77
6| Enzymes © 2013 W. H. Freeman and Company

Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Embed Size (px)

Citation preview

Page 1: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

6| Enzymes

© 2013 W. H. Freeman and Company

Page 2: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

CHAPTER 6 Enzymes

– Physiological significance of enzymes– Origin of catalytic power of enzymes– Chemical mechanisms of catalysis– Mechanisms of chymotrypsin and lysozyme– Description of enzyme kinetics and inhibition

Key topics about enzyme function: 

Page 3: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

What are enzymes?

•Enzymes are catalysts• Increase reaction rates without being used up

•Most enzymes are globular proteins • However, some RNA (ribozymes and ribosomal RNA) also 

catalyze reactions

• Study of enzymatic processes is the oldest field of biochemistry, dating back to late 1700s

• Study of enzymes has dominated biochemistry in the past and continues to do so

Page 4: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:
Page 5: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Why biocatalysis over inorganic catalysts?• Greater reaction specificity: avoids side products• Milder reaction conditions: conducive to conditions in  cells• Higher reaction rates: in a biologically useful timeframe

• Capacity for regulation: control of biological pathways

COO

OHO COO

COO

O COO

NH2

OOCCOO

O

OH

OH

COO

NH2

COO

-

-

-

-

-

-

--

Chorismate mutase

• Metabolites have many potential pathways of decomposition

• Enzymes make the desired one most favorable

Page 6: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Enzymatic Substrate Selectivity

No binding

OOC NH3

H

OOC NH3

H

H NH

HOH

OH

H

OH

CH3

OOC NH3

HOH

--

-

+

+

+

Binding but no reaction

Example: Phenylalanine hydroxylase

Page 7: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Reaction Conditions Compatible with Life

37˚C

pH ≈7

Page 8: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Six Classes of Enzymes:Defined by the Reactions Catalyzed

Page 9: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Enzyme‐Substrate Complex

• Enzymes act by binding substrates– The noncovalent enzyme substrate complex is known as the Michaelis complex

– Description of chemical interactions– Development of kinetic equations

][]][[

SKSEkv

m

cat

Page 10: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Enzyme‐Substrate Complex

Page 11: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Enzymatic Catalysis

• Enzymes do not affect equilibrium (ΔG)• Slow reactions face significant activation barriers (ΔG‡) that must be surmounted during the reaction

• Enzymes increase reaction rates (k) by decreasing ΔG‡

k kBTh

exp

G

RT

Page 12: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Reaction Coordinate Diagram

Page 13: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Enzymes Decrease ΔG‡

Page 14: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Rate Enhancement by Enzymes

Page 15: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

How to Lower G

Enzymes organize reactive groups into close proximity and proper orientation

• Uncatalyzed bimolecular reactions two free reactants  single restricted transition state conversion is entropically unfavorable

• Uncatalyzed unimolecular reactions flexible reactant  rigid transition state conversion is entropically unfavorable for flexible reactants

• Catalyzed reactionsEnzyme uses the binding energy of substrates to organize the reactants to a fairly rigid ES complexEntropy cost is paid during bindingRigid reactant complex  transition state conversion is entropically OK

Page 16: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Support for the Proximity ModelThe rate of anhydride formation from esters and carboxylates shows a strong dependence on proximity of two reactive groups (work by Thomas C. Bruice’s group).

Page 17: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

How to Lower G

Enzymes bind transition states best

• The idea was proposed by Linus Pauling in 1946– Enzyme active sites are complimentary to the transition state of the reaction

– Enzymes bind transition states better than substrates– Stronger/additional interactions with the transition state as compared to the ground state lower the activation barrier

Largely ΔH‡ effect

Page 18: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:
Page 19: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Illustration of TS Stabilization Idea:Imaginary Stickase 

Page 20: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Catalytic Mechanisms

– acid‐base catalysis: give and take protons– covalent catalysis: change reaction paths– metal ion catalysis: use redox cofactors, pKa shifters– electrostatic catalysis: preferential interactions with TS 

Page 21: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

General Acid‐Base Catalysis 

Page 22: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:
Page 23: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:
Page 24: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:
Page 25: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Amino Acids in General Acid‐Base Catalysis

Page 26: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Covalent Catalysis

• A transient covalent bond between the enzyme and the substrate

• Changes the reaction Pathway

– Uncatalyzed:   

– Catalyzed:

• Requires a nucleophile on the enzyme– Can be a reactive serine, thiolate, amine, orcarboxylate

B A B—AOH2

B :X A B X—A :X B—AOH2

Page 27: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Metal Ion Catalysis

• Involves a metal ion bound to the enzyme

• Interacts with substrate to facilitate binding– Stabilizes negative charges

• Participates in oxidation reactions

Page 28: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Chymotrypsin uses most of the enzymatic mechanisms

Page 29: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Active Site of Chymotrypsin with Substrate

Page 30: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Chymotrypsin Mechanism Step 1: Substrate Binding

Page 31: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Chymotrypsin MechanismStep 2: Nucleophilic Attack

Page 32: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Chymotrypsin MechanismStep 3: Substrate Cleavage

Page 33: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Chymotrypsin MechanismStep 4: Water Comes In

Page 34: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Chymotrypsin MechanismStep 5: Water Attacks

Page 35: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Chymotrypsin MechanismStep 6: Break‐off from the Enzyme

Page 36: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Chymotrypsin MechanismStep 7: Product Dissociates

Page 37: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Peptidoglycan and Lysozyme

• Peptidoglycan is a polysaccharide found in many bacterial cell walls

• Cleavage of the cell wall leads to the lysis of bacteria

• Lysozyme is an antibacterial enzyme

Page 38: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Peptidoglycan and Lysozyme

Page 39: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

X‐ray structures of lysozyme with bound substrate analogs show that the C‐1 carbon is located between Glu 35 and Asp 52 residues.  

General Acid‐Base + Covalent Catalysis: Cleavage of Peptidoglycan by Lysozyme

Page 40: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Cleavage of Peptidoglycan by Lysozyme: Two Successive SN2 Steps Model

• Asp 52 acts as a nucleophile to attack the anomeric carbon in the first SN2 step  

• Glu 35 acts as a general acid and protonates the leaving group in the transition state

• Water hydrolyzes the covalent glycosyl‐enzyme intermediate

• Glu 35 acts as a general base to deprotonate water in the second SN2 step

Page 41: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:
Page 42: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:
Page 43: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:
Page 44: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

What is enzyme kinetics?

• Kinetics is the study of the rate at which compounds react

• Rate of enzymatic reaction is affected by:– enzyme– substrate– effectors– temperature

Page 45: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:
Page 46: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Why study enzyme kinetics?

• Quantitative description of biocatalysis• Determine the order of binding of substrates• Elucidate acid‐base catalysis• Understand catalytic mechanism• Find effective inhibitors• Understand regulation of activity

Page 47: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

How to Do Kinetic MeasurementsExperiment:1) Mix enzyme + substrate2) Record rate of substrate disappearance/product formation as a function of time 

(the velocity of reaction)3) Plot initial velocity versus substrate concentration.4) Change substrate concentration and repeat

Page 48: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Effect of Substrate Concentration

• Ideal rate: 

• Deviations due to:– limitation of measurements– substrate inhibition– substrate prep contains inhibitors– enzyme prep contains inhibitors

SKSVv

m

][max

Page 49: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Effect of Substrate Concentration

Page 50: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Saturation Kinetics: At high [S] velocity does not depend on [S]

Page 51: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Determination of Kinetic Parameters

Nonlinear Michaelis‐Menten plot should be used to calculate parameters Km and Vmax.

Linearized double‐reciprocal plot is good for analysis of two‐substrate data or inhibition. 

Page 52: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Lineweaver‐Burk Plot:Linearized, Double‐Reciprocal

Page 53: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Derivation of Enzyme Kinetics Equations

• Start with a model mechanism• Identify constraints and assumptions• Carry out algebra ...

– ... or graph theory for complex reactions

• Simplest Model Mechanism: E + S ES E + P– One reactant, one product, no inhibitors

Page 54: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Identify Constraints and Assumptions

• Total enzyme concentration is constant– Mass balance equation for enzyme: ETot = [E] + [ES]– It is also implicitly assumed that: STot = [S] + [ES] ≈ [S]

• Steady state assumption

• What is the observed rate?– Rate of product formation 

vnet dPdt

k[ES]

0ESofbreakdownofrateESofformationofrate][

dtESd

Page 55: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Carry out the algebra• The final form in case of a single substrate is

• kcat (turnover number): how many substrate molecules can one enzyme molecule convert per second

• Km (Michaelis constant): an approximate measure of substrate’s affinity for enzyme

• Microscopic meaning of Km and kcat depends on the details of the mechanism

][]][[

SKSEkv

m

totcat

Page 56: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Enzyme efficiency is limited by diffusion:kcat/KM

• Can gain efficiency by having high velocity or affinity for substrate– Catalase vs. acetylcholinesterase

Page 57: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Two‐Substrate Reactions

•Kinetic mechanism: the order of binding of substrates and release of products

•When two or more reactants are involved, enzyme kinetics allows to distinguish between different kinetic mechanisms– Sequential mechanism– Ping‐Pong mechanism

Page 58: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:
Page 59: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Sequential Kinetic Mechanism• We cannot easily distinguish random from ordered• Random mechanisms in equilibrium will give intersection point at y‐axis

• Lineweaver‐Burk: lines intersect

Page 60: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Ping‐Pong Kinetic MechanismLineweaver‐Burk: lines are parallel

Page 61: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Enzyme InhibitionInhibitors are compounds that decrease enzyme’s activity

• Irreversible inhibitors (inactivators) react with the enzyme• One inhibitor molecule can permanently shut off one enzyme molecule• They are often powerful toxins but also may be used as drugs

• Reversible inhibitors bind to and can dissociate from the enzyme• They are often structural analogs of substrates or products• They are often used as drugs to slow down a specific enzyme

• Reversible inhibitor can bind: • to the free enzyme and prevent the binding of the substrate• to the enzyme‐substrate complex and prevent the reaction

Page 62: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

• Competes with substrate for binding – Binds active site– Does not affect catalysis

• No change in Vmax; apparent increase in KM• Lineweaver‐Burk: lines intersect at the y‐axis

Competitive Inhibition

Page 63: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Competitive Inhibition

Page 64: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Competitive Inhibition

Page 65: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Uncompetitive Inhibition

• Only binds to ES complex • Does not affect substrate binding• Inhibits catalytic function

• Decrease in Vmax; apparent decrease in KM• No change in KM/Vmax• Lineweaver‐Burk: lines are parallel

Page 66: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Uncompetitive Inhibition

Page 67: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Uncompetitive Inhibition

Page 68: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Mixed Inhibition

• Binds enzyme with or without substrate― Binds to regulatory site― Inhibits both substrate binding and catalysis

• Decrease in Vmax; apparent change in KM• Lineweaver‐Burk: lines intersect left from the y‐axis• Noncompetitive inhibitors are mixed inhibitors such that there is no change in KM

Page 69: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Mixed Inhibition

Page 70: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Mixed Inhibition

Page 71: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Enzyme activity can be regulated

• Regulation can be:– noncovalent modification– covalent modification– irreversible– reversible

Page 72: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Noncovalent Modification: Allosteric Regulators

The kinetics of allosteric regulators differ from Michaelis‐Menten kinetics.

Page 73: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Some Reversible Covalent Modifications

Page 74: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Zymogens are activated by irreversible covalent modification

Page 75: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

The blood coagulation cascade uses irreversible covalent modification

Page 76: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Some enzymes use multiple types of regulation

Page 77: Lehninger PPT ch06 - Class Websitesclasses.biology.ucsd.edu/bibc100.FA16/documents/Lehninger_PPT_ch06.pdfWhy biocatalysis over inorganic catalysts? •Greater reaction specificity:

Chapter 6: Summary

• why nature needs enzyme catalysis• how enzymes can accelerate chemical reactions• how chymotrypsin breaks down peptide bonds• how to perform and analyze kinetic studies• how to characterize enzyme inhibitors • how enzyme activity can be regulated

In this chapter, we learned: