30
1 Lecture 3: Fundamentals of Sputter Deposition

Lecture 3: Fundamentals of Sputter Depositionsummerinstitute.mech.northwestern.edu/_links/_courses/Surface... · 2 Outline Sputtering yield ... energy threshold and increases rapidly

Embed Size (px)

Citation preview

Page 1: Lecture 3: Fundamentals of Sputter Depositionsummerinstitute.mech.northwestern.edu/_links/_courses/Surface... · 2 Outline Sputtering yield ... energy threshold and increases rapidly

1

Lecture 3:Fundamentals of Sputter Deposition

Page 2: Lecture 3: Fundamentals of Sputter Depositionsummerinstitute.mech.northwestern.edu/_links/_courses/Surface... · 2 Outline Sputtering yield ... energy threshold and increases rapidly

2

Outline

Sputtering yield• Linear cascade• Correction for threshold effect• Sputtering efficiency• Energy of sputtered atoms• Ion reflection

Sputtering systems• Conventional diode sputtering• Triode sputtering• Magnetron sputtering

•Discharge characteristics•Ion distribution at substrate•Reactive sputtering•Independent control of ion flux and ion energy

Page 3: Lecture 3: Fundamentals of Sputter Depositionsummerinstitute.mech.northwestern.edu/_links/_courses/Surface... · 2 Outline Sputtering yield ... energy threshold and increases rapidly

3

P. Sigmund, “Theory of Sputtering I. Sputtering Yield of Amorphous and Polycrystalline Targets,” Physical Review. 184, 383 (1969).

P.Sigmund, “Sputtering by ion bombardment: theoretical concepts”, in Sputtering by particle bombardment I, edited by R. Behrish, Springer-Verlag, 1981

HH Anderson and HL Bay, “Sputtering yield measurements”, in Sputtering by particle bombardment I, edited by R. Behrish, Springer-Verlag, 1981

G.K. Wehner and G.S. Anderson, “The Nature of Physical Sputtering” in Handbook of Thin Film Technology, edited by L.I. Maissel and R. Glang, McGraw-Hill, NY 1970.

J.L. Vossen and J.J. Cuomo, “Glow Discharge Sputter Deposition, “ in Thin Film Processes, edited by J.L. Vossen and W. Kern, Academic Press, NY 1978.

J.A. Thornton and A.S. Penfold, “Cylindrical Magnetron Sputtering,” in Thin Film Processes, edited by J.L. Vossen and W. Kern, Academic Press, NY 1978.

R.K. Waits, “Planar Magnetron Sputtering,” in Thin Film Processes, edited by J.L. Vossen and W. Kern, Academic Press, New York 1978.

B. Chapman, Glow Discharge Processes, Wiley Interscience, New York 1980.

J.A. Thornton and J.E. Greene, “Plasmas in Deposition Processes,” in Deposition Technologies for Films and Coatings, edited by R.F. Bunshah, Noayes Publications, Park Ridge, New Jersey 1994, p. 29.

S.M. Rossnagel, “Magnetron Plasma Deposition Processes,” in Handbook of Plasma Processing Technology, edited by S.M. Rossnagel, J.J. Cuomo, and W.D. Westwood Noyes Publications, Park Ridge, New Jersey 1990.

Bibliography

Page 4: Lecture 3: Fundamentals of Sputter Depositionsummerinstitute.mech.northwestern.edu/_links/_courses/Surface... · 2 Outline Sputtering yield ... energy threshold and increases rapidly

4

Ion surface interactions

Positive ions are returned by the electric field

Inelastic Effects

Ion beam with an energy Ei+I

Implanted ParticlesI0

UV/visible photons

X-rays

SecondaryElectrons

Acceleratedby the field

Sputtered ParticlesT0, T*, Tn

Reflected ParticlesI0,I*

Elastic Effects

T+, I+

Target

T-, I-

Acceleratedby the field

Negative Ions

Figure after G.M. McCracken, Rep. Prog Phys. 28, 241 (1975).

Page 5: Lecture 3: Fundamentals of Sputter Depositionsummerinstitute.mech.northwestern.edu/_links/_courses/Surface... · 2 Outline Sputtering yield ... energy threshold and increases rapidly

5

Collision Cascade

P.Sigmund, “Sputtering by ion bombardment: theoretical concepts”, in Sputtering by particle bombardment I, edited by R. Behrish, Springer-Verlag, 1981

• Ions striking a surface interact with a number of atoms in a series collisions.• recoiled target atoms in turn collide with atom at rest generating a collision cascade.• The initial ion energy and momentum are distributed to among the target recoil atoms. • When Ei > 1 keV, the cascade is “linear”, i.e. approximated by a series of binary collisions in a stationary matrix.

Threshhold regimerecoils sputtered, butno (limited) cascades

Energy increasing (dependent on Mi/Mt)

Linear cascadea series of binary collisions

Spike regimehigh density of recoils

Page 6: Lecture 3: Fundamentals of Sputter Depositionsummerinstitute.mech.northwestern.edu/_links/_courses/Surface... · 2 Outline Sputtering yield ... energy threshold and increases rapidly

6

Stopping cross section

P.Sigmund, “Sputtering by ion bombardment: theoretical concepts”, in Sputtering by particle bombardment I, edited by R. Behrish, Springer-Verlag, 1981

[ ]( )( )) (en S EdE N N SS E Edx

= − = − +

0

'( ')

E dERangeNS E

= ∫

Sn(E)Se(E)

Page 7: Lecture 3: Fundamentals of Sputter Depositionsummerinstitute.mech.northwestern.edu/_links/_courses/Surface... · 2 Outline Sputtering yield ... energy threshold and increases rapidly

7

SRIM/TRIM simulation

James F. Ziegler, IBM : http://www.srim.org/

1 keV Ar -> Be

Monte-Carlo simulation of ion implantation, reflection, recoil cascades, and sputtering

1 keV Ar -> Ti

1 keV Ar -> W

2 impacts

200 impacts

ion trajectories in redrecoils in green

Page 8: Lecture 3: Fundamentals of Sputter Depositionsummerinstitute.mech.northwestern.edu/_links/_courses/Surface... · 2 Outline Sputtering yield ... energy threshold and increases rapidly

8

Sputtering Yield (Y)

Sputtering begins at an energy threshold and increases rapidly. As the energy increases the curve levels off.

Spu

tterin

g Y

ield

(Ato

ms/

ion)

0

1

2

3

4

Ion Energy (eV)0 100 200 300 400 500 600

Sputteringwith Argon

Ag

Co

TiC

Target

Cu

Data from R.Y. Stuart and G.K. Wehner, J. Appl. Phys. 33, 2351 (1962); D. Rosenberg and G.K. Wehner, J. Appl. Phycs. 33, 1842 (1962); and R. Behrisch, Exakt. Naturw. 35, 295 (1964).

Page 9: Lecture 3: Fundamentals of Sputter Depositionsummerinstitute.mech.northwestern.edu/_links/_courses/Surface... · 2 Outline Sputtering yield ... energy threshold and increases rapidly

9

0.0

0.5

1.0

Sigmund’s linear cascade formula for Y(E)

0.04( )Y EU

= t i nα( /M )SM (E)

85 i t in n2 2 0.53 3 t ii t

Z Z MS (E) = s (ε)M + M(Z + Z )

2 2 0.53 3

0.03255

( )t

t ii t i t

M EM MZ Z Z Z

ε =++

3.441 ln( 2.718)( )1 6.355 (6.882 1.708)ns

ε εεε ε ε

+=

+ + −

α - dimensionless coefficientSn(E), collisional energy at the surface (nuclear energy loss function)U – sublimation energy

sn(ε) – function of the reduced energy which is the same for all ion-target combination

P. Sigmund, Physical Review. 184, 383 (1969)

0.730.1+0.155( )t iM /Mα

Mt/Mi

1 100.1

Page 10: Lecture 3: Fundamentals of Sputter Depositionsummerinstitute.mech.northwestern.edu/_links/_courses/Surface... · 2 Outline Sputtering yield ... energy threshold and increases rapidly

10

2

2

3( ) ( / )4

4( )

t i

t i

t i

EY E M MU

M MM M

γαπ

γ

=

=+

0.1 < E < 1kV, Sigmund derives a remarkably simple formula

102 103 104 105 1061E-3

0.01

0.1

1

Sigmund, full Sigmund, short experiment

Ar -> W

Yie

ld (a

tom

/ion)

Ion energy (eV)

HH Anderson and HL Bay, “Sputtering yield measurements”, in Sputtering by particle bombardment I, edited by R. Behrish, Springer-Verlag, 1981

Page 11: Lecture 3: Fundamentals of Sputter Depositionsummerinstitute.mech.northwestern.edu/_links/_courses/Surface... · 2 Outline Sputtering yield ... energy threshold and increases rapidly

11

20.50.04( ) ( / ) ( ) 1

1 ( )

THt i n

T

e

EY E M M QS EU E

qQs

α

ε

= −

=+

0.1 1 101

10

THEU

( )

20.8341.5 1+1.38 i tM /Mγ

Y. Yamamura et al, Rad.Eff.,11 65 (1983)I. Petrov et al, Bulg.J.Phys., 18 3 (1991)

Sputtering Threshold (ETH)

Sputtering begins at an energy threshold that depends on the efficiency of momentum transfer to the target. This depends on the mass match. It also depends on the surface binding energy of atoms in the target.

Y. Yamamura et al introduced a correction for ETH

102 103 104 105 1061E-3

0.01

0.1

1

Ar -> W

Sigmund, full Sigmund, short Yamamura experiment

Yie

ld (a

tom

/ion)

Ion energy (eV)

8.5(Mt /Mi )-1/3

Mt /Mi

Page 12: Lecture 3: Fundamentals of Sputter Depositionsummerinstitute.mech.northwestern.edu/_links/_courses/Surface... · 2 Outline Sputtering yield ... energy threshold and increases rapidly

12

10 100 1000

0.01

0.1

1Ar -> Ni

I N O T

Yiel

d

Ion energy (eV)

100 1000

0.01

0.1

1Kr -> Be

Sigmund Eqn. A experiment Yamamura

Yiel

d

Ion energy (eV)

100 1000

0.01

0.1

1Ar -> W

Sigmund Eqn. A experiment Yamamura

Yiel

dIon energy (eV)

100 1000

0.01

0.1

1Ar -> Al

Sigmund Eqn. A experiment Yamamura

Yiel

d

Ion energy (eV)

( ) ( )( )

20.5 0.5 0.50.5

2 2 0.50.53 3

1.8( ) ( / ) 11 /( )

i t i t THt i

t ii t

Z Z M M EY E M M EU EM MZ Z

α = − ++

2

2

3( ) ( / )4

4( )

t i

t i

t

EY E M MU

M MM M

γαπ

γ

=

=+

“Simple” Y(E) formula for E < 1 keV , Mi > 15 amu

Eqn. A

Page 13: Lecture 3: Fundamentals of Sputter Depositionsummerinstitute.mech.northwestern.edu/_links/_courses/Surface... · 2 Outline Sputtering yield ... energy threshold and increases rapidly

13

Energy efficiency of sputtering

10 100 1000

100

10-1

10-2

101

Kr

HeXeAr

Ne

Cu targetPower of the ion beam - Pion flux = J*E

Power used for sputtering - Psp=U*J*Y(E)

Sputtering efficiency η = Psp/ Pion flux

η = U*Y(E)/E

Yamamura formula: ηmax at E=7*Eth

For ≤ ≤ ≥TH TH max3E E 10E ,η 0.8η

0.1 1 101

10

THEU

Energy (eV)

Y(E

)/E

target ionM /M

Typical example:

U = 4 eV, ETH = 30 eV, ηmax at E=210 eV0.8 ηmax E = 90 – 300 eV

max0.8η

Page 14: Lecture 3: Fundamentals of Sputter Depositionsummerinstitute.mech.northwestern.edu/_links/_courses/Surface... · 2 Outline Sputtering yield ... energy threshold and increases rapidly

14

η Armax

Target atomic number ZT

Target atomic number ZT

ηη

Ne,Kr,Xemax

Armax

I. Petrov et al, Bulg.J.Phys., 18 3 (1991)

10-3

10-2

10-1

0 20 40 60 80 100

Energy efficiency of sputtering

The maximum sputtering efficiency between 0.5 and 5 %

Ar provides high sputtering efficiency for a large number of metal targets (from Al to La)Ne has ~ 20% advantage for Be and CKr ~ 40-60% advantage for targets heavier than Ta

Page 15: Lecture 3: Fundamentals of Sputter Depositionsummerinstitute.mech.northwestern.edu/_links/_courses/Surface... · 2 Outline Sputtering yield ... energy threshold and increases rapidly

15

Energy of Sputtered Particles

Sputtered atom energy has a maximum at ~ U/2 (several eV) and tail extending to tens and hundreds of eV, depending on the ion energy.

Energy (Thompson) distribution:

12

3 3( ) 1( ) ( )ion

E E U EF EE U E E Uγ

+ ∝ − ≈ + +

Page 16: Lecture 3: Fundamentals of Sputter Depositionsummerinstitute.mech.northwestern.edu/_links/_courses/Surface... · 2 Outline Sputtering yield ... energy threshold and increases rapidly

16

Sputtering Yield: Other Species

Distribution of types of sputtered species:[Example for Ar sputtering of Cu]

Single atoms sputtered 100

Diatoms 1

Resputtered trapped gas 5

Single ions 0.1

Diatomic ions 0.001

Reflected incident species 3

Secondary electrons 10

++

Page 17: Lecture 3: Fundamentals of Sputter Depositionsummerinstitute.mech.northwestern.edu/_links/_courses/Surface... · 2 Outline Sputtering yield ... energy threshold and increases rapidly

17

Reflection of Primary Ions

0 1 2 3 4 50

20

40

60

80

100

120

140

PtW

Au Pb

Mo

Sn

Ti

Alaver

age

refle

cted

ion

ener

gy, e

V

Mtarget/Mion

1 2 3 4 5

1E-3

0.01

0.1

1

PtW

Au Pb

Mo Sn

Ti

Al

refle

ctio

n co

effic

ient

Mtarget/Mion

Incident ions may be reflected from the target surface.Reflection coefficient = #reflected ion/#incident ion

Case study: TRIM simulation of 500 eV Ar ion scattering

Both reflection coefficient and the average energy of the reflected ions increasewhen the target atom is heavier than the ion

Page 18: Lecture 3: Fundamentals of Sputter Depositionsummerinstitute.mech.northwestern.edu/_links/_courses/Surface... · 2 Outline Sputtering yield ... energy threshold and increases rapidly

18

Reflection of Primary Ions, cont.Incident ions may be reflected from the target surface.Reflection coefficient = #reflected ion/#incident ion

Both reflection coefficient and the average energy of the reflected ions for a given target decrease when heavier ions are used.

Case study: TRIM simulation of 500 eV , Xe, Ar, and N ion scattering

10 20 30 40 50 60 70 80 900

20406080

100120140160180200220240

N

Ar

XeAve

rage

ene

rgy,

eV

Atomic number, Z10 20 30 40 50 60 70 80 90

1E-3

0.01

0.1

Xe

ArN

Bac

ksca

ttred

ions

yie

ld, i

ons/

ion

Atomic number, Z

Page 19: Lecture 3: Fundamentals of Sputter Depositionsummerinstitute.mech.northwestern.edu/_links/_courses/Surface... · 2 Outline Sputtering yield ... energy threshold and increases rapidly

19

Reflection of Primary Ions, cont.

Case study: TRIM simulation of 500 eV , Xe, Ar, and N ion scattering

A significant fraction of the incident ion energy (> 10%) is reflected back when ions are much lighter than the target atoms

1 101E-5

1E-4

1E-3

0.01

0.1

1

10

500 eV N ions 500 eV Ar ions 500 eV Xe ions

% o

f ref

lect

ed io

n en

ergy

Mtarget/Mion

Page 20: Lecture 3: Fundamentals of Sputter Depositionsummerinstitute.mech.northwestern.edu/_links/_courses/Surface... · 2 Outline Sputtering yield ... energy threshold and increases rapidly

20

Variations of sputtering systemsMagnetron sputtering

Unbalanced magnetrons

Page 21: Lecture 3: Fundamentals of Sputter Depositionsummerinstitute.mech.northwestern.edu/_links/_courses/Surface... · 2 Outline Sputtering yield ... energy threshold and increases rapidly

21

H O2

H O2SUBSTRATE HEATER

SU

BST

RAT

E rf

OR

dc

BIA

S

PUMPINGSYSTEM

DARK SPACE SHIELD

HIG

H V

OLT

AG

E

DC

(RF)

SU

PPLY

TARGET

PR

ES

SU

RE

GA

UG

ES

FLO

WC

ON

TRO

L SPUTTERING GAS

PLASMA

SHUTTER

Diode sputter deposition systemComponents and typical parameters

VT ~ 2-5 kV JT ~ 1 mA/cm2

p ~ 50-80 mTorrλ << dTS

Page 22: Lecture 3: Fundamentals of Sputter Depositionsummerinstitute.mech.northwestern.edu/_links/_courses/Surface... · 2 Outline Sputtering yield ... energy threshold and increases rapidly

22

VT ~ 1 kV JT ~ 5 mA/cm2

p ~ 10-20 mTorrλ ~ dTS

Triode sputter deposition systemComponents and typical parameters

Independent control of ion flux and energyThe presence of a hot filament hampers reactive deposition

Page 23: Lecture 3: Fundamentals of Sputter Depositionsummerinstitute.mech.northwestern.edu/_links/_courses/Surface... · 2 Outline Sputtering yield ... energy threshold and increases rapidly

23

Triode sputter deposition systemComponents and typical parameters

VT ~ 0.3-0.5 kV JT ~ 10-100 mA/cm2

p ~ 2-20 mTorrλ > dTS,,, λ < dTS

ExB field near target enhances ionization efficiency, thus reducing both VT and p

Page 24: Lecture 3: Fundamentals of Sputter Depositionsummerinstitute.mech.northwestern.edu/_links/_courses/Surface... · 2 Outline Sputtering yield ... energy threshold and increases rapidly

24

ExB configurations

J.A. Thornton and A.S. Penfold, “Cylindrical Magnetron Sputtering,” in Thin Film Processes, edited by J.L. Vossen and W. Kern, Academic Press, NY 1978.

Page 25: Lecture 3: Fundamentals of Sputter Depositionsummerinstitute.mech.northwestern.edu/_links/_courses/Surface... · 2 Outline Sputtering yield ... energy threshold and increases rapidly

25

Magnetron discharge characteristics

0 GThornton, cylindrical magnetrons

J.A. Thornton and A.S. Penfold, “Cylindrical Magnetron Sputtering,” in Thin Film Processes, edited by J.L. Vossen and W. Kern, Academic Press, NY 1978.

Page 26: Lecture 3: Fundamentals of Sputter Depositionsummerinstitute.mech.northwestern.edu/_links/_courses/Surface... · 2 Outline Sputtering yield ... energy threshold and increases rapidly

26

DC magnetron discharge characteristics

I. Petrov, I. Ivanov, V. Orlinov, and J.E. Sundgren, J. Vac. Sci. Technol, 11 2733 (1993)

800

700

600

500

400

300

200

Ar

XeKr

Ne

V (V

) T

0.1 1 10p (Pa)

0 0.5 1 1.5

800

600

400

200

Ar

XeKr

Ne

I (A)T

V (V

) T

p = 1 Pa (7.5 mTorr)IT = 0.3 A

Example: 50 mm Vanadium target, planar magnetron

Page 27: Lecture 3: Fundamentals of Sputter Depositionsummerinstitute.mech.northwestern.edu/_links/_courses/Surface... · 2 Outline Sputtering yield ... energy threshold and increases rapidly

270.1 1 10

p (Pa)

Ar

XeKr

Ne

0.2

0.4

0.6

0.8

1.0

0

Thermal

Balistic

Frac

tion

Ar

XeKr

Ne0.1

0.01

0.001

R

/R

Dep

spR

/R

D

epsp

0.1

0.01

0.001

Ar

XeKr

Ne

I. Petrov, I. Ivanov, V. Orlinov, and J.E. Sundgren, J. Vac. Sci. Technol, 11 2733 (1993)

Thermalization of sputtered species

In typical pressure range for magnetronsputter deposition, both collisionless anddiffusive transport are effective

Page 28: Lecture 3: Fundamentals of Sputter Depositionsummerinstitute.mech.northwestern.edu/_links/_courses/Surface... · 2 Outline Sputtering yield ... energy threshold and increases rapidly

28

0.01 0.02 0.05 0.1 0.2 0.5 1

0.01 0.02 0.05 0.1 0.2 0.5 1Nitrogen fraction, fN2

1.4

14

1.2

0.12

12

1.0

0.10

10

0.8

0.08

8

0.6

0.06

6

0.4

0.04

0.2

0.02

24

0.0

0.00

0

N/T

i

(d)

∆P

(mTo

rr)to

tTa

rget

Vol

tage

, V (V

)T

500

450

350

400

300

Target = Tip = 3 mTorrI = 0.2 A

Ti

T

(a)

(b)

(c)

Ti fl

ux, J

(10

cm

s )

Ti14

-2-1

0.01 0.02 0.05 0.1 0.2 0.5 1

0.01 0.02 0.05 0.1 0.2 0.5 1Nitrogen fraction, fN2

5

10

8

7

9

4

8

3

6

7

2

5

6

1

0

4

5

J / J

i

Ti(d)

6

5

3

4

2

Target = Tip = 3 mTorrI = 0.2 A

Ti

T

(a)

(b)

(c)

J (

10 c

m s

)i

14-2

-1

(10

cm

)

n

e11

-3T

(eV)

e

Reactive sputtering

I. Petrov, A. Myers, J.E. Greene, and J.R. Abelson, JVST A 12, 2846 (1994)

Page 29: Lecture 3: Fundamentals of Sputter Depositionsummerinstitute.mech.northwestern.edu/_links/_courses/Surface... · 2 Outline Sputtering yield ... energy threshold and increases rapidly

29

Ion distribution at the substrate

0.01 0.1 110-6

10-5

10-4

10-3

10-2

10-1

100

TiN+

N2+

N+

Ti+

Ti TargetPT = 3 mTorrIT = 0.2A

Ar2+

Ar+

Rel

ativ

e io

n flu

xes

fN2

I. Petrov, A. Myers, J.E. Greene, and J.R. Abelson, JVST A 12, 2846 (1994)

Ti

Thompson

Ar+

Ti+

Vbias

Page 30: Lecture 3: Fundamentals of Sputter Depositionsummerinstitute.mech.northwestern.edu/_links/_courses/Surface... · 2 Outline Sputtering yield ... energy threshold and increases rapidly

30

Independent control of ion flux and ion energy

Ei = e(Vplasma - Vbias)Ji = f(Bext)

I. Petrov, F. Adibi, J.E. Greene, W.D. Sproul, and W.-D. Münz, JVST A10, 3283 (1992).