kuantum sunu 1

Embed Size (px)

Citation preview

  • 8/3/2019 kuantum sunu 1

    1/43

    Radyasyonun (Inmn) TabiatIk Teorileri

    Tanecik (emisyon)Teorisi

    Dalga Teorisi

    Newton (1670):

    In bir k kaynandan k hzyla (3.108 m/s) herdorultuda yaylan kk madde tanecikleri olduunu ileri

    srmtr. Bu teoriye emisyon (salma, yaym) veya tanecikteorisi denir. Bu teoriye gre farkl renklere trl boyuttakitanecikler neden olmaktadr. Ktleleri ok kk hzlar okbyk olduundan bu tanecikler yerekimi etkisi ileyollarndan sapmazlar. Bylece arlkszm gibi hareketettiklerini kabul eden bu teori ile n bir doru zerindeyaylmasnbaarl bir ekilde izah eder.

    Ayrca elik bir bilyenin elik bir levha zerinde yansmasgibi nda yansyabileceini aklar. Yine elik bilyelerleyaplan uygun deneylerle n krlmas izahedilebilmektedir.

    Huygens (1670):

    In dalga tabiatnda olduunu ve dalga yzeyinin btnnoktalarnn elemanter kk dalgacklar meydana getirdiini

    dnerek n yansma ve krlma kanunlarn yenidentretmitir.

    Newton bu teoriye bir akkan iinde oluandalgalarn nlerinerastlayan engellerin yan kenarlarn dnerek geometrik glgead verilen szmalarn (difraksiyon veya krnm olay)gereke gstererek itiraz etmitir. Bu teori ile n keskinglgeler oluturmasn aklayamamas 1 asr kadar dalgateorisinin gzden dmesine neden oldu.

    ngiliz Dr. Young ve Fransz Fresnel (1788-1827) yaptklaralmalarda interferans (giriim) olaylarn ancak dalga teorisiile aklayabildilernk k+nkaranlkolabilecei ancakdalga teorisi ile aklanabilmekteydi.

    Ayrca Fresnel k dalgalaryla su dalgalarnn arasndakiglge oluumu(krnm)bakmndan grlen farknkaynandalga boylarnn ok farkl olmasndan kaynaklandn ispatetti. Bylece n dorusal yaylmn baarl bir ekildeaklad. Huygensingrn zor durumda brakan ve gzdendmesine yol aan neden ortadan kaldrlm oldu.

  • 8/3/2019 kuantum sunu 1

    2/43

    Krnm Giriim

  • 8/3/2019 kuantum sunu 1

    3/43

    Huygens n polarizasyonunu n ses dalgalar gibi boyuna dalgalar olduunudndndenaklayamamt. Ancak Fresnel k titreimlerinin enine olduunu kabul ederekizah etmeyi de baard.

    Foucault (Fuko) tarafndan sudaki k hznn deneysel olarak llmesi tanecik teorisinin

    btnyle iflasna yol at nk tanecik teorisiyle her ne kadar krlma alarnn oran sabitkalsada youn ortamdaki khznn daha byk olmas gerekmekteydi. Ancak deneyler sudakikhznn havadakinden daha dkolduunugstermitir.

    Bylece IIINENNE YAYILAN DALGALAR olduu sonucuna varld.

    Maxwell 1861-1864 yllarnda tamamen teorik olarak khzyla hareket eden dalga denklemlerinitrettti. Bu denklemler ayrca n elektrik ve manyetik bileenleri olduunu ve birbirine dikdzlemlerde sins erilerine benzer ekildeyayldklar sonucuna vard.

  • 8/3/2019 kuantum sunu 1

    4/43

    1888 ylnda Hertz Maxwellin elektromanyetik dalgalarn bir elektrik titreim devresi kullanaraklaboratuvarnda elde etmi ve bu dalgalarn yansma,krlma, odaklanma, giriim vb. zellikleresahip olduunugstermitir. Ayrca bu dalgalarnhzlarnltnde teorik yoldan bulunan khznaeitolduunu grd.

    Artkn dalga tabiatndaolduu 19. yydaphe gtrmez bir gerek olarak kabul edildi. 1900l yllarda bir takm deneylerin klasik fizik kanunlar ve elektromanyetik teoriyleaklanamad grld. O gne kadar elde edilen bilimsel birikim o gn iin yeni olan olaylaraklayamadndan dolayilerkarmayabalad ve o gne kadar kesin doruolduunainanlanfizik kanunlarnn mkemmel olmadnnfarknavarld.

    Siyah Cisim Imas

    Fotoelektrik OlayCompton Olay aklanamad

  • 8/3/2019 kuantum sunu 1

    5/43

    Termal Radyasyon ve Planck Denklemi

    Bu blmde klasik fiziinaklayamad baz olaylar ve ilgilideneyler zerinde duracaz.

    Bu deneyler sonucu

    Inmn kuantl olduu grlmtr!

  • 8/3/2019 kuantum sunu 1

    6/43

    _Siyah Cisim Imas_(blackbody radiation veya cavity radiation)

    --- Gzlemler ---

    Bir metal ubuk stlnca neler olur ?

    Scaklk ykseldike renkte nasl bir deiim oluur ?

    Bunzen bek alevinin scakl hakknda ne biliyorsunuz ?

  • 8/3/2019 kuantum sunu 1

    7/43

    Scak cisimler k yayarlarRenk nce krmz sonra sar sonra daha parlak sarolur

  • 8/3/2019 kuantum sunu 1

    8/43

    Cisimler niin ma yapar?

    Cisimler atomlardan meydana gelmitir

    Mutlak sfrdan yksek scaklktaki btncisimler elektromanyetik ma yaparlars enerjisi

    Titreen atomlar ma yaparlar.

    Cisimlerin top-yay modeli

    Is, molekl hareketlerinin (teleme, dnme, titreim)

    ortalama kinetik enerjisinden kaynaklanr

  • 8/3/2019 kuantum sunu 1

    9/43

    yaydklar radyasyon daha ksa dalga boyuna kayar(red white blue)

    --- Tanmlar---

    Siyah cisim:

    zerine den btn mkemmel bir ekilde

    absorbe eden bir cisimdir. zerine den btn sourduu iin kara grnr veya grnmez (karadelikler gibi..)

  • 8/3/2019 kuantum sunu 1

    10/43

    The failures of Classical PhysicsSiyah cisim var mdr?

    Nasl yaplabilir ?

    T

    Ima Gc (R); deal bir siyah cisim olarak dnlen

    kk deliin birim alanndan birim zamanda yaylan enerjimiktarnama gc denir. Birimi J/m2.s-1

    Enerji Younluu ( ); Siyah cismin boluundaki (cavity)enerji miktarnnboluk hacmine orandr. Birimi J/m3

  • 8/3/2019 kuantum sunu 1

    11/43

    Ima nasl gzlemlenir ?

    Ima monokromatik mi yoksa polikromatik

    midir ?

  • 8/3/2019 kuantum sunu 1

    12/43

    Gnein yzey scakl 5800 K ve scak bir odun atei ise yaklak800 oK dir. Cisimler scaklnn 4 kuvveti ile orantl olarak mayapmaktadr.

  • 8/3/2019 kuantum sunu 1

    13/43

    Radiated Power from Blackbody When the temperature of a blackbody radiator increases, the overall

    radiated energy increases and the peak of the radiation curvemoves to shorter wavelengths. When the maximum is evaluated

    from the Planck radiation formula, the product of the peakwavelength and the temperature is found to be a constant.

    http://hyperphysics.phy-astr.gsu.edu/hbase/mod6.htmlhttp://hyperphysics.phy-astr.gsu.edu/hbase/mod6.htmlhttp://hyperphysics.phy-astr.gsu.edu/hbase/mod6.htmlhttp://hyperphysics.phy-astr.gsu.edu/hbase/mod6.html
  • 8/3/2019 kuantum sunu 1

    14/43

    Wien yasas:

    Experimental observation

    As the temperature raised, the peak in the

    energy output shifts to shorter

    wavelengths. Wien displacement law

    Stefan-Boltzmann law

    Wihelm Wien2max 5

    1cT Kcm44.12 c

    4/ aTVE 4TM

    mK10.90,2 3max T

  • 8/3/2019 kuantum sunu 1

    15/43

    Zero amplitude

    at boundary

    L

    wavelength

    =c/ , = # of

    cycles per sec

    Standing Wave

  • 8/3/2019 kuantum sunu 1

    16/43

    Imann klasik fizik yorumuRayleigh-Jeans kanunu

    3

    28

    c

    Birim hacimde birim frekanstakimodlarn says:

    standing waves originate from harmonically oscillatingcharges in cavity wall

    two degrees of freedom (potential and kinetic energy)Average energy per degree of freedom: kT(equipartition)

    average energy per standing wave: kTkT212

    dc

    kTdu

    2

    3

    8)( total energy per unit volume:

    Lord Rayleigh

    Enerji dalmn aklamak zere ilk ne srlen teoridir veklasik mekaniin enerjinin eblm prensibini kullanmtr.

  • 8/3/2019 kuantum sunu 1

    17/43

    Formln tretilmesi

    Rayleigh and Jeans kapal bir kavite iindeki enerji younluunu hesaplamak

    istediMetal bir kutu iindeki radyasyon gz nne alndnda radyasyonun duran

    dalga (kararl dalga) eklinde olmas gerektii bilinmektedir. Ayn zamanda bu

    kararl dalgalar ancak belirli bir dalga boylarna sahip olabilirler (belirlifarkl frakanslar)

    Belirli bir scaklkta (T=sbt) ile +dfrekanslar aralnda birim hacimdekienerji miktar

    ile verilebilir.

    hacim

    )erji/dalgasayisi)(en(dalga)( dT

    dc

    VdN

    2

    3

    8)(:sayisidalga

    Dalgalarn farkl sayda

    olabilecekleri dikkate alnmtr Enerjinin istenen her deerde olabilecei n grlmtr

    enerji/dalga: = kT

    (enerjinin e blm kanunu kullanldnda )

    d

    c

    dT 3

    28)(

  • 8/3/2019 kuantum sunu 1

    18/43

    T() ile verilebilir mi ?

    = c/olduu bilindiine gre diferansiyeli d = (c/2)d

    e eittir. Bylece frekans ve dalga boyu arasnda geiyaplabilir:

    T()d = T()d

    buradan T() T()d/d T()c/2

    elde edilir.Frekansa bal olarak verilen enerji younluu dalga boyuna

    balanacak olursa:

    dc

    c

    cd

    c

    cd

    d

    c

    d

    T

    T

    223

    2

    23

    2

    3

    2

    88)(

    8)(

  • 8/3/2019 kuantum sunu 1

    19/43

    Teori uzun dalga boylarnda iyi sonular verirken ksa dalga boylarndadeney sonularndan olduka sapmaktadr.

    Hatta bu olaya ultraviyole felaketi (Ultraviolet Catastrophe) adverilmitir. nk eer teori doru olsayd. Oda scaklnda soukcisimler bile grnr ve ultraviyole blgede ma yapacaklard. Yanihepimiz kzartmaolacaktk !!

    dkTdu4

    8)( 4

    1

    4)(

    8

    kT

  • 8/3/2019 kuantum sunu 1

    20/43

    PlanckKanunu

    Energies are limited to discrete value

    Quantization of energy

    Plancks distribution

    At high frequencies approaches the Rayleigh-Jeanslaw

    The Plancks distribution also follows Stefan-Boltzmanns Las

    Max Planck

    ,...2,1,0, nnhE

    ddE)1(

    8/5

    kThc

    e

    hc

    kThc

    kThce kThc

    1....)1()1( /

  • 8/3/2019 kuantum sunu 1

    21/43

    blackbody radiation quantum mechanical

    average energy per standing wave:

    1

    / kThe

    h

    M. Planck (1900):1

    8)(

    /

    3

    3

    kThe

    d

    c

    hdu

    (fit to the data)

    Js10626.6

    34h

    Plancks constant

    energy of a single oscillator: ,...4,3,2,1 nhn

    quantization of energy!

    Note: both Stefans Law &

  • 8/3/2019 kuantum sunu 1

    22/43

    Planck radiation law

    blackbody radiation, photons (bosons) in a cubic cavity:standing wave condition in all three directions x,yand z

    d

    ec

    hfGhdu

    dc

    dG

    d

    c

    Ldg

    Lnnn

    Ln

    kTh

    zyx

    zyx

    /3

    3

    2

    3

    2

    3

    3

    2222

    ,,

    18)()()(

    8)(

    8)(

    2

    ...4,3,2,1,02

    (number of standing waves)

    (standing waves in cubic cavity)

    (density of standing waves)

    Note: both Stefans Law &

    Wiens Displacement law

    Can Be derived from the

    Plank formula

  • 8/3/2019 kuantum sunu 1

    23/43

    Finding the Blackbody Peak From the Planck radiation formula

    the evaluation of the maximum yields Wien's displacement law To find the peak of theblackbody radiation curve, we take the derivative:

    Simplifying gives the maximum condition:

    http://hyperphysics.phy-astr.gsu.edu/hbase/mod6.htmlhttp://hyperphysics.phy-astr.gsu.edu/hbase/wien.htmlhttp://hyperphysics.phy-astr.gsu.edu/hbase/wien.htmlhttp://hyperphysics.phy-astr.gsu.edu/hbase/mod6.html
  • 8/3/2019 kuantum sunu 1

    24/43

    Cavity Modes

    A mode for an electromagnetic wave in a cavity must satisfy thecondition of zero electric field at the wall. If the mode is of shorterwavelength, there are more ways you can fit it into the cavity to meet

    that condition. Careful analysis by Rayleigh and Jeans showed thatthe number of modes was proportional to the frequency squared.

  • 8/3/2019 kuantum sunu 1

    25/43

    Discovery of Cosmic Background Radiation In 1965 Arno A. Penzias and Robert W. Wilson of Bell Laboratories

    were testing a sensitive horn antenna which was designed for

    detecting low levels of microwave radiation. They discovered a lowlevel of microwave background "noise", like the low level of electricalnoise which might produce "snow" on a television screen. Afterunsuccessful attempts to eliminate it, they pointed their antenna toanother part of the sky to check whether the "noise" was comingfrom space, and got the same kind of signal. Being persuaded thatthe noise was in their instrument, they took other, more

    sophisticated steps to eliminate the noise, such as cooling theirdetector to low temperatures. Finding no explanations for the origin of the noise, they finally

    concluded that it was indeed coming from space, but that it was thesame from all directions. It was a distribution of microwave radiationwhich matched a blackbody curve for a radiator at about 2.7 Kelvins.

    After all their efforts to eliminate the "noise" signal, they found that agroup at Princeton had predicted that there would be a residualmicrowave background radiation left over from the Big Bang andwere planning an experiment to try to detect it. Penzias and Wilsonwere awarded the Nobel Prize in 1978 for their discovery.

    http://hyperphysics.phy-astr.gsu.edu/hbase/bkg3k.htmlhttp://hyperphysics.phy-astr.gsu.edu/hbase/bkg3k.html
  • 8/3/2019 kuantum sunu 1

    26/43

  • 8/3/2019 kuantum sunu 1

    27/43

    Thermometry

    Planck law gives the radiancy as a function ofTand

    Resistance is adjusted until filament is invisible against source background

    IfT1 is taken as a reference, T2 can be determined

    1)/exp(

    1)/exp(

    2

    1

    kThc

    kThcR

    For monochromatic radiation of wavelength , the ratio of spectral intensities

    is given by

  • 8/3/2019 kuantum sunu 1

    28/43

    Heat Capacities

    Dulong Petits Law

    The molar heat capacities of monoatomic solids are the same , close

    to 25 J/mol. K

    Can be justified using classical mechanics

    Mean energy of an atom oscillates about its mean position of solid iskT

    Unfortunately, at low T the value

    approaches to zero

    RTkTNU Am 33

    KJ/mol9.243

    R

    T

    UC

    V

    mv

  • 8/3/2019 kuantum sunu 1

    29/43

    Einstein and Debye Formula

    Einstein used the hypothesis that energy of

    oscillation is confined to discrete value

    Debye later refined Einstein formula taking into

    account that atoms are not oscillating at the same

    frequency.

    23RfCv

    12/

    2/

    T

    T

    E

    E

    E

    e

    e

    Tf

    RfCv 3 dxe

    exTf

    T

    x

    x

    D

    D

    /

    0 2

    43

    )1(3

  • 8/3/2019 kuantum sunu 1

    30/43

    Einstein and Debyes Theory

  • 8/3/2019 kuantum sunu 1

    31/43

    overviewstatistical distributions general considerations

    Maxwell-BoltzmannBose-EinsteinFermi-Dirac

    Maxwell-Boltzmann statisticsMaxwell-Boltzmann distributionenergies in an ideal gas

    equipartition of energyquantum statistics

    fermions and bosonsBose-Einstein and Fermi-Dirac distribution

    comparison of the three statistical distributions

    applicationsPlanck radiation lawspecific heats of solidsfree electrons in a metaldying stars

  • 8/3/2019 kuantum sunu 1

    32/43

    specific heats of solids

    question: internal energy of solids, specific heat

    vc : energy needed to raise T of 1 kmol of solid by 1 K at constant V

    internal energy resides in vibrations of the solids constituents

    vibration of classical 1-D harmonic oscillator:

    solid: 3 perpendicular modes of vibration 3 harmonic oscillators

    total energy of a solid:

    kT

    RTkTNE 33 0

    RT

    Ec 3

    V

    v

    (Dulong Petit)

  • 8/3/2019 kuantum sunu 1

    33/43

    specific heats of solids

    problem: deviation from Dulong-Petit!

  • 8/3/2019 kuantum sunu 1

    34/43

    specific heats of solids

    solution by Einstein: use average energy of a harmonic oscillator

    1/

    kTh

    e

    h

    Ee

    NhN

    kTh

    1

    33

    /

    for N oscillators and 3 dimensions:

    2/

    /2

    V

    v)1(

    3

    kTh

    kTh

    e

    e

    kT

    hR

    T

    Ec

  • 8/3/2019 kuantum sunu 1

    35/43

    specific heats of solids

    refinement by Debye: elastic standing waves of the whole body

    quantum of acoustic energy phonons

    number of possible standing waves in a body equals 3N

    phonons are bosons

    BE statistics lead to good agreement with experimentalspecific heats

  • 8/3/2019 kuantum sunu 1

    36/43

    overviewstatistical distributions general considerations

    Maxwell-BoltzmannBose-EinsteinFermi-Dirac

    Maxwell-Boltzmann statisticsMaxwell-Boltzmann distributionenergies in an ideal gas

    equipartition of energyquantum statistics

    fermions and bosonsBose-Einstein and Fermi-Dirac distribution

    comparison of the three statistical distributions

    applicationsPlanck radiation lawspecific heats of solidsfree electrons in a metaldying stars

  • 8/3/2019 kuantum sunu 1

    37/43

    free electrons in a metal

    about 1 free electron/atom in a metal3 additional degrees of freedom

    specific heat should be

    RRRRT

    E

    c 32

    9

    2

    3

    2

    6

    Vv

    why do the electrons not contribute to the specific heat?

    dhmdg 3

    2/3V28

    )(

    (number of electron states)

  • 8/3/2019 kuantum sunu 1

    38/43

    free electrons in a metal

    deh

    mdn

    kTF

    1

    1V28)(

    /)(3

    2/3

    (electron energy distribution)

    V

    V8

    32

    3/22

    NNmhF

    : electron density

    Fermi energy

  • 8/3/2019 kuantum sunu 1

    39/43

    free electrons in a metal

    T=0

    T>>0

    EF

  • 8/3/2019 kuantum sunu 1

    40/43

    free electrons in a metal

    n

    n

  • 8/3/2019 kuantum sunu 1

    41/43

    free electrons in a metal

    only electrons close close to F contribute to cVelectrons more than kT from F cannot be excitedstates above the low lying electrons are already filled

    RkT

    c

    F

    e

    2

    2

    v

    low T: cve becomes important, since cDebye scales with T3

    high T: cve continues to rise when cDebye already reached 3R

  • 8/3/2019 kuantum sunu 1

    42/43

    overviewstatistical distributions general considerations

    Maxwell-BoltzmannBose-EinsteinFermi-Dirac

    Maxwell-Boltzmann statisticsMaxwell-Boltzmann distributionenergies in an ideal gas

    equipartition of energyquantum statistics

    fermions and bosonsBose-Einstein and Fermi-Dirac distribution

    comparison of the three statistical distributions

    applicationsPlanck radiation lawspecific heats of solidsfree electrons in a metaldying stars

  • 8/3/2019 kuantum sunu 1

    43/43