20
12/4/2017 1 Lecture 5a Slide 1 EE 5337 Computational Electromagnetics Lecture #5a Scattering Matrices for Semi‐Analytical Methods These notes may contain copyrighted material obtained under fair use rules. Distribution of these materials is strictly prohibited Instructor Dr. Raymond Rumpf (915) 747‐6958 [email protected] Outline Scattering matrix for a single layer Multilayer structures Longitudinally periodic structures Dispersion analysis Alternatives to scattering matrices Lecture 5a Slide 2

Lecture 5a -- Scattering Matrices - University of …emlab.utep.edu/ee5390cem/Lecture 5a -- Scattering... · 2017-12-04 · 12/4/2017 1 Lecture 5a Slide 1 EE 5337 Computational Electromagnetics

Embed Size (px)

Citation preview

Page 1: Lecture 5a -- Scattering Matrices - University of …emlab.utep.edu/ee5390cem/Lecture 5a -- Scattering... · 2017-12-04 · 12/4/2017 1 Lecture 5a Slide 1 EE 5337 Computational Electromagnetics

12/4/2017

1

Lecture 5a Slide 1

EE 5337

Computational Electromagnetics

Lecture #5a

Scattering Matrices for Semi‐Analytical Methods These notes may contain copyrighted material obtained under fair use rules.  Distribution of these materials is strictly prohibited  

InstructorDr. Raymond Rumpf(915) 747‐[email protected]

Outline

• Scattering matrix for a single layer

• Multilayer structures

• Longitudinally periodic structures

• Dispersion analysis

• Alternatives to scattering matrices

Lecture 5a Slide 2

Page 2: Lecture 5a -- Scattering Matrices - University of …emlab.utep.edu/ee5390cem/Lecture 5a -- Scattering... · 2017-12-04 · 12/4/2017 1 Lecture 5a Slide 1 EE 5337 Computational Electromagnetics

12/4/2017

2

Lecture 5a Slide 3

Scattering Matrix for a Single Layer

R. C. Rumpf, “Improved Formulation of Scattering Matrices for Semi‐Analytical Methods That is Consistent with Convention,” PIERS B, Vol. 35, pp. 241‐261, 2011.

Lecture 5a Slide 4

Motivation for Scattering Matrices

Scattering matrices offer several important features and benefits:

• Unconditionally stable method.• Parameters have physical meaning.• Parameters correspond to those measured in the lab.• Can be used to extract dispersion.• Very memory efficient.• Can be used to exploit longitudinal periodicity.•Mature and proven approach.•Much greater wealth of literature available.

However, excellent alternatives to S‐matrices do exist!

Page 3: Lecture 5a -- Scattering Matrices - University of …emlab.utep.edu/ee5390cem/Lecture 5a -- Scattering... · 2017-12-04 · 12/4/2017 1 Lecture 5a Slide 1 EE 5337 Computational Electromagnetics

12/4/2017

3

Lecture 5a Slide 5

Geometry of a Single Layer

thfield within layeri z i ψth

th

mode coefficients inside layer

mode coefficients outside layer

i

i

i

i

c

c

Indicates a point that lies on an interface, but associated with a particular side.

0iψ

0iψ

iL

i

i

c

c

0i ik Lψ

0i ik Lψ

2

2

c

c1

1

c

c

i iz ψ

i iz ψ

Medium 1 Layer i Medium 2

z

Lecture 5a Slide 6

Definition of A Scattering Matrix

11 121 1

21 222 2

S Sc c

S Sc c11

21

reflection

transmission

S

S

This is consistent with network theory and experimental convention.

Page 4: Lecture 5a -- Scattering Matrices - University of …emlab.utep.edu/ee5390cem/Lecture 5a -- Scattering... · 2017-12-04 · 12/4/2017 1 Lecture 5a Slide 1 EE 5337 Computational Electromagnetics

12/4/2017

4

Lecture 5a Slide 7

Field Relations

Field inside the ith layer:

,

,

,

,

i i

i i

x i i

zy i i i i i

i i zx i i i i i

y i i

E z

E z ez

H z e

H z

λ

λ

W W c0ψ

V V c0

Boundary conditions at the first interface:

1

1 1 1

1 1 1

0i

i i i

i i i

ψ ψ

W WW W cc

V VV V cc

Boundary conditions at the second interface:

0

0

0 2

2 2 2

2 2 2

i i

i i

i i

k Li i i

k Li i i

k L

e

e

λ

λ

ψ ψ

W W W Wc c0

V V V Vc c0

Note: k0 has been incorporated to normalize Li.

Lecture 5a Slide 8

Derivation of the Scattering Matrix

1

1 1 1

1 1 1

i ii

i ii

W W W Wc c

V V V Vc c

0

0

1

2 2 2

2 2 2

i i

i i

k Li ii

k Li ii

e

e

λ

λ

W W W Wc c0

V V V Vc c0

Solve both boundary condition equations for the intermediate mode coefficients       and     .i

c ic

Both of these equations have the term1 1 1

1 1

1

2j j ij iji i ij i j i j

j j ij iji i ij i j i j

W W A BW W A W W V V

V V B AV V B W W V V

We set substitute this result into the first two equations and then set them equal to eliminate the intermediate mode coefficients.

0

0

1 1 2 21 2

1 1 2 21 2

1 1

2 2

i i

i i

k Li i i i

k Li i i i

e

e

λ

λ

A B A Bc c0

B A B Ac c0

We write this as two matrix equations and rearrange the terms until they have the form of a scattering matrix.

1 1

2 2

? ?

? ?

c c

c c

See HW2

Page 5: Lecture 5a -- Scattering Matrices - University of …emlab.utep.edu/ee5390cem/Lecture 5a -- Scattering... · 2017-12-04 · 12/4/2017 1 Lecture 5a Slide 1 EE 5337 Computational Electromagnetics

12/4/2017

5

Lecture 5a Slide 9

The Scattering Matrix

The scattering matrix Si of the ith

layer is defined as:

After some algebra, the components of the scattering matrix are computed according to

1 1

2 2

i

c cS

c c

11 12

21 22

i ii

i i

S SS

S S

1 1

1 1

ij i j i j

ij i j i j

A W W V V

B W W V V

0i ik Li e λX

11 111 1 2 2 1 2 2 1 1

11 112 1 2 2 1 2 2 2 2

11 121 2 1 1 2 1 1 1 1

11 122 2 1 1 2 1 1 2 2

ii i i i i i i i i i i i

ii i i i i i i i i i i

ii i i i i i i i i i i

ii i i i i i i i i i i i

S A X B A X B X B A X A B

S A X B A X B X A B A B

S A X B A X B X A B A B

S A X B A X B X B A X A B

i is the layer number.j is either 1 or 2 depending on which external medium is being referenced.

iS

Lecture 5a Slide 10

Scattering Matrices in the Literature

For some reason, the computational electromagnetics community has: (1) deviated from convention, and (2) formulated inefficient scattering matrices.

1ic

1ic

ic

ic

11 121

21 22 1

i i

i i

S Sc c

S Sc c

12S

11S

21S

22S

reflection

transmission

• Here s11 is not reflection.  Instead. it is backward transmission!

• Here s21 is not transmission.  Instead, it is a reflection parameter!

• Scattering matrices can not be interchanged.• Scattering matrices are not symmetric so they take twice the memory to store and are more time‐consuming to calculate.

R. C. Rumpf, "Improved formulation of scattering matrices for semi‐analytical methods that is consistent with convention," PIERS B, Vol. 35, 241‐261, 2011.

Page 6: Lecture 5a -- Scattering Matrices - University of …emlab.utep.edu/ee5390cem/Lecture 5a -- Scattering... · 2017-12-04 · 12/4/2017 1 Lecture 5a Slide 1 EE 5337 Computational Electromagnetics

12/4/2017

6

Lecture 5a Slide 11

Limitation of Conventional S‐Matrix Formulation

Note that the elements of a scattering matrix are a function of materials outside of the layer.

For example, there are only three unique layers in the multilayer structure below, yet 20 separate computations of scattering matrices are needed.

Three unique layers

20 layer stack

This makes it difficult to interchange scattering matrices arbitrarily.

Lecture 5a Slide 12

Solution

To get around this, we will surround each layer with external regions of zero thickness.  This lets us connect the scattering matrices in any order because they all calculate fields that exist outside of the layers in the same medium.  This will have no effect electromagnetically as long as we make the external regions have zero thickness between layers.

iL

Layer iGap Medium Gap Medium

Page 7: Lecture 5a -- Scattering Matrices - University of …emlab.utep.edu/ee5390cem/Lecture 5a -- Scattering... · 2017-12-04 · 12/4/2017 1 Lecture 5a Slide 1 EE 5337 Computational Electromagnetics

12/4/2017

7

Lecture 5a Slide 13

Visualization of the Technique

Three unique layers

We calculate the scattering matrices for just the unique layers.

Then we just manipulate these same three scattering matrices to “build” the global scattering matrix.

Gaps between the layers are made to have zero thickness so they have no effect electromagnetically.

Faster! Simpler! Less memory needed!

Lecture 5a Slide 14

Revised Geometry of a Single Layer

0iψ

0iψ

iL

i

i

c

c

0i ik Lψ

0i ik Lψ

2

2

c

c1

1

c

c

i iz ψ

i iz ψ

Layer iGap Medium Gap Medium

r,g

r,g

r,g

r,g

same medium

Page 8: Lecture 5a -- Scattering Matrices - University of …emlab.utep.edu/ee5390cem/Lecture 5a -- Scattering... · 2017-12-04 · 12/4/2017 1 Lecture 5a Slide 1 EE 5337 Computational Electromagnetics

12/4/2017

8

Lecture 5a Slide 15

Calculating Revised Scattering Matrices

The scattering matrix Si of the ith

layer is still defined as:

But the equations to calculate the elements reduce to

1 1

2 2

i

c cS

c c

11 12

21 22

i ii

i i

S SS

S S

1 1g g

1 1g g

i i i

i i i

A W W V V

B W W V V

0i ik Li e λX

11 111

11 112

21 12

22 11

ii i i i i i i i i i i i

ii i i i i i i i i i i

i i

i i

S A X B A X B X B A X A B

S A X B A X B X A B A B

S S

S S

• Layers are symmetric so the scattering matrix elements have redundancy.• Scattering matrix equations are simplified.• Fewer calculations.• Less memory storage.

iS

Lecture 5a Slide 16

Layers in TMM are Actually Four‐Port NetworksWe have written the scattering matrices as 22 block matrices.

11 12

21 22

S S

S S

For TMM, this actually expands to a 44 element scattering matrix.

11 12 13 14

21 22 23 2411 12

31 32 33 3421 22

41 42 43 44

13 1411 1211 12

23 2421 22

33 3431 3221 22

43 4441 42

s s s s

s s s s

s s s s

s s s s

s ss s

s ss s

s ss s

s ss s

S S

S S

S S

S S

Each mode provides an I/O mechanism and there are two modes on each side in each direction.

1

2

3

4

Page 9: Lecture 5a -- Scattering Matrices - University of …emlab.utep.edu/ee5390cem/Lecture 5a -- Scattering... · 2017-12-04 · 12/4/2017 1 Lecture 5a Slide 1 EE 5337 Computational Electromagnetics

12/4/2017

9

Lecture 5a Slide 17

Scattering Matrices of Lossless Media

If a scattering matrix is composed of materials that have no loss and no gain, the scattering matrix must conserve power.  That is, all incident power must either reflect or transmit.

This implies that the scattering matrix is unitary.

If the scattering matrix is unitary, it must obey the following rules:

1

1 1

H

H H

S S

S S SS S S SS I

Note: If the regions external to the layer are different from each other, the scattering matrices will not be unitary.  This is because the field amplitudes will be different even though the field carries the same amount of power.

Hints About Stability in These Formulations

• Diagonal elements S11 and S22 tend to be the largest numbers.  Divide by these instead of any off‐diagonal elements for best numerical stability.

• X describes propagation through an entire layer.  Don’t divide by X or your code can become unstable.

Lecture 5a Slide 18

11 12

21 22

S SS

S S

Page 10: Lecture 5a -- Scattering Matrices - University of …emlab.utep.edu/ee5390cem/Lecture 5a -- Scattering... · 2017-12-04 · 12/4/2017 1 Lecture 5a Slide 1 EE 5337 Computational Electromagnetics

12/4/2017

10

Lecture 5a Slide 19

Multilayer Structures

Lecture 5a Slide 20

Solution Using Scattering Matrices

The scattering matrix method consists of working through the device one layer at a time and calculating an overall scattering matrix.

1S 2S 3S 4S 5S

device 1 2 3 4 5 S S S S S S

Redheffer star product.NOT matrix multiplication!

Page 11: Lecture 5a -- Scattering Matrices - University of …emlab.utep.edu/ee5390cem/Lecture 5a -- Scattering... · 2017-12-04 · 12/4/2017 1 Lecture 5a Slide 1 EE 5337 Computational Electromagnetics

12/4/2017

11

Lecture 5a Slide 21

Derivation of the Redheffer Star Product

We start with the equations for the two adjacent scattering matrices.

A A B B11 12 11 122 21 1

A A B B3 32 221 22 21 22

S S S Sc cc c

c cc cS S S S

We expand these into four matrix equations.

A A B B1 11 1 12 2 2 11 2 12 3

A A B B2 21 1 22 2 3 21 2 22 3

Eq. 1 Eq. 3

Eq. 2 Eq. 4

c S c S c c S c S c

c S c S c c S c S c

We substitute Eq. (2) into Eq. (3) to get an equation with only      .2c

We substitute Eq. (3) into Eq. (2) to get an equation with only      .2c

B A B A B11 22 2 11 21 1 12 3

A B A A B22 11 2 21 1 22 12 3

Eq. 5

Eq. 6

I S S c S S c S c

I S S c S c S S c

We eliminate      and      by substituting these equations into Eq. (1) and (4).  We then rearrange terms into the form of a scattering matrix.

2c 2

c

1 1

3 3

? ?

? ?

c c

c cOverall, this is just algebra.  We start with 4 equations and 6 unknowns and reduce it to 2 equations with 4 unknowns.

Lecture 5a Slide 22

Redheffer Star Product

Two scattering matrices may be combined into a single scattering matrix using Redheffer’s star product.

A A11 12

A A21 22

A

S SS

S S

B B11 12

B B21 22

B

S SS

S S AB A B S S S

The combined scattering matrix is then

AB AB11 12

AB AB21 22

AB

S SS

S S

1AB A A B A B A

11 11 12 11 22 11 21

1AB A B A B

12 12 11 22 12

1AB B A B A

21 21 22 11 21

1AB B B A B A B

22 22 21 22 11 22 12

S S S I S S S S

S S I S S S

S S I S S S

S S S I S S S S

R. Redheffer, “Difference equations and functional equations in transmission-line theory,” Modern Mathematics for the Engineer, Vol. 12, pp. 282-337, McGraw-Hill, New York, 1961.

Page 12: Lecture 5a -- Scattering Matrices - University of …emlab.utep.edu/ee5390cem/Lecture 5a -- Scattering... · 2017-12-04 · 12/4/2017 1 Lecture 5a Slide 1 EE 5337 Computational Electromagnetics

12/4/2017

12

Lecture 5a Slide 23

Putting it All Together (1 of 2)

device S

First, we calculate the device scattering matrix by iterating through each layer of the device and combining the scattering matrices using the Redheffer star product.

1S

1L

1S

2S

2L

0

2S

3S

3L

0

3S

NS

NL

NS

Lecture 5a Slide 24

Putting it All Together (2 of 2)

global S

1S 2S 3S NS

1L 2L 3L NL

0 0

Second, we must connect the device scattering matrix to the external regions to get the global scattering matrix.  We use connection scattering matrices to do this.

1S 2S 3S NS

refS

0

0

ref S

trnS

0

0

trn S

Page 13: Lecture 5a -- Scattering Matrices - University of …emlab.utep.edu/ee5390cem/Lecture 5a -- Scattering... · 2017-12-04 · 12/4/2017 1 Lecture 5a Slide 1 EE 5337 Computational Electromagnetics

12/4/2017

13

Lecture 5a Slide 25

Reflection/Transmission Side Scattering Matrices

The reflection‐side scattering matrix is

ref 111 ref ref

ref 112 ref

ref 121 ref ref ref ref

ref 122 ref ref

2

0.5

S A B

S A

S A B A B

S B A

1 1ref g ref g ref

1 1ref g ref g ref

A W W V V

B W W V V

trn 111 trn trn

trn 112 trn trn trn trn

trn 121 trn

trn 122 trn trn

0.5

2

S B A

S A B A B

S A

S A B

1 1trn g trn g trn

1 1trn g trn g trn

A W W V V

B W W V V

The transmission‐side scattering matrix is

,I

,I

r

r

r,g

r,g

0limL

,II

,II

r

r

r,g

r,g

refs

trns

0limL

Lecture 5a Slide 26

Summary of Using Scattering Matrices

1S 2S 3S NS

1L 2L 3L NL

0 0

refS

0

0

trnS

0

0

ref tgl l rnoba 1 2

device

N

S

S S SS SS

Device in gap medium

deviceS

Page 14: Lecture 5a -- Scattering Matrices - University of …emlab.utep.edu/ee5390cem/Lecture 5a -- Scattering... · 2017-12-04 · 12/4/2017 1 Lecture 5a Slide 1 EE 5337 Computational Electromagnetics

12/4/2017

14

Lecture 5a Slide 27

Longitudinally Periodic Devices

Lecture 5a Slide 28

Longitudinally Periodic Devices

Suppose we just calculated the scattering matrix for the unit cell of a longitudinally periodic device.

Unit Cell 1 Unit Cell 2 Unit Cell 3 Unit Cell 4 Unit Cell 4 Unit Cell 6 Unit Cell 7 Unit Cell 8

Unit Cell

1 A B C S S S S

There exists a very efficient way of calculating the global scattering matrix of a longitudinally periodic device without calculating and combining all the individual scattering matrices.

A B C

8 A B C A B C A B C A B C A B C A B C A B C A B C S S S S S S S S S S S S S S S S S S S S S S S S S

Both are inefficient!!! 8 1 1 1 1 1 1 1 1 S S S S S S S S S

Page 15: Lecture 5a -- Scattering Matrices - University of …emlab.utep.edu/ee5390cem/Lecture 5a -- Scattering... · 2017-12-04 · 12/4/2017 1 Lecture 5a Slide 1 EE 5337 Computational Electromagnetics

12/4/2017

15

Lecture 5a Slide 29

Cascading and Doubling

We can quickly build an overall scattering matrix that describes hundreds and thousands of unit cells.

We start by calculating the scattering matrix for a single unit cell.

1 A B C S S S S A B C

Next, we keep connecting the scattering matrix to itself to keep doubling the number of unit cells it describes.

2 1 1 S S S

4 2 2 S S S

8 4 4 S S S

and so on… What if you have a non‐integer power of 2 number of layers?

Lecture 5a Slide 30

Block Diagram for Modified Cascading and Doubling Algorithm

Inputs 1 S-matrix of one unit cell

Number of times to repeat unit cellN

S

Convert N to binary10110

Initialize Algorithm

global bin 1

0 IS S S

I 0

Done?

Perform Doubling bin bin bin S S S

digit = 1?Update S(N)

global global bin S S S

yes

no

no

Output globalSLo

op th

rough

 all binary d

igits startin

g with

 the least sign

ificant d

igit.

Page 16: Lecture 5a -- Scattering Matrices - University of …emlab.utep.edu/ee5390cem/Lecture 5a -- Scattering... · 2017-12-04 · 12/4/2017 1 Lecture 5a Slide 1 EE 5337 Computational Electromagnetics

12/4/2017

16

Lecture 5a Slide 31

Example of Cascading and Doubling Algorithm

Inputs to algorithm: 1 scattering matrix for a single unit cell

22 number of unit cells to combineN

S

Step 0 – Calculate scattering matrix for one unit cell

A B C 1 A B C S S S S

Step 2 – Initialize binary and global scattering matrices

global11

global12

global21

global22

S 0

S I

S I

S 0

bin 1S S

Step 1 – Convert N to binary

221’s2’s4’s16’s 8’s

1 1 10 0

Lecture 5a Slide 32

Example of Cascading and Doubling Algorithm

Step 3 – Loop through binary digits

2’s digit =  1 Update S(global) global global bin S S S S(global) now encompasses 2 unit cells

4’s digit =  1 Update S(global) global global bin S S S S(global) now encompasses 6 unit cells

116’s digit =  Update S(global) global global bin S S S S(global) now encompasses 22 unit cells

22 101101’s digit =  0 Do not update S(global) S(global) still encompasses 0 unit cells

bin bin bin S S S S(bin) now represents 2 unit cells Double S(bin)

bin bin bin S S S S(bin) now represents 4 unit cells Double S(bin)

bin bin bin S S S S(bin) now represents 8 unit cells Double S(bin)

bin bin bin S S S S(bin) now represents 16 unit cells Double S(bin)

Oops!  This algorithm performs one unnecessary doubling operation.How can we fix this?

bin bin bin S S S S(bin) now represents 32 unit cells Double S(bin)

8’s digit =  0 Do not update S(global) S(global) still encompasses 6 unit cells

Page 17: Lecture 5a -- Scattering Matrices - University of …emlab.utep.edu/ee5390cem/Lecture 5a -- Scattering... · 2017-12-04 · 12/4/2017 1 Lecture 5a Slide 1 EE 5337 Computational Electromagnetics

12/4/2017

17

Lecture 5a Slide 33

Dispersion Analysis

Lecture 5a Slide 34

Dispersion Analysis (1 of 2)

An overall scattering matrix is calculated that describes the unit cell.

uc uc11 120 0

uc uc1 121 22N N

S Sc c

c cS S

The terms are rearranged in “almost” the form of a transfer matrix.

uc uc12 111 0

uc uc1 022 21

N

N

0 S S Ic c

c cI S S 0

If the device is infinitely periodic in the z direction, then the following periodic boundary condition must hold.

1 0

1 0

zzjN

N

ke

c c

c cHere kz is the “effective” propagation constant of the mode.

uc 1 same as on previous slideS S

Page 18: Lecture 5a -- Scattering Matrices - University of …emlab.utep.edu/ee5390cem/Lecture 5a -- Scattering... · 2017-12-04 · 12/4/2017 1 Lecture 5a Slide 1 EE 5337 Computational Electromagnetics

12/4/2017

18

Lecture 5a Slide 35

Dispersion Analysis (2 of 2)

We substitute the periodic boundary condition into our rearranged equation to get

uc uc11 120 0

uc uc0 021 22

z zjke

S I 0 Sc c

c cS 0 I S

This is a generalized eigen‐value problem.

uc11 0

uc021

uc12

uc22

zzkje

S I cA x

cS 0Ax Bx

0 SB

I S

[V,D] = eig(A,B);

Eigen vectorsBloch modes

Eigen valueskz’s

Lecture 5a Slide 36

Who Cares?

Given kz, we can

1. Calculate the effective properties of the unit cell.

2. Construct band diagrams.

r,eff r,effzk This is an over simplification and beyond the scope of this course.

Page 19: Lecture 5a -- Scattering Matrices - University of …emlab.utep.edu/ee5390cem/Lecture 5a -- Scattering... · 2017-12-04 · 12/4/2017 1 Lecture 5a Slide 1 EE 5337 Computational Electromagnetics

12/4/2017

19

Lecture 5a Slide 37

Alternatives to Scattering Matrices

Lecture 5a Slide 38

Transmittance Matrices (T‐Matrices)

The T‐matrix method is the transfer matrix method where forward and backward waves are distinguished.

lefttrn 11 12 inc

rightinc 21 22 ref

c T T c

c T T c

Benefits•Much faster (5 to 10 times)•Unconditionally stable

Drawbacks• Less memory efficient•Cannot exploit longitudinal periodicity• Less popular in the literature

M. G. Moharam, Drew A. Pommet, Eric B. Grann, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A, Vol. 12, No. 5, pp. 1077-1086, 1995.

Page 20: Lecture 5a -- Scattering Matrices - University of …emlab.utep.edu/ee5390cem/Lecture 5a -- Scattering... · 2017-12-04 · 12/4/2017 1 Lecture 5a Slide 1 EE 5337 Computational Electromagnetics

12/4/2017

20

Lecture 5a Slide 39

Hybrid Matrices (H‐Matrices)

The h‐matrix method is borrowed from electrical two‐port networks.

1 11 12 1

2 21 22 2

V h h I

I h h V

2 1

2 1

1 111 12

2 20 0

2 221 22

1 20 0

V I

V I

V Vh h

I V

I Ih h

I V

In the framework of fields, the h‐matrix is defined as

, 1 , 1

, 1 11 12 , 1

, ,21 22

, ,

x i x ii i

y i y i

i ix i x i

y i y i

E H

E H

H E

H E

H H

H H

Claimed Benefits• Improved numerical stability•More concise formulation• Simpler to implement• Improved numerical efficiency (30% better than ETM)•Unconditionally stable

Eng L. Tan, “Hybrid-matrix algorithm for rigorous coupled-wave analysis of multilayered diffraction gratings,” J. Mod. Opt., Vol. 53, No. 4, pp. 417-428, 2006.

Lecture 5a Slide 40

R‐Matrices

The R‐matrix method is essentially the impedance matrix framework borrowed from electrical two‐port networks.

1 11 12 1

2 21 22 2

V z z I

V z z I

2 1

2 1

1 111 12

1 20 0

2 221 22

1 20 0

I I

I I

V Vz z

I I

V Vz z

I I

In the framework of fields, the h‐matrix is defined as

, 1 , 1

, 1 11 12 , 1

, ,21 22

, ,

x i x ii i

y i y i

i ix i x i

y i y i

E H

E H

E H

E H

R R

R R

Claimed Benefits•Unconditionally stable• Improved numerical efficiency

Lifeng Li, “Bremmer series, R-matrix propagation algorithm, and numerical modeling of diffraction gratings,” J. Opt. Soc. Am. A, Vol. 11, No. 11, pp. 2829-2836, 1994.