14
Lec12: ºŒO{ ² May 4, 2011 §1 K¥ºŒbu 3?oN'x·/, utu{. ·, ˆr@oN'x., K7L^§{5u. e¡0A«~^ ºŒ{, =˛u{! ˛u{Fisheru{" ! ˛u{ ~1 ü«¸, ØN <}. <}ü«¸, ƒ' Oü«¸'. øp, z¸<Ø! ü«¸'(J/Øf, · /Ø.. X i P1i¸<ظ', Y i P1i¸<ظ'. PZ i = X i - Y i ,i = 1, ··· ,N.XJbZ i N (μ, σ 2 ),K! ü¸·˜k‘K=zbH 0 : μ =0 uK, ø·3§5.2?LtuK. ·3e, kbZ i l'. øª{. e¡·O{: z <'˛ S i = + eZ i > 0 - eZ i < 0 0 eZ i =0 (1.1) =</+0 L«ƒ@ /¸‘u¸0 , ,ü˛¿´a. Xd, n˛S 1 , ··· ,S n .b H 0 : ü«¸(1.2) uÆ3`(Jøn˛˜:, ¡˛u(Sign Test).e¡w: lO., ˛uL·'ºŒuA~. ˛uN{Xe: PN `(JS 1 , ··· ,S n ¥/+0gŒkn + g, y/-0kn - g, {0. Pn = n + + n - .XJH 0 /Æ, =‘ü«¸, K3n0(J¥y /+0 /-0 ¯‹. =z0`(J¥y /+0 V˙p =1/2;e! ü¸(k‘', K z0(J¥y /+0 V˙p 6=1/2. ePX = n + , e, n + 'lb(n, 1/2),eü«¸(k‘', Kz(Jy /+0 V˙p 6=1/2. K/JK=zuK: X' b(n, p), 0 p 1,u H 0 : p = 1 2 ←→ H 1 : p 6= 1 2 . (1.3) 1

Lec12: ıºŒÚO’{ - USTCstaff.ustc.edu.cn/~zwp/teach/Math-Stat/lec12.pdf · 2011. 5. 4. · Lec12: ıºŒÚO’{ ÜŁ† May 4, 2011 x1 Ÿ˘˛flK¥˙ıºŒb u 3þŸÙ•‡?Ø

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

  • Lec12: ëêÚO{

    ܲ

    May 4, 2011

    §1 ��¯K¥�ëêb�u�

    3þÙ·?Ø�oN©Ùx´��/, 'uþ���tu�{. �´, �

    ·Ãrº@oN©Ùx���., K7L^Ù§{5u�. e¡0�A«~^�

    ëê{, =ÎÒu�{!ÎÒÚu�{ÚFisheru�{"

    !ÎÒu�{

    ~1 '�`¯ü«Ë�`�,éN

  • Ü·�u�

    � |X − n/2| > c Ľ H0.

    �.câ½�u�Y²α, d�©Ù5û½(NL10). ¦αý¢Y², 7

    ^Åzu�. (��{´Ou��p(§5.3,o). 3d,-d��S1, · · · , Sn��X = n+�äNx0,Px′0 = min{x0, n− x0},Ku��p

    p =

    x′0∑i=0

    (n

    i

    )(1

    2

    )n+

    n∑i=n−x0

    (n

    i

    )(1

    2

    )n(1.4)

    enóê, x0 = n/2,K�pp = 1. p��C1, KH0�&. X½u�Y²α,K

    �p < αĽH0.

    3~1¥,½u�Y²α,Ku�¯K(1.2)�Ľ

    {X = n+ ≥ c, ½ X ≤ d},

    Ù¥cÚd�deª(½:

    n∑i=c

    (n

    i

    )(12

    )n≤ α

    2, d = n− c.

    3~1¥,-N = 13, S1, · · · , S13¥+ÒÚ−Ò�ê©O´n+ = 2, n− = 10,Ïdn =n+ + n− = 12.�u�Y²α = 0.05,�NL10/ÎÒu��.L0�c = 10,�d = n−c = 2.�u��ĽD = {X = n+ ≥ 10, ½ X ≤ 2}.u�ÚOþX = n+ = 2, ÏdĽ�b�. =@`!̄ üËØ�.

    éùu�¯K, ÏLOu��p5)û. d?, n = 12, x0 = n+ = 2,U(1.4),

    x′0 = min(2, 12− 2) = 2,��©ÙL�

    p =

    2∑i=0

    (12

    i

    )(1

    2

    )n+

    12∑i=10

    (12

    i

    )(1

    2

    )n= 0.0384 < 0.05

    �30.05wÍ5Y²eAĽH0.

    ~2 ó�üz�¿, zUÓló�e%Yo��, ÿþY¥�¹Åþg.

    e¡´n = 11U�P¹:

    i 1 2 3 4 5 6 7 8 9 10 11

    xi 1.15 1.86 0.76 1.82 1.14 1.65 1.92 1.01 1.12 0.90 1.40

    yi 1.00 1.90 0.90 1.80 1.20 1.70 1.95 1.02 1.23 0.97 1.52

    Ù¥xiL«z�¿A�ÿþP¹, yiL«z�¿B�ÿþP¹. ¯üz�¿ÿ½�(Jm

    kÃwÍ�É? �α = 0.10.

    ) ©OPz�¿AÚB�ÿþØ�ξÚη.�ξÚηëY.ÅCþ,٩ټê©O

    F (x)ÚG(x).u�¯K´

    H0 : F (x) = G(x)←→ H1 : F (x) 6= G(x). (1.5)

    2

  • w,¹Åþ�ÿ½,Øz�¿�ØÓk',�FY¥¹Åþ�õ�k'. ·

    ±@XiÚYiäkêâ(�:

    Xi = µi + ξi, Yi = µi + ηi, i = 1, 2, · · · , n.

    Ù¥µi1iUY¥�¹Åþ, ξiÚηi©OL«1iUz�¿A!B�ÿþØ�. w,ξ1, · · · , ξnÚη1, · · · , ηn Ñ´Ø*�ÕáÓ©Ù�ÅCþ. cöξ ∼ F (x)Ó©Ù, �öη ∼G(x)Ó©Ù.

    ØÓF�üêâXiYiw,ؽ´Ó©Ù�, XiXj , ±9YiYjؽ

    ´Ó©Ù�. §m��ÉØ�ÿþØ�k', µiÚµj��Ék'. Ïd

    ,X1, · · · , XnpÕá, �ØUb½§Ó©Ù, Y1, · · · , Yn´Xd. ¤±ü���ÚO'�{, Xü�����tu�{±9�¡0��ü��ëêu�{ÑØU^uù

    aêâ�u�ó. ·3§5.2¥J�L¤éêâ�þãA:.

    ?n¤éêâu�¯K,ég,/�XÛrµi�KØK.duézi,XiYim

    ', eòÓU�üêâ~, lrµi�KØK. -

    Zi = Xi − Yi = ξi − ηi, i = 1, 2, · · · , n. (1.6)

    w,Zi=z�¿A!B31iF�ÿþØ��k'. PZ = ξ − η, KZ1, · · · , Znw¤5goNZ�Å��,=Z1, · · · , Zn ´ÕáÓ©Ù���. duZ´üÿþØ��,ÏdZ�þ0, y²§´'u�:é¡�.

    -n+Z1, · · · , Zn¥���ê, n−Z1, · · · , Zn¥�K�ê, §Ñ´r.v..dub½ξÚη´ëY.ÅCþ, �Z1, · · · , Zn¥�0�ê±VÇ1�0. ÏdPn =n

    ++ n− .�H0,=(1.5)¤á, K3nÁ�ü�¥Zi�/+0Ú�/−0�U5� 12 . Ïd

    u�¯K=z: n+∼ b(n, p), 0 ≤ p ≤ 1,u�

    H ′0 : p =1

    2←→ H ′1 : p 6=

    1

    2

    ĽD = {n+ ≥ c ½ n+ ≤ d}.

    Ïd, 3½wÍ5Y²α�, cÚd�d

    n∑k=c

    (n

    k

    )(12

    )n≤ α

    2, d = n− c

    ¤(½.

    3�~¥n = 11, α = 0.10, ��©ÙL

    2∑k=0

    (11

    k

    )(12

    )11= 0.0327,

    3∑k=0

    (11

    k

    )(12

    )11= 0.113,

    ¤±d = 2, c = 11− 2 = 9 (�NL10�c = 9, d = n− c = 2). �Y²α = 0.10 �ÎÒu��Ľ

    {n+ ≤ 2 ½ n+ ≥ 9}

    3

  • �zi = xi − yi,�

    0.15, −0.04, −0.14, 0.02, −0.06, −0.05,

    −0.03, −0.01, −0.11, −0.07, −0.12,

    Ù¥��ê�ên+ = 2, Ïd3Y²α = 0.10eĽH0,=@z�¿A!Bÿ½(J

    mkwÍ�É.

    ÎÒu��,A^´© ê(AO´¥ ê)u�. we~.

    ~3 u�,«Z×�nÝ, ÿ�100êâXeL¤« Á¯TZ×nÝ�¥ 

    L 1.1

    ?Ò 1 2 3 4 5 6 7 8 9 10

    nÝ 1.26 1.29 1.32 1.35 1.38 1.41 1.44 1.47 1.50 1.53

    ªê 1 4 7 22 23 25 10 6 1 1

    ême´Ä1.40? (α = 0.05)

    ) �K3wÍY²α = 0.05e, u�b�

    H0 : me = 1.40←→ H1 : me 6= 1.40

    e-L¥¤�100êâ�nÝXi, i = 1, · · · , 100, -Yi = Xi − 1.40, i = 1, · · · , 100. OYi���ên+Ú�K�ên−, �0�ê0, Ïdn+ + n− = 100.3H0¤á

    �cJe,KzYi�½K�U5�1/2,�100êâ¥n+Ún−A�OØ,ePX =

    n+,´X ∼ b(100, 1/2),Ïdu�¯K=z: X ∼ b(100, p), 0 ≤ p ≤ 1,u�

    H0 : p =1

    2←→ H1 : p 6=

    1

    2, α = 0.05

    ĽD = {X ≥ c2 ½ X ≤ c1}. |^¥%4½n: �H0¤á, n→∞k

    X − n/2√n/4

    =2X − n√

    n

    L−→ N(0, 1)

    �K¥n = 100, -c1∑i=0

    (100

    i

    )(12

    )100≈ Φ

    (c1 − 505

    )=α

    2= 0.025,

    �L�(c1 − 50)/5 = −1.96, )�c1 = 40.2

    aq/d100∑i=c2

    (100

    i

    )(12

    )n≈ 1− Φ

    (c2 − 505

    )= 0.025

    �L�(c2 − 50)/5 = 1.96,)�c2 = 59.8,�Ľ

    {X : X ≤ 40.2 ½ X ≥ 59.8}

    dL1.1�X = n+ = 43,§0u(40.2, 59.8)m, �Øv±Ä½H0, �@TZ×�n

    Ý�¥ ê´1.40.

    ÎÒu��©Ùëêu��'X:

    4

  • b�·a,�¢ëY.ÅCþU , PÙp0© êmq,=

    p0 = P (U ≤ mq)

    ¢S¥· Ø�mq�, =B´½p0�,ù´du·Ø�U�©Ù. é,A

    ½�m0, P

    p = P (U ≤ m0)

    dduU�©Ù, �p. duUëY.ÅCþ, �

    mq = m0 �=� p = p0

    mq ≤ m0 �=� p ≥ p0

    mq ≥ m0 �=� p ≤ p0

    u´'umq�b��du'up�b�. PU�|��U1, · · · , Un, lÎÒu�ÚOþ

    T =∑

    I(Ui ≤ m0)

    w,T ∼ B(n, p). u´d�©Ù�u�N´��d'uU�© ê�b�u�{K.

    �!ÎÒÚu�

    4·2£�eÎÒu�, EÒ~1¥¬Ë�¯K5`². 3OZi = Xi − Yi�, ·ïZi�äNê�ÙÎÒSi,¿&E.ù«&E�¿,¦ÎÒu���Ç

    k¤ü$. dJÑÎÒÚu�, §´ÎÒu��U?.

    ~4 Ew~1, �13

  • ½Â6.2.2 �X1, · · · , Xn5güëY.oN���, ½5gõëY.oN�Ü��. KR = (R1, R2, · · · , Rn)¡(X1, · · · , Xn)�ÚOþ, Ù¥RiXi�. dR�Ñ�ÚOþ¡ÚOþ. ÄuÚOþ�u�{¡u�.

    y3E£�~4, rL1.2*¿¤eL. ·rÎÒ/+0�@ü(=11Ú12) )å

    L 1.3

    ¬Ë 0;

    0 Ù§.

    Ri|Zi|3(|Z1|, · · · , |Zn|)¥�,KWilcoxonÎÒÚ (the sum of Wilcoxon signed rank)u�ÚOþ½Â

    W+ =

    n∑i=1

    ViRi. (1.7)

    N´n): 3~6.2.5¥,e``u¯,KØ=/+0Ò¬õ,/+0Ò*A�,

     , �o��J´W+A . , e¯`u`, KW+ò �. Ïdu�¯K(1.2), =

    H0 : `!̄ üË�Ð

    ¤á, W+A�ØØ�. u��Ľ´

    {W+ ≤ d ½ W+ ≥ c}, (1.8)

    d?dÚc�ûun (�~¥n = 12),9½�u�Y²α.=,�½α, c, d©Ode�üª

    û½:

    P (W+ ≤ d |H0) ≤ α/2, P (W+ ≥ c |H0) ≤ α/2.

    H0ýW+�©Ùë©z[4] P246. é,A½�α9Ø�n, cÚd±�L¦�,

    Ö"NL11. L¥=��c,d = n(n+ 1)/2− c.

    6

  • dL1.3�K¥n = 12, W+ = 23.�α = 0.05,�L¥α/2@9,3n = 12?�c = 65,

    �d = 13,U(1.8)�Ľ

    {W+ ≤ 13 ½ W+ ≥ 65}.

    13 < W+ = 23 < 65,�A�ÉH0, =¤�*(JØ�¤`!̄ k`�©�¿©yâ.

    ùu�¡WilcoxonVýÎÒÚu� (±e{¡VýW+u�) ,¤±�α/2,´

    duù/Vý05.

    ±y²:

    E(W+) =n(n+ 1)

    4, D(W+) =

    1

    24n(n+ 1)(2n+ 1)

    e!�ÚÚOþWaq, �n→∞, W+�IOzÅCþ

    W+∗ =W+ − n(n+ 1)/4√n(n+ 1)(2n+ 1)/24

    L−→ N(0, 1) (1.9)

    �~6.2.5�Y²Cqα�VýW+u��Ľ{|W+∗ | ≥ uα/2

    }�α = 0.05,�|W+∗ | = 1.26 < 1.96 = u0.025 ,��ÉH0, âyk*Øv±Ä½H0.

    ·±w�~1Ú~6.2.5¥�Óu�¯K^ÎÒu�ÚÎÒÚu���ü«Ø

    Ó�(Ø. UÎÒu�ĽH0,=@`!̄ üËk`�©, ¯`u`. UÎÒÚu�

    ����Ú��{, Ñ�ÉH0, =L²Ã¿©yâĽ/`!̄ üË�Ð0. ùp·

    w�: Ó¯K, Ó1êâ, ^ØÓ{, u�(JØÓ, ùØv%. �X^Ó1ê

    â��O��oN�êÆÏ", ^��þ�O^¥ ê�O, üö(JØÓ. ùÒ�

    )¯K: ùü«u�{=«Ð? ù¯KØUVØ, k,��Öö�wë

    ©z[9] P156¥L9.1¤��(J. ±Ñ�´: ÎÒu��,ØwêwÎÒ; Äu�

    �b½�tu�Kwê, W+u�0u�öm: §QØ�Àê, Ø�wê(ê

    ^uû½, Ø^Ù��) .

    n!Fisher�u�∗

    ~5 '�A!Bü«{Û«`, ÀJ15¬��/, rz¬©¤/G�

    ��ü�¬, Å/òÙ¥�¬©A,,�¬B. ¼���¬��þXe:

    ¬Ò 1 2 3 4 5 6 7 8

    A 188 96 168 176 153 172 177 163

    B 139 163 160 160 147 149 149 122

    A−B 49 -67 8 16 6 23 28 41¬Ò 9 10 11 12 13 14 15

    A 146 173 186 168 177 184 96

    B 132 144 130 144 102 124 144

    A−B 14 29 56 24 75 60 -48

    Ñ∑

    (A−B) = 314,y3u�b�

    H0 : A!B ��J�. (1.10)

    7

  • e(1.10)¤á,z¬SA−B(=49,−67, · · ·�)Ø�,¿duA!B�JØÓ,´duÙü�¬��O. �Åz�(J, z�¬kÓ�U©A½B. Ïd, X31¬,

    Åz�(JØÓ, A − B±´49, ±´−49,w�Ð�@¬�A´B. ù�5,ùÁ���ÜU�

    ∑(A−B)k215:

    ±(49),±(−67),±(8), · · · ,±(60),±(−48),

    ¢S�Ñ�∑

    (A−B) = 314´215¥�. �A!B�Jk��O|∑

    (A−B)|A�.é215U(J¥�zÑ

    ∑(A−B),^xiP, i = 1, 2, · · · , 215.ò§Uì§�ý

    él���^Sü�, ØP

    x1, x2, · · · , x215 (1.11)

    =÷v

    |x1| > |x2| > · · · > |x215 |

    (1.11)¥�215¥, 3H0¤ácJe, �Uu), =zÑy�VÇÑ´1/215 .u

    �¯K(1.10)�Ľ

    {|∑

    (A−B)| > c}

    *ÿ��|∑

    (A−B)| = 314, lu��P

    P (|∑

    (A−B)| > 314|H0) =m

    215

    Ù¥müS(1.11)¥÷vxm = 314.

    äNOp314 < 0.0001 ÏdkndĽH0.

    u��":´: 3äN¢Oþ, ¦^å5ØB. �y3kpOÅ,

    |^OÅ5¢ØJ¯.

    FishergCÚÙ§NõÆö, ÑïÄLù��¯K: �né, Äé�«Cq�

    {�¢u�,±{zO?ïÄ(Jy²: 3é�^e,ù«{z�{

    Ø=3, Ò´Ï~�tu�ù´ék¿g�(J. Ïm©, tu�´Û3��

    �.¥�Ñ�. ÏLùå»uy, =¦32��.e, Á�gêv, tu�

    E´·^�, Ïd±`, u��nØlý¡\rtu��/ .

    §2 ü��¯K¥�ëêb�u�

    3ü���'�¯K¥, ����ÅØ�ØÑl��©Ù, ÒIJÑ�

    b�, ¿¦^A�ëêu�{. ù¡�nØÚ{�õ, �Ñé;, ùp

    éWilcoxonÚu�Úu�{Ñ0�.

    !Úó9½Â

    ·Äk5wwùu��¢S�µ. ü��u�¯K�J{Xe: �X1, · · · , XmÚY1, · · · , Yn©O´läk©ÙF1ÚF2�oN¥Ä��{ü��,b½Ü��X1, · · · , Xm,Y1, · · · , Yn�NpÕá. u�e�b�

    H0 : F1 = F2 ←→ H1 : F1 6= F2. (2.1)

    8

  • 3ênÚOÆ¥, S.þ¡ùu�¯K/ü��¯K0. ·5©OÄe�A«¹:

    1. �â¯K�¢S�µ,XJ·kndb½F1ÚF2äkÓ����©Ù,=

    F1 ∼ N(a, σ2), F2 ∼ N(b, σ2)

    Ù¥a!bÚσ2�, −∞ < a, b < +∞, σ2 > 0,ùu�¯K=z

    H ′0 : a = b←→ H ′1 : a 6= b. (2.2)

    3ùb½e, oN©ÙF1ÚF26unëêa!bÚσ2, u�¯K(2.1)8(u�

    ùëê´Ä÷v(2.2). U§5.1¤ãùáu/ëê.b�u�¯K0. ùÒ´§5.2¥?Ø�ü��tu�.

    2. XJ·é¯K�¢S�µ¤$�, ·Ð@éF1ÚF2��. 3ù�°

    2�b½e, ·2ØU¦^Ï~�ü��tu�. ?nù¯K�«{´/d�â

    Å0(Smirnov)u�, ùò3�Ù1Ê!¥?Ø.

    3ù/e,oN©ÙF1ÚF2ØU^k¢ëê�x,Ïd¡ëêu�¯K.

    3. y3·?Ø«¥m¹. �X´«�¬3½)�ó²e�þI, Y´

    T�¬3,)�ó²e�þI. knd@, UC)�ó²ØK�¬þI�V

    Ç©Ù, U¦d©Ùu)²£. Ò´`, e±FPX�©Ù, KY©ÙF (x − θ),ùpθ´� ëê. 3ùb½e,/X!YÓ©Ù0�b��/θ = 00, éá

    b�/θ 6= 00. Ïdu�(2.1)8(u�

    H0 : θ = 0←→ H1 : θ 6= 0. (2.3)

    (2.3)´é�b�u�¯K. 3ù�.¥, ·b½F, Ï'���.2.

    ,ù�.q'/d�âÅu�0¥��.Ä, Ïé�öó, ü©ÙF1ÚF2Î

    Ã'X, 3dF1ÚF2mkF2(x) = F1(x− θ).

    ,L¡þw(2.3)ëêu�¯K: b�¥�9θ,§´¢ëê. Ù¢Ø,,

    ÏoN�©ÙFÚθÑk',F�©Ù,ÏdUëêÚO¯K�½Â, (2.3)AÀ

    ëêu�¯K.

    /, ü��¯K(2.1)käk¢S�µ�¥m¹. ~XF2(x) = F1(x/σ),

    dσ > 0�Ýëê, ©ÙF. u�¯K(2.1)3d¹e=z

    H∗0 : σ = 1←→ H∗1 : σ 6= 1. (2.4)

    Wilcoxonü��Úu�Ò´Ä(2.3)�b�u�¯K.e¡ÄkÑWilcoxonü��

    ÚÚOþ�½Â.

    ½Â6.3.1 �X1, · · · , Xm, Y1, · · · , Ynùn + müüØÓ, r§U�ü�, (J

    Z1 < Z2 < · · · < ZN , N = m+ n, (2.5)

    w,, zYi7(2.5)¥�,. eYi = ZRi ,KYi3Ü��X1, · · · , Xm,Y1, · · · , Yn¥�Ri. Y1, · · · , Yn�Ú

    W = R1 + · · ·+Rn, (2.6)

    §¡Wilcoxonü��ÚÚOþ. ù´Wilcoxon31945c�ó¥Ú?�.

    9

  • �! Wilcoxonü��Úu�—���{

    Wilcoxonü��Úu�Ò´Ä(2.3)�b�u�¯K,=�X1, · · · , Xm i.i.d.∼ F (x), Y1, · · · , Yni.i.d. ∼ F (x− θ),Ü��Õá. u�(2.3), =

    H0 : θ = 0←→ H1 : θ 6= 0.

    ���Y1, · · · , Yn�ÚWd(2.6)Ñ. y3ù�ín: zRiÑ�1, 2, · · · , N.e�b�H0¤á, K�Ü��5gÓoN, zÑØÓAÏ , ج���½��,

    W¤�A8¥3²þên(N + 1)/2NC. ���e�u�:

    � W ≤ d ½ W ≥ c Ľ H0 (2.7)

    XÛ(½cÚd ? §�(3�Kþ±)û: �H0¤á, Ü��ÕáÓ©Ù, ddâé

    ¡5�Ä, ´(R1, · · · , Rn)�éÜ©Ù

    P (R1 = r1, · · · , Rn = rn) =

    1

    N(N−1)···(N−n+1) �r1, · · · , rn ≤ NpØÓ�g,ê,

    0 Ù§.

    ddØJ/ª/�ÑW�©Ù. ld

    α = P (W ≤ d ½ W ≥ c |H0)

    ½ÑcÚd. é���m!n®¤L.

    XJb�u�´ü>�, =u�

    H′

    0 : θ ≤ 0←→ H′

    1 : θ > 0, (2.8)

    duW =n∑i=1

    Ri´Y1, · · · , Yn3Ü��¥�Ú.eθ > 0KÏzYi�©ÙXi + θ�©Ù

    Ó, YiXi'�u��.=Yi�uXi�/Ŭ0õ,�u§�ŬK�.

    ù�5R1, · · · , Rn�θ > 0u�8Ü{1, 2, · · · , N} ¥��(d?N = m + n), Ó�θ < 0, KR1, · · · , Rnu�8Ü{1, 2, · · · , N}¥���. ÏW3θ > 0u���, 3θ < 0u����. �u�¯K(2.8)�u�:

    � W ≥ c , Ľ H ′0.

    Ó�u�¯K

    H′′

    0 : θ ≥ 0←→ H′′

    1 : θ < 0, (2.9)

    �u�:

    � W ≤ d , Ľ H ′′0 .

    òþãnau��¤eL:

    L6.3.1 Wilcoxonü��Úu�(���/)

    H0 H1 Ľ

    θ = 0 θ 6= 0 W ≤ d ½ W ≥ cθ ≤ 0 θ > 0 W ≥ cθ ≥ 0 θ < 0 W ≤ d

    10

  • XÛ(½�.cÚd ? é���m!n®²¤L, Ö"NL12. 'udL, ±eü:`

    ²:

    (1) ©OP(X1, · · · , Xm)Ú(Y1, · · · , Yn)3Ü��¥�ÚW1ÚW2,K

    W1 +W2 = 1 + 2 + · · ·+ (m+ n) =(m+ n)(m+ n+ 1)

    2

    ´~ê. Ïd, 3¦^WilcoxonÚu�{, '�üoN©Ù, ^W1u�ÚOþ

    ^W2u�ÚOþ´£¯.

    (2) 3NL12¥ÑÚu���.: P (W ≥ c) ≤ α¥c�,éP (W ≤ d) ≤ α��.dXÛ|^dL¦Ñ? ±y² P (W ≤ α) = P (W ≥ n(m + n + 1) − d) =ePc = n(m + n + 1) − d, ké½� α !m!n ¦Ñ P (W ≥ c) ≤ α ��. c, ,� d dúª d = n(m+ n+ 1)− c Ñ.

    ~6 ,«�f3?1,«ó²?ncÚ?n�, ÅÄ���, ÿ�Ù¹

    ÇXe

    ?nc: 0.20, 0.24, 0.66, 0.42, 0.12;

    ?n�: 0.13, 0.07, 0.21, 0.08, 0.19.

    ¯?n�¹Ç´Äeü? (α = 0.05)

    ) �XÚY©OL«?nc!��f�¹Ç,§�©Ù¼ê©OF (x)ÚF (x−θ).Ku�¯K

    H0 : θ ≥ 0←→ H1 : θ < 0.

    =ò/?n��f¹Çvkeü0�b�.

    dL6.3.1: �W ≤ dĽ�b�. dc¡'uNL12�¦^`²(2), klNL¥dP (W ≥ c) ≤ α�Ñc, Kd = n(m+ n+ 1)− c.

    �K¥m = n = 5, α = 0.05,dNL12, �Ñc = 36,�k

    d = n(m+ n+ 1)− c = 5× 11− 36 = 19.

    ùL²

    P (W ≤ 19) = P (W ≥ 36) ≤ 0.05.

    Ïdþãu�¯K�Ľ:

    D = {(X,Y) : W ≤ 19}.

    yòü|��*Ul��ü¤�¤eL

    0.07 0.08 0.12 0.13 0.19 0.20 0.21 0.24 0.42 0.66

    3 4¯

    6 7¯

    8 9 10

    ey�ê´?n��f¹Ç(Y )�*�. �Y�*�Ú

    W = 1 + 2 + 4 + 5 + 7 = 19

    òÙĽ¥�.'�19 ≤ d (d = 19),ÏdĽH0,=@?n��f¹Çeü.

    z

    11

  • b�:

    ½ü|Õá�Å��X1, X2, · · · , Xn ÚY1, Y2, · · · , Ym, ¦

    1. �^SºÝ

    2. a,��Cþ´ëY.�

    3. F (x)ÚG(x)©OL«XÚY�©Ù¼ê

    Kéb�

    (A) H0 : F (x) = G(x) é¤kx ⇐⇒ H1 : F (x) 6= G(x) é,x

    (B) H0 : F (x) ≤ G(x) é¤kx ⇐⇒ H1 : F (x) > G(x) é,x

    (C) H0 : F (x) ≥ G(x) é¤kx ⇐⇒ H1 : F (x) < G(x) é,x

    b�(B)Ú(C)¥�H1©OL«”Xu'Y�” Ú”Xu'Y”. u´PWL

    «X��3Ü��¥�Ú, Ku��{K©O

    (A) éV>u�H1 : F (x) 6= G(x): eW < c1 ½W > c2, áýH0; ÄKØv±áýH0.

    (B) éü>b�H1 : F (x) > G(x): eW < c,áýH0 ; ÄKØv±áýH0.

    (C) éü>b�H1 : F (x) < G(x): eW > c, áýH0; ÄKØv±áýH0.

    n!Wilcoxonü��Úu�—��{

    c¡?Ø�m!n��Wilcoxonü��Úu�����{. �m!n�u�

    ÚOþW�©Ù�OéE,, é½�αvky¤�L±��Ľ��.. Ïd�

    4½n. {Xe: N´¦�

    E(W ) = n(m+ n+ 1)/2 = n(N + 1)/2,

    D(W ) = mn(n+m+ 1)/12 = mn(N + 1)/12.

    d?Wd(2.6)ªÑ, N = m+ n.P

    W ∗ =W − E(W )√

    D(W )=W − n(N + 1)/2√mn(N + 1)/12

    ±y²3�b�H0 : θ = 0¤áe, �m, n→∞k

    W ∗ =W − n(N + 1)/2√mn(N + 1)/12

    L−→ N(0, 1)

    Ïd�u�¯K(2.3)�Y²Cqα�Ľ:

    D = {(X,Y) : |W ∗| ≥ uα/2}

    aq�u�¯K(2.8)Ú(2.9)�Y²Cqα�u��Ľ, eL:

    12

  • L6.3.2 Wilcoxonü��Úu�(��/)

    H0 H1 Ľ

    θ = 0 θ 6= 0 |W ∗| > uα2

    θ ≤ 0 θ > 0 W ∗ > uαθ ≥ 0 θ < 0 W ∗ < −uα

    ~7 k`¯ü�ÅK\óÓ���¬. lùü�ÅK\ó��¬¥Å/Ä�eZ�

    ¬, ÿ��¬»(ü :mm)

    `: 18.1, 17.7, 17.2, 19.1, 17.0, 17.5, 17.8, 18.7

    ¯: 18.3, 19.0, 18.9, 17.3, 16.9, 18.4, 17.6, 18.6, 18.0

    �ü�ÅK�°ÝÓ, Á¯`!̄ ü�ÅK\ó�¬�»kÃwÍ�É? (α = 0.10)

    ) �XÚY©OL«`¯ü�K\ó�¬�»,§�©Ù¼ê©OF (x)ÚF (x−θ).Ku�¯K:

    H0 : θ = 0←→ H1 : θ 6= 0

    d~¥m = 8, n = 9.òü|êâYUl��ü¤�, �1�|êâ�g: 1, 4,

    6, 9, 11, 12, 13, 15, 16, ÙÚ´

    W = 1 + 4 + 6 + 9 + 11 + 12 + 13 + 15 + 16 = 87.

    éu�Y²α = 0.10,dL6.3.2��Ľ

    D = {(X,Y) : |W ∗| ≥ u0.05 = 1.96}

    Ù¥

    |W ∗| =∣∣∣W − n(n+m+ 1)/2√

    mn(m+ n+ 1)/12

    ∣∣∣ = ∣∣∣87− 81√108

    ∣∣∣ = 0.58 < 1.96��ÉH0,=â®kêâØv±Ä½ùý�ÅK\ó�»ÃwÍ�É�b½.

    k

  • o!ü��u�{∗

    3ênÚOÆ¥, /?n0c�¹¿42. §±L««ó²6§, «f¬

    «, «£�{��. ü��u��g~6.2.6 q. �ü?n��ÜÁ�(J

    X1, · · · , Xm, Y1, · · · , Yn. òÙü�3å, UZ1, · · · , Zn+m. XJ`!¯ü?nÃ�O,KZ1, · · · , Zn+mm��OØ´du?nØÓ5, ´duùn + mÁ�ü��©�{5. 3n+m ü�¥©�m?n`, ØÓ�{k

    (n+mm

    )«. e3z«©�{

    eÑO±e�þ:

    g =1

    m(`?nÁ�Ú)− 1

    n(¯?nÁ�Ú).

    §�uZ1, · · · , Zn+m¥�m²þê~�e�n�²þê. @mKwÁ�ü�´XÛ©��. ù�, �U��N =

    (n+mm

    ): g1, g2, · · · , gN ,òÙýéU�ü�, Ã-

    Ù:

    |g1| ≤ |g2| ≤ · · · ≤ |gN |, (2.10)

    u�¯K:

    H0 :`¯ü?n�J� (2.11)

    �H0¤á(2.10)¥@N¥�z,kÓ�Ñy�Ŭ1/N,Ò¢S��Ñg,P

    g∗ = X − Y . XJH0ؤá, |g∗|u��. Ïd, ½u�Y²α�, éNα, ¦�

    α = P (|gi| > |g[Nα]|, i ∈ {1, · · · , N} |H0) (2.12)

    dug1, g2, · · · , gN¥�zu)´�U1/N, Ïd(2.12)ª�duéNα,¦�

    N − [Nα]N

    = α

    ÏdĽ

    D = { |g[Nα]+1|, |g[Nα]+2|, · · · , |gN | },

    Ïd½��X = (X1, · · · , Xm)ÚY = (Y1, · · · , Yn),Ñg∗ = X − Y, e|g∗| = |X − Y | >|g[Nα]|, K|g∗|73ĽD¥, �DL

    D = { (X,Y) : |g∗| = |X − Y | > |g[Nα]| }.

    d?[Nα]L«Nα��êÜ©.

    eU�b�

    H′

    0 :?n`Ø`u¯,

    Kòg1, g2, · · · , gNU�ü�h1 ≤ h2 ≤ · · · ≤ hN

    é½�α,éNα,¦�

    α = P (hi > h[Nα], i ∈ {1, 2, · · · ., N} |H′

    0).

    Ïd, �k��X = (X1, · · · , Xm)ÚY = (Y1, · · · , Yn) Ñg∗ = X − Y,ĽL

    D = {(X,Y) : g∗ = X − Y > h[Nα]}.

    �m!nÑé, þãu��Cuü��tu�. XÓ3��/, ù5l

    ý¡\rü��tu��/ .

    14