Large Mimo

Embed Size (px)

Citation preview

  • 7/29/2019 Large Mimo

    1/30

    MM

    YS

    Very Large MIMO Systems:Opportunities and Challenges

    Erik G. Larsson

    March 21, 2012

    Div. of Communication Systems

    Dept. of Electrical Engineering (ISY)Linkoping UniversityLinkoping, Sweden

    www.commsys.isy.liu.se

  • 7/29/2019 Large Mimo

    2/30

    With thanks to my team and collaborators:

    Hien Q. Ngo (LiU, Sweden) Antonios Pitarokoilis (LiU) Saif Mohammed (LiU) Daniel Persson (LiU)

    Fredrik Rusek (Lund, Sweden)

    Ove Edfors (Lund)

    Buon Kiong Lau (Lund) Fredrik Tufvesson (Lund)

    Thomas L. Marzetta (Bell Labs/Alcatel-Lucent, USA)

    Christoph Studer (Rice Univ., USA)

    1/29

    Erik G. LarssonVery Large MIMO Systems

    Communication Systems

    Linkoping UniversityMM

    YS

  • 7/29/2019 Large Mimo

    3/30

    Why MIMO Array gain (beamforming)

    Spatial division mult. access

    Spatial multiplexing Rate min(nr, nt) log (1 + SNR)

    Reliability pe SNRnrnt

    2/29

    Erik G. LarssonVery Large MIMO Systems

    Communication Systems

    Linkoping UniversityMM

    YS

  • 7/29/2019 Large Mimo

    4/30

    Very Large MIMO

    M=

    x100

    antennas!K

    terminals

    k=1

    k=K

    We think of very large (multiuser) MIMO as a system with M K 1 coherent, but simple, processing

    Potential to improving rate & reliability dramatically Potential to scaling down TX power drastically

    3/29

    Erik G. LarssonVery Large MIMO Systems

    Communication Systems

    Linkoping UniversityMM

    YS

  • 7/29/2019 Large Mimo

    5/30

    Large MIMO Arrays

    Reduce bulky items (coax) Each antenna unit simple (low accuracy) Resilience against individual failures (hotswapping) Potential economy of scale in manufacturing Enable for mmWave radio (60-300 GHz)?

    4/29

    Erik G. LarssonVery Large MIMO Systems

    Communication Systems

    Linkoping UniversityMM

    YS

  • 7/29/2019 Large Mimo

    6/30

    Large MIMO: Some Known Facts(Notation: M antennas, K terminals, power per terminal P)

    Linear processing (MRC/MRT, ZF, ... ) nearly optimal asM K 1

    P and M large enough pilot contamination limitsperformance

    Scaling down P with M noise will limit performance.

    Perfect CSI & optimal processing P can be scaled as 1/M

    Given linear processing and imperfect CSI, in a MU system,P can be scaled as 1/

    M

    5/29

    Erik G. LarssonVery Large MIMO Systems

    Communication Systems

    Linkoping UniversityMM

    YS

  • 7/29/2019 Large Mimo

    7/30

    Large MIMO: Some Known Facts, cont.

    System performance can be limited by

    intracell interference

    pilot contamination thermal noise + intercell interference

    so there are several possible operating points depending on

    number of antennas available TX power choice of receiver/precoder algorithm coherence time (dictates ultimately the number of users served)

    6/29

    Erik G. LarssonVery Large MIMO Systems

    Communication Systems

    Linkoping UniversityMM

    YS

  • 7/29/2019 Large Mimo

    8/30

    Large MIMO: Some Beliefs/Speculation

    Not enough time for CSI feedback, so must operate in TDD mode. Not enough pilots

    Not enough resources for fast CSI feedback System will operate in nearly-noise limited regime (1 bpcu/term)

    Very aggressive spatial multiplexing; aggregate efficiency K bpcu Each user could get the full bandwidth simple MAC, little or no control signaling

    Impairments, e.g., multiuser interference (almost) drown in noise linear or nearly-linear receivers

    May even get away with equalization-free (matched filter only) SCtransmission

    Vast excess (M K) of degrees of freedom: use for HW-friendly signal shaping and smart receiver algorithms Per-antenna constant envelope or low-PAR multiuser precoding Channel estimation exploiting subspaces

    Channel will harden (random matrix theory) Larger array reveals new propagation phenomena

    7/29

    Erik G. LarssonVery Large MIMO Systems

    Communication Systems

    Linkoping UniversityMM

    YS

  • 7/29/2019 Large Mimo

    9/30

    Large MIMO: Some of the Most Important Questions

    Processing will have to be simple (linear). How good is this?

    Non-CSI@TX operation:broadcasting (control signaling) and acquisition

    Hardware imperfections: phase noise, I/Q imbalance, A/D, PAs

    Synchronization at low SNR

    TDD will bring us pilot contamination in the downlink.How bad is this really in practice?

    TDD will require reciprocity calibration.

    How, when and at what cost?

    8/29

    Erik G. LarssonVery Large MIMO Systems

    Communication Systems

    Linkoping UniversityMM

    YS

  • 7/29/2019 Large Mimo

    10/30

    Favorable Propagation andIts Implications

    9/29

    Erik G. LarssonVery Large MIMO Systems

    Communication SystemsLinkoping University

    MM

    YS

  • 7/29/2019 Large Mimo

    11/30

    Favorable propagation and Rate Consider M K, MIMO link, channel H, M K. Rate:

    R =

    K

    k=1

    log21 +

    SNR

    K2

    k , SNR =Ptot

    N0

    If |Hij | 1,K

    k=1 2k = H2 M K, so

    log2 (1 + MSNR)

    rank-1 channel (LoS)21=MK, 2

    2==2

    K=0

    R K log2

    1 +M

    KSNR

    HHHI (full rank channel)

    21==

    2

    K=M

    Favorable propagation

    H i.i.d. and M K favorable propagation. In MU-MIMO (H G), favorable propagation if

    GHG

    M

    1 0 00 2

    . . ....

    .... . .

    . . . 00 0 K

    D, M K10/29

    Erik G. LarssonVery Large MIMO Systems

    Communication SystemsLinkoping University

    MM

    YS

  • 7/29/2019 Large Mimo

    12/30

    Favorable propagation and ideal channels

    40 30 20 10 0 10 20 300

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Prob(

    a

    bscissa)

    ordered singular values [dB]

    i.i.d 6x128

    i.i.d. 6x6

    11/29

    Erik G. LarssonVery Large MIMO Systems

    Communication SystemsLinkoping University

    MM

    YS

  • 7/29/2019 Large Mimo

    13/30

    Do we have favorable propagation in practice?

    Our partners at Lund Univ., Sweden have conducted uniquemeasurements [RPL2011+,GERT2011].

    Indoor 128-ant. (4x16 dual-pol.) array. 3 users indoor, 3 outdoor.

    2.6 GHz CF, 50 MHz BW, 100 snapshots (10m).

    Normalized to retain only small-scale fading.

    12/29

    Erik G. LarssonVery Large MIMO Systems

    Communication SystemsLinkoping University

    MM

    YS

  • 7/29/2019 Large Mimo

    14/30

    Lund measurements, example of results

    40 30 20 10 0 10 20 300

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Prob(

    a

    bscissa)

    ordered singular values [dB]

    meas 6x128

    meas 6x6

    13/29

    Erik G. LarssonVery Large MIMO Systems

    Communication SystemsLinkoping University

    MM

    YS

  • 7/29/2019 Large Mimo

    15/30

    Spectral/energy efficiency tradeoffs

    14/29

    Erik G. LarssonVery Large MIMO Systems

    Communication SystemsLinkoping University

    MM

    YS

  • 7/29/2019 Large Mimo

    16/30

    Uplink single-cell, model assumptions

    gk =

    khk. hk: small scale fading;

    E[|hmk|2] = 1; zero mean. k: path loss+shadowing SNR for kth terminal: P k

    RX signal:

    y =

    P

    Kk=1

    gk

    M1

    xk +n, E[|xk|2] = 1, ni CN(0, 1)

    Write as

    y =

    P GMK

    xK1

    +n, G = HD1/2, H [h1, . . . ,hK], D

    1. . .

    K

    15/29

    Erik G. LarssonVery Large MIMO Systems

    Communication SystemsLinkoping University

    MM

    YS

  • 7/29/2019 Large Mimo

    17/30

    Spectral-energy efficiency tradeoff Sum-spectral efficiency:

    R = 1 T

    Klog2 1 + (M1)P

    2

    (K1)P2+(+K)P+1, for MRC

    1 TKlog2 1 + (MK)P2(+K)P+1 , for ZF Energy efficiency: =

    R

    P Reference mode: K= 1,M= 1

    arg max1T Single-user system: K= 1,M fixed

    arg maxP,

    , s.t. S= const., 1 T

    Multi-user system: M fixed

    arg maxP,K,

    s.t. S= const.,K T(KM for ZF) 16/29

    Erik G. LarssonVery Large MIMO Systems

    Communication SystemsLinkoping University

    MM

    YS

    C ( ) [ ]

  • 7/29/2019 Large Mimo

    18/30

    Cellular UL, (BT)coh. = 14 14, M = 1 [NLM2011]

    0 10 20 30 40 50 60 70 80 9010

    -1

    100

    101

    102

    103

    104

    K=1, M=1

    20 dB

    10 dB

    0 dB

    -10 dB

    Re

    lativeEnergy-Efficiency(bits/J)/(bits/J)

    Spectral-Efficiency (bits/s/Hz)17/29

    Erik G. LarssonVery Large MIMO Systems

    Communication SystemsLinkoping University

    MM

    YS

    C ll l UL (BT ) 14 14 M 100 [NLM2011]

  • 7/29/2019 Large Mimo

    19/30

    Cellular UL, (BT)coh. = 14 14, M = 100 [NLM2011]

    0 10 20 30 40 50 60 70 80 9010

    -1

    100

    101

    102

    103

    104

    K=1, M=1

    20 dB

    10 dB

    0 dB

    -10 dB

    Re

    lativeEnergy-Efficiency(bits/J)/(bits/J)

    Spectral-Efficiency (bits/s/Hz)

    K=1, M=100

    18/29

    Erik G. LarssonVery Large MIMO Systems

    Communication SystemsLinkoping University

    MM

    YS

    C ll l UL (BT ) 14 14 M 100 [NLM2011]

  • 7/29/2019 Large Mimo

    20/30

    Cellular UL, (BT)coh. = 14 14, M = 100 [NLM2011]

    0 10 20 30 40 50 60 70 80 9010

    -1

    100

    101

    102

    103

    104

    K=1, M=1

    MRC

    20 dB

    10 dB

    0 dB

    -10 dB

    -20 dB

    Re

    lativeEnergy-Efficiency(bits/J)/(bits/J)

    Spectral-Efficiency (bits/s/Hz)

    K=1, M=100

    M= 100

    ZF

    19/29

    Erik G. LarssonVery Large MIMO Systems

    Communication SystemsLinkoping University

    MM

    YS

    C ll l UL (BT ) 14 14 M 50 [NLM2011]

  • 7/29/2019 Large Mimo

    21/30

    Cellular UL, (BT)coh. = 14 14, M = 50 [NLM2011]

    0 10 20 30 40 50 60 70 80 9010

    -1

    100

    101

    102

    103

    104

    -20 dB

    M=50

    ZF

    MRC

    20 dB

    10 dB

    0 dB

    -10 dB

    RelativeEnergy-Efficiency(bits/J)/(bit

    s/J)

    Spectral-Efficiency (bits/s/Hz)

    K=1, M=50

    K=1, M=1

    20/29

    Erik G. LarssonVery Large MIMO SystemsCommunication Systems

    Linkoping UniversityMM

    YS

  • 7/29/2019 Large Mimo

    22/30

    Large-Scale MU-MIMO

    Downlink Precoding

    21/29

    Erik G. LarssonVery Large MIMO Systems Communication SystemsLinkoping University MM

    YS

    D li k di g g l ks

  • 7/29/2019 Large Mimo

    23/30

    Downlink precoding - general remarks

    In the downlink, the are M K unused degrees of freedom.These excess DoF could be used to Null out interference Shape the transmitted signals in a hardware-friendly way

    An excess in the number of antennas also means that simpleprecoders (MRT, time-reversal) may be used to combat frequencyselectivity

    22/29

    Erik G. LarssonVery Large MIMO Systems Communication SystemsLinkoping University MM

    YS

    Constant Envelope MU MIMO Downlink Precoding

  • 7/29/2019 Large Mimo

    24/30

    Constant Envelope MU-MIMO Downlink Precoding

    Constant-envelope transmission [SM2011a,SM2011b]

    x =

    P

    M

    ej1

    ...ejM

    Insensitive to PA non-linearity.

    How well can we approximate a desired wavefield at K locations, byvarying only the phase of the transmitted signals?

    Not to be confused with equal-gain transmission (something entirelydifferent)!

    23/29

    Erik G. LarssonVery Large MIMO Systems Communication SystemsLinkoping University MM

    YS

    Constant Envelope versus Beamforming

  • 7/29/2019 Large Mimo

    25/30

    Constant Envelope versus Beamforming

    u

    P

    h1

    h

    P

    hm

    h

    P h

    Mh

    Amplitude range = [0

    P|u|]

    eju

    1

    eju

    m

    eju

    M

    Constant amplitude =

    PM

    PM

    PM

    PM

    Antenna 1 Antenna 1

    Antenna m Antenna m

    Antenna M Antenna M

    Beamforming Constant-envelope transmission

    24/29

    Erik G. LarssonVery Large MIMO Systems Communication SystemsLinkoping University MM

    YS

    Constant env MU MIMO precoding Gauss symbols

  • 7/29/2019 Large Mimo

    26/30

    Constant-env. MU-MIMO precoding, Gauss. symbols

    0 50 100 150 200 250 30012

    9

    6

    3

    0

    3

    6

    9

    12

    1515

    No. of Base Station Antennas (M)

    Min.reqd.

    PT

    /2

    (dB)toachiev

    eaperuserrateof

    2bpcu

    K = 10, Proposed CE Precoder (CE)

    K = 10, ZF Phaseonly Precoder (CE)

    K = 10, GBC Sum Cap. Upp. Bou. (APC)

    K = 40, Proposed CE Precoder (CE)

    K = 40, ZF Phaseonly Precoder (CE)

    K = 40, GBC Sum Cap. Upp. Bou. (APC)

    1.7 dB

    25/29

    Erik G. LarssonVery Large MIMO Systems Communication SystemsLinkoping University MM

    YS

    PAR Aware MU MIMO OFDM Downlink [SL2012]

  • 7/29/2019 Large Mimo

    27/30

    PAR-Aware MU-MIMO OFDM Downlink [SL2012]

    Precoder design problem:

    (PMP) minimizea1,...,aN

    maxa1 , . . . , aNsubject to sw = Hwfw(a1, . . . , aN), w T0N1 = fw(a1, . . . , aN), w Tc.

    Hw: time-frequency channel

    fw(

    ) linear function; includes OFDM modulation and S/P

    conversion T: used subcarriers; Tc: null subcarriers Convex optimization problem, fast algorithm; relaxation

    26/29

    Erik G. LarssonVery Large MIMO Systems Communication SystemsLinkoping University MM

    YS

    PAR-aware MU-MIMO OFDM DL (99% percentiles)

  • 7/29/2019 Large Mimo

    28/30

    PAR-aware MU-MIMO OFDM DL (99% percentiles)

    27/29

    Erik G. LarssonVery Large MIMO Systems Communication SystemsLinkoping University MM

    YS

    Literature

  • 7/29/2019 Large Mimo

    29/30

    LiteratureRPL+2011 F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L.

    Marzetta, O. Edfors, and F. Tufvesson, Scaling up MIMO:Opportunities and Challenges with Large Arrays,arXiv:1201.3210, 2011.

    NLM2011 H.Q. Ngo, E.G. Larsson and T. Marzetta, Energy andSpectral Efficiency of Very Large Multiuser MIMOSystems, arXiv:1112.3810, 2011.

    LM2011a E.G. Larsson and S.K. Mohammed, Per-antenna ConstantEnvelope Precoding for Large Multi-User MIMO Systems,arXiv:1201.1634v1, 2011.

    LM2011b E.G. Larsson and S.K. Mohammed, Single-UserBeamforming in Large-Scale MISO Systems...: TheDoughnut Channel, arXiv:1111.3752, 2011.

    SL2012 C. Studer and E.G. Larsson, PAR-Aware Large-ScaleMulti-User MIMO-OFDM Downlink, arXiv:1202.4034,2012.

    HBD2011 J. Hoydis, S. ten Brink, M. Debbah, Massive MIMO: HowMany Antennas do We Need?, arXiv:1107.1709, 2011.GERT2011 X. Gao, O. Edfors, F. Rusek, and F. Tufvesson, Linear

    pre-coding p erformance in measured very-large MIMOchannels, IEEE VTC 2011

    Mar2010 T. L. Marzetta, Noncooperative MU-MIMO with unlimitednumbers of base station antennas, IEEE Trans. Wireless.Comm. 2010.

    JAMV2011 J. Jose, A. Ashikhmin, T. L. Marzetta, and S. Vishwanath,Pilot contamination and precoding in multi-cell TDDsystems, IEEE Trans. Wireless Commun., 2011.

    GJ2011 B. Gopalakrishnan and N. Jindal, An Analysis of PilotContamination on Multi-User MIMO Cellular Systems withMany Antennas, IEEE SPAWC 2011.

    NML2011 H. Q. Ngo, T. Marzetta and E. G. Larsson, Analysis of thepilot contamination effect in very large multicell multiuser

    MIMO systems for physical channel models, IEEE ICASSP2011.

    PML2012 A. Pitarokoilis, S. K. Mohammed and E. G. Larsson, Onthe optimality of single-carrier transmission in large scaleantenna systems, IEEE Wireless Communication Letters,submitted, 2012.

    CMT2004 G. Caire, R. Muller and T. Tanaka, Iterative multiuserjoint decoding: optimal power allocation and low-complexityimplementation, IEEE Trans. IT, 2004.

    ZLW2007 H. Zhao, H. Long and W. Wang, Tabu search detection forMIMO systems, IEEE PIMRC 2007.

    VMCR2008 K. Vishnu Vardhan, S. Mohammed, A. Chockalingam, andB. Sundar Rajan, A low-complexity detector for largeMIMO systems and multicarrier CDMA systems, IEEEJSAC 2008.

    Sun2009 Y. Sun, A family of likelihood ascent search multiuserdetectors: an upper bound of bit error rate and a lowerbound of asymptotic multiuser efficiency, IEEE JSAC 2009.

    LH1999 A. Lampe and J. Huber, On improved multiuser detectionwith iterated soft decision interference cancellation, inProc. IEEE Communication Theory Mini-Conference, 1999.

    28/29

    Erik G. LarssonVery Large MIMO Systems Communication SystemsLinkoping University MM

    YS

  • 7/29/2019 Large Mimo

    30/30

    Thank You

    29/29

    Erik G. LarssonVery Large MIMO Systems Communication SystemsLinkoping University MM

    YS