98
Lattice energy-momentum tensor from the Yang-Mills gradient flow 鈴木 博 Hiroshi Suzuki 九州大学 Kyushu University 2016/05/31 @ Osaka Univ. H.S., Prog. Theor. Exp. Phys. (2013) 083B03 [arXiv:1304.0533 [hep-lat]] M. Asakawa, T. Hatsuda, E. Itou, M. Kitazawa, H.S. (FlowQCD Collaboration), Phys. Rev. D90 (2014) 011501 [arXiv:1312.7492 [hep-lat]] H. Makino and H.S., Prog. Theor. Exp. Phys. (2014) 063B02 [arXiv:1403.4772 [hep-lat]], arXiv:1410.7538 [hep-lat] . . . and recent unpublished numerical simulations 鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 1/1

Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

.

.

. ..

.

.

Lattice energy-momentum tensor from theYang-Mills gradient flow

鈴木 博Hiroshi Suzuki

九州大学Kyushu University

2016/05/31 @ Osaka Univ.

H.S., Prog. Theor. Exp. Phys. (2013) 083B03 [arXiv:1304.0533 [hep-lat]]M. Asakawa, T. Hatsuda, E. Itou, M. Kitazawa, H.S. (FlowQCD Collaboration),Phys. Rev. D90 (2014) 011501 [arXiv:1312.7492 [hep-lat]]H. Makino and H.S., Prog. Theor. Exp. Phys. (2014) 063B02 [arXiv:1403.4772[hep-lat]], arXiv:1410.7538 [hep-lat]. . . and recent unpublished numerical simulations

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 1 / 1

Page 2: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Lattice gauge theory and the energy–momentumtensor (EMT)

Lattice gauge theory: the most successful non-perturbative formulation ofgauge theory. By discretizing the spacetime. . .

.

.

a

internal gauge symmetry is preserved exactly. . .but incompatible with spacetime symmetries (translation, Poincaré,SUSY, conformal, . . . ) for a 6= 0.For a 6= 0, one cannot define the Noether current associated with thetranslational invariance, EMT {Tµν}R(x).Even for the continuum limit a→ 0, this is difficult, because EMT is acomposite operator which generally contains UV divergences:

a× 1a

a→0→ 1.

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 2 / 1

Page 3: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Lattice gauge theory and the energy–momentumtensor (EMT)

Lattice gauge theory: the most successful non-perturbative formulation ofgauge theory. By discretizing the spacetime. . .

.

.

a

internal gauge symmetry is preserved exactly. . .

but incompatible with spacetime symmetries (translation, Poincaré,SUSY, conformal, . . . ) for a 6= 0.For a 6= 0, one cannot define the Noether current associated with thetranslational invariance, EMT {Tµν}R(x).Even for the continuum limit a→ 0, this is difficult, because EMT is acomposite operator which generally contains UV divergences:

a× 1a

a→0→ 1.

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 2 / 1

Page 4: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Lattice gauge theory and the energy–momentumtensor (EMT)

Lattice gauge theory: the most successful non-perturbative formulation ofgauge theory. By discretizing the spacetime. . .

.

.

a

internal gauge symmetry is preserved exactly. . .but incompatible with spacetime symmetries (translation, Poincaré,SUSY, conformal, . . . ) for a 6= 0.

For a 6= 0, one cannot define the Noether current associated with thetranslational invariance, EMT {Tµν}R(x).Even for the continuum limit a→ 0, this is difficult, because EMT is acomposite operator which generally contains UV divergences:

a× 1a

a→0→ 1.

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 2 / 1

Page 5: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Lattice gauge theory and the energy–momentumtensor (EMT)

Lattice gauge theory: the most successful non-perturbative formulation ofgauge theory. By discretizing the spacetime. . .

.

.

a

internal gauge symmetry is preserved exactly. . .but incompatible with spacetime symmetries (translation, Poincaré,SUSY, conformal, . . . ) for a 6= 0.For a 6= 0, one cannot define the Noether current associated with thetranslational invariance, EMT {Tµν}R(x).

Even for the continuum limit a→ 0, this is difficult, because EMT is acomposite operator which generally contains UV divergences:

a× 1a

a→0→ 1.

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 2 / 1

Page 6: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Lattice gauge theory and the energy–momentumtensor (EMT)

Lattice gauge theory: the most successful non-perturbative formulation ofgauge theory. By discretizing the spacetime. . .

.

.

a

internal gauge symmetry is preserved exactly. . .but incompatible with spacetime symmetries (translation, Poincaré,SUSY, conformal, . . . ) for a 6= 0.For a 6= 0, one cannot define the Noether current associated with thetranslational invariance, EMT {Tµν}R(x).Even for the continuum limit a→ 0, this is difficult, because EMT is acomposite operator which generally contains UV divergences:

a× 1a

a→0→ 1.

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 2 / 1

Page 7: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

EMT in lattice gauge theory?

Is it possible to construct EMT on the lattice, which becomes the correctEMT automatically in the continuum limit a→ 0?

The correct EMT is characterized by the Ward–Takahashi relation⟨Oext

�D

dDx ∂µ {Tµν}R (x)Oint

⟩= −〈Oext ∂νOint〉 .

.

.

x

.

D

.

Oint

.

Oext

This contains the correct normalization and the conservation law.

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 3 / 1

Page 8: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

EMT in lattice gauge theory?

Is it possible to construct EMT on the lattice, which becomes the correctEMT automatically in the continuum limit a→ 0?The correct EMT is characterized by the Ward–Takahashi relation⟨

Oext

�D

dDx ∂µ {Tµν}R (x)Oint

⟩= −〈Oext ∂νOint〉 .

.

.

x

.

D

.

Oint

.

Oext

This contains the correct normalization and the conservation law.

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 3 / 1

Page 9: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

EMT in lattice gauge theory?

Is it possible to construct EMT on the lattice, which becomes the correctEMT automatically in the continuum limit a→ 0?The correct EMT is characterized by the Ward–Takahashi relation⟨

Oext

�D

dDx ∂µ {Tµν}R (x)Oint

⟩= −〈Oext ∂νOint〉 .

.

.

x

.

D

.

Oint

.

Oext

This contains the correct normalization and the conservation law.

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 3 / 1

Page 10: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

EMT in lattice gauge theory?

If such a construction is possible, we expect wide application to physicsrelated to spacetime symmetries: QCD thermodynamics, transportcoefficients in gauge theory, momentum/spin structure of baryons,conformal field theory, dilaton physics, . . .

The present work is also an attempt to understand EMT in quantum fieldtheory in the non-perturbative level.

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 4 / 1

Page 11: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

EMT in lattice gauge theory?

If such a construction is possible, we expect wide application to physicsrelated to spacetime symmetries: QCD thermodynamics, transportcoefficients in gauge theory, momentum/spin structure of baryons,conformal field theory, dilaton physics, . . .The present work is also an attempt to understand EMT in quantum fieldtheory in the non-perturbative level.

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 4 / 1

Page 12: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

EMT on the lattice (Caracciolo et al. (1989–))

Under the hypercubic symmetry, the operator reproducing the correctEMT of QCD for a→ 0 is given by

{Tµν}R (x) =7∑

i=1

ZiOiµν(x)|lattice − VEV,

where

O1µν(x) ≡∑

ρ

F aµρ(x)F a

νρ(x), O2µν(x) ≡ δµν

∑ρ,σ

F aρσ(x)F a

ρσ(x),

O3µν(x) ≡ ψ(x)(γµ←→D ν + γν

←→D µ

)ψ(x), O4µν(x) ≡ δµνψ(x)

←→/D ψ(x),

O5µν(x) ≡ δµνm0ψ(x)ψ(x),

and, Lorentz non-covariant ones:

O6µν(x) ≡ δµν

∑ρ

F aµρ(x)F a

µρ(x), O7µν(x) ≡ δµνψ(x)γµ←→D µψ(x)

Seven non-universal coefficients Zi must be determined by latticeperturbation theory or by a non-perturbative method

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 5 / 1

Page 13: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

EMT on the lattice (Caracciolo et al. (1989–))

Under the hypercubic symmetry, the operator reproducing the correctEMT of QCD for a→ 0 is given by

{Tµν}R (x) =7∑

i=1

ZiOiµν(x)|lattice − VEV,

where

O1µν(x) ≡∑

ρ

F aµρ(x)F a

νρ(x), O2µν(x) ≡ δµν

∑ρ,σ

F aρσ(x)F a

ρσ(x),

O3µν(x) ≡ ψ(x)(γµ←→D ν + γν

←→D µ

)ψ(x), O4µν(x) ≡ δµνψ(x)

←→/D ψ(x),

O5µν(x) ≡ δµνm0ψ(x)ψ(x),

and, Lorentz non-covariant ones:

O6µν(x) ≡ δµν

∑ρ

F aµρ(x)F a

µρ(x), O7µν(x) ≡ δµνψ(x)γµ←→D µψ(x)

Seven non-universal coefficients Zi must be determined by latticeperturbation theory or by a non-perturbative method

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 5 / 1

Page 14: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Yang–Mills gradient flow (Lüscher, (2009–))

Yang–Mills gradient flow is an evolution of the gauge field Aµ(x) along afictitious time t ∈ [0,∞), according to

∂tBµ(t , x) = −g20

δSYM

δBµ(t , x)= DνGνµ(t , x) = ∆Bµ(t , x) + · · · ,

where

Gµν(t , x) = ∂µBν(t , x)−∂νBµ(t , x)+[Bµ(t , x),Bν(t , x)], Dµ = ∂µ+[Bµ, ·]

and its initial value is the conventional gauge field

Bµ(t = 0, x) = Aµ(x).

RHS is the Yang–Mills equation of motion, the gradient in function spaceif SYM is regarded as a potential height. So the name of the gradient flow.

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 6 / 1

Page 15: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Yang–Mills gradient flow (Lüscher, (2009–))

Yang–Mills gradient flow is an evolution of the gauge field Aµ(x) along afictitious time t ∈ [0,∞), according to

∂tBµ(t , x) = −g20

δSYM

δBµ(t , x)= DνGνµ(t , x) = ∆Bµ(t , x) + · · · ,

where

Gµν(t , x) = ∂µBν(t , x)−∂νBµ(t , x)+[Bµ(t , x),Bν(t , x)], Dµ = ∂µ+[Bµ, ·]

and its initial value is the conventional gauge field

Bµ(t = 0, x) = Aµ(x).

RHS is the Yang–Mills equation of motion, the gradient in function spaceif SYM is regarded as a potential height. So the name of the gradient flow.

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 6 / 1

Page 16: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Yang–Mills gradient flow (Lüscher, (2009–))

This is a sort of diffusion equation in which the diffusion length is

x ∼√

8t .

The flow makes the field configuration smooth; it generates thesmearing/cooling for a lattice gauge field.But, why this can be relevant to lattice EMT???The key is the UV finiteness of the gradient flow

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 7 / 1

Page 17: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Yang–Mills gradient flow (Lüscher, (2009–))

This is a sort of diffusion equation in which the diffusion length is

x ∼√

8t .

The flow makes the field configuration smooth; it generates thesmearing/cooling for a lattice gauge field.

But, why this can be relevant to lattice EMT???The key is the UV finiteness of the gradient flow

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 7 / 1

Page 18: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Yang–Mills gradient flow (Lüscher, (2009–))

This is a sort of diffusion equation in which the diffusion length is

x ∼√

8t .

The flow makes the field configuration smooth; it generates thesmearing/cooling for a lattice gauge field.But, why this can be relevant to lattice EMT???

The key is the UV finiteness of the gradient flow

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 7 / 1

Page 19: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Yang–Mills gradient flow (Lüscher, (2009–))

This is a sort of diffusion equation in which the diffusion length is

x ∼√

8t .

The flow makes the field configuration smooth; it generates thesmearing/cooling for a lattice gauge field.But, why this can be relevant to lattice EMT???The key is the UV finiteness of the gradient flow

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 7 / 1

Page 20: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Perturbative expansion of the gradient flow

Yang–Mills gradient flow

∂tBµ(t , x) = DνGνµ(t , x) + α0Dµ∂νBν(t , x), Bµ(t = 0, x) = Aµ(x),

where the term with α0 is introduced to suppress the gauge modes.

This equation can be formally solved as

Bµ(t , x) =

�dDy

[Kt(x − y)µνAν(y) +

� t

0ds Kt−s(x − y)µνRν(s, y)

],

by using the heat kernel,

Kt(x)µν =

�p

eipx

p2

[(δµνp2 − pµpν)e−tp2

+ pµpνe−α0tp2].

R is the non-linear terms

Rµ = 2[Bν , ∂νBµ]− [Bν , ∂µBν ] + (α0 − 1)[Bµ, ∂νBν ] + [Bν , [Bν ,Bµ]].

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 8 / 1

Page 21: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Perturbative expansion of the gradient flow

Yang–Mills gradient flow

∂tBµ(t , x) = DνGνµ(t , x) + α0Dµ∂νBν(t , x), Bµ(t = 0, x) = Aµ(x),

where the term with α0 is introduced to suppress the gauge modes.This equation can be formally solved as

Bµ(t , x) =

�dDy

[Kt(x − y)µνAν(y) +

� t

0ds Kt−s(x − y)µνRν(s, y)

],

by using the heat kernel,

Kt(x)µν =

�p

eipx

p2

[(δµνp2 − pµpν)e−tp2

+ pµpνe−α0tp2].

R is the non-linear terms

Rµ = 2[Bν , ∂νBµ]− [Bν , ∂µBν ] + (α0 − 1)[Bµ, ∂νBν ] + [Bν , [Bν ,Bµ]].

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 8 / 1

Page 22: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Perturbative expansion of the gradient flow

Yang–Mills gradient flow

∂tBµ(t , x) = DνGνµ(t , x) + α0Dµ∂νBν(t , x), Bµ(t = 0, x) = Aµ(x),

where the term with α0 is introduced to suppress the gauge modes.This equation can be formally solved as

Bµ(t , x) =

�dDy

[Kt(x − y)µνAν(y) +

� t

0ds Kt−s(x − y)µνRν(s, y)

],

by using the heat kernel,

Kt(x)µν =

�p

eipx

p2

[(δµνp2 − pµpν)e−tp2

+ pµpνe−α0tp2].

R is the non-linear terms

Rµ = 2[Bν , ∂νBµ]− [Bν , ∂µBν ] + (α0 − 1)[Bµ, ∂νBν ] + [Bν , [Bν ,Bµ]].

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 8 / 1

Page 23: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Perturbative expansion of the gradient flow

The solution

Bµ(t , x) =

�dDy

[Kt(x − y)µνAν(y) +

� t

0ds Kt−s(x − y)µνRν(s, y)

],

is represented pictorially as (double lines: K , crosses: Aµ, white circles:R),

+ + + + . . .

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 9 / 1

Page 24: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Backup: Justification of the “gauge fixing term”

Under the infinitesimal gauge transformation

Bµ(t , x)→ Bµ(t , x) + Dµω(t , x),

the flow equation

∂tBµ(t , x) = DνGνµ(t , x) + α0Dµ∂νBν(t , x),

changes to

∂tBµ(t , x) = DνGνµ(t , x) + α0Dµ∂νBν(t , x)− Dµ(∂t − α0Dν∂ν)ω(t , x).

Choosing ω(t , x) as

(∂t − α0Dν∂ν)ω(t , x) = −δα0∂νBν(t , x), ω(t = 0, x) = 0,

α0 can be changed accordingly

α0 → α0 + δα0.

Thus, a gauge invariant quantity (in usual 4D sense) is independentof α0, as far as it does not contain the flow time derivative ∂t .

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 10 / 1

Page 25: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Backup: Justification of the “gauge fixing term”

Under the infinitesimal gauge transformation

Bµ(t , x)→ Bµ(t , x) + Dµω(t , x),

the flow equation

∂tBµ(t , x) = DνGνµ(t , x) + α0Dµ∂νBν(t , x),

changes to

∂tBµ(t , x) = DνGνµ(t , x) + α0Dµ∂νBν(t , x)− Dµ(∂t − α0Dν∂ν)ω(t , x).

Choosing ω(t , x) as

(∂t − α0Dν∂ν)ω(t , x) = −δα0∂νBν(t , x), ω(t = 0, x) = 0,

α0 can be changed accordingly

α0 → α0 + δα0.

Thus, a gauge invariant quantity (in usual 4D sense) is independentof α0, as far as it does not contain the flow time derivative ∂t .

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 10 / 1

Page 26: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Backup: Justification of the “gauge fixing term”

Under the infinitesimal gauge transformation

Bµ(t , x)→ Bµ(t , x) + Dµω(t , x),

the flow equation

∂tBµ(t , x) = DνGνµ(t , x) + α0Dµ∂νBν(t , x),

changes to

∂tBµ(t , x) = DνGνµ(t , x) + α0Dµ∂νBν(t , x)− Dµ(∂t − α0Dν∂ν)ω(t , x).

Choosing ω(t , x) as

(∂t − α0Dν∂ν)ω(t , x) = −δα0∂νBν(t , x), ω(t = 0, x) = 0,

α0 can be changed accordingly

α0 → α0 + δα0.

Thus, a gauge invariant quantity (in usual 4D sense) is independentof α0, as far as it does not contain the flow time derivative ∂t .

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 10 / 1

Page 27: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Quantum correlation functions

Quantum correlation function of the flowed gauge field is obtained by thefunctional integral over the initial value Aµ(x):

〈Bµ1(t1, x1) · · ·Bµn(tn, xn)〉

=1Z

�DAµ Bµ1(t1, x1) · · ·Bµn(tn, xn) e−SYM−Sgf−Scc .

For example, the contraction of two Aµ’s

produces the free propagator of the flowed field⟨Ba

µ(t , x)Bbν(s, y)

⟩0

= δabg20

�p

eip(x−y)

(p2)2

[(δµνp2 − pµpν)e−(t+s)p2

+1λ0

pµpνe−α0(t+s)p2].

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 11 / 1

Page 28: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Quantum correlation functions

Quantum correlation function of the flowed gauge field is obtained by thefunctional integral over the initial value Aµ(x):

〈Bµ1(t1, x1) · · ·Bµn(tn, xn)〉

=1Z

�DAµ Bµ1(t1, x1) · · ·Bµn(tn, xn) e−SYM−Sgf−Scc .

For example, the contraction of two Aµ’s

produces the free propagator of the flowed field⟨Ba

µ(t , x)Bbν(s, y)

⟩0

= δabg20

�p

eip(x−y)

(p2)2

[(δµνp2 − pµpν)e−(t+s)p2

+1λ0

pµpνe−α0(t+s)p2].

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 11 / 1

Page 29: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Quantum correlation functions

Similarly, for (black circle: Yang–Mills vertex)

we have the loop flow-line Feynman diagram

Recall that the flowed gauge field is represented as

+ + + + . . .

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 12 / 1

Page 30: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Quantum correlation functions

Similarly, for (black circle: Yang–Mills vertex)

we have the loop flow-line Feynman diagram

Recall that the flowed gauge field is represented as

+ + + + . . .

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 12 / 1

Page 31: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Renormalizability of the gradient flow I(Lüscher–Weisz (2011))

Correlation function of the flowed gauge field

〈Bµ1(t1, x1) · · ·Bµn(tn, xn)〉 , t1 > 0, . . . , tn > 0,

when expressed in terms of renormalized parameters, is UV finite withoutthe wave function renormalization.

Two-point function in the tree level (in the Feynman gauge λ0 = α0 = 1)⟨Ba

µ(t , x)Bbν(s, y)

⟩0

= δabg20δµν

�p

eip(x−y) e−(t+s)p2

p2 .

One-loop corrections (consisting only from Yang–Mills vertices)

where the last counter term arises from the parameter renormalization

g20 = µ2εg2Z , λ0 = λZ−1

3 .

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 13 / 1

Page 32: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Renormalizability of the gradient flow I(Lüscher–Weisz (2011))

Correlation function of the flowed gauge field

〈Bµ1(t1, x1) · · ·Bµn(tn, xn)〉 , t1 > 0, . . . , tn > 0,

when expressed in terms of renormalized parameters, is UV finite withoutthe wave function renormalization.Two-point function in the tree level (in the Feynman gauge λ0 = α0 = 1)⟨

Baµ(t , x)Bb

ν(s, y)⟩

0= δabg2

0δµν

�p

eip(x−y) e−(t+s)p2

p2 .

One-loop corrections (consisting only from Yang–Mills vertices)

where the last counter term arises from the parameter renormalization

g20 = µ2εg2Z , λ0 = λZ−1

3 .

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 13 / 1

Page 33: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Renormalizability of the gradient flow I(Lüscher–Weisz (2011))

Correlation function of the flowed gauge field

〈Bµ1(t1, x1) · · ·Bµn(tn, xn)〉 , t1 > 0, . . . , tn > 0,

when expressed in terms of renormalized parameters, is UV finite withoutthe wave function renormalization.Two-point function in the tree level (in the Feynman gauge λ0 = α0 = 1)⟨

Baµ(t , x)Bb

ν(s, y)⟩

0= δabg2

0δµν

�p

eip(x−y) e−(t+s)p2

p2 .

One-loop corrections (consisting only from Yang–Mills vertices)

where the last counter term arises from the parameter renormalization

g20 = µ2εg2Z , λ0 = λZ−1

3 .

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 13 / 1

Page 34: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Renormalizability of the gradient flow I

Usually, further wave function renormalization (Aaµ = Z 1/2Z 1/2

3 (AR)aµ) is

required for the two-point function to become UV finite.

In the present flowed system, we also have the white circles (flow vertex)

It turns out that these provide the same effect as the wave functionrenormalization!All order proof of this fact, using a local D + 1-dimensional field theory

t

No bulk (t > 0) counterterm: because of the gaussian dampingfactor ∼ e−tp2

in the propagator.No boundary (t = 0) counterterm besides Yang–Mills ones: because of aBRS symmetry.

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 14 / 1

Page 35: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Renormalizability of the gradient flow I

Usually, further wave function renormalization (Aaµ = Z 1/2Z 1/2

3 (AR)aµ) is

required for the two-point function to become UV finite.In the present flowed system, we also have the white circles (flow vertex)

It turns out that these provide the same effect as the wave functionrenormalization!

All order proof of this fact, using a local D + 1-dimensional field theoryt

No bulk (t > 0) counterterm: because of the gaussian dampingfactor ∼ e−tp2

in the propagator.No boundary (t = 0) counterterm besides Yang–Mills ones: because of aBRS symmetry.

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 14 / 1

Page 36: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Renormalizability of the gradient flow I

Usually, further wave function renormalization (Aaµ = Z 1/2Z 1/2

3 (AR)aµ) is

required for the two-point function to become UV finite.In the present flowed system, we also have the white circles (flow vertex)

It turns out that these provide the same effect as the wave functionrenormalization!All order proof of this fact, using a local D + 1-dimensional field theory

t

No bulk (t > 0) counterterm: because of the gaussian dampingfactor ∼ e−tp2

in the propagator.No boundary (t = 0) counterterm besides Yang–Mills ones: because of aBRS symmetry.

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 14 / 1

Page 37: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Renormalizability of the gradient flow I

Usually, further wave function renormalization (Aaµ = Z 1/2Z 1/2

3 (AR)aµ) is

required for the two-point function to become UV finite.In the present flowed system, we also have the white circles (flow vertex)

It turns out that these provide the same effect as the wave functionrenormalization!All order proof of this fact, using a local D + 1-dimensional field theory

t

No bulk (t > 0) counterterm: because of the gaussian dampingfactor ∼ e−tp2

in the propagator.

No boundary (t = 0) counterterm besides Yang–Mills ones: because of aBRS symmetry.

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 14 / 1

Page 38: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Renormalizability of the gradient flow I

Usually, further wave function renormalization (Aaµ = Z 1/2Z 1/2

3 (AR)aµ) is

required for the two-point function to become UV finite.In the present flowed system, we also have the white circles (flow vertex)

It turns out that these provide the same effect as the wave functionrenormalization!All order proof of this fact, using a local D + 1-dimensional field theory

t

No bulk (t > 0) counterterm: because of the gaussian dampingfactor ∼ e−tp2

in the propagator.No boundary (t = 0) counterterm besides Yang–Mills ones: because of aBRS symmetry.

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 14 / 1

Page 39: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Renormalizability of the gradient flow II

Correlation function of the flow gauge field

〈Bµ1(t1, x1)Bµ2(t2, x2) · · ·Bµn(tn, xn)〉 , t1 > 0, . . . , tn > 0,

remains finite even for the equal-point product

t1 → t2, x1 → x2.

The new loop always contains the gaussian damping factor ∼ e−tp2which

makes integral finite; no new UV divergences arise.

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 15 / 1

Page 40: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Renormalizability of the gradient flow II

Correlation function of the flow gauge field

〈Bµ1(t1, x1)Bµ2(t2, x2) · · ·Bµn(tn, xn)〉 , t1 > 0, . . . , tn > 0,

remains finite even for the equal-point product

t1 → t2, x1 → x2.

The new loop always contains the gaussian damping factor ∼ e−tp2which

makes integral finite; no new UV divergences arise.

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 15 / 1

Page 41: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Renormalizability of the gradient flow II

Any composite operators of the flowed gauge field Bµ(t , x) areautomatically renormalized UV finite quantities, although the flowed fieldis a certain combination of the bare gauge field.

Such UV finite quantities must be independent of the regularization.⇒ Construction of the energy–momentum tensor in lattice gauge theory.

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 16 / 1

Page 42: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Renormalizability of the gradient flow II

Any composite operators of the flowed gauge field Bµ(t , x) areautomatically renormalized UV finite quantities, although the flowed fieldis a certain combination of the bare gauge field.Such UV finite quantities must be independent of the regularization.

⇒ Construction of the energy–momentum tensor in lattice gauge theory.

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 16 / 1

Page 43: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Renormalizability of the gradient flow II

Any composite operators of the flowed gauge field Bµ(t , x) areautomatically renormalized UV finite quantities, although the flowed fieldis a certain combination of the bare gauge field.Such UV finite quantities must be independent of the regularization.⇒ Construction of the energy–momentum tensor in lattice gauge theory.

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 16 / 1

Page 44: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Our strategy for lattice EMT (arXiv:1304.0533)

We bridge lattice regularization and dimensional regularization whichpreserves the translational invariance, by using a flowed compositeoperator as an intermediate tool.

Schematically,

.

.

regularization independent

.

flowed composite operator

.

dimensional

.

lattice

.

correct EMT

.

low energy correlation functions

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 17 / 1

Page 45: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Our strategy for lattice EMT (arXiv:1304.0533)

We bridge lattice regularization and dimensional regularization whichpreserves the translational invariance, by using a flowed compositeoperator as an intermediate tool.Schematically,

.

.

regularization independent

.

flowed composite operator

.

dimensional

.

lattice

.

correct EMT

.

low energy correlation functions

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 17 / 1

Page 46: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

EMT in the dimensional regularization

The action

S = − 12g2

0

�dDx tr [Fµν(x)Fµν(x)] +

�dDx ψ(x)( /D + m0)ψ(x).

Under the localized translation (plus the gauge transformation),

δAµ(x) = ξν(x)Fνµ(x),

δψ(x) = ξ(x)µDµψ(x), δψ(x) = ξ(x)µψ(x)←−D µ,

we haveδS = −

�dDx ξν(x)∂µ [Tµν(x) + Aµν(x)] ,

whereAµν(x) =

14ψ(x)

(γµ←→D ν − γν

←→D µ

)ψ(x)

is the generator of the local Lorenz transformation and is neglected here,and. . .

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 18 / 1

Page 47: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

EMT in the dimensional regularization

The action

S = − 12g2

0

�dDx tr [Fµν(x)Fµν(x)] +

�dDx ψ(x)( /D + m0)ψ(x).

Under the localized translation (plus the gauge transformation),

δAµ(x) = ξν(x)Fνµ(x),

δψ(x) = ξ(x)µDµψ(x), δψ(x) = ξ(x)µψ(x)←−D µ,

we haveδS = −

�dDx ξν(x)∂µ [Tµν(x) + Aµν(x)] ,

whereAµν(x) =

14ψ(x)

(γµ←→D ν − γν

←→D µ

)ψ(x)

is the generator of the local Lorenz transformation and is neglected here,and. . .

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 18 / 1

Page 48: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

EMT in dimensional regularization

. . . and Tµν(x) is the symmetric EMT:

Tµν(x)

=1g2

0

{O1µν(x)− 1

4O2µν(x)

}+

14O3µν(x)− 1

2O4µν(x)−O5µν(x),

where

O1µν(x) ≡∑

ρ

F aµρ(x)F a

νρ(x), O2µν(x) ≡ δµν

∑ρ,σ

F aρσ(x)F a

ρσ(x),

O3µν(x) ≡ ψ(x)(γµ←→D ν + γν

←→D µ

)ψ(x), O4µν(x) ≡ δµνψ(x)

←→/D ψ(x),

O5µν(x) ≡ δµνm0ψ(x)ψ(x).

We define the renormalized EMT by subtracting its (possibly divergent)vacuum expectation value:

{Tµν}R (x) ≡ Tµν(x)− 〈Tµν(x)〉 .

Under the dimensional regularization, this is the correct EMT.

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 19 / 1

Page 49: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

EMT in dimensional regularization

. . . and Tµν(x) is the symmetric EMT:

Tµν(x)

=1g2

0

{O1µν(x)− 1

4O2µν(x)

}+

14O3µν(x)− 1

2O4µν(x)−O5µν(x),

where

O1µν(x) ≡∑

ρ

F aµρ(x)F a

νρ(x), O2µν(x) ≡ δµν

∑ρ,σ

F aρσ(x)F a

ρσ(x),

O3µν(x) ≡ ψ(x)(γµ←→D ν + γν

←→D µ

)ψ(x), O4µν(x) ≡ δµνψ(x)

←→/D ψ(x),

O5µν(x) ≡ δµνm0ψ(x)ψ(x).

We define the renormalized EMT by subtracting its (possibly divergent)vacuum expectation value:

{Tµν}R (x) ≡ Tµν(x)− 〈Tµν(x)〉 .

Under the dimensional regularization, this is the correct EMT.

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 19 / 1

Page 50: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

EMT in dimensional regularization

. . . and Tµν(x) is the symmetric EMT:

Tµν(x)

=1g2

0

{O1µν(x)− 1

4O2µν(x)

}+

14O3µν(x)− 1

2O4µν(x)−O5µν(x),

where

O1µν(x) ≡∑

ρ

F aµρ(x)F a

νρ(x), O2µν(x) ≡ δµν

∑ρ,σ

F aρσ(x)F a

ρσ(x),

O3µν(x) ≡ ψ(x)(γµ←→D ν + γν

←→D µ

)ψ(x), O4µν(x) ≡ δµνψ(x)

←→/D ψ(x),

O5µν(x) ≡ δµνm0ψ(x)ψ(x).

We define the renormalized EMT by subtracting its (possibly divergent)vacuum expectation value:

{Tµν}R (x) ≡ Tµν(x)− 〈Tµν(x)〉 .

Under the dimensional regularization, this is the correct EMT.

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 19 / 1

Page 51: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Small flow-time expansion

We thus want to find a composite operator of the flowed fields whichreduces to the EMT under the dimensional regularization.

But how?In general, the relation between composite operators in t > 0 (heaven)and in 4D (the earth) is not obvious at all. . .The relation becomes tractable, in the limit in which the flow timebecomes small t → 0.Small flow-time expansion (Lüscher–Weisz (2011)):

.

.

Oiµν(t , x)

.

x

.

√8t

Oiµν(t , x) =⟨Oiµν(t , x)

⟩1+

∑j

ζij(t) [Ojµν(x)− VEV] + O(t).

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 20 / 1

Page 52: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Small flow-time expansion

We thus want to find a composite operator of the flowed fields whichreduces to the EMT under the dimensional regularization.But how?

In general, the relation between composite operators in t > 0 (heaven)and in 4D (the earth) is not obvious at all. . .The relation becomes tractable, in the limit in which the flow timebecomes small t → 0.Small flow-time expansion (Lüscher–Weisz (2011)):

.

.

Oiµν(t , x)

.

x

.

√8t

Oiµν(t , x) =⟨Oiµν(t , x)

⟩1+

∑j

ζij(t) [Ojµν(x)− VEV] + O(t).

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 20 / 1

Page 53: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Small flow-time expansion

We thus want to find a composite operator of the flowed fields whichreduces to the EMT under the dimensional regularization.But how?In general, the relation between composite operators in t > 0 (heaven)and in 4D (the earth) is not obvious at all. . .

The relation becomes tractable, in the limit in which the flow timebecomes small t → 0.Small flow-time expansion (Lüscher–Weisz (2011)):

.

.

Oiµν(t , x)

.

x

.

√8t

Oiµν(t , x) =⟨Oiµν(t , x)

⟩1+

∑j

ζij(t) [Ojµν(x)− VEV] + O(t).

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 20 / 1

Page 54: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Small flow-time expansion

We thus want to find a composite operator of the flowed fields whichreduces to the EMT under the dimensional regularization.But how?In general, the relation between composite operators in t > 0 (heaven)and in 4D (the earth) is not obvious at all. . .The relation becomes tractable, in the limit in which the flow timebecomes small t → 0.

Small flow-time expansion (Lüscher–Weisz (2011)):

.

.

Oiµν(t , x)

.

x

.

√8t

Oiµν(t , x) =⟨Oiµν(t , x)

⟩1+

∑j

ζij(t) [Ojµν(x)− VEV] + O(t).

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 20 / 1

Page 55: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Small flow-time expansion

We thus want to find a composite operator of the flowed fields whichreduces to the EMT under the dimensional regularization.But how?In general, the relation between composite operators in t > 0 (heaven)and in 4D (the earth) is not obvious at all. . .The relation becomes tractable, in the limit in which the flow timebecomes small t → 0.Small flow-time expansion (Lüscher–Weisz (2011)):

.

.

Oiµν(t , x)

.

x

.

√8t

Oiµν(t , x) =⟨Oiµν(t , x)

⟩1+

∑j

ζij(t) [Ojµν(x)− VEV] + O(t).

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 20 / 1

Page 56: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Small flow-time expansion

Small flow-time expansion:

.

.

Oiµν(t , x)

.

x

.

√8t

Oiµν(t , x) =⟨Oiµν(t , x)

⟩1+

∑j

ζij(t) [Ojµν(x)− VEV] + O(t).

Inverting this relation,

Oiµν(x)− VEV = limt→0

∑j

(ζ−1)

ij (t)[Ojµν(t , x)−

⟨Ojµν(t , x)

⟩1] .

So, if we know the t → 0 behavior of the coefficients ζij(t), the 4Doperator in the LHS can be extracted as the t → 0 limit.

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 21 / 1

Page 57: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Small flow-time expansion

Small flow-time expansion:

.

.

Oiµν(t , x)

.

x

.

√8t

Oiµν(t , x) =⟨Oiµν(t , x)

⟩1+

∑j

ζij(t) [Ojµν(x)− VEV] + O(t).

Inverting this relation,

Oiµν(x)− VEV = limt→0

∑j

(ζ−1)

ij (t)[Ojµν(t , x)−

⟨Ojµν(t , x)

⟩1] .

So, if we know the t → 0 behavior of the coefficients ζij(t), the 4Doperator in the LHS can be extracted as the t → 0 limit.

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 21 / 1

Page 58: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Small flow-time expansion

Small flow-time expansion:

.

.

Oiµν(t , x)

.

x

.

√8t

Oiµν(t , x) =⟨Oiµν(t , x)

⟩1+

∑j

ζij(t) [Ojµν(x)− VEV] + O(t).

Inverting this relation,

Oiµν(x)− VEV = limt→0

∑j

(ζ−1)

ij (t)[Ojµν(t , x)−

⟨Ojµν(t , x)

⟩1] .

So, if we know the t → 0 behavior of the coefficients ζij(t), the 4Doperator in the LHS can be extracted as the t → 0 limit.

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 21 / 1

Page 59: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

A renormalization group argument

We are interested in the t → 0 behavior of the coefficients ζij(t) in

Oiµν(t , x) =⟨Oiµν(t , x)

⟩1+

∑j

ζij(t) [Ojµν(x)− 〈Ojµν(x)〉1] + O(t).

If all the composite operators in this relation are made out from barequantities, (

µ∂

∂µ

)0ζij(t) = 0,

and ζij(t) are indep. of the renormalization scale µ, when expressed interms of running parameters. We may take, for example, µ = 1/

√8t , and

ζij(t) [g,m;µ] = ζij(t)[g(1/

√8t), m(1/

√8t); 1/

√8t

].

For t → 0, g(1/√

8t)→ 0 because of the asymptotic freedom; use ofperturbation theory is thus justified!

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 22 / 1

Page 60: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

A renormalization group argument

We are interested in the t → 0 behavior of the coefficients ζij(t) in

Oiµν(t , x) =⟨Oiµν(t , x)

⟩1+

∑j

ζij(t) [Ojµν(x)− 〈Ojµν(x)〉1] + O(t).

If all the composite operators in this relation are made out from barequantities, (

µ∂

∂µ

)0ζij(t) = 0,

and ζij(t) are indep. of the renormalization scale µ, when expressed interms of running parameters. We may take, for example, µ = 1/

√8t , and

ζij(t) [g,m;µ] = ζij(t)[g(1/

√8t), m(1/

√8t); 1/

√8t

].

For t → 0, g(1/√

8t)→ 0 because of the asymptotic freedom; use ofperturbation theory is thus justified!

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 22 / 1

Page 61: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

A renormalization group argument

We are interested in the t → 0 behavior of the coefficients ζij(t) in

Oiµν(t , x) =⟨Oiµν(t , x)

⟩1+

∑j

ζij(t) [Ojµν(x)− 〈Ojµν(x)〉1] + O(t).

If all the composite operators in this relation are made out from barequantities, (

µ∂

∂µ

)0ζij(t) = 0,

and ζij(t) are indep. of the renormalization scale µ, when expressed interms of running parameters. We may take, for example, µ = 1/

√8t , and

ζij(t) [g,m;µ] = ζij(t)[g(1/

√8t), m(1/

√8t); 1/

√8t

].

For t → 0, g(1/√

8t)→ 0 because of the asymptotic freedom; use ofperturbation theory is thus justified!

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 22 / 1

Page 62: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Flow of fermion fields

A possible choice (Lüscher (2013))

∂tχ(t , x) = [∆− α0∂µBµ(t , x)]χ(t , x), χ(t = 0, x) = ψ(x),

∂t χ(t , x) = χ(t , x)[←−∆ + α0∂µBµ(t , x)

], χ(t = 0, x) = ψ(x),

where

∆ = DµDµ, Dµ = ∂µ + Bµ,←−∆ =

←−D µ←−D µ,

←−D µ ≡

←−∂ µ − Bµ.

It turns out that the flowed fermion field requires the wave functionrenormalization:

χR(t , x) = Z 1/2χ χ(t , x), χR(t , x) = Z 1/2

χ χ(t , x),

Zχ = 1 +g2

(4π)2 C2(R)31ε

+ O(g4).

Still, any composite operators of χR(t , x) are UV finite.

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 23 / 1

Page 63: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Flow of fermion fields

A possible choice (Lüscher (2013))

∂tχ(t , x) = [∆− α0∂µBµ(t , x)]χ(t , x), χ(t = 0, x) = ψ(x),

∂t χ(t , x) = χ(t , x)[←−∆ + α0∂µBµ(t , x)

], χ(t = 0, x) = ψ(x),

where

∆ = DµDµ, Dµ = ∂µ + Bµ,←−∆ =

←−D µ←−D µ,

←−D µ ≡

←−∂ µ − Bµ.

It turns out that the flowed fermion field requires the wave functionrenormalization:

χR(t , x) = Z 1/2χ χ(t , x), χR(t , x) = Z 1/2

χ χ(t , x),

Zχ = 1 +g2

(4π)2 C2(R)31ε

+ O(g4).

Still, any composite operators of χR(t , x) are UV finite.

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 23 / 1

Page 64: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Flow of fermion fields

A possible choice (Lüscher (2013))

∂tχ(t , x) = [∆− α0∂µBµ(t , x)]χ(t , x), χ(t = 0, x) = ψ(x),

∂t χ(t , x) = χ(t , x)[←−∆ + α0∂µBµ(t , x)

], χ(t = 0, x) = ψ(x),

where

∆ = DµDµ, Dµ = ∂µ + Bµ,←−∆ =

←−D µ←−D µ,

←−D µ ≡

←−∂ µ − Bµ.

It turns out that the flowed fermion field requires the wave functionrenormalization:

χR(t , x) = Z 1/2χ χ(t , x), χR(t , x) = Z 1/2

χ χ(t , x),

Zχ = 1 +g2

(4π)2 C2(R)31ε

+ O(g4).

Still, any composite operators of χR(t , x) are UV finite.

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 23 / 1

Page 65: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Ringed fermion fields

Recall that the flowed fermion field requires the wave functionrenormalization:

χR(t , x) = Z 1/2χ χ(t , x), χR(t , x) = Z 1/2

χ χ(t , x),

although composite operators of χR(t , x) are UV finite.

To avoid the complication associated with this, we introduce

χ(t , x) = C χ(t , x)√t2

⟨χ(t , x)

←→/D χ(t , x)

⟩ = χR(t , x) + O(g2),

where

C ≡

√−2 dim(R)

(4π)2 ,

and similarly for χ(t , x).Since Zχ is cancelled out in χ(t , x), any composite operators of χ(t , x)and ˚χ(t , x) are UV finite.

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 24 / 1

Page 66: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Ringed fermion fields

Recall that the flowed fermion field requires the wave functionrenormalization:

χR(t , x) = Z 1/2χ χ(t , x), χR(t , x) = Z 1/2

χ χ(t , x),

although composite operators of χR(t , x) are UV finite.To avoid the complication associated with this, we introduce

χ(t , x) = C χ(t , x)√t2

⟨χ(t , x)

←→/D χ(t , x)

⟩ = χR(t , x) + O(g2),

where

C ≡

√−2 dim(R)

(4π)2 ,

and similarly for χ(t , x).

Since Zχ is cancelled out in χ(t , x), any composite operators of χ(t , x)and ˚χ(t , x) are UV finite.

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 24 / 1

Page 67: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Ringed fermion fields

Recall that the flowed fermion field requires the wave functionrenormalization:

χR(t , x) = Z 1/2χ χ(t , x), χR(t , x) = Z 1/2

χ χ(t , x),

although composite operators of χR(t , x) are UV finite.To avoid the complication associated with this, we introduce

χ(t , x) = C χ(t , x)√t2

⟨χ(t , x)

←→/D χ(t , x)

⟩ = χR(t , x) + O(g2),

where

C ≡

√−2 dim(R)

(4π)2 ,

and similarly for χ(t , x).Since Zχ is cancelled out in χ(t , x), any composite operators of χ(t , x)and ˚χ(t , x) are UV finite.

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 24 / 1

Page 68: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

EMT from the gradient flow

We take following composite operators of flowed fields:

O1µν(t , x) ≡ Gaµρ(t , x)Ga

νρ(t , x),

O2µν(t , x) ≡ δµνGaρσ(t , x)Ga

ρσ(t , x),

O3µν(t , x) ≡ ˚χ(t , x)(γµ←→D ν + γν

←→D µ

)χ(t , x),

O4µν(t , x) ≡ δµν ˚χ(t , x)←→/D χ(t , x),

O5µν(t , x) ≡ δµνm˚χ(t , x)χ(t , x),

and then set the small flow-time expansion:

Oiµν(t , x) =⟨Oiµν(t , x)

⟩1+

∑j

ζij(t) [Ojµν(x)− 〈Ojµν(x)〉1] + O(t).

We compute ζij(t) to the one-loop order and substitute

Oiµν(x)−〈Oiµν(x)〉1 = limt→0

∑j

(ζ−1)

ij (t)[Ojµν(t , x)−

⟨Ojµν(t , x)

⟩1] ,

in the expression of the EMT in the dimensional regularization

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 25 / 1

Page 69: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

EMT from the gradient flow

We take following composite operators of flowed fields:

O1µν(t , x) ≡ Gaµρ(t , x)Ga

νρ(t , x),

O2µν(t , x) ≡ δµνGaρσ(t , x)Ga

ρσ(t , x),

O3µν(t , x) ≡ ˚χ(t , x)(γµ←→D ν + γν

←→D µ

)χ(t , x),

O4µν(t , x) ≡ δµν ˚χ(t , x)←→/D χ(t , x),

O5µν(t , x) ≡ δµνm˚χ(t , x)χ(t , x),

and then set the small flow-time expansion:

Oiµν(t , x) =⟨Oiµν(t , x)

⟩1+

∑j

ζij(t) [Ojµν(x)− 〈Ojµν(x)〉1] + O(t).

We compute ζij(t) to the one-loop order and substitute

Oiµν(x)−〈Oiµν(x)〉1 = limt→0

∑j

(ζ−1)

ij (t)[Ojµν(t , x)−

⟨Ojµν(t , x)

⟩1] ,

in the expression of the EMT in the dimensional regularization鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 25 / 1

Page 70: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Computation of expansion coefficients ζij(t)

To the one-loop order, we have to evaluate following flow-line Feynmandiagrams:

Even to write down correct set of diagrams is tedious. . .. . . and it is very easy to make mistakes in the loop calculation, as Iactually did!

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 26 / 1

Page 71: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Computation of expansion coefficients ζij(t)

To the one-loop order, we have to evaluate following flow-line Feynmandiagrams:

Even to write down correct set of diagrams is tedious. . .

. . . and it is very easy to make mistakes in the loop calculation, as Iactually did!

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 26 / 1

Page 72: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Computation of expansion coefficients ζij(t)

To the one-loop order, we have to evaluate following flow-line Feynmandiagrams:

Even to write down correct set of diagrams is tedious. . .. . . and it is very easy to make mistakes in the loop calculation, as Iactually did!

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 26 / 1

Page 73: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Universal formula for EMT

For the system containing fermions (with Makino, arXiv:1403.4772),

{Tµν}R (x)

= limt→0

{c1(t)Ga

µρ(t , x)Gaνρ(t , x) +

[c2(t)−

14

c1(t)]δµνGa

ρσ(t , x)Gaρσ(t , x)

+ c3(t)˚χ(t , x)(γµ←→D ν + γν

←→D µ

)χ(t , x)

+ [c4(t)− 2c3(t)] δµν ˚χ(t , x)←→/D χ(t , x) + c′

5(t)˚χ(t , x)χ(t , x)− VEV},

where (for the MS scheme; for MS scheme, set ln π → γE − 2 ln 2)

c1(t) =1

g(1/√

8t)2− b0 ln π −

1

(4π)2

"

7

3C2(G) −

3

2T (R)Nf

#

,

c2(t) =1

8

1

(4π)2

"

11

3C2(G) +

11

3T (R)Nf

#

,

c3(t) =1

4

8

<

:

1 +g(1/

√8t)2

(4π)2C2(R)

"

3

2+ ln(432)

#

9

=

;

,

c4(t) =1

8d0 g(1/

√8t)2,

c′5(t) = −m(1/√

8t)

8

<

:

1 +g(1/

√8t)2

(4π)2C2(R)

"

3 ln π +7

2+ ln(432)

#

9

=

;

.

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 27 / 1

Page 74: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Universal formula for EMT

and

b0 =1

(4π)2

[113

C2(G)− 43

T (R)Nf

], d0 =

1(4π)2 6C2(R).

Correlation functions of the RHS of the formula can be computednon-perturbatively by using lattice regularization.The coefficients ci(t) are universal, i.e., indep. of the lattice transcription.“Universality” holds however only when one removes the regulator.Thus, we have to first take the continuum limit a→ 0 and then take thesmall flow time limit t → 0.Practically, we cannot simply take a→ 0 and may take t as small aspossible in the fiducial window,

a�√

8t � 1Λ.

Thus the usefulness with presently-accessible lattice parameters is notobvious a priori. . .

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 28 / 1

Page 75: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Universal formula for EMT

and

b0 =1

(4π)2

[113

C2(G)− 43

T (R)Nf

], d0 =

1(4π)2 6C2(R).

Correlation functions of the RHS of the formula can be computednon-perturbatively by using lattice regularization.

The coefficients ci(t) are universal, i.e., indep. of the lattice transcription.“Universality” holds however only when one removes the regulator.Thus, we have to first take the continuum limit a→ 0 and then take thesmall flow time limit t → 0.Practically, we cannot simply take a→ 0 and may take t as small aspossible in the fiducial window,

a�√

8t � 1Λ.

Thus the usefulness with presently-accessible lattice parameters is notobvious a priori. . .

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 28 / 1

Page 76: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Universal formula for EMT

and

b0 =1

(4π)2

[113

C2(G)− 43

T (R)Nf

], d0 =

1(4π)2 6C2(R).

Correlation functions of the RHS of the formula can be computednon-perturbatively by using lattice regularization.The coefficients ci(t) are universal, i.e., indep. of the lattice transcription.

“Universality” holds however only when one removes the regulator.Thus, we have to first take the continuum limit a→ 0 and then take thesmall flow time limit t → 0.Practically, we cannot simply take a→ 0 and may take t as small aspossible in the fiducial window,

a�√

8t � 1Λ.

Thus the usefulness with presently-accessible lattice parameters is notobvious a priori. . .

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 28 / 1

Page 77: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Universal formula for EMT

and

b0 =1

(4π)2

[113

C2(G)− 43

T (R)Nf

], d0 =

1(4π)2 6C2(R).

Correlation functions of the RHS of the formula can be computednon-perturbatively by using lattice regularization.The coefficients ci(t) are universal, i.e., indep. of the lattice transcription.“Universality” holds however only when one removes the regulator.

Thus, we have to first take the continuum limit a→ 0 and then take thesmall flow time limit t → 0.Practically, we cannot simply take a→ 0 and may take t as small aspossible in the fiducial window,

a�√

8t � 1Λ.

Thus the usefulness with presently-accessible lattice parameters is notobvious a priori. . .

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 28 / 1

Page 78: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Universal formula for EMT

and

b0 =1

(4π)2

[113

C2(G)− 43

T (R)Nf

], d0 =

1(4π)2 6C2(R).

Correlation functions of the RHS of the formula can be computednon-perturbatively by using lattice regularization.The coefficients ci(t) are universal, i.e., indep. of the lattice transcription.“Universality” holds however only when one removes the regulator.Thus, we have to first take the continuum limit a→ 0 and then take thesmall flow time limit t → 0.

Practically, we cannot simply take a→ 0 and may take t as small aspossible in the fiducial window,

a�√

8t � 1Λ.

Thus the usefulness with presently-accessible lattice parameters is notobvious a priori. . .

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 28 / 1

Page 79: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Universal formula for EMT

and

b0 =1

(4π)2

[113

C2(G)− 43

T (R)Nf

], d0 =

1(4π)2 6C2(R).

Correlation functions of the RHS of the formula can be computednon-perturbatively by using lattice regularization.The coefficients ci(t) are universal, i.e., indep. of the lattice transcription.“Universality” holds however only when one removes the regulator.Thus, we have to first take the continuum limit a→ 0 and then take thesmall flow time limit t → 0.Practically, we cannot simply take a→ 0 and may take t as small aspossible in the fiducial window,

a�√

8t � 1Λ.

Thus the usefulness with presently-accessible lattice parameters is notobvious a priori. . .

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 28 / 1

Page 80: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Application to thermodynamics of SU(3) pureYang–Mills theory (arXiv:1312.7492)

Asakawa–Hatsuda–Itou–Kitazawa–H.S. (FlowQCD Collaboration).

One point functions. . .Thermal average of diagonal elements of EMT: the trace part (the traceanomaly),

〈ε− 3p〉T = −⟨{Tµµ}R (x)

⟩T ,

and the traceless part (the entropy density),

〈ε+ p〉T = −〈{T00}R (x)〉T +13

∑i=1,2,3

〈{Tii}R (x)〉T .

Thermodynamical quantities are obtained by the expectation value ofEMT just at that temperature T (no integration wrt the temperature).We do not need to compute renormalization factors Zi .Experiment setting:

Wilson plaquette action.N3

s × Nτ = 323 × (6, 8, 10, 32), β = 5.89–6.56, ∼ 300 configurations.

Wilson flow: 2th order Runge–Kutta with ε/a2 = 0.025.Scale setting: β ↔ aΛ

MSfrom ALPHA Collaboration, aTc at β = 6.20 from Boyd et al.

4-loop running coupling in the MS scheme.

Clover field strength Gaµν (x).

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 29 / 1

Page 81: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Application to thermodynamics of SU(3) pureYang–Mills theory (arXiv:1312.7492)

Asakawa–Hatsuda–Itou–Kitazawa–H.S. (FlowQCD Collaboration).One point functions. . .

Thermal average of diagonal elements of EMT: the trace part (the traceanomaly),

〈ε− 3p〉T = −⟨{Tµµ}R (x)

⟩T ,

and the traceless part (the entropy density),

〈ε+ p〉T = −〈{T00}R (x)〉T +13

∑i=1,2,3

〈{Tii}R (x)〉T .

Thermodynamical quantities are obtained by the expectation value ofEMT just at that temperature T (no integration wrt the temperature).We do not need to compute renormalization factors Zi .Experiment setting:

Wilson plaquette action.N3

s × Nτ = 323 × (6, 8, 10, 32), β = 5.89–6.56, ∼ 300 configurations.

Wilson flow: 2th order Runge–Kutta with ε/a2 = 0.025.Scale setting: β ↔ aΛ

MSfrom ALPHA Collaboration, aTc at β = 6.20 from Boyd et al.

4-loop running coupling in the MS scheme.

Clover field strength Gaµν (x).

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 29 / 1

Page 82: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Application to thermodynamics of SU(3) pureYang–Mills theory (arXiv:1312.7492)

Asakawa–Hatsuda–Itou–Kitazawa–H.S. (FlowQCD Collaboration).One point functions. . .Thermal average of diagonal elements of EMT: the trace part (the traceanomaly),

〈ε− 3p〉T = −⟨{Tµµ}R (x)

⟩T ,

and the traceless part (the entropy density),

〈ε+ p〉T = −〈{T00}R (x)〉T +13

∑i=1,2,3

〈{Tii}R (x)〉T .

Thermodynamical quantities are obtained by the expectation value ofEMT just at that temperature T (no integration wrt the temperature).We do not need to compute renormalization factors Zi .Experiment setting:

Wilson plaquette action.N3

s × Nτ = 323 × (6, 8, 10, 32), β = 5.89–6.56, ∼ 300 configurations.

Wilson flow: 2th order Runge–Kutta with ε/a2 = 0.025.Scale setting: β ↔ aΛ

MSfrom ALPHA Collaboration, aTc at β = 6.20 from Boyd et al.

4-loop running coupling in the MS scheme.

Clover field strength Gaµν (x).

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 29 / 1

Page 83: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Application to thermodynamics of SU(3) pureYang–Mills theory (arXiv:1312.7492)

Asakawa–Hatsuda–Itou–Kitazawa–H.S. (FlowQCD Collaboration).One point functions. . .Thermal average of diagonal elements of EMT: the trace part (the traceanomaly),

〈ε− 3p〉T = −⟨{Tµµ}R (x)

⟩T ,

and the traceless part (the entropy density),

〈ε+ p〉T = −〈{T00}R (x)〉T +13

∑i=1,2,3

〈{Tii}R (x)〉T .

Thermodynamical quantities are obtained by the expectation value ofEMT just at that temperature T (no integration wrt the temperature).

We do not need to compute renormalization factors Zi .Experiment setting:

Wilson plaquette action.N3

s × Nτ = 323 × (6, 8, 10, 32), β = 5.89–6.56, ∼ 300 configurations.

Wilson flow: 2th order Runge–Kutta with ε/a2 = 0.025.Scale setting: β ↔ aΛ

MSfrom ALPHA Collaboration, aTc at β = 6.20 from Boyd et al.

4-loop running coupling in the MS scheme.

Clover field strength Gaµν (x).

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 29 / 1

Page 84: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Application to thermodynamics of SU(3) pureYang–Mills theory (arXiv:1312.7492)

Asakawa–Hatsuda–Itou–Kitazawa–H.S. (FlowQCD Collaboration).One point functions. . .Thermal average of diagonal elements of EMT: the trace part (the traceanomaly),

〈ε− 3p〉T = −⟨{Tµµ}R (x)

⟩T ,

and the traceless part (the entropy density),

〈ε+ p〉T = −〈{T00}R (x)〉T +13

∑i=1,2,3

〈{Tii}R (x)〉T .

Thermodynamical quantities are obtained by the expectation value ofEMT just at that temperature T (no integration wrt the temperature).We do not need to compute renormalization factors Zi .

Experiment setting:Wilson plaquette action.N3

s × Nτ = 323 × (6, 8, 10, 32), β = 5.89–6.56, ∼ 300 configurations.

Wilson flow: 2th order Runge–Kutta with ε/a2 = 0.025.Scale setting: β ↔ aΛ

MSfrom ALPHA Collaboration, aTc at β = 6.20 from Boyd et al.

4-loop running coupling in the MS scheme.

Clover field strength Gaµν (x).

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 29 / 1

Page 85: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Application to thermodynamics of SU(3) pureYang–Mills theory (arXiv:1312.7492)

Asakawa–Hatsuda–Itou–Kitazawa–H.S. (FlowQCD Collaboration).One point functions. . .Thermal average of diagonal elements of EMT: the trace part (the traceanomaly),

〈ε− 3p〉T = −⟨{Tµµ}R (x)

⟩T ,

and the traceless part (the entropy density),

〈ε+ p〉T = −〈{T00}R (x)〉T +13

∑i=1,2,3

〈{Tii}R (x)〉T .

Thermodynamical quantities are obtained by the expectation value ofEMT just at that temperature T (no integration wrt the temperature).We do not need to compute renormalization factors Zi .Experiment setting:

Wilson plaquette action.N3

s × Nτ = 323 × (6, 8, 10, 32), β = 5.89–6.56, ∼ 300 configurations.

Wilson flow: 2th order Runge–Kutta with ε/a2 = 0.025.Scale setting: β ↔ aΛ

MSfrom ALPHA Collaboration, aTc at β = 6.20 from Boyd et al.

4-loop running coupling in the MS scheme.

Clover field strength Gaµν (x).

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 29 / 1

Page 86: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Application to thermodynamics of SU(3) pureYang–Mills theory

Thermal expectation values versus the flow time√

8t at T = 1.65Tc :

0

0.5

1

1.5

2

2.5

3

(ε-3

P)/T

4

0 0.1 0.2 0.3 0.4 0.50

1

2

3

4

5

(ε+P

)/T

4beta=6.20 Nτ=6beta=6.40 Nτ=8beta=6.56 Nτ=10

/8t T^

oversmeared2a > sqrt(8t)

for Nτ =10

for Nτ =8

for Nτ =6

We observe stable behavior for 2a <√

8t < 1/(2T ) which indicates (!!!)the t → 0 limit.

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 30 / 1

Page 87: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Application to thermodynamics of SU(3) pureYang–Mills theory

Thermal expectation values versus the flow time√

8t at T = 1.65Tc :

0

0.5

1

1.5

2

2.5

3

(ε-3

P)/T

4

0 0.1 0.2 0.3 0.4 0.50

1

2

3

4

5

(ε+P

)/T

4beta=6.20 Nτ=6beta=6.40 Nτ=8beta=6.56 Nτ=10

/8t T^

oversmeared2a > sqrt(8t)

for Nτ =10

for Nτ =8

for Nτ =6

We observe stable behavior for 2a <√

8t < 1/(2T ) which indicates (!!!)the t → 0 limit.

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 30 / 1

Page 88: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Application to thermodynamics of SU(3) pureYang–Mills theory

Continuum limit (from values at√

8tT = 0.40):

0

0.5

1

1.5

2

2.5

3

(ε-3

P)/T

4

1 1.5 2T / Tc

0

1

2

3

4

5

6

(ε+P

)/T

4

our resultBorsanyi et al.Okamoto et al.Boyd et al.

That our simple method produces results being consistent with pastcomprehensive studies indicates that our reasoning is correct.

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 31 / 1

Page 89: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Application to thermodynamics of SU(3) pureYang–Mills theory

Continuum limit (from values at√

8tT = 0.40):

0

0.5

1

1.5

2

2.5

3

(ε-3

P)/T

4

1 1.5 2T / Tc

0

1

2

3

4

5

6

(ε+P

)/T

4

our resultBorsanyi et al.Okamoto et al.Boyd et al.

That our simple method produces results being consistent with pastcomprehensive studies indicates that our reasoning is correct.

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 31 / 1

Page 90: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Recent status in quenched QCD

Asakawa–Hatsuda–Iritani–Itou–Kitazawa–H.S. (FlowQCD Collaboration);Kitazawa’s slide at Lattice 2015

New Results: Thermodynamics (e+p)

BW12 � Existence of O(t) effect� Linear behavior for

• tÆ0 limit is necessary

FlowQCD, in prep.

BW12:Budapest-Wuppertal, 2012

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 32 / 1

Page 91: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Summary and prospects

We developed a formula that relates a correctly-normalized conservedEMT and composite operators defined through the gradient flow:

{Tµν}R (x) = limt→0

{c1(t)Ga

µρ(t , x)Gaνρ(t , x) +

[c2(t)−

14

c1(t)]δµνGa

ρσ(t , x)Gaρσ(t , x)

+ c3(t)˚χ(t , x)(γµ←→D ν + γν

←→D µ

)χ(t , x)

+ [c4(t)− 2c3(t)] δµν ˚χ(t , x)←→/D χ(t , x) + c′

5(t)˚χ(t , x)χ(t , x)− VEV}

Correlation functions of RHS can be computed by lattice Monte CarlosimulationPossible obstacle would be

a�√

8t

One-point functions at the finite temperature show encouraging results;the method appears promising even practically!

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 33 / 1

Page 92: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Summary and prospects

We developed a formula that relates a correctly-normalized conservedEMT and composite operators defined through the gradient flow:

{Tµν}R (x) = limt→0

{c1(t)Ga

µρ(t , x)Gaνρ(t , x) +

[c2(t)−

14

c1(t)]δµνGa

ρσ(t , x)Gaρσ(t , x)

+ c3(t)˚χ(t , x)(γµ←→D ν + γν

←→D µ

)χ(t , x)

+ [c4(t)− 2c3(t)] δµν ˚χ(t , x)←→/D χ(t , x) + c′

5(t)˚χ(t , x)χ(t , x)− VEV}

Correlation functions of RHS can be computed by lattice Monte Carlosimulation

Possible obstacle would bea�

√8t

One-point functions at the finite temperature show encouraging results;the method appears promising even practically!

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 33 / 1

Page 93: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Summary and prospects

We developed a formula that relates a correctly-normalized conservedEMT and composite operators defined through the gradient flow:

{Tµν}R (x) = limt→0

{c1(t)Ga

µρ(t , x)Gaνρ(t , x) +

[c2(t)−

14

c1(t)]δµνGa

ρσ(t , x)Gaρσ(t , x)

+ c3(t)˚χ(t , x)(γµ←→D ν + γν

←→D µ

)χ(t , x)

+ [c4(t)− 2c3(t)] δµν ˚χ(t , x)←→/D χ(t , x) + c′

5(t)˚χ(t , x)χ(t , x)− VEV}

Correlation functions of RHS can be computed by lattice Monte CarlosimulationPossible obstacle would be

a�√

8t

One-point functions at the finite temperature show encouraging results;the method appears promising even practically!

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 33 / 1

Page 94: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Summary and prospects

We developed a formula that relates a correctly-normalized conservedEMT and composite operators defined through the gradient flow:

{Tµν}R (x) = limt→0

{c1(t)Ga

µρ(t , x)Gaνρ(t , x) +

[c2(t)−

14

c1(t)]δµνGa

ρσ(t , x)Gaρσ(t , x)

+ c3(t)˚χ(t , x)(γµ←→D ν + γν

←→D µ

)χ(t , x)

+ [c4(t)− 2c3(t)] δµν ˚χ(t , x)←→/D χ(t , x) + c′

5(t)˚χ(t , x)χ(t , x)− VEV}

Correlation functions of RHS can be computed by lattice Monte CarlosimulationPossible obstacle would be

a�√

8t

One-point functions at the finite temperature show encouraging results;the method appears promising even practically!

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 33 / 1

Page 95: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Summary and prospects

Systematic method to find the t → 0 limit

Better algorithm for the fermion flowFurther physical applications: EoS of QCD, viscosities in gauge theory,momentum/spin structure of baryons, critical exponents in low-energyconformal field theory, dilaton physics, . . .Further theoretical applications of the gradient flow. . .

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 34 / 1

Page 96: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Summary and prospects

Systematic method to find the t → 0 limitBetter algorithm for the fermion flow

Further physical applications: EoS of QCD, viscosities in gauge theory,momentum/spin structure of baryons, critical exponents in low-energyconformal field theory, dilaton physics, . . .Further theoretical applications of the gradient flow. . .

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 34 / 1

Page 97: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Summary and prospects

Systematic method to find the t → 0 limitBetter algorithm for the fermion flowFurther physical applications: EoS of QCD, viscosities in gauge theory,momentum/spin structure of baryons, critical exponents in low-energyconformal field theory, dilaton physics, . . .

Further theoretical applications of the gradient flow. . .

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 34 / 1

Page 98: Lattice energy-momentum tensor from the Yang …seminar/pdf_2016_zenki/...鈴木 博Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from... 2016/05/31 @ Osaka Univ. 7

Summary and prospects

Systematic method to find the t → 0 limitBetter algorithm for the fermion flowFurther physical applications: EoS of QCD, viscosities in gauge theory,momentum/spin structure of baryons, critical exponents in low-energyconformal field theory, dilaton physics, . . .Further theoretical applications of the gradient flow. . .

鈴木 博 Hiroshi Suzuki (九州大学) Lattice energy-momentum tensor from. . . 2016/05/31 @ Osaka Univ. 34 / 1