lect8_1

Embed Size (px)

Citation preview

  • 8/2/2019 lect8_1

    1/29

    Cascode AmplifierFigure 1(a) shows a cascode amplifier with ideal current source load. Figure 1(b) shows the ideal

    current source is implemented by PMOS with constant gate to source voltage.

    Vo

    VDD

    M1

    (a)

    VG2

    Vi

    M2

    VG3

    VDD

    Vo

    ViM1

    M3

    (b)

    VG2M2

    VTN0+V=

    VDD-(|VTP0|+|V|)=

    VTN0+VTN2+2V=

    |VTP0|+|V|

    VTN2+V

    VTN0+V

    (3)

    (2)

    (7)

    (6)

    (1)

    (5)

    (4) VSS=0

    VTN0+V

    V

    V

    Figure 1. Cascode amplifier with simple current load.

    1. Low Frequency Small Signal Equivalent CircuitFigure 2(a) and 2(b) show its low frequency small signal equivalent circuit. Figure 2( c) shows its

    two-port representation and port variables assignment.

    1

  • 8/2/2019 lect8_1

    2/29

    G1 D1

    S1

    S2 D2

    Vo

    +

    Vi

    --

    gds1

    gds2 gds3

    +

    gm1vgs1

    gm2vgs2

    gmb2vbs2

    +

    -

    V

    S2

    vgs2=-VS2; vbs2=-VS2

    G1 D1

    S1

    S2 D2

    Vo

    +

    Vi

    --

    gds1

    gds2 gds3

    +

    gm1vgs1

    gm2VS2

    gmb2VS2

    +

    -

    VS2

    vgs2=-VS2; vbs2=-VS2

    Zib Zo

    b

    GLYa YbVi

    ++

    V1a

    V2a = V1

    b

    I1a I2

    bI2a I1

    b

    Zoa

    Figure 2. Cascode amplifier low frequency small signal equivalent circuit.

    2

  • 8/2/2019 lect8_1

    3/29

    )0or Z(YY);ror Z(gYY Sa

    SSds3

    b

    Lds3

    b

    LL ======

    The current equation of network a is:

    a

    2ds1

    a

    1m1

    a

    2

    a

    1

    VgVgI

    0I

    +=

    =

    The corresponding Y-parameter matrix is:

    =

    ds1m1

    a

    gg

    00Y

    The current equation of network b is:

    b2ds2

    b1ds2mb2m2

    b2

    b

    2ds2

    b

    1ds2mb2m2

    b

    1

    Vg)Vggg(I

    Vg-)Vggg(I

    +++=

    ++=

    The corresponding Y-parameter matrix is:

    ++

    ++=

    ds2ds2mb2m2

    ds2ds2mb2m2b

    g)ggg(

    ggggY

    The common gate stage gain is:

    ds3ds2

    ds2mb2m2

    b

    L

    b

    22

    b

    21b

    V gg

    ggg

    Yy

    y

    A +

    ++

    =+

    =The input impedance of common gate stage (the load of common source stage) is:

    m2ds3ds2mb2m2

    ds3ds2

    b

    L

    b

    11

    b

    b

    L

    b

    22a

    L

    b

    ig

    2

    g)ggg(

    gg

    YydetY

    YyZZ

    ++

    +=

    +

    +==

    The gain of the common source stage is:

    2gg

    2g-

    g)gg(gggggg

    )gg(g

    g)ggg()g(gg

    )gg(g

    ggg)ggg(g

    g

    Yy

    yA

    mb2m2

    m1

    ds3mb2m2ds3ds2ds3ds1ds2ds1

    ds3ds2m1

    ds3ds2mb2m2ds3ds2ds1

    ds3ds2m1

    ds3ds2

    ds3ds2mb2m2ds1

    m1

    a

    L

    a

    22

    a

    21a

    V

    +

    ++++

    +=

    ++++

    +=

    ++++

    =

    +

    =

    Assuming all gm are equal, and all gds are equal. In addition gm >>gmb, and gm>>gds.

    With a gain of 2 the miller capacitance Cgd1 of the common source stage is negligible.

    3

  • 8/2/2019 lect8_1

    4/29

    The overall gain is:

    ds

    m

    ds3ds2mb2m2ds3ds1ds2ds1

    ds2mb2m2m1

    ds3mb2m2ds3ds2ds3ds1ds2ds1

    ds3ds2m1

    ds3ds2

    ds2mb2m2a

    V

    b

    VV

    gg

    g)ggg(gggg)ggg(g-

    g)gg(gggggg

    )gg(g

    gg

    gggAAA

    ++++

    ++=

    ++++

    +

    +

    ++==

    The output impedance of the cascode amplifier is computed by obtaining the output impedance of the

    common source stage ( or the source impedance of the common gate stage) first. That is,

    ds1

    a

    22

    a

    S

    a

    22

    a

    a

    S

    a

    11b

    S

    a

    og

    1

    y

    1

    YydetY

    YyZZ ==

    +

    +==

    The result is obtained by dividing the numerator and denominator by YSa . The output impedance of the

    cascode is the output impedance of the common gate stage.

    ds1ds2m2ds2ds1ds1ds2mb2m2

    ds1ds2

    ds1ds2mb2m2

    b

    S

    b

    22

    b

    bSb11b

    o rrgrrrr)gg(gg

    ggggYydetY

    YyZ +++=+++=++=

    That is, the output impedance is equal to the output impedance, rds1 , of the first stage (common source)magnified by the gain, gm2rds2 , of the second stage (common gate ). The effective load is the parallel

    combination of output impedance of the cascode amplifier and the load.

    ds3ds3ds1ds2m2ds3ds2ds1ds1ds2mb2m2L

    b

    oo r)//rrrg(r//)rrrr)gg((Z//ZZ +++==The overall gain is approximately equal to :

    ds3m1om1V rgZgA =Although the output impedance has been magnified but the effective load impedance is determined by

    smaller impedance. That is, rds3.

    The overall gain of the cascode amplifier can be increased if we can increased rds3. This can be achieved byadding a cascode at the load. This is shown in Figure 3. Figure 4 shows its low frequency small signal

    equivalent circuit and its two-port representations and port variables assignment. There are three two-port

    networks. The Y-parameter matrices are derived as follows:

    The current equation of network a is:

    a

    2ds1

    a

    1m1

    a

    2

    a

    1

    VgVgI

    0I

    +=

    =

    The corresponding Y-parameter matrix is:

    4

  • 8/2/2019 lect8_1

    5/29

    =

    ds1m1

    a

    gg

    00Y

    The current equation of network b is:

    b

    2ds2

    b

    1ds2mb2m2

    b

    2

    b2ds2b1ds2mb2m2b1

    Vg)Vggg(I

    Vg-)Vggg(I

    +++=++=

    The corresponding Y-parameter matrix is:

    ++

    ++=

    ds2ds2mb2m2

    ds2ds2mb2m2b

    g)ggg(

    ggggY

    The current equation of network c is:

    c

    2ds3

    c

    1ds3mb3m3

    c

    2

    c

    2ds3

    c

    1ds3mb3m3

    c

    1

    Vg)Vggg(I

    Vg-)Vggg(I

    +++=

    ++=

    The corresponding Y-parameter matrix is:

    ++

    ++=

    ds3ds3mb3m3

    ds3ds3mb3m3c

    g)ggg(

    ggggY

    The output impedance of network b has been obtained earlier it is,

    ds1ds2m2ds2ds1ds1ds2mb2m2

    b

    o rrgrrrr)gg(Z +++=The output impedance of network c is computed as follows:

    ds4ds3m3ds4ds3ds4ds3mb3m3

    ds4ds3

    ds4ds3mb3m3

    c

    S

    c

    22

    c

    c

    S

    c

    11c

    o rrgrrrr)gg(gg

    gggg

    YydetY

    YyZ +++=

    +++=

    +

    +=

    The effective load impedance is the parallel compbination of the output impedance of network b and c.

    2

    rg//ZZZ

    2

    dsmc

    o

    b

    oo =

    Assuming all gm are equal and all gds are equal.

    5

  • 8/2/2019 lect8_1

    6/29

    Vo

    VDD

    M1

    (a)

    VG2

    Vi

    M2

    VG4

    VDD

    M3

    Vo

    ViM1

    (b)

    VG2

    M2

    M4

    VG3

    VDD- (|VTP0|+|V|)=

    VDD-(|VTP0|+|VTP3|+2|V|)=

    VTN0+VTN2+2V=

    VTN0+V=

    (|VTP0|+|V|)

    (|VTP3|+|V|)

    VTN2+V

    VTN0+V

    (7)

    (5)

    (1)

    (2)

    (4) VSS=0

    (8)

    (9)

    (3)

    (6)

    VDD

    VSS VSS

    Figure 3. Cascode amplifier with cascode current load.

    6

  • 8/2/2019 lect8_1

    7/29

    G1 D1

    S1

    S2 D2

    Vo

    -

    ++

    Vi

    -

    gds1

    gds2

    gds3

    gm1vgs1

    gm2VS2

    gmb2VS2

    +

    -

    VS2

    vgs2=-VS2; vbs2=-VS2

    gds4

    gm3VS3

    gmb3V3

    +

    VS3

    -

    Yd Yc

    Ya Yb

    D3S3D4

    S4

    Zob

    Ya YbVi

    +

    V1a

    V2a = V1

    b

    I1a I2

    bI2a I1

    b

    Zoc

    Zo

    +

    Vo

    -

    Yc

    +

    gds4

    Figure 4. Cascode amplifier with cascode load low frequency small signal equivalent circuit.

    7

  • 8/2/2019 lect8_1

    8/29

    2. High Frequency Small Signal Equivalent Circuit

    VDD

    Vo

    CL

    Vi

    M2

    M1

    Cgd1

    Cgs2

    Cdb1

    Csb2

    Cdb2Cgd2

    VG1

    VG2

    Cdb3Cgd3

    M3

    Cgs1

    Figure 5. Cascode amplifier parasitic capacitances.

    Figure 5 shows all the parasitic capacitances needed for high frequency modelling. Figure 6(a)

    shows the high frequency small signal equivalent circuit of cascode amplifier with simple current load.Figure 6(b) its two-port representation and port variables assignment.

    CCCCCC;CCCC;CC

    )0or Z(Y;CgYY

    Lgd3db3db2gd23sb2gs2db12gd11

    SS3ds3

    b

    LL

    ++++=++==

    ==+== s

    The input capacitance Cgs1 is assummed to be part of the input voltage source. Cgs1 is shorted out by theinput voltage source, it does not affect the circuit operation, hence can be ignored or deleted.. C3 is

    assummed to be part of the load. The current of the first stage (network a) is given by:

    a

    221ds1

    a

    11m1

    a

    2

    a

    21

    a

    11

    a

    1

    )]VC(Cg[)VC-g(I

    VCVCI

    +++=

    =

    ss

    ss

    8

  • 8/2/2019 lect8_1

    9/29

    S1

    G1 D1 S2 D2

    Vo

    +

    --

    gds1

    gds2 gds3

    +

    gm1vgs1

    gm2VS2

    gmb2VS2

    +

    -

    VS2

    vgs2=-VS2; vbs2=-VS2

    Zib

    Zob

    GLYa YbVi

    ++

    V1aV

    2

    a = V1

    b

    I1a I2

    bI2a I1

    b

    C1

    Cgs1C2 C3

    C2=Cdb1+Cgs2+Csb2 C3=Cgd2+Cdb2+Cdb3+Cgd3+CLC1=Cgd1

    Vi

    Figure 6. Cascode amplifier high frequency equivalent circuit.

    The corresponding Y-parameter matrix is:

    ++

    =

    )]C(Cg[C-g

    CCY

    21ds11m1

    11a

    ss

    ss

    The current equation of network b is:

    9

  • 8/2/2019 lect8_1

    10/29

    a

    2ds2

    a

    1ds2mb2m2

    b

    2

    a

    2ds2

    a

    1ds2mb2m2

    b

    1

    Vg)Vggg(I

    Vg-)Vggg(I

    +++=

    ++=

    The corresponding Y-parameter matrix is :

    ++++=

    ds2ds2mb2m2

    ds2ds2mb2m2b

    g)ggg(

    g-gggY

    The voltage gain of network b is:

    3ds3ds2

    ds2mb2m2

    b

    L

    b

    22

    b

    21b

    VCgg

    ggg

    Yy

    yA

    s++

    ++=

    +

    =

    The input impedance of network b or load of network a is:

    )C)(ggg(g

    Cgg

    YydetY

    YyZZ

    3ds3ds2mb2m2

    3ds3ds2

    b

    L

    b

    11

    b

    b

    L

    b

    22a

    L

    b

    is

    s

    +++

    ++=+

    +==

    The voltage gain of network a is:

    )C)(ggg(g)sCgg)()Cs(Cg(

    )sCg)(gsC-(g-

    sCgg

    )C)(ggg(g)Cs(Cg

    )sC-(g-

    Yy

    y-A

    3ds3ds2mb2m23ds3ds221ds1

    3ds3ds21m1

    3ds3ds2

    3ds3ds2mb2m221ds1

    1m1

    a

    L

    a

    22

    a

    21a

    V

    s

    s

    ++++++++

    ++=

    ++

    ++++++

    =+

    =

    The overall gain of the cascode amplifier is:

    10

  • 8/2/2019 lect8_1

    11/29

    )ggg(ggggc

    )ggg(gggg)g(gC)g(gC)ggg(gCb

    )ggg(gggg

    )C(CCa

    :where

    ]abc[1

    )gg)(gsC-(g-

    )C)(ggg(g)sCgg)()Cs(Cg(

    )gg)(gsC-(g-

    )C)(ggg(g)sCgg)()Cs(Cg(

    )sCg)(gsC-(g-

    Cgg

    ggg

    AAA

    ds2ds1mb2m2ds3ds2ds1

    ds2ds1mb2m2ds3ds2ds1

    ds3ds21ds3ds22mb2m2ds2ds13

    ds2ds1mb2m2ds3ds2ds1

    213

    2

    ds2mb2m21m1

    3ds3ds2mb2m23ds3ds221ds1

    ds2mb2m21m1

    3ds3ds2mb2m23ds3ds221ds1

    3ds3ds21m1

    3ds3ds2

    ds2mb2m2

    a

    V

    b

    VV

    ++++=

    ++++ +++++++=

    +++++

    =

    ++

    ++=

    ++++++++

    ++=

    ++++++++

    ++

    ++++

    =

    =

    ss

    s

    s

    s

    If the poles are far apart, it can be approximated as follows:

    |p||p|:wherepp

    1

    p

    11

    pp

    1

    p

    1

    p

    11

    p

    1

    p

    1ab1)D(

    12

    2

    211

    2

    212121

    2

    >>

    +

    +

    +=

    =++= ssss

    ss

    sss

    That is,

    21

    m2

    213

    ds3ds21ds3ds22mb2m2ds2ds132

    3

    ds3

    ds3ds21ds3ds22mb2m2ds2ds13

    ds2ds1mb2m2ds3ds2ds11

    CC

    g

    )C(CC

    ])g(gC)g(gC)ggg(gC[

    a

    bp

    C

    g

    )g(gC)g(gC)ggg(gC

    )]ggg(ggg[g-

    b

    1p

    +

    +

    +++++++=

    =

    +++++++

    ++++=

    =

    Note that the poles are associated with the inverse product of the resistance and capacitance of a node to

    ground. p1

    is associated with node D2 to ground, and p2is associated with D1 (or S2) to ground. The

    cascode amplifier also has a zero at the right half plane given by:

    1

    m11

    C

    gz =

    11

  • 8/2/2019 lect8_1

    12/29

    Cascode Amplifier Experiments

    3. Cascode Amplifier with Simple Current Load

    The biasing voltages will be determined by ignoring the effect of the bulk voltage on M2. Using

    the biasing principle discussed in the current sink/source section. The biasing requirement from Figure 1(b)

    are:

    5.2V|)5.1||1(|V|)V||V(|VV

    52(1.5)2(1)V2V2V

    2.51.51VVV

    DDDDTP0DDG3

    TNG2

    TN0bias

    =+=+=

    =+=+=

    =+=+=

    The output voltage dynamic range with the above biasing is:

    5.7VIf;6V4

    5.1VV42(1.5)1

    VVVV2V

    DDO

    DDO

    DDOTN

    =

    =+

    +

    52.57.52.5-VV DDG3 ===

    The effect of bulk bias on M2 on the output voltage will be considered next. The actual minimum output

    voltage will be determined. The threshold voltage of M2 is no longer equal to VT0, due to the present of the

    bulk bias.

    6V325.3

    25.35.175.1VVV

    1.5VV

    1.751.5-1.75-5VVVV

    75.1V

    iterationbyVforSove

    )VVV(VV

    VVVV

    )V(V)V(VV

    VV

    O

    DS2(min)DS1(min)O(min)

    DS2(min)

    TN2G2DS1(min)

    TN2

    TN2

    TN2G2T0TN2

    TN2G2DS1

    DS1TN0BS2TN0TN2

    DS1BS2

    =+=+=

    ==

    ===

    =

    ++=

    =

    ++=+==

    The bulk bias increases the output voltage dynamic range. Using the above biasing voltages, Pspice

    simulation is conducted to obtain the DC transfer characteristic curve. The Pspice netlist below is used toobtain the DC transfer characteristic.

    12

  • 8/2/2019 lect8_1

    13/29

    *PSpice file for NMOS Common Gate Amplifier with*PMOS Current Load*Filename="Lab3.cir"VIN 1 0 DC 2.5212VOLT AC 1VVDD 3 0 DC 7.5VOLTVSS 4 0 DC 0VOLTVG2 6 0 DC 5VOLTVG3 7 0 DC 5VOLTM1 5 1 4 4 MN W=9.6U L=5.4UM2 2 6 5 4 MN W=9.6U L=5.4UM3 2 7 3 3 MP W=25.8U L=5.4U

    .MODEL MN NMOS VTO=1 KP=40U+ GAMMA=1.0 LAMBDA=0.02 PHI=0.6+ TOX=0.05U LD=0.5U CJ=5E-4 CJSW=10E-10+ U0=550 MJ=0.5 MJSW=0.5 CGSO=0.4E-9 CGDO=0.4E-9.MODEL MP PMOS VTO=-1 KP=15U+ GAMMA=0.6 LAMBDA=0.02 PHI=0.6+ TOX=0.05U LD=0.5U CJ=5E-4 CJSW=10E-10+ U0=200 MJ=0.5 MJSW=0.5 CGSO=0.4E-9 CGDO=0.4E-9*Analysis.DC VIN 0 7.5 0.05.TF V(2) VIN

    .AC DEC 100 1HZ 10GHZ

    .PROBE

    .END

    The exact Vbias is determined by locating a point in the DC transfer characteristic curve with the highestslope. The AC small signal characteristic and operating node voltages are then obtained at this operating

    point. The Pspice node voltages at the operating point is given below:

    NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

    ( 1) 2.5212 ( 2) 4.6987 ( 3) 7.5000 ( 4) 0.0000

    ( 5) 1.7410 ( 6) 5.0000 ( 7) 5.0000

    The voltage at node 5 is 1.7410 which is reasonably closed to the calculated value of VDS1(min)=1.75. If weignore the bulk bias of M2 the calculated value is :

    2.51.51VVV TN0DS1(min) =+=+=

    The DC transfer characteristic curve is given below:

    13

  • 8/2/2019 lect8_1

    14/29

    Theoretical calculations of the small signal parameters are given below:

    36.355dbor65.756)(.495E6)-E79.132(RgA

    mho79.1326)-6)(101E-E3.87(2I2gg

    M495.6)-E101)(02(.

    1

    I

    1rR

    A1011)-0-26/2)(2.521-E3.87()V-V-V)(2/(I

    87.3uA/V4u)6)(9.6u/4.-E40((W/L)K

    outm1V0

    DSQN1m2m1

    DSQ

    ds3out

    22

    T0SSbiasN1DSQ

    2

    1NN1

    =======

    ====

    ===

    ===

    u

    u

    The Pspice results are:

    36.644dbor95.67A

    M5.R

    V0

    out

    =

    =

    **** SMALL-SIGNAL CHARACTERISTICS

    14

  • 8/2/2019 lect8_1

    15/29

    V(2)/VIN = -6.795E+01

    INPUT RESISTANCE AT VIN = 1.000E+20

    OUTPUT RESISTANCE AT V(2) = 5.000E+05

    4. Cascode Amplifier High Frequency Model Experiments

    The parasitic capacitances will be determined to check the theory against Pspice simulation

    results. The capacitances are determined at the operating point. The reverse bulk bias are first calculated atthe quiescent operating point.

    For M1

    VBD=V(4)-V(5)=0-1.7410=-1.7410

    VBS=0, bulk connected to source

    For M2

    VBD=V(4)-V(2)=0-4.6987=-4.6967VBS=V(4)-V(5)=0-1.7410=-1.7410

    For M3VBD=-(V(3)-V(2))=-(7.5-4.6987)=-2.8013

    The MATLAB program is invoked to obtain the parasitic capacitances.For M1,

    [CGS,CGD,CBD,CBS]=cap(9.6,5.4,-1.7410,0)

    CGS=23.2704fF, CGD=3.84fF, CGD=24.1791fF, CBS=61.84fF

    For M2,

    [CGS,CGD,CBD,CBS]=cap(9.6,5.4,-4.6987,-1.7410)CGS=23.2704fF, CGD=3.84fF, CGD=16.0715fF, CBS=38.2591fF

    For M3,

    [CGS,CGD,CBD,CBS]=cap(25.8,5.4,-2.8013,0)

    CGS=62.5392fF, CGD=10.32fF, CGD=47.956fF, CBS=152.02Ff

    In the simulation without specifying the area and perimeter of source and drain, only Cgs and Cgd areaccounted in computing the parasitic capacitances. These are calculatedbelow:

    C1=Cgd1=3.84fFC2=Cgs2=23.2704fF

    C3=Cgd2+Cgd3+CL=3.84fF+10.32fF+0=14.16fF

    15

  • 8/2/2019 lect8_1

    16/29

    19.1243.6238.15904.898E9

    E938.9tan-

    34.1E9

    9.38E9tan-90

    p

    wtan-

    z

    wtan-90PM

    G43.52

    E91.342zf

    E91.3415-E84.3

    6-E79.132

    C

    gz

    G7799.2

    E9898.4

    2

    pf

    E9898.415-E)2704.2384.3(

    6-E79.132

    CC

    gp

    G493.12

    E938.9

    2

    wf

    9.38E9E6)67.142)(75.65(wAw

    M7.222

    E667.142

    2

    wf

    E667.14215)-E6)(14.16E495.0(

    1

    Cr

    1pw

    1-1-

    2

    GBW1-GBW1-

    z

    1

    m1

    2p2

    21

    m22

    GBWGBW

    BWV0GBW

    BWBW

    3ds3

    1BW

    ==

    =

    =

    ===

    ===

    ===

    =+

    =

    +

    =

    ======

    ===

    ====

    In the Pspice simulation, if the PM is determined at the frequencywhere zero db gain occurs the result is:

    33.84PM

    @0dbG1fGBW

    =

    =

    This result seem to be quite different from the theoretical result of

    12.19PM

    G493.1fGBW

    =

    =

    The discrepancy occurs because the non-dominant pole p2=4.898E9 occurs

    before the gain bandwith product wGBW=9.38E9. The gain bandwidth

    calculation assume that the slope of 20db/dec is maintain before

    intersecting the zero db line. With p2 occuring before wGBW means thatthe slope becomes 40db/dec, causing it to intersect the zero db gainline sooner. If one extend the 20db/dec line in the Pspice simulation,this line will intersect the zero db gain axis at:

    1.53GM)496.22)(95.67(fAf BWV0GBW ===

    If the phase margin is determined at 1.53G, the result is 16.744 whichis closer to the theretical calculation of 12.19. That is, the

    16

  • 8/2/2019 lect8_1

    17/29

    theretical calculation will be in error if the non-dominant pole p2

    occurs before wGBW.

    17

  • 8/2/2019 lect8_1

    18/29

    The PM of 33.84 is rather low. For stability a PM of at least 60 isdesirable. Looking at the PM calculation, one can increase the PM bydecreasing w

    GBW. Increasing the value of capacitor C

    3will decrease w

    GBW

    while maintaining the value of p2. C

    3is a function of the load

    capacitance CL. One can compute the value of C

    Lneeded to achieve the

    desired PM. To illustrate this we will compute the value of CLfor a

    PM=80.

    First compute wGBW

    to achieve PM=80.

    G75.0w

    104.898E9

    wtan

    34.1E9

    wtan

    10p

    wtan

    z

    wtan

    80p

    wtan-

    z

    wtan-90PM

    GBW

    GBW1-GBW1-

    2

    GBW1-GBW1-

    2

    GBW1-GBW1-

    =

    =

    +

    =

    +

    =

    =

    The value of load capacitance is then calculated to achieve w

    GBW.

    18

  • 8/2/2019 lect8_1

    19/29

    168.87fF14.16fF-183.03fF14.16fF-.75E9)(.495E6)(0

    67.95fF16.14wr

    AC

    CfF16.14wr

    AC

    Cr

    1Aw

    GBWds3

    V0L

    L

    GBWds3

    V03

    3ds3

    V0GBW

    ====

    +==

    =

    The result of Pspice simulation with C

    Ladded shows that PM is now

    82.195.

    Filename=cascexp3.doc

    5. Cascode Amplifier With Cascode Current Load Experiments

    The derivation of the biasing circuit is shown in Figure 7. Thecomplete circuit is shown in Figure 8.

    19

  • 8/2/2019 lect8_1

    20/29

    MBP2

    MBP1

    (3) VDD

    (4) VSS

    (9)

    (8)

    IBP=101UA

    MBN2

    MBN1

    (7)

    (10)+Vin

    (1)

    IBN=101UA

    MBP2

    MBP1

    (9)

    (8)

    (3) VDD

    (4) VSS

    IBP=101UA

    MBN2

    MBN1

    (7)

    (10)+Vin

    (1)

    (9)

    (8)

    (a) (b)

    (c)

    Figure 7. Biasing circuit for the cascode amplifier with cascode load.

    20

  • 8/2/2019 lect8_1

    21/29

    MBP2

    MBP1

    (9)

    (8)

    (3) VDD=10

    (4) VSS=0

    MBN2

    MBN1

    (7)

    (10)+Vin

    (1)

    (9)

    (8)

    MBP4

    MBP3

    M4

    M3

    M2

    M1

    (2)

    (6)

    (5)

    Vo

    IBP

    Figure 8. Complete circuit of the cascode amplifier with cascode load.

    Netlist for the complete circuit of Figure 8 is shown below:

    *PSpice file for NMOS Common Gate Amplifier with*PMOS Current Load*Filename="Lab32b.cir"*All bulks are connected to supply rail.PARAM Wn=9.6U, Ln=5.4U.PARAM Wp=25.8U, Lp=5.4UVIN 1 10 DC 0VOLT AC 1VVDD 3 0 DC 10VOLTVSS 4 0 DC 0VOLT

    M1 5 1 4 4 NMOS1 W={Wn} L={Ln}M2 2 7 5 4 NMOS1 W={Wn} L={Ln}

    M3 2 8 6 3 PMOS1 W={Wp} L={Lp}M4 6 9 3 3 PMOS1 W={Wp} L={Lp}

    *Biasing circuitMBN1 10 10 4 4 NMOS1 W={Wn} L={Ln}MBN2 7 7 10 4 NMOS1 W={Wn} L={Ln}IBP 8 4 100UAMBP1 8 8 9 3 PMOS1 W={Wp} L={Lp}MBP2 9 9 3 3 PMOS1 W={Wp} L={Lp}MBP3 7 8 11 3 PMOS1 W={Wp} L={Lp}MBP4 11 9 3 3 PMOS1 W={Wp} L={Lp}

    21

  • 8/2/2019 lect8_1

    22/29

    .MODEL NMOS1 NMOS VTO=1 KP=40U+ GAMMA=1.0 LAMBDA=0.02 PHI=0.6+ TOX=0.05U LD=0.5U CJ=5E-4 CJSW=10E-10+ U0=550 MJ=0.5 MJSW=0.5 CGSO=0.4E-9 CGDO=0.4E-9.MODEL PMOS1 PMOS VTO=-1 KP=15U+ GAMMA=0.6 LAMBDA=0.02 PHI=0.6+ TOX=0.05U LD=0.5U CJ=5E-4 CJSW=10E-10+ U0=200 MJ=0.5 MJSW=0.5 CGSO=0.4E-9 CGDO=0.4E-9

    *Analysis.DC VIN -2.5 7.5 0.05.TF V(2) VIN.AC DEC 100 1HZ 10GHZ.PROBE.END

    NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

    ( 1) 2.4774 ( 2) 5.9211 ( 3) 10.0000 ( 4) 0.0000

    ( 5) 2.4774 ( 6) 7.5450 ( 7) 5.9211 ( 8) 4.4772

    ( 9) 7.5280 ( 10) 2.4774 ( 11) 7.5450

    The biasing voltages are obtained from the above table

    VG1=Vbias=V(10)=2.4774VG2=V(7)=5.9211

    VG3=V(8)=4.4772

    VG4=V(9)=7.5280

    The low frequency small signal parameters are:

    mho13.1326)-6)(100E-E3.87(2I2gg

    M5.6)-E100)(02(.

    1I1rr

    IuA100I

    87.3uA/V4u)6)(9.6u/4.-E40((W/L)K

    DSQN1m2m1

    DSQ

    ds2ds1

    BIASDSQ

    2

    1NN1

    u====

    ====

    ==

    ===

    22

  • 8/2/2019 lect8_1

    23/29

    2182.78)6)(16.52E6-E13.132(RgA

    M52.162

    0.5E6)6)(0.5E6)(-E13.132(

    2

    rrgR

    outm1V0

    ds1ds2m2out

    ===

    ===

    Pspice simulation results:**** SMALL-SIGNAL CHARACTERISTICS

    V(2)/VIN = -3.136E+03

    INPUT RESISTANCE AT VIN = -2.424E+19

    OUTPUT RESISTANCE AT V(2) = 2.342E+07

    23

  • 8/2/2019 lect8_1

    24/29

    6. Cascode Amplifier Design Example

    24

  • 8/2/2019 lect8_1

    25/29

    Design specification

    Given: AV>=10,000 Ro>=10MegFind: VDD, acceptable output voltage swing, and transistor sizing

    MBP2

    MBP1

    (9)

    (8)

    (3) VDD

    (4) VSS=0

    MBN2

    MBN1

    (7)

    (10)+Vin

    (1)

    (9)

    (8)

    MBP4

    MBP3

    M4

    M3

    M2

    M1

    (2)

    (6)

    (5)

    Vo

    IBP

    (11)

    V

    TN0

    +V

    VTN+V

    |VTP0|+|V|

    |VTP|+|V|

    VDD-(|VTP0|+|VTP|+2|V|)

    VTN0+VTN+2V

    Design Procedure

    umho1000M10

    10000

    R

    Ag

    R-gA

    O

    Vm1

    Om1V

    ===

    =

    OOPON

    OPONO

    2RRR

    //RRR

    ===

    M141.010000

    2M)10(

    A

    2R

    A

    R2

    g

    R2r

    rr;2RrgrrgR

    V

    O

    V

    2

    O

    m1

    O

    O1

    O2O1O

    2

    O1m1O1O2m2ON

    =====

    ===

    25

  • 8/2/2019 lect8_1

    26/29

    uA354M)141.0)(02.0(

    1

    r

    1I

    I

    1r

    O1

    DSQ

    DSQ

    O1

    ===

    =

    3.356)-6)(354E-2(40E

    6)-E1000(

    I2K

    gW/L)(W/L)(

    I(W/L)K2I2g

    2

    DSQN

    2

    m121

    DSQ1NDSQNm1

    ====

    ==

    708.06)(35.3)-E40(

    6)-E354(2

    (W/L)K

    2I2IV

    V)/2)(()V-/2)(V(I

    1N

    DSQDSQ

    22

    TGSDSQ

    ====

    ==

    Output voltage swing neglecting bulk to source effect

    e)(acceptablV5.7V;084.5V416.2

    )acceptable(notV5V;584.2V416.2

    416.2V))708(.21(VV416.2)708.0(21

    )V2V(VVV2V

    DDDD

    DDDD

    DDDDO

    T0PDDOT0N

    =

    =

    =+=+

    ++

    Designing for equal V orR=1

    13.94)3.35(5-15E

    6-40E(W/L)K

    KW/L)(W/L)( 1P

    N33 ====

    L3

    L282

    3

    313.94

    L

    W

    L

    W

    L

    W

    L3

    L9.105

    3

    33.35

    L

    W

    L

    W

    L

    W

    Peff

    P

    3

    3

    3

    3

    Neff

    N

    2

    2

    1

    1

    =

    ===

    =

    ===

    For Lambda L=0.6

    U3LL

    169.2U282(0.6U)L282W

    3U2.8U2(0.5U)3(0.6U)2LD3LLD2LL

    63.6U63.54U)105.9(0.6UL9.105W

    NP

    P

    NeffN

    N

    ==

    ===

    =+=+=+====

    26

  • 8/2/2019 lect8_1

    27/29

    *PSpice file for NMOS Common Gate Amplifier with

    *PMOS Current Load

    *Filename="Lab61.cir"

    *All bulks are connected to supply rail.PARAM Wn=63.6U, Ln=3U

    .PARAM Wp=169.2U, Lp=3U

    VIN 1 10 DC 0VOLT AC 1VVDD 3 0 DC 7.5VOLT

    VSS 4 0 DC 0VOLT

    M1 5 1 4 4 NMOS1 W={Wn} L={Ln}

    M2 2 7 5 4 NMOS1 W={Wn} L={Ln}

    M3 2 8 6 3 PMOS1 W={Wp} L={Lp}

    M4 6 9 3 3 PMOS1 W={Wp} L={Lp}

    *Biasing circuit

    MBN1 10 10 4 4 NMOS1 W={Wn} L={Ln}

    MBN2 7 7 10 4 NMOS1 W={Wn} L={Ln}IBP 8 4 354UA

    MBP1 8 8 9 3 PMOS1 W={Wp} L={Lp}MBP2 9 9 3 3 PMOS1 W={Wp} L={Lp}

    MBP3 7 8 11 3 PMOS1 W={Wp} L={Lp}MBP4 11 9 3 3 PMOS1 W={Wp} L={Lp}

    .MODEL NMOS1 NMOS VTO=1 KP=40U

    + GAMMA=1.0 LAMBDA=0.02 PHI=0.6

    + TOX=0.05U LD=0.5U CJ=5E-4 CJSW=10E-10+ U0=550 MJ=0.5 MJSW=0.5 CGSO=0.4E-9 CGDO=0.4E-9

    .MODEL PMOS1 PMOS VTO=-1 KP=15U

    + GAMMA=0.6 LAMBDA=0.02 PHI=0.6+ TOX=0.05U LD=0.5U CJ=5E-4 CJSW=10E-10

    + U0=200 MJ=0.5 MJSW=0.5 CGSO=0.4E-9 CGDO=0.4E-9

    *Analysis

    .DC VIN -2.5 7.5 0.05

    .TF V(2) VIN

    .AC DEC 100 1HZ 10GHZ

    .PROBE

    .END

    **** SMALL-SIGNAL CHARACTERISTICS

    V(2)/VIN = -1.268E+04

    INPUT RESISTANCE AT VIN = -1.318E+19

    OUTPUT RESISTANCE AT V(2) = 1.321E+07

    NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

    ( 1) 1.7334 ( 2) 4.2146 ( 3) 7.5000 ( 4) 0.0000

    ( 5) 1.7334 ( 6) 5.7694 ( 7) 4.2146 ( 8) 3.5826

    27

  • 8/2/2019 lect8_1

    28/29

    ( 9) 5.7657 ( 10) 1.7334 ( 11) 5.7694

    The circuit is simulated with VDD=5V to show that the resulting the cascode does not yield the desiredgain and output impedance. Replace the VDD line in the netlist to:

    28

  • 8/2/2019 lect8_1

    29/29

    VDD 3 0 DC 5VOLT

    **** SMALL-SIGNAL CHARACTERISTICS

    V(2)/VIN = -1.216E+01

    INPUT RESISTANCE AT VIN = 3.651E+18

    OUTPUT RESISTANCE AT V(2) = 1.285E+04

    NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

    ( 1) 1.7233 ( 2) 4.1910 ( 3) 5.0000 ( 4) 0.0000

    ( 5) 1.7233 ( 6) 4.3287 ( 7) 4.1910 ( 8) 1.0826

    ( 9) 3.2657 ( 10) 1.7233 ( 11) 4.3287