rt ) and UV–Visspectra with standard substances, the presence of the flavonoid heteroside luteo-lin-7-O-glucoside and the flavonoid aglycone quercetin was confirmed. The pre-sence of these two compounds is for the first time reported in L. cruciata.

The chromatogram of the methanol extract of  Brachytheciastrum velutinum is presented in Fig. 2. The following substances were evidenced as constituentsof this species: phenolic acids, i.e., 4-O-caffeoylquinic, 5-O-caffeoylquinic, caf-feic and ellagic acid, flavonoids, i.e., heteroside apigenin-7-O-glucoside, and fla-vonoid aglycones, i.e., luteolin and apigenin.

Author's personal copy

(c) 2008 Serbian Chemical Society.

Page 5: Jockovic Et Al., 2008_JSCS-3795

8/3/2019 Jockovic Et Al., 2008_JSCS-3795

http://slidepdf.com/reader/full/jockovic-et-al-2008jscs-3795 5/8

1164 JOCKOVIĆ et al .

0 20 40 60

0.0

0.2

21

   I  n   t  e  n  s   i   t  y ,  a .  u .

  / min

Fig. 1. Chromatograms of the methanol extractof liverwort L. cruciata: luteolin-7-O-

-glucoside (1) and quercetin (2).

0 20 40 60

0.0

0.2

7

6

54

321

   I  n   t  e  n  s   i   t  y ,  a .  u .

   / min  Fig. 2. Chromatogram of the moss methanolextract of B. velutinum: 4-O-caffeoylquinic

acid (1), 5-O-caffeoylquinic acid (2), caffeicacid (3) and ellagic acid (5), apigenin-7-O-

glucoside (4), luteolin (6) and apigenine (7).

0 20 40 60

0.0

0.2

**

*

9

87

65

4

321

   I  n   t  e  n  s   i   t  y ,  a .  u .

  / min

Fig. 3. Chromatogram of the methanol extractof the moss  K. praelonga: 4-O-caffeoylquinicacid (1), 5-O-caffeoylquinic acid (2), caffeicacid (3),  p-coumaric acid (4), ferulic acid (5),ellagic acid (7), caffeic acid derivative (*),

 p-coumaric acid derivative (**), apigenin-7-O--glucoside (6), luteolin (8), apigenin (9) and un-identified flavanone ().

In the methanol extract of the moss  Kindbergia praelonga, 4-O-caffeoylqui-nic, 5-O-caffeoylquinic, caffeic, p-coumaric, ferulic and ellagic acid, caffeic acidderivative, p-coumaric acid derivative, flavonoid heteroside apigenin-7-O-gluco-side, aglycones luteolin and apigenin, as well as one unidentified flavanone wereevidenced, as shown in Fig. 3.

The chemical contents of   B. velutinum and   K. praelonga have not beenscreened previously.

Author's personal copy

(c) 2008 Serbian Chemical Society.

Page 6: Jockovic Et Al., 2008_JSCS-3795

8/3/2019 Jockovic Et Al., 2008_JSCS-3795

http://slidepdf.com/reader/full/jockovic-et-al-2008jscs-3795 6/8

  HPLC–DAD OF PHENOLICS IN BRYOPHYTES 1165 

Luteolin is present in many vascular plants, especially from the family Rese-daceae, Genista tinctoria (Fabaceae) and  Petroselinum crispum (Apiaceae).42 How-ever, the heteroside form of luteolin-7-O-glucoside is not common and this com-

  pound was not previously known from  L. cruciata. This form is known fromsome Mentha plants.43 The yellowish pigment quercetin is widespread in many

 plants but was not detected previously in L. cruciata. Quercetin was found to bethe most biologically active of the flavonoids and many medicinal plants owemuch of their activity to their high quercetin content.44 

Artichoke (Cynara scolymus) is known to have rich content of 4-O-caffeoyl-quinic and 5-O-caffeoylquinic acids.45 Previously they were not evidenced frommosses among the other phenolic acids.4 

Caffeic acid is already known from some mosses.46 Apigenine is a pale yel-low pigment present in many plants from the families Apiaceae and Asteraceaewith an antitumor effect. Apigenin and its derivates are known to be present inmosses and to have biological effects.47 In mosses, p-coumaric and ferulic acidsare known to be present in moss spores. They are precursors of lignin, which isnot common in moss gametophytes, but both  p-coumaric and ferulic are presentin moss gametophytes where lignin was not detected.48 

Although phenolic compounds are known to be present in bryophytes, thisknowledge is mainly based on liverworts not mosses and their presence; diversityand distribution within different species remain for further studies.49–51 

Thus, the paper presents one first approach to the identification of phenolicsin the bryophytes L. cruciata, B. velutinum and K. praelonga, until now unknown.

 Acknowledgements. M. Sabovljević thanks the Serbian Ministry of Science for support(Grant No. 143015).

И З В О Д  

HPLC–DAD ФЕНОЛА КОД БРИОФИТА  Lunularia cruciata, Brachytheciastrum velutinum  И  Kindbergia praelonga 

 NЕБОЈША JОЦКОВИЋ1, PAULA B. ANDRADE2, PATRÍCIA VALENTÃO2 и MАРКО САБОВЉЕВИЋ3 

1 Institute of Pharmaceutical Biology, Martin-Luther-University Halle-Wittenberg, Hoher Weg 8,

06120 Halle/Saale, Germany, 2 Requimte,  Institute of Pharmacognosy, Faculty of Pharmacy,

University of Oporto, Rua Aníbal Cunha, 4050-047, Porto, Portugal и 3Institut za botaniku

i botani~ka ba{ta,Biolo{ki fakultet, Univerzitet u Beogradu, Takovska 43, 11000 Beograd

Хемијски састав бриофита  је слабо познат. Dосадашњи подаци указују на интересантне хемијске састојке бриофита, биолошки активна и нова  једињења, нарочито код  јетрењача. У овом  раду изучаване су  једна  јетрењача  Lunularia cruciata (L.) Dumort и две маховине  Bra-

chytheciastrum velutinum (Hedw) Ignatov & Huttunen и  Kindbergia praelonga (Hedw) Ochyra.Фенолни састав ових врста бриофита од  раније није познат. Њихови метанолни екстракти су анализирани путем HPLC типа  реверсне фазе, повезаног са DAD детектором. U екстракту  L.

cruciata пронађени су лутеолин-7-O-глукозид и кверцетин. Eкстракт добијен од  B. velutinum показао  је  присуство  четири фенолне  киселине (4-O-кафеоилхина, 5-O-кафеоилхина, кофе-инска  и  елагинска  киселина) и  три  флавоноида (флавоноидни  агликони  лутеолин  и  апиге-

Author's personal copy

(c) 2008 Serbian Chemical Society.

Page 7: Jockovic Et Al., 2008_JSCS-3795

8/3/2019 Jockovic Et Al., 2008_JSCS-3795

http://slidepdf.com/reader/full/jockovic-et-al-2008jscs-3795 7/8

1166 JOCKOVIĆ et al .

нин, и његов хетерозид апигенин-7-O-глукозид). Eкстракт од  K. praelonga  је окарактерисан присуством  неколико  фенолних  киселина  и  њихових  деривата (4-O-кафеоилхина, 5-O-ка-феоилхина, кофеинска, н-кумаринска, ферула и елагинска киселина, деривати кофеинске и н-кумаринске  киселине) и  следећих  флавоноида: апигенина, апигенин-7-O-глукозида, лутео-лина и  једног неидентификованог флаванона.

(Примљено 27. марта, ревидирано 30. маја 2008)

REFERENCES

1.  J. M. Glime, Bryophyte ecology, Michigan Technological University and the InternationalAssociation of Bryologists, Houghton, MI, 2007, p. 714

2.  Y. Asakawa, in Chemical Constituents of the Bryophytes, W. Herz, G. W. Kirby, R. W.Moore, W. Steglich, Ch. Tamm, Eds., Springer Verlag, Wien, 1995, p. 2663.  H. D. Zinsmeister, H. Becker, T. Eicher, Angew. Chem. 30 (2003) 1304.  A. Sabovljević, M. Sabovljević, in  Phytopharmacology and Therapeutic Values IV , J. N.

Govil, V. K Singh, Eds., Studium Press LLC, Houston, TX, 2008, p. 95.  H. Ando, Proc. Bryol. Soc. Japan 3 (1983) 1246.  H. Ando, H. Matsuo, Appl. Bryol. Adv. Bryol. 2 (1984) 1337.  K. Kumar, K. Singh, A. K. Asthana, V. Nath, Pharm. Biol. 38 (2001) 3538.  Y. Asakawa, Pure Appl. Chem. 66 (1994) 21939.  Y. Asakawa, Phytochemistry 56 (2001) 297

10.  M. Sabovljević, A. Bijelović, D. Grubišić, Lek. Sirov. 21 (2001) 17 (in Serbian)11.  M. Toyota, K. Masuda, Y. Asakawa, Phytochem. 48 (1998) 29712.  H. Edelmann, C. Neinhuis, M. C. Jarvis, B. Evans, E. Fischer, W. Barthlott,  Planta 206 

(1998) 31513.  A. Speicher, K. Hollemeyer, E. Heinzle, Rapid Commun. Mass Spectrom. 15 (2000) 12414.  A. Speicher, K. Hollemeyer, E. Heinzle, Phytochemistry 57 (2001) 30315.  J. W. van Klink, J. Zapp, H. Becker, Z. Naturforsch. 57 (2002) 41316.  Z. A. Popper, S. C. Fry, Ann. Bot. 91 (2003) 117.  U. M. Hertewich, J. Zapp, H. Becker, Phytochemistry 63 (2003) 22718.  N. Jocković, M. Pavlović, M. Sabovljević, N. Kovačević, Natura Montenegrina  6 (2007) 12319.  Y. Asakawa, Phytochemistry 65 (2004) 62320.  A. Basile, S. Sorbo, S. Giordano, A. Lavitola, R. Castaldo-Cobianchi,  Int. J. Antimicrob.

 Agents 10 (1998) 16921.  A. Basile, S. Giordano, S. Sorbo, M. L. Vuotto, M. T. L. Ielpo, R. Castaldo Cobianchi,

 Pharm. Biol. 36 (1998) 2522.  A. Dulger, Ö. Tonguç-Yayintas, A. Gonuz, Fitoterapia 76 (2005) 730

23.  A. Sabovljević, M. Soković, M. Sabovljević, D. Grubišić, Fitoterapia 77 (2006) 14424.  Y. Asakawa, Prog. Chem. Org. Nat. Prod . 42 (1982) 125.  Y. Asakawa, M. Toyota, T. Takemoto, Phytochemistry 19 (1980) 179926.  Y. Asakawa, R. Matsuda, M. Toyota, T. Takemoto, J. D. Connolly, W. P. Phillips,  Phyto-

chemistry 22 (1983) 96127.  Y. Asakawa, L. J. Harrison, M. Toyota, Phytochemistry 24 (1985) 26128.  R. D. Banerjee, S. P. Sen, Bryologist  82 (1979) 14129.  J. L. Hartwell, Lloydia 34 (1971) 38630.  T. Hashimoto, H. Suzuki, M. Tori, Y. Asakawa, Phytochemistry 30 (1991) 152331.  T. Kanaski, K. Ohta, Agric. Biol. Chem. 40 (1976) 1239

Author's personal copy

(c) 2008 Serbian Chemical Society.

Page 8: Jockovic Et Al., 2008_JSCS-3795

8/3/2019 Jockovic Et Al., 2008_JSCS-3795

http://slidepdf.com/reader/full/jockovic-et-al-2008jscs-3795 8/8

  HPLC–DAD OF PHENOLICS IN BRYOPHYTES 1167 

32.  J. A. McCleary, P. S. Sypherd, D. L. Walkington, Science 131 (1960) 10833.  Y. Ohta, N. H. Andersen, C. B. Liu, Tetrahedron 33 (1977) 61734.  L. Van Hoof, D. A. Vanden Berghe, E. Petit, A. J. Vlietinck, Fitoterapia 52 (1981) 22335.  J.-P. Frahm, K. Kirchhoff, Cryptog. Bryol. 23 (2002) 27136.  T. Mekuria, U. Steiner, H. Hindorf, J.-P. Frahm, H.-W. Dehne  J. Appl. Bot. Food Qual. 

79 (2005) 8937.  A. Basile, S. Giordano, S. Sorbo, R. Castaldo Cobianchi, M. L. Vuotto, M. T. L. Ielpo,

 Pharm. Biol. 36 (1998) 2538.  A. Basile, S. Giordano, S. Sorbo, M. L. Vuotto, M. T. L. Ielpo, R. C. Cobianchi,  Int. J.

 Pharm. 36 (1998) 139.  M. T. Ielpo, P. De Sole, A. Basile, V. Moscatiello, E. Laghi., R. C. Cobianchi, M. L.

Vuotto, Immunopharmacol. Immunotoxicol. 20 (1998) 55540.  R. J. Pryce, Planta 97 (1971) 35441.  A. Basile, V. Spagnuolo, S. Giordano, R. C. Cobianchi, Giorn. Bot. Ital. 112 (1993) 54942.  J. Mann, Secondary Metabolism, 2nd Ed., Oxford University Press, Oxford, 1992, p. 28043.  T. Cserháti, Monograph. J. Chrom. Lib. 71 (2006) 58744.  H. Su-Lan, H. Yu-Chi, W. Yao-Horng, T. Chih-Wan, S. Sheng-Fang, L. C. Pei-Dawn,

 Life Sci. 72 (2002) 22745.  K. Schütz, D. Kammerer, R. Carle, A. Schieber, J. Agric. Food Chem. 52 (2004) 409046.  V. Chobot, L. Kubicová, S. Nabbout, L. Jahodář , J. Vytlačilová,  Fitoterapia  77 (2006)

59847.  A. Basile, S. Giordano, J. A. López-Sáez, R. Castaldo-Cobianchi,  Phytochemistry  52 

(1999) 147948.  S. M. Siegel, Am. J. Bot. 56 (1969) 175

49.  Y. Asakawa, Current Pharm. Des. 14 (2008) 306750.  J.-P. Frahm, Biologie der Moose, Gustav Fischer, Verlag, 2001, p. 35751.  H. D. Zinsmeister, R. Mues, Bryophytes, their chemistry and chemical taxonomy, Claren-

don Press, Oxford, 1990, p. 470.

Author's personal copy

(c) 2008 Serbian Chemical Society.