Kai Schneider Mam Cdp 09

Embed Size (px)

Citation preview

  • 8/11/2019 Kai Schneider Mam Cdp 09

    1/74

    Fully adaptive multiresolution methods

    for evolutionary PDEs

    Kai Schneider

    M2P2-CNRS & CMI, Universit de Provence, Marseille, France

    Joint work with : Margarete Domingues, INPE, BrazilSonia Gomes, Campinas, Brazil

    Workshop on Multiresolution and Adaptive Methods for Convection-Dominated Problems

    January 22-23, 2009Laboratoire Jacques Louis Lions, Paris, France

    Olivier Roussel, TCP, Unversitt Karlsruhe, Germany

  • 8/11/2019 Kai Schneider Mam Cdp 09

    2/74

    Outline

    Motivation

    Introduction

    Adaptivity in space and time

    Adaptive multiresolution method

    Local time stepping / Controlled time stepping

    Applications to reaction-diffusion equations

    Applications to compressible Euler and Navier-Stokes

    Conclusions and perspectives

  • 8/11/2019 Kai Schneider Mam Cdp 09

    3/74

    Motivation

    Context: Systems of nonlinear partial differential equations(PDEs) of hyperbolic or parabolic type.

    Turbulent reactive or non-reactive flows exhibit a multitude of active spatial and temporal scales.

    Scales are mostly not uniformly distributedin the space-time domain,

    Efficient numerical discretizations could take advantage of this property -> adaptivity in space and time

    Reduction of the computational complexitywith respect to uniform discretizations

    while controlling the accuracyof the adaptive discretization.

    Here: adaptive multiresolution techniques

  • 8/11/2019 Kai Schneider Mam Cdp 09

    4/74

    Introduction

    - Multiresolution schemes(Harten 1995)o Solution on fine grid -> solution on coarse grid + detailso Details small -> interpolation, no computation (CPU time reduced)o 2d non-linear hyperbolic problems (Bihari-Harten 1996, Abgrall-Harten 1996, Chiavassa-Donat 2001,

    Dahmen et al. 2001, )

    - Adaptive Multiresolution schemes(Mller 2001, Cohen et al. 2002, Roussel et al. 2003, Brger et al. 2007, )

    o Details small -> interpolation and remove from memory (CPU time and memory reduction)

    - Aim of this talko fully adaptive schemes (space + time) for 2d and 3d problemso Compare with Adaptive Mesh Refinement (preliminary results)

  • 8/11/2019 Kai Schneider Mam Cdp 09

    5/74

    Adaptivity: space and time

    Numerical method:finite volume schemes

    Space adaptivity (MR):Hartens multiresolution (MR) for cell averages.

    Decay of the wavelet coeffcients to obtain information on local regularity of the solution.

    coarser grids in regions where coeffcients are small and the solution is smooth,

    while fine grids where coeffcients are significant and the solution has strong variations.

    Controlled Time Stepping (CTS):The time integration with variable time steps,

    time step size selection is based on estimated local truncation errors.

    When the estimated local error is smaller than a given tolerance, the time step is increased to

    make the integration more effcient.

    Local time stepping (LTS):Scale-dependent time steps. Different time steps, according to each cell scale: if t is

    used for the cells in the finest level, then a double time step 2t is used in coarser level with double spacing.

    Required missing values in ghost cells are interpolated in intermediate time levels.

  • 8/11/2019 Kai Schneider Mam Cdp 09

    6/74

    = (l,i)0i

  • 8/11/2019 Kai Schneider Mam Cdp 09

    7/74

    Ul1= Pll1Ul

    Ul+1= Pll+1 Ul

    Pll+1 Pll1

    Pll1 Pll+1 =

    Dl,i = Ul,i Ul,i P

    U

    N

    U

    N1

    Ul (Ul1, Dl)

    M : UL (U0, D1, . . . , DL)

  • 8/11/2019 Kai Schneider Mam Cdp 09

    8/74

    Dl,i |Dl,i| < l

    Ul = (ul,i)0lL, il

  • 8/11/2019 Kai Schneider Mam Cdp 09

    9/74

    tU= D(U)

    U= (, v, e)t

    D(U) = (f(U) + (U,U)) + S(U)

    2nd

    (l, i)

    tUl,i = Dl,i

    Ul,i = 1

    |l,i|l,i

    U dV

    Dl,i := 1

    |l,i|

    l,i

    D dV= 1

    |l,i|

    l,i

    (f(U) + (U,U)) nl,i ds +Si

    Ref. Roussel, Schneider, Tsigulin, Bockhorn. JCP 188(2003)

  • 8/11/2019 Kai Schneider Mam Cdp 09

    10/74

    Un+1 = M1 T() M E(t) Un

    T()

    E(t)

    O(N log N)

    N

    Ref. Roussel, Schneider, Tsigulin, Bockhorn. JCP 188(2003)

  • 8/11/2019 Kai Schneider Mam Cdp 09

    11/74

    Conservative flux computation

    Ingoing and outgoing flux computation in 2D for two different levels

    Ref. Roussel, Schneider, Tsigulin, Bockhorn. JCP 188(2003)

  • 8/11/2019 Kai Schneider Mam Cdp 09

    12/74

    Dl,i < U, l,i > l,i

    | < U, l,i > | < |Dl,i| < l

    ||l,i||L1 = 1 l = 2

    d(lL)L

    ||l,i||L2 = 1 l = 2d

    2(lL)L

    ||l,i||H1 = 1

    l = 2(

    d

    21)(lL)

    L

  • 8/11/2019 Kai Schneider Mam Cdp 09

    13/74

    Local Time Stepping (LTS) : main aspects

    On the finest scale L, t is imposed by the stability conditionof the explicit scheme

    On larger scales < L, t = 2Lt

    One LTS cycle: tn tn+2L

    At intermediate steps of the evolution of fine cells, requiredinformation of coarser neighbours are interpolated in time.

    http://find/
  • 8/11/2019 Kai Schneider Mam Cdp 09

    14/74

    Scheme of local scale-dependent time-stepping

    Ref. Domingues,Gomes, Roussel and Schneider. JCP 227 (2008)

    interpolation (cheap)

    evolution (expensive)

    update

    update

    xx

    x x

    t t

    tt

    1st. stage

    1st. stage2nd. stage

    2nd. stage

    1st. time stepRK2

    2nd. time step

    return to the stored value (no cost)

  • 8/11/2019 Kai Schneider Mam Cdp 09

    15/74

    Controlled Time Stepping (CTS) : main aspects

    http://find/
  • 8/11/2019 Kai Schneider Mam Cdp 09

    16/74

    MR/CTS/LTS scheme

    Combination of MR, CTS and LTS strategies:

    1. MR/CTS is applied to determine the time step trequired to

    attain a specified accuracy with a global time stepping;2. the MR/LTS cycle is computed using the obtained step size

    tfor the evolution of the cell averages on the finest scale;

    3. another MR/CTS time step is then done to adjust the nexttime step, and so on.

    http://find/http://goback/
  • 8/11/2019 Kai Schneider Mam Cdp 09

    17/74

    Numerical validation

    Error analysis

    StabilityConvection-diffusion equation: tu + xu=

    1Pe

    2xxu, TVD if (Bihari 1996)

    t x2

    4P e1 + x, x 2L (7)

    Accuracy

    ||uLex uLMR|| ||u

    Lex u

    LFV|| + ||u

    LFV u

    LMR|| (8)

    Discretization error: ||uLex uL

    FV|| 2L

    Perturbation error: ||uLFV uL

    MR|| n= T

    t (Cohen et al 2002)

    We want theperturbation error to be of the same order as the discretizationerror. Therefore we choose

    = C 2(+1)L

    P e + 2L+2 , C >0 (9)

    Ref. Roussel, Schneider, Tsigulin, Bockhorn. JCP 188(2003)

  • 8/11/2019 Kai Schneider Mam Cdp 09

    18/74

    % CPU time compression % Memory compression

    MR

    L

    13121110987

    100

    8060

    40

    20

    0

    MR

    L

    13121110987

    100

    8060

    40

    20

    0

    L-error L1-error

    O(x2)MRFV

    L13121110987

    1e+01

    1e+00

    1e-01

    1e-02

    1e-03

    1e-04

    O(x2)MRFV

    L13121110987

    1e+00

    1e-01

    1e-02

    1e-03

    1e-04

    1e-05

    Convection-diffusion: P e= 10000, t= 0.2, C= 5.108

    Numerical validation

  • 8/11/2019 Kai Schneider Mam Cdp 09

    19/74

    Numerical validation

    Viscous Burgers equation: tu + x u2

    2 = 1Re2xxuAnalogously, we set

    = C 2(+1)L

    Re + 2L+2 , C >0 (10)

    MR

    L

    13121110987

    100

    80

    60

    40

    20

    0

    MR

    L

    13121110987

    100

    80

    60

    40

    20

    0

    O(x2

    )

    MRFV

    L

    13121110987

    1e+00

    1e-01

    1e-02

    1e-03

    1e-04

    1e-05

    1e-06

    % CPU time compression % Memory compression L1-error

    Re = 1000, t= 0.2, C= 5.108

    Ref. Roussel, Schneider, Tsigulin, Bockhorn. JCP 188(2003)

  • 8/11/2019 Kai Schneider Mam Cdp 09

    20/74

    Coherent Vortex Simulation

    Compressible Navier-Stokes equations

    Turbulent weakly compressible 3d mixing layer

  • 8/11/2019 Kai Schneider Mam Cdp 09

    21/74

    max||||max 0

    =+

    total coherent incoherent

    Coherent Vortex Simul ation

    (M. Farge and K. Schneider. Flow, Turbulence and Combustion, 66, 2001.).

    P i i l f CVS (I)

  • 8/11/2019 Kai Schneider Mam Cdp 09

    22/74

    Principle of CVS (I)

    CVS of incompressible turbulent flows: decomposition of the vorticity

    = u into coherent and incoherent parts using thresholding of

    the wavelet coefficients.

    Evolution of the coherent flow is then computed deterministically in a

    dynamically adapted wavelet basis and the influence of the incoherent

    components is statistically modelled (Farge & Schneider 2001).

    Here: compressible flows.

    Decompose the conservative variables U = (, u1, u2, u3, e) into

    a biorthogonal wavelet series.

    A decomposition of the conservative variables into coherent and inco-herent components is then obtained by decomposing the conservative

    variables into wavelet coefficients, applying a thresholding and recon-

    structing the coherent and incoherent contributions from the strong

    and weak coefficients, respectively.

    P i i l f CVS (II)

  • 8/11/2019 Kai Schneider Mam Cdp 09

    23/74

    Principle of CVS (II)

    Dimensionless density and pressure are decomposed into

    = C+ I , (5)

    p = pC+pI .

    where C and pC respectively denote the coherent part of the den-sity and pressure fields, while I and pI denote the correspondingincoherent parts.

    Velocity u1, u

    2, u

    3, temperature T and energy e, are decomposed

    using the Favre averaging technique, i.e. density weighted.

    For a quantity we obtain,

    =C+ I , where C=()C()C

    (6)

    Finally, retaining only the coherent contributions of the conservativevariables we obtain the filtere d compressible Navier-Stokes equations

    which describe the flow evolution of the coherent flow UC. Theinfluence of the incoherent contributions UI is in the current approachcompletely negleted.

  • 8/11/2019 Kai Schneider Mam Cdp 09

    24/74

    NavierStokes equations for compressible flows (I)

    Three-dimensional compressible flow of a Newtonian fluid in the Stokes

    hypothesis in a domain R3.

    t=

    xj

    uj

    t( ui) =

    xj

    uiuj + p i,j i,j

    t( e) =

    xj

    ( e + p) uj ui i,j

    T

    xj

    , p,T

    and e

    denote the dimensionless density, pressure, temperatureand specific total energy per unit of mass, respectively; (u1, u2, u3)

    T

    is the dimensionless velocity vector.

    Navier Stokes equations for compressible flows (II)

  • 8/11/2019 Kai Schneider Mam Cdp 09

    25/74

    NavierStokes equations for compressible flows (II)

    The components of the dimensionless viscous strain tensor i,j are

    i,j = Re

    uixj+

    uj

    xi2

    3 uk

    xki,j

    ,

    where denotes the dimensionless molecular viscosity and Re the

    Reynolds number. The dimensionless conduc tiv ity is defined by

    =

    ( 1)M a2 Re P r,

    where , M a and P r respectively denote the specific heat ratio and

    the Mach and Prandtl numbers.

    The system is completed by an equation of state for a calorically ideal

    gas

    p = T

    M a2.

    and suitable initial and boundary conditions.

  • 8/11/2019 Kai Schneider Mam Cdp 09

    26/74

    NavierStokes equations for compressible flows (III)

    Assuming the temperature to be larger than 120 K, the molecular

    viscosity varies with the temperature according to the dimensionlessSutherland law

    =T32

    1 + Ts

    T + Ts

    where Ts 0.404.

    Denoting by (x,y,z) the three Cartesian directions, this system of

    equations can be written in the following compact form

    U

    t=

    F

    x

    G

    y

    H

    z

    where U= (, u1, u2, u3, e)T

    denotes the vector of the conser-vative quantities, and F, G, H are the flux vectors in the directions

    x, y, and z, respectively.

  • 8/11/2019 Kai Schneider Mam Cdp 09

    27/74

    Time evolution (I)

    Explicit 2-4 Mac Cormack scheme, which is second-order accurate in

    time, fourth-order in space for the convective terms, and second-order

    in space for the diffusive terms

    Ul,i,j,k = Unl,i,j,k + t7 Fnl,i,j,k+ 8 F

    n

    l,i+1,j,k

    Fn

    l,i+2,j,k6x

    + t

    7 Gnl,i,j,k +8 Gnl,1,j+1,k Gnl,i,j+2,k

    6y

    + t7 H

    nl,i,j,k +8 H

    nl,1,j,k+1 H

    nl,i,j,k+2

    6z

  • 8/11/2019 Kai Schneider Mam Cdp 09

    28/74

    Time evolution (II)

    Un+1l,i,j,k =U

    nl,i,j,k + U

    l,i,j,k

    2+ t

    2

    7 Fnl,i,j,k +8 Fnl,i1,j,k Fnl,i2,j,k6x

    +t

    2

    7 Gnl,i,j,k +8 Gnl,1,j1,k Gnl,i,j2,k

    6y

    +t

    27 Hnl,i,j,k + 8 Hnl,1,j,k1 Hnl,i,j,k2

    6z

    Note that, for the computation of the diffusive terms, we do not

    use a decentered scheme. Here the diffusive terms are approximated

    the same way as if we were using a second-order Runge-Kutta-Heun

    method in time, together with a second-order centered scheme in

    space.

  • 8/11/2019 Kai Schneider Mam Cdp 09

    29/74

    = [30, 30]3

    M a= 0.3

    P r = 0.7

    Re= 50

    t= 80

    N= 1283

    Flow configuration of the mixing layer

  • 8/11/2019 Kai Schneider Mam Cdp 09

    30/74

    We initialize the test-case by setting two layers of a fluid stacked one upon theother one, each of them with the same velocity norm but opposed directions.

    Lx

    Ly

    Lz

    Uo

    Fig. 2. Flow configuration: domain and initial basic flowu

    0 of the three-dimensionalmixing layer.

  • 8/11/2019 Kai Schneider Mam Cdp 09

    31/74

    0.5

    0.25

    y = 0

    Coherent Vortex SimulationCoherent Vortex Simulation

  • 8/11/2019 Kai Schneider Mam Cdp 09

    32/74

    Coherent Vortex Simulation

    Slices of vorticity at y = 0

  • 8/11/2019 Kai Schneider Mam Cdp 09

    33/74

    Coherent Vortex SimulationCoherent Vortex Simulation

    Adaptive gr id

  • 8/11/2019 Kai Schneider Mam Cdp 09

    34/74

  • 8/11/2019 Kai Schneider Mam Cdp 09

    35/74

    1e-05

    1e-04

    1e-03

    1e-02

    1e-01

    1e+00

    1e+01

    1e+02

    1e+03

    1 10

    E

    k

    DNSCVS Epsilon = 0.2

    1e-05

    1e-04

    1e-03

    1e-02

    1e-01

    1e+00

    1e+01

    1e+02

    1e+03

    1 10

    E

    k

    DNSCVS Epsilon = 0.08

    1e-05

    1e-04

    1e-03

    1e-02

    1e-01

    1e+00

    1e+01

    1e+02

    1e+03

    1 10

    E

    k

    DNSCVS Epsilon = 0.03

    t = 80

    L1

    L2

    H1

    L1

    L2

    H1

    Coherent Vortex Simulation

  • 8/11/2019 Kai Schneider Mam Cdp 09

    36/74

    = [

    60,60]3

    Ma= 0.3

    P r = 0.7

    Re= 200

    t= 80

    N= 2563 1283

  • 8/11/2019 Kai Schneider Mam Cdp 09

    37/74

    Fig. 17. Time evolution of a weakly compressible mixing layer at resolution N= 2563

    in the quasi-2D regime. CVS computation with = 0.03 and norm #3. First row:

    Two-dimensional cut of vorticity at y = 0, 10 isolines of vorticity between 0.1 and

    1. Second row: Corresponding isosurfaces of vorticity |||| = 0.5 (black) and ||||= 0.25 (gray). Third Row: Corresponding adaptive mesh of the CVS computation.The corresponding time instants are t = 19 (left), t = 37(center) and t = 78(right).

    1e-05

    1e-04

    1e-03

    1e-02

    1e-01

    1e+00

    1e+01

    1e+02

    1e+03

    10 100

    E

    k

    CVS

    830000

    840000

    850000

    860000

    870000

    0 10 20 30 40 50 60 70 80

    E

    t

    CVS

    6000

    7000

    8000

    9000

    10000

    0 10 20 30 40 50 60 70 80

    Z

    t

    CVS

    Fig. 18. Energy spectra in the streamwise direction at t= 80(left). Time evolutionof the kinetic energy (center) and enstrophy (right) for the CVS computations at

    Re= 200, N= 2563.

    Conclusions (CVS I)

  • 8/11/2019 Kai Schneider Mam Cdp 09

    38/74

    ( )

    Adaptive multiresolution method to solve the three-dimensional com-

    pressible NavierStokes equations in a Cartesian geometry.

    Extension of the Coherent Vortex Simulation approach to compress-

    ible flows.

    Time evolution of the coherent flow contributions computed effi-

    ciently using the adaptive multiresolution method.

    Generic test case: weakly compressible turbulent mixing layers.

    Different thresholding rules, i.e. L1, L2 and H1 norms.

    H1 based threshold yields the best results in terms of accuracy and

    efficiency.

    Conclusions (CVS II)

  • 8/11/2019 Kai Schneider Mam Cdp 09

    39/74

    CVS required only about 1/3 of the CPU time needed for DNS and

    allows furthermore a memory reduction by almost a factor 5. Never-

    theless all dynamically active scales of the flow are well resolved.

    Drawbacks:

    Explicit time discretization, imposes a time step limitation due to

    stability reasons, i.e. the smallest spatial scale dictates the actual

    size of the time step ( local time stepping strategies).

    Using local time stepping the time step on larger scales can be in-

    creased without violating the stability criterion of the explicit time

    integration (further speed up).

    Generalisation to complex geometries: volume penalization approach

    (cf. Angot et al. 1999, Schneider & Farge 2005).

    http://www.cmi.univ-mrs.fr/~kschneid http://wavelets.ens.fr

  • 8/11/2019 Kai Schneider Mam Cdp 09

    40/74

    Compressible Euler equations

    Multiresolution or Adaptive Mesh Refinement ?

    2D Riemann problem: Lax-Liou test case 5

    3D expanding circular shock wave

    (joint work with Ralf Deiterding, Oak Ridge, USA)

  • 8/11/2019 Kai Schneider Mam Cdp 09

    41/74

    2D/3D Euler equations

    The compressible Euler equations:

    Q

    t+

    F

    r = 0, with Q=

    ve

    and F =

    v

    u2 +p(e+p)v

    where t is time,ris 2D position vector with |r|=

    (x2 +y2),

    =(r, t) density,v

    =v

    (r,t

    ) velocity with components (v1

    ,v2

    ),e=e(r, t) energy per unit of mass andp=p(r, t) pressure.

    http://find/
  • 8/11/2019 Kai Schneider Mam Cdp 09

    42/74

    The equation of state for an ideal gas

    p=RT = ( 1) e

    |v|2

    2

    ,

    completes the system, whereT =T(r, t) is temperature,

    specific heat ratio andRuniversal gas constant.

    In dimensionless form, we obtain the same system of equations,but the equation of state becomes p= T

    Ma2 , where Ma denotes

    the Mach number.

    Inviscid implosion phenomenon (2d)

    http://find/
  • 8/11/2019 Kai Schneider Mam Cdp 09

    43/74

    Inviscid implosion phenomenon (2d)

    The initial conditions are

    (r, 0) =

    1 if r r00.125 if r>r0,

    e(r, 0) =

    2.5 if r r00.25 if r>r0,

    v1 =v2 = 0 and r0 denotes the initial radius.This initial condition is stretched in one direction and a rotation in the axes isapplied.

    r=

    rX2

    a2 +

    Y2

    b2,

    X = xcos ysin ,Y = xsin +ycos

    The parameters of the ellipse: a= 1/3, b= 1, the rotation angle is = /3

    with an initial radius r0 = 1, computational domain is = [2, 2]2,= 102.

    Ref.: Domingues et al., ANM, 2009, in press

    M lti l ti C t ti lli ti l i l i

    http://find/
  • 8/11/2019 Kai Schneider Mam Cdp 09

    44/74

    Multiresolution Computation : elliptical implosion

    Density Grid

    Ref.: Domingues et al., ANM, 2009, in press

    Comparison for the numerical solutions of the 2D Euler equations for t=0.5 with L=10 and = 2 103.

    Method Error CPU

    E Ti M

    http://elliptic-implosion/mesh.mpeghttp://elliptic-implosion/density.mpeg
  • 8/11/2019 Kai Schneider Mam Cdp 09

    45/74

    E Time Memory

    (%) (103 sec) (%) (%)

    FV-RK2,CFL(0)=0.18(Ref.) 0.60 45 100 100

    MR-RK2, CFL(0) =0.18 0.67 10 23 18MR/LTS-RK2, CFL(0) =0.18 1.09 9 19 16

    MR/CTS/LTS-RK2(3), CFL(0) =0.24 0.66 8 18 18

    FV-RK3,CFL(0)=0.18(Ref.) 0.59 65 100 100

    MR-RK3, CFL(0) =0.18 0.66 12 18 18

    MR/CTS-RK2(3), CFL(0) =0.24 0.63 9 14 18

  • 8/11/2019 Kai Schneider Mam Cdp 09

    46/74

    2d Riemann problem: Lax-Liu test case 5

    Computational domain is = [0, 1] [0, 1],4 free-slip boundary conditions andPhysical parameters Ma= 1 and = 1.4.

    Initial conditions:Parameters Domain position

    1 2 3 4

    Density() 1.00 2.00 1.00 3.00Presure (p) 1.00 1.00 1.00 1.00

    Velocity Component (v1) -0.75 -0.75 0.75 0.75Velocity Component (v2) -0.50 0.50 0.50 -0.50 x

    y

    3 4

    12

    http://find/
  • 8/11/2019 Kai Schneider Mam Cdp 09

    47/74

    MR and AMR computations

    MR method: 2nd order MUSCL with AUSM+-up Scheme fluxvector splitting Liou(JCP, 2006) with van Albada limiter is used.RK2. Wavelet threshold = 0.01.

    AMR method: 2nd order unsplit shock-capturing MUSCL scheme

    with AUSMDV flux vector splitting Wada& Liou (SIAM J.Comput.Sci., 1997) . Limiting and reconstruction in primitive variables withMinmod limiter. Modified RK2. Adaptive parameters=p= 0.05 and p== 0.05, with coarser level 128 128.

    Computations at final time 0.3.Target CFL number is 0.45.

    In collaboration with Ralf Deiterding, Oak Ridge, USA

    Adaptive Multiresolution Computation : Lax-Liu test case 5

    http://find/
  • 8/11/2019 Kai Schneider Mam Cdp 09

    48/74

    Adaptive Multiresolution Computation : Lax-Liu test case 5

    Density Grid

    AMR simulation

  • 8/11/2019 Kai Schneider Mam Cdp 09

    49/74

    AMR simulation

    Uniform r1,2,3= 2, 2, 2 Reference solutionx= 1/1024 x= 1/1024 x= 1/4096

    Reference solution computed with Wave Propagation Method.

    In collaboration with Ralf Deiterding, Oak Ridge, USA

    Summary of the results for MR and AMR/LT

    http://find/
  • 8/11/2019 Kai Schneider Mam Cdp 09

    50/74

    MR

    Level Le1() Overhead Grid Compression Overhead[102] per it. cell (%) per it. (%)

    L=8 4.13 0.58 24.98 14.6L=9 2.79 0.52 13.23 6.8

    L=10 1.84 0.63 6.58 4.2

    AMRLevel Le

    1() Overhead Grid Compression Overhead

    [102] per it. cell (%) per it. (%)

    L=8 4.00 0.13 68.2 8.7L=9 2.66 0.03 44.4 1.3

    L=10 1.57 0.12 26.2 3.1

    Preliminary resultsIn collaboration with Ralf Deiterding, Oak Ridge, USA

    http://find/
  • 8/11/2019 Kai Schneider Mam Cdp 09

    51/74

    MR computations

  • 8/11/2019 Kai Schneider Mam Cdp 09

    52/74

    MR computations

    Numerical Parameters: L= 7, = 0.001, RK2 scheme, MUSCLAUSM+up flux, CFL= 0.8.

    Density initial condition.

    http://find/
  • 8/11/2019 Kai Schneider Mam Cdp 09

    53/74

    Evolution of density att= 0.042, 0.084, 0.126, 0.210, 0.252, 0.294, 0.336, 0.378, 0.420(from left to right and top to bottom).

    http://find/
  • 8/11/2019 Kai Schneider Mam Cdp 09

    54/74

    Adaptive grid: xyprojection grid att= 0.042, 0.084, 0.126, 0.210, 0.252, 0.294, 0.336, 0.378, 0.420(from left to right and top to bottom).

    AMR computations

    http://find/http://goback/
  • 8/11/2019 Kai Schneider Mam Cdp 09

    55/74

    Numerical Parameters: 2 levels with refinement factor 2 are used,

    finest level: 120 120 120 grid (1.73 M cells), coarse grid of30 30 30 cells, minmod-limiter, CFL= 0.8, until physical timet= 0.84, 58 time steps.

    Evolution of density at t= 0,t= 0.21 and t= 0.84(from left to right).Source: amroc.sourceforge.net/examples/euler/3d/html.

    In collaboration with Ralf Deiterding, OakRidge, USA

    http://find/http://goback/
  • 8/11/2019 Kai Schneider Mam Cdp 09

    56/74

    Evolution of the density solution, adaptive computations with 3levels and 2 buffer cells.Cut at z= 0 and z= 0.5 at time t= 0.84 (from left to right) .

    Source: amroc.sourceforge.net/examples/euler/3d/html.

    In collaboration with Ralf Deiterding, Oak Ridge, USA

    http://find/
  • 8/11/2019 Kai Schneider Mam Cdp 09

    57/74

    Reaction-diffusion equations

    2D thermo-diffusive flames

    3D flame balls

    Governing equations

  • 8/11/2019 Kai Schneider Mam Cdp 09

    58/74

    Non-dimensional thermodiffusive equations

    tT+ v T 2

    T = s (1)

    tY + v Y 1

    Le

    2Y = (2)

    (T, Y) = Ze2

    2 LeY exp

    Ze(T 1)

    1 + (T 1)

    (reaction rate)

    s(T) =

    T+ 1 14

    1 1

    4 (heat loss due to radiation)

    + initial and boundary conditions

    Y =Y1, T =

    T Tu

    Tb Tu , Le=

    D (Lewis), =

    Tb Tu

    Tb , Ze= Ea

    RTb (Zeldovich)

    v given by the incompressible NS equations. When the fluid is at rest, v = 0.

    Governing equations

  • 8/11/2019 Kai Schneider Mam Cdp 09

    59/74

    Planar flames

    Flame propagation at the velocity vf

    When the fresh mixture is advected at v = vf steady planar flame

    YT

    EDCBA

    1

    0

    AB: fresh mixture, BC: preheat zone, CD: reaction zone d= O(Ze1), DE: burnt mixture

    Governing equations

  • 8/11/2019 Kai Schneider Mam Cdp 09

    60/74

    Thermodiffusive instability

    x x

    Burnt gas Fresh gas

    < 0

    Fresh gas Burnt gas

    yy

    mass

    heat

    Stable: for Le = 1, Z e= 10 (animation) - Unstable: for Le= 0.3, Ze = 10 (animation)

    Asymptotic theory for Ze >>1 (Sivashinsky 1977, Joulin-Clavin 1979)

    1) Ze(Le 1) < 2 : cellular flames 2) Ze(Le 1) > 16 : pulsating flames

    2D Flame front

  • 8/11/2019 Kai Schneider Mam Cdp 09

    61/74

    Temperature Reaction rate Adaptive grid

    stableLe = 1.0

    Unstable

    Le = 0.3

    Application to TD flames

    Th fl b ll fi ti

  • 8/11/2019 Kai Schneider Mam Cdp 09

    62/74

    The flame ball configuration

    Simplest experiment to study the interaction of chemistry and transport ofgases (experimental: Ronney 1984, theory: Buckmaster-Joulin-Ronney 1990-91)

    Enables to study the flammability limit of lean gaseous mixtures

    HOT BURNT GAS

    COLD PREMIXED GAS

    radiation

    heat conduction

    reactant diffusion

    Problem: the combustion chamber is finite Interaction with wall

    Application to TD flames

  • 8/11/2019 Kai Schneider Mam Cdp 09

    63/74

    pp

    Interaction flame front-adiabatic wall: the 1D case

    Lean mixture H2-air, Ze= 10, = 0.64, = [0, 30]

    Radiation neglected

    Adiabatic walls Neuman boundary conditions

    Objective: study the inflence of Le

    Profiles of T and for Le= 0.3 (animation 1)

    Profiles of T and for Le= 1 (animation 2)

    Profiles of T and for Le= 1.4 (animation 3)

    Ref. Roussel, Schneider, CTM10(2006)

    Application to TD flames

    http://movies/flamewall1d_Le0.3.gifhttp://movies/flamewall1d_Le1.gifhttp://movies/flamewall1d_Le1.4.gifhttp://movies/flamewall1d_Le1.4.gifhttp://movies/flamewall1d_Le1.gifhttp://movies/flamewall1d_Le0.3.gif
  • 8/11/2019 Kai Schneider Mam Cdp 09

    64/74

    Interaction flame front-adiabatic wall: the 1D case

    Le= 0.9Le= 0.8Le= 0.7Le= 0.3

    121086420

    2

    1.5

    1

    0.5

    0

    Le = 1.4Le= 1

    Le= 0.95

    121086420

    7

    6

    5

    4

    3

    2

    1

    0

    t t

    Flame velocity vf for Le

  • 8/11/2019 Kai Schneider Mam Cdp 09

    65/74

    Interaction flame ball-adiabatic wall

    Radiation neglected, Ze= 10, = 0.64, = [50, 50]d

    Adiabatic walls Neuman boundary conditions

    At t= 0, the radius of the flame ball is r0 = 2.

    2D: Evolution of T and mesh for Le= 0.3 (animations 1-2)

    2D: Evolution of T for Le= 1 (animation 3)

    2D: Evolution of T for Le= 1.4 (animation 4)

    3D: Evolution of T and mesh for Le= 1 (animations 5-6)

    Analogy with capillarity for a fluid droplet

    Ref. Roussel, Schneider, CTM10(2006)

    Application to TD flames

    http://movies/flamewall2d_Le0.3_temp.avihttp://movies/flamewall2d_Le0.3_temp.avi
  • 8/11/2019 Kai Schneider Mam Cdp 09

    66/74

    pp

    Interaction flame ball-adiabatic wall

    Le= 1.4Le = 1

    Le= 0.3

    t

    706050403020100

    140

    120

    100

    80

    6040

    20

    0

    Le = 1.4Le= 1

    Le = 0.3

    t

    1086420

    8000

    7000

    6000

    5000

    4000

    3000

    2000

    1000

    0

    R = d in 2D R = d in 3D

    Ref. Roussel, Schneider, CTM10(2006)

    Application to TD flames

  • 8/11/2019 Kai Schneider Mam Cdp 09

    67/74

    pplication to TD flames

    Interaction flame ball-adiabatic wall: Performances

    d Le N max % CPU % Mem

    2 0.3 2562 25.50% 14.10%

    2 1 2562 21.50% 11.75%2 1.4 2562 21.00% 11.10%

    3 1 1283 12.98% 4.38%

    Application to TD flames

  • 8/11/2019 Kai Schneider Mam Cdp 09

    68/74

    Interaction flame ball-vortex

    v

    X

    Phenomenon which happens e.g. in furnaces

    Thermodiffusive model, v analytic solution of Navier-Stokes

    Evolution of T and mesh for Ze= 10, Le= 0.3, no radiation (animations)

    Application to TD flames

  • 8/11/2019 Kai Schneider Mam Cdp 09

    69/74

    Interaction flame ball-vortex

    F V 5122F V 2562

    M R

    t

    10.80.60.40.20

    40

    35

    30

    25

    20

    15

    10

    5

    0

    = 0 = 0

    t

    10.80.60.40.20

    40

    35

    30

    25

    20

    15

    10

    5

    0

    R =

    d: for MR and FV methods with and without vortex

    Ref. Roussel, Schneider Comp. Fluids34(2005)

    3D flame ball, Le = 1

  • 8/11/2019 Kai Schneider Mam Cdp 09

    70/74

    Temperature Adaptive grid

    Splitting flame ball computed with the MR/LTS method

  • 8/11/2019 Kai Schneider Mam Cdp 09

    71/74

    Iso-surfaces and isolines on the cut-plane for temperature (top) and concentration (bottom) withL=8 scales, Le=0.3, Ze=10,k=0.1.

    Ref. Domingues Gomes, Roussel and Schneider. JCP 227 (2008)

    Temperature Concentration grid xy grid yz

    Splitting flame ball: projections of the cell centers used onthe adaptive mesh

    http://movies/movie_jcp2008_temp.avihttp://movies/conc_jcp2008.avihttp://movies/movie_jcp2008_xymesh.avihttp://movies/movie_jcp2008_yzmesh.avihttp://movies/movie_jcp2008_yzmesh.avihttp://movies/movie_jcp2008_xymesh.avihttp://movies/movie_jcp2008_temp.avihttp://movies/conc_jcp2008.avi
  • 8/11/2019 Kai Schneider Mam Cdp 09

    72/74

    Ref. Domingues Gomes, Roussel and Schneider. JCP 227 (2008)

    Splitting flame ball: CPU and memory compressions for thedifferent methods with L=8 scales

  • 8/11/2019 Kai Schneider Mam Cdp 09

    73/74

    Method % CPU time % Memory Integral reaction

    rate

    MR 2.7 1.05 669.09

    MR/LTS 2.3 1.05 669.11

    Ref. Domingues Gomes, Roussel and Schneider. JCP 227 (2008)

  • 8/11/2019 Kai Schneider Mam Cdp 09

    74/74

    Conclusions

    Finite volume discretization with explicit time integration (both of second-order) tosolve evolutionary PDEs in Cartesian geometry.

    Efficient space-adaptive multiresolution method (MR) with local time stepping (LTS).CPU speed-up and memory reduction, while controling the accuracy.

    Further speed-up due to an improved time advancement using larger time steps onlarge scales without violating the stability condition of the explicit scheme.

    However, synchronization of the tree data structure necessary.

    Time-step control (CTS) for space adaptive schemes (embedded Runge-Kutta schemes)and combination with LTS.

    Applications to reaction-diffusion equations, compressible Euler and Navier-Stokes equations.

    Next: develop level dependent time step control which allows to adapt the time step within acycle of the level dependent time stepping MR/LTS.

    http://www.cmi.univ-mrs.fr/~kschneid http://wavelets.ens.fr