54
SISTEMA NACIONAL DE NIVELACIÓN Y ADMISIÓN UNIVERSIDAD TÉCNICA ESTATAL DE QUEVEDO CURSO M49 TRABAJO DE MATEMÁTICAS AUTOR JOSE LUIS YAGUACHE DOCENTE ING. OSMAR VIERA QUEVEDO - LOS RIOS - ECUADOR

LOS INICIOS DE LA MATEMÁTICA

Embed Size (px)

Citation preview

Page 1: LOS INICIOS DE LA MATEMÁTICA

SISTEMA NACIONAL DE NIVELACIÓN Y ADMISIÓN

UNIVERSIDAD TÉCNICA ESTATAL DE QUEVEDO

CURSO

M49

TRABAJO DE MATEMÁTICAS

AUTOR

JOSE LUIS YAGUACHE

DOCENTE

ING. OSMAR VIERA

QUEVEDO - LOS RIOS - ECUADOR

Page 2: LOS INICIOS DE LA MATEMÁTICA

LOS INICIOS DE LA MATEMÁTICA

Prehistoria

Sistema chino de numeración con varillas.

Mucho antes de los primeros registros escritos, hay dibujos que indican algún conocimiento de matemáticas elementales y de la medida del tiempo basada en las estrellas. Por ejemplo, los paleontólogos han descubierto rocas de ocre en una caverna de Sudáfrica de aproximadamente 70.000 años de antigüedad, que están adornados con hendiduras en forma de patrones geométricos. También se descubrieron artefactos prehistóricos en África y Francia, datados entre el 35.000 y el 20.000 a. C., que sugieren intentos iníciales de cuantificar el tiempo.

Hay evidencias de que las mujeres inventaron una forma de llevar la cuenta de su ciclo menstrual: de 28 a 30 marcas en un hueso o piedra, seguidas de una marca distintiva. Más aún, los cazadores y pastores empleaban los conceptos de uno, dos y muchos, así como la idea de ninguno o cero, cuando hablaban de manadas de animales. El hueso de Ishango, encontrado en las inmediaciones del río Nilo, al noreste del Congo, puede datar de antes del 20.000 a. C. Una interpretación común es que el hueso supone la demostración más antigua conocida de una secuencia de números primos y de la multiplicación por duplicación.

Primeras civilizaciones

En el periodo predinástico de Egipto del V milenio a. C. se representaban pictóricamente diseños espaciales geométricos. Se ha afirmado que los monumentos megalíticos en Inglaterra y Escocia, del III milenio a. C., incorporan ideas geométricas tales como círculos, elipses y ternas pitagóricas en su diseño.

Las primeras matemáticas conocidas en la historia de la India datan del 3000 - 2600 a. C., en la Cultura del Valle del Indo (civilización Harappa) del norte de la India y Pakistán. Esta civilización desarrolló un sistema de medidas y pesas

Page 3: LOS INICIOS DE LA MATEMÁTICA

uniforme que usaba el sistema decimal, una sorprendentemente avanzada tecnología con ladrillos para representar razones, calles dispuestas en perfectos ángulos rectos y una serie de formas geométricas y diseños, incluyendo cuboides, barriles, conos, cilindros y diseños de círculos y triángulos concéntricos y secantes. Los instrumentos matemáticos empleados incluían una exacta regla decimal con subdivisiones pequeñas y precisas, unas estructuras para medir de 8 a 12 secciones completas del horizonte y el cielo y un instrumento para la medida de las posiciones de las estrellas para la navegación. La escritura hindú no ha sido descifrada todavía, de ahí que se sepa muy poco sobre las formas escritas de las matemáticas en Harappa. Hay evidencias arqueológicas que han llevado a algunos a sospechar que esta civilización usaba un sistema de numeración de base octal y tenían un valor para π, la razón entre la longitud de la circunferencia y su diámetro.

Por su parte, las primeras matemáticas en China datan de la Dinastía Shang (1600 − 1046 a. C.) y consisten en números marcados en un caparazón de tortuga. Estos números fueron representados mediante una notación decimal. Por ejemplo, el número 123 se escribía, de arriba a abajo, como el símbolo para el 1 seguido del símbolo para 100, luego el símbolo para el 2 seguido del símbolo para 10 y, por último, el símbolo para el 3. Este era el sistema de numeración más avanzado en su tiempo y permitía hacer cálculos para usarlos con el suanpan o el ábaco chino. La fecha de invención del suanpan no se conoce con certeza, pero la mención escrita más antigua data del 190 d. C., en Notas suplementarias sobre el Arte de las Cifras, de Xu Yue's.

Antiguo Oriente Próximo (c. 1800 a. C.–500 a. C.)

Tablilla de arcilla YBC 7289.

Mesopotamia

Matemática babilónica.

Las matemáticas babilónicas hacen referencia a las matemáticas desarrolladas por la gente de Mesopotamia, el actual Irak, desde los días de los primeros sumerios, hasta el inicio del periodo helenístico. Se llaman matemáticas babilónicas debido al papel central de Babilonia como lugar de estudio, que dejó de existir durante el periodo helenístico. Desde este punto, las matemáticas

Page 4: LOS INICIOS DE LA MATEMÁTICA

babilónicas se fundieron con las matemáticas griegas y egipcias para dar lugar a las matemáticas helenísticas. Más tarde, bajo el Imperio árabe, Mesopotamia, especialmente Bagdad, volvió a ser un importante centro de estudio para las matemáticas islámicas.

En contraste con la escasez de fuentes en las matemáticas egipcias, el conocimiento sobre las matemáticas en Babilonia se deriva de más de 400 tablillas de arcilla desveladas desde 1850. Labradas en escritura cuneiforme, fueron grabadas mientras la arcilla estaba húmeda y cocida posteriormente en un horno o secadas al sol. Algunas de ellas parecen ser tareas graduadas.

Las evidencias más tempranas de matemáticas escritas datan de los antiguos sumerios, que constituyeron la civilización primigenia en Mesopotamia. Los sumerios desarrollaron un sistema complejo de metrología desde el 3000 a. C. Desde alrededor del 2500 a. C. en adelante, los sumerios escribieron tablas de multiplicar en tablillas de arcilla y trataron ejercicios geométricos y problemas de división. Las señales más tempranas de los numerales babilónicos también datan de ese periodo.

La mayoría de las tabletas de arcilla recuperadas datan del 1800 al 1600 a. C. y abarcan tópicos que incluyen fracciones, álgebra, ecuaciones cuadráticas y cúbicas y el cálculo de primos gemelos regulares recíprocos (véase Plimpton 322). Las tablillas también incluyen tablas de multiplicar y métodos para resolver ecuaciones lineales y ecuaciones cuadráticas. La tablilla babilónica YBC 7289 da una aproximación de √2 con una exactitud de cinco posiciones decimales.

Las matemáticas babilónicas fueron escritas usando un sistema de numeración sexagesimal (base 60). De ahí se deriva la división de un minuto en 60 segundos y de una hora en 60 minutos, así como la de un círculo en 360 (60 × 6) grados y las subdivisiones sexagesimales de esta unidad de medida de ángulos en minutos y segundos. Los avances babilónicos en matemáticas fueron facilitados por el hecho de que el número 60 tiene muchos divisores. También, a diferencia de los egipcios, griegos y romanos, los babilonios tenían un verdadero sistema de numeración posicional, donde los dígitos escritos a la izquierda representaban valores de orden superior, como en nuestro actual sistema decimal de numeración. Carecía, sin embargo, de un equivalente a la coma decimal y así, el verdadero valor de un símbolo debía deducirse del contexto.

Matemáticas en el Antiguo Egipto.

Page 5: LOS INICIOS DE LA MATEMÁTICA

Papiro de Moscú.

Las matemáticas en el Antiguo Egipto se refieren a las matemáticas escritas en las lenguas egipcias. Desde el periodo helenístico, el griego sustituyó al egipcio como el lenguaje escrito de los escolares egipcios y desde ese momento las matemáticas egipcias se fundieron con las griegas y babilónicas para dar lugar a la matemática helénica. El estudio de las matemáticas en Egipto continuó más tarde bajo el influjo árabe como parte de las matemáticas islámicas, cuando el árabe se convirtió en el lenguaje escrito de los escolares egipcios.

El texto matemático más antiguo descubierto es el papiro de Moscú, que data del Imperio Medio de Egipto, hacia el 2000-1800 a. C. Como muchos textos antiguos, consiste en lo que hoy se llaman problemas con palabras o problemas con historia, que tienen la intención aparente de entretener. Se considera que uno de los problemas es de particular importancia porque ofrece un método para encontrar el volumen de un tronco: "Si te dicen: Una pirámide truncada [de base cuadrada] de 6 de altura vertical, por 4 en la base [base inferior] y 2 en lo alto [base superior]. Haces el cuadrado de 4 y resulta 16. Doblas 4 y resulta 8. Haces el cuadrado de 2 y resulta 4. Sumas el 16, el 8 y el 4 y resulta 28. Tomas un tercio de 6 y resulta 2. Tomas 28 dos veces y resulta 56. Mira, es 56. Encontrarás lo correcto."

El papiro de Rhind13 (hacia 1650 a. C.) es otro texto matemático egipcio fundamental, un manual de instrucciones en aritmética y geometría. En resumen, proporciona fórmulas para calcular áreas y métodos para la multiplicación, división y trabajo con fracciones unitarias. También contiene pruebas de otros conocimientos matemáticos, incluyendo números compuestos y primos, media aritmética, geométrica y armónica, y una comprensión simple de la criba de Eratóstenes y la teoría de números perfectos (a saber, del número 6). El papiro también muestra cómo resolver ecuaciones lineales de primer orden , así como series aritméticas y series geométricas.

Además, tres elementos geométricos del papiro de Rhind sugieren los rudimentos de la geometría analítica: cómo obtener una aproximación de con un error menor del 1%; un antiguo intento de cuadrar el círculo; y el uso más antiguo conocido de un tipo de cotangente.

Finalmente, el papiro de Berlín (hacia 1300 a. C.) muestra que los antiguos egipcios podían resolver una ecuación cuadrática.

Page 6: LOS INICIOS DE LA MATEMÁTICA

Matemática en la Antigua India (del 900 a. C. al 200 d. C.)

Numerales brahmí en el siglo I.

Los registros más antiguos existentes de la India son los Sulba Sutras (datados de aproximadamente entre el siglo VIII a.C. y II d.C), apéndices de textos religiosos con reglas simples para construir altares de formas diversas, como cuadrados, rectángulos, paralelogramos y otros. Al igual que con Egipto, las preocupaciones por las funciones del templo señala un origen de las matemáticas en rituales religiosos. En los Sulba Sutras se encuentran métodos para construir círculos con aproximadamente la misma área que un cuadrado, lo que implica muchas aproximaciones diferentes del número π. Adicionalmente, obtuvieron el valor de la raíz cuadrada de 2 con varias cifras de aproximación, listas de ternas pitagóricas y el enunciado del teorema de Pitágoras. Todos estos resultados están presentes en la matemática babilónica, lo cual indica una fuerte influencia de Mesopotamia.19 No resulta claro, sin embargo, hasta qué punto los Sulba Sutras influenciaron las matemáticas indias posteriores. Al igual que en China, hay una falta de continuidad en la matemática india; significativos avances se alternan con largos períodos de inactividad.

Panini (hacia el siglo V a. C.) formuló las reglas de la gramática del sánscrito.24 Su notación fue similar a la notación matemática moderna y usaba "metarreglas", transformaciones lineales y recursiones. Pingala (aproximadamente de los siglos III al I a. C.) en su tratado de prosodia, usa un dispositivo correspondiente a un sistema binario de numeración. Su discusión sobre la combinatoria de métricas musicales corresponde a una versión elemental del teorema del binomio. La obra de Pingala también contiene ideas básicas sobre los números de Fibonacci, llamados mātrāmeru.

Matemática en la Grecia Antigua (desde el 600 a. C. hasta el 300 d. C.)

Matemática helénica.

Page 7: LOS INICIOS DE LA MATEMÁTICA

Teorema de Pitágoras. Se acredita a los pitagóricos la primera demostración formal del teorema.

Las matemáticas griegas hacen referencia a las matemáticas escritas en griego desde el 600 a. C. hasta el 300 d. C. Los matemáticos griegos vivían en ciudades dispersas a lo largo del Mediterráneo Oriental, desde Italia hasta el Norte de África, pero estaban unidas por un lenguaje y una cultura común. Las matemáticas griegas del periodo siguiente a Alejandro Magno se llaman en ocasiones Matemáticas helenísticas.

Tales de Mileto.

Las matemáticas griegas eran más sofisticadas que las matemáticas que habían desarrollado las culturas anteriores. Todos los registros que quedan de las matemáticas pre-helenísticas muestran el uso del razonamiento inductivo, esto es, repetidas observaciones usadas para establecer reglas generales. Los matemáticos griegos, por el contrario, usaban el razonamiento deductivo. Los griegos usaron la lógica para deducir conclusiones, o teoremas, a partir de definiciones y axiomas. La idea de las matemáticas como un entramado de teoremas sustentados en axiomas está explícita en los Elementos de Euclides (hacia el 300 a. C.).

Se cree que las matemáticas griegas comenzaron con Tales (hacia 624 a.C – 546 a.C) y Pitágoras (hacia 582 a. C. - 507 a. C.). Aunque el alcance de su influencia puede ser discutido, fueron inspiradas probablemente por las matemáticas egipcias, mesopotámicas e indias. Según la leyenda, Pitágoras viajó a Egipto para aprender matemáticas, geometría y astronomía de los sacerdotes egipcios.

Tales usaron la geometría para resolver problemas tales como el cálculo de la altura de las pirámides y la distancia de los barcos desde la orilla. Se atribuye a Pitágoras la primera demostración del teorema que lleva su nombre, aunque el enunciado del teorema tiene una larga historia. En su comentario sobre Euclides, Proclo afirma que Pitágoras expresó el teorema que lleva su nombre y construyó ternas pitagóricas algebraicamente antes que de forma geométrica. La Academia de Platón tenía como lema "Que no pase nadie que no sepa Geometría".

Los Pitagóricos probaron la existencia de números irracionales. Eudoxio (408 al 355 a. C.) desarrolló el método exhaustivo, un precursor de la moderna integración. Aristóteles (384 al 322 a. C.) fue el primero en dar por escrito las leyes

Page 8: LOS INICIOS DE LA MATEMÁTICA

de la lógica. Euclides (hacia el 300 a. C.) dio el ejemplo más temprano de la metodología matemática usada hoy día, con definiciones, axiomas, teoremas y demostraciones. También estudió las cónicas. Su libro Elementos fue conocido por todo el mundo occidental culto hasta la mitad del siglo XX. Además de los teoremas familiares sobre geometría, tales como el Teorema de Pitágoras, "Los elementos" incluye una demostración de que la raíz cuadrada de dos es un número irracional y otra sobre la infinitud de los números primos. La Criba de Eratóstenes (hacia 230 a. C.) fue usada para el descubrimiento de números primos.

Arquímedes de Siracusa (hacia 287-212 a. C.) usó el método exhaustivo para calcular el área bajo un arco de parábola con ayuda de la suma de una serie infinita y dio una aproximación notablemente exacta de pi. También estudió la espiral, dándole su nombre, fórmulas para el volumen de superficies de revolución y un ingenioso sistema para la expresión de números muy grandes.

Matemática en la China clásica (c. 500 a. C. – 1300 d. C.)

En China, el emperador Qin Shi Huang (Shi Huang-ti) ordenó en el 212 a. C. que todos los libros de fuera del estado de Qin fueran quemados. El mandato no fue obedecido por todo el mundo, pero como consecuencia se conoce muy poco acerca de la matemática en la China ancestral.

Desde la Dinastía Zhou, a partir del 1046 a. C., el libro de matemáticas más antiguo que sobrevivió a la quema fue el I Ching, que usa trigramas y hexagramas para propósitos filosóficos, matemáticos y místicos. Estos objetos matemáticos están compuestos de líneas enteras o divididas llamadas yin (femenino) y yang (masculino), respectivamente (véase Secuencia del Rey Wen).

La obra más antigua sobre geometría en China viene de canon filosófico mohista, hacia el 330 a. C., recopilado por los acólitos de Mozi (470-390 a.c.). El Mo Jing describió varios aspectos de muchos campos relacionados con la física así como proporcionó una pequeña dosis de matemáticas.

Después de la quema de libros, la dinastía Han (202 a.C - 220 d.C) produjo obras matemáticas que presumiblemente abundaban en trabajos que se habían perdido. La más importante de estas es Los nueve capítulos sobre el arte matemático, cuyo título completo apareció hacia el 179 d. C., pero existía anteriormente en parte

Page 9: LOS INICIOS DE LA MATEMÁTICA

bajo otros títulos. La obra consiste en 246 problemas en palabras que involucran agricultura, negocios, usos geométricos para establecer las dimensiones de las pagodas, ingeniería, agrimensura y nociones sobre triángulos rectángulos y π. También se usa el Principio de Cavalieri sobre volúmenes más de mil años antes de que el propio Cavalieri lo formulara en Occidente. Se crearon pruebas sobre el Teorema de Pitágoras y una formulación matemática de la eliminación de Gauss-Jordan. Liu Hui hizo un comentario de la obra hacia el siglo III d. C.

En resumen, las obras matemáticas del Han astrónomo e inventor Zhang Heng (78–139 d. C.) contenían una formulación para pi también, la cual difería de los cálculos de Liu Hui. Zhang Heng usó su fórmula de pi para encontrar volúmenes esféricos. Estaban también los trabajos escritos del matemático y teórico de la música Jing Fang (78–37 a. C.); mediante el uso de la coma pitagórica, Jing observó que 53 quintas justas se aproximan a 31 octavas. Esto llevaría más tarde al descubrimiento del temperamento igual que divide a la octava en 53 partes iguales y no volvería a ser calculado con tanta precisión hasta que en el siglo XVII lo hiciese el alemán Nicholas Mercator.

Los chinos también hicieron uso de diagramas combinatorios complejos conocidos como cuadrado mágico y círculo mágico, descritos en tiempos ancestrales y perfeccionados por Yang Hui (1238–1398 d. C.).

Zu Chongzhi (siglo V) de las Dinastías del Sur y del Norte calculó el valor de π hasta siete lugares decimales, lo que daba lugar al valor de π más exacto durante casi 1000 años.

Incluso después de que las matemáticas europeas comenzasen a florecer durante el Renacimiento, las matemáticas chinas y europeas mantuvieron tradiciones separadas, con un significativo declive de las chinas, hasta que misioneros jesuitas como Matteo Ricci intercambiaron las ideas matemáticas entre las dos culturas entre los siglos XVI y XVIII.

Matemática en Japón

La matemática que se desarrolla en Japón durante el período Edo (1603 - 1887), es independiente de la matemática occidental; a este período pertenece el matemático Seki Kōwa, de gran influencia por ejemplo, en el desarrollo del wasan (matemática tradicional japonesa), y cuyos descubrimientos (en áreas como el cálculo integral), son casi simultáneos a los matemáticos contemporáneos europeos como Gottfried Leibniz.

La matemática japonesa de este período se inspira de la matemática china, está orientada a problemas esencialmente geométricos. Sobre tablillas de madera

Page 10: LOS INICIOS DE LA MATEMÁTICA

llamadas sangaku, son propuestos y resueltos «enigmas geométricos»; de allí proviene, por ejemplo, el teorema del sexteto de Soddy.

Matemática en la India clásica (hacia 400–1600)

Aryabhata.

Los avances en matemática india posteriores a los Sulba Sutras son los Siddhantas, tratados astronómicos de los siglos IV y V d.C. (período Gupta) que muestran una fuerte influencia helénica. Son significativos en cuanto a que contienen la primera instancia de relaciones trigonométricas basadas en una semi-cuerda, como en trigonometría moderna, en lugar de una cuerda completa, como en la trigonometría ptolemaica. Con una serie de alteraciones y errores de traducción de por medio, las palabras "seno" y "coseno" derivan del sánscrito "jiya" y "kojiya".

El Suria-sidhanta (hacia el año 400) introdujo las funciones trigonométricas de seno, coseno y arcoseno y estableció reglas para determinar las trayectorias de los astros que son conformes con sus posiciones actuales en el cielo. Los ciclos cosmológicos explicados en el texto, que eran una copia de trabajos anteriores, correspondían a un año sideral medio de 365.2563627 días, lo que solo es 1,4 segundos mayor que el valor aceptado actualmente de 365.25636305 días. Este trabajo fue traducido del árabe al latín durante la Edad Media.

En el siglo V d.C, Aryabhata escribe el Aryabhatiya, un delgado volumen concebido para complementar las reglas de cálculo utilizadas en astronomía y en medida matemática. Escrito en verso, carece de rigor lógico o metodología deductiva. Aunque casi la mitad de las entradas son incorrectas, es en el Aryabhatiya en donde el sistema decimal posicional aparece por vez primera. Siglos más tarde, el matemático árabe Abu Rayhan Biruni describiría este tratado como "una mezcla de guijarros ordinarios y cristales onerosos"

En el siglo VII Brahmagupta identificó el teorema de Brahmagupta, la identidad de Brahmagupta y la fórmula de Brahmagupta y, por primera vez en Brahma-sphuta-siddhanta, explicó claramente los dos usos del número 0: como un símbolo para rellenar un hueco en el sistema posicional y como una cifra y explicó el sistema de numeración hindo-arábigo. Fue a raíz de una traducción de este texto indio sobre

Page 11: LOS INICIOS DE LA MATEMÁTICA

matemáticas (hacia el 770) cuando las matemáticas islámicas tuvieron acceso a este sistema de numeración, que posteriormente adaptaron usando los numerales arábigos. Los estudiantes árabes exportaron este conocimiento a Europa hacia el siglo XII y terminó desplazando los sistemas de numeración anteriores en todo el mundo. En el siglo X, un comentario de Halayudha sobre la obra de Pingala incluía un estudio de la sucesión de Fibonacci y del triángulo de Pascal y describía la formación de una matriz.

En el siglo XII, Bhaskara II estudió diversas áreas de las matemáticas. Sus trabajos se aproximan a la moderna concepción de infinitesimal, derivación, coeficiente diferencial y diferenciación. También estableció el teorema de Rolle (un caso especial del teorema del valor medio), estudió la ecuación de Pelle investigó la derivada de la función seno. Hasta qué punto sus aportes anticiparon la invención del cálculo es fuente de controversias entre los historiadores de las matemáticas.

Desde el siglo XIV, Mádhava, fundador de la Escuela de Kerala, encontró la llamada serie de Madhava-Leibniz y, utilizando 21 términos, computó el valor del número π a 3,14159265359. Mádhava también encontró la serie de Madhava-Gregory para el arcotangente, la serie de potencias Madhava-Newton para determinar el seno y el coseno así como las aproximaciones de Taylor para las funciones seno y coseno. En el siglo XVI, Jyesthadeva consolidó muchos de los desarrollos y teoremas de la Escuela de Kerala en los Yukti-bhāṣā. Sin ambargo, la Escuela no formuló una teoría sistemática de la derivada o la integración, ni existe evidencia directa de que sus resultados hayan sido transmitidos al exterior de Kerala.

Los progresos en matemáticas así como en otras ciencias se estancaron en la India a partir de la conquista musulmana de la India.

Matemática islámica (hacia 800-1500)

Muhamad ibn Musa al-Kuarizmi.

Page 12: LOS INICIOS DE LA MATEMÁTICA

El imperio islámico, establecido a lo largo del Oriente Medio, Asia Central, África del Norte, Iberia, y parte de la India, hizo aportes significativos en matemáticas en el siglo octavo. Aunque la mayor parte de los textos islámicos sobre matemáticas fueron escritos en árabe, no todos fueron escritos por árabes, dado que, así como el griego era usado en el mundo helenístico, el árabe era usado como el lenguaje escrito de los intelectuales no árabes a lo largo del mundo islámico en aquella época. Junto con los árabes, muchos otros importantes matemáticos islámicos fueron persas.

En el siglo IX, Al-Juarismi escribió varios libros importantes sobre los números arábigos y sobre los métodos de resolución de ecuaciones. Su libro Sobre los cálculos con números arábigos, escrito alrededor del año 825, junto con el trabajo de Al-Kindi, fueron instrumentos para dar a conocer las matemáticas árabes y los números arábigos en Occidente. La palabra algoritmo se deriva de la latinización de su nombre, Algoritmi, y la palabra álgebra del título de uno de sus trabajos, Al-Kitāb al-mukhtaṣar fī hīsāb al-ğabr wa’l-muqābala (Compendio de cálculo por compleción y comparación). Al-Juarismi a menudo es apodado "el padre del álgebra", por sus importantes contribuciones a este campo. Aportó una meticulosa explicación a la solución de ecuaciones de segundo grado con raíces positivas, y fue el primero en enseñar el álgebra en sus formas más elementales. También introdujo el método fundamental de "reducción" y "balance", refiriéndose a la colocación de los términos restados al otro lado de una ecuación, es decir, la cancelación de términos iguales que se encuentran en lados opuestos de una ecuación. Esta operación fue descrita originariamente por Al-Jarismi como al-jabr. Su álgebra no solo consistía "en una serie de problemas sin resolver, sino en una exposición que comienza con las condiciones primitivas que se deben dar en todos los prototipos de ecuaciones posibles mediante una serie de combinaciones, a partir de este momento serán objeto de estudio."

El posterior desarrollo del álgebra vino de la mano de Al-Karaji. En su tratado al-Fakhri extiende la metodología para incorporar potencias y raíces de cantidades desconocidas. La primera demostración por inducción matemática de la que se tiene constancia aparece en un libro escrito por Al-Karaji en el 1000 d.C., en el que demuestra el teorema del binomio, el triángulo de Pascal, y la suma de cubos integrales.45 El historiador de las matemáticas, F. Woepcke,46 elogió a Al-Karaji por haber sido "el primero en introducir la teoría del cálculo algebraico." También en el siglo X Abul Wafa tradujo las obras de Diofanto al árabe y desarrolló la función tangente. Ibn al-Haytham fue el primer matemático en deducir la fórmula de la suma de las ecuaciones cuárticas, usando un método que puede generalizarse para determinar la fórmula general de la suma de cualquier potencia entera. Desarrolló una integración para calcular el volumen de un paraboloide y fue capaz de generalizar sus resultados para las integrales de polinomios de más de cuarto grado. Incluso se acercó bastante a la fórmula general de la integral de polinomios, aunque no estaba interesado en polinomios de grado mayor que cuatro.47

Page 13: LOS INICIOS DE LA MATEMÁTICA

En las postrimerías del siglo XI, Omar Khayyam escribió Discusiones sobre las dificultades en Euclides, un libro sobre los defectos en los Elementos de Euclides, especialmente el postulado de las paralelas, y estableció los fundamentos de la geometría analítica y la geometría no euclídea. También fue el primero en encontrar la solución geométrica a la ecuación cúbica e influyó en la reforma del calendario.[cita requerida]

Matemática en Occidente

Ilustración de los Elementos de Euclides, hacia 1309 - 1316.

Durante la Edad Media las aplicaciones del álgebra al comercio, y el dominio de los números, lleva al uso corriente de los números irracionales, una costumbre que es luego transmitida a Europa. También se aceptan las soluciones negativas a ciertos problemas, cantidades imaginarias y ecuaciones de grado tres.

Matemática medieval en Europa

El desarrollo de las matemáticas durante la edad media es frecuentemente motivada por la creencia en un «orden natural»; Boecio las sitúa dentro del currículo, en el siglo VI, al acuñar el término Quadrivium para el estudio metódico de la aritmética, la geometría, la astronomía y la música; en su De institutione arithmetica, una traducción de Nicómaco, entre otros trabajos que constituyeron la base de la matemática hasta que se recuperaron los trabajos matemáticos griegos y árabes.48 49

Renacimiento europeo

Durante el siglo XII, particularmente en Italia y en España, se traducen textos árabes y se redescubren los griegos.50 Toledo se vuelve un centro cultural y de traducciones; los escolares europeos viajan a España y a Sicilia en busca de literatura científica árabe51 incluyendo el Compendio de cálculo por compleción y comparación de al-Khwārizmī, y la versión completa de los Elementos de Euclides, traducida a varios idiomas por Adelardo de Bath, Herman de Carinthia, y Gerardo de Cremona.52 53

El crecimiento económico y comercial que conoce Europa, con la abertura de nuevas rutas hacia el oriente musulmán, permite también a muchos mercaderes

Page 14: LOS INICIOS DE LA MATEMÁTICA

familiarizarse con las técnicas transmitidas por los árabes. Las nuevas fuentes dan un impulso a las matemáticas. Fibonacci escribe su Liber Abaci en 1202, reeditado en 1254, produce el primer avance significativo en matemática en Europa con la introducción del sistema de numeración indio: los números arábigos (sistema de notación decimal, posicional y con uso común del cero). En teoría enseñada en el Quadrivium, pero también destinada a la práctica comercial. Esta enseñanza se transmite en las botteghe d'abbaco o «escuelas de ábacos», en donde los maestri enseñaban la aritmética, la geometría y los métodos calculatorios a los futuros comerciantes, a través de problemas recreativos, conocidos gracias a «tratados de álgebra» que estos maestros han dejado. Aunque el álgebra y la contabilidad corren por senderos separados, para cálculos complejos que involucran interés compuesto, un buen dominio de la Aritmética es altamente valorado.

Hay un fuerte desarrollo en el área de las matemáticas en el siglo XIV, como la dinámica del movimiento. Thomas Bradwardine propone que la velocidad se incrementa en proporción aritmética como la razón de la fuerza a la resistencia se incrementa en proporción geométrica, y muestra sus resultados con una serie de ejemplos específicos, pues el logaritmo aún no había sido concebido; su análisis es un ejemplo de cómo se transfirió la técnica matemática utilizada por al-Kindi y Arnau de Vilanova.

Los matemáticos de esta época (tales como los calculatores de Merton College, de Oxford), al no poseer los conceptos del cálculo diferencial o de límite matemático, desarrollan ideas alternativas como por ejemplo: medir la velocidad instantánea como la "trayectoria que habría seguido [un cuerpo] si... hubiese sido movido uniformemente con un mismo grado de velocidad con el que es movido en ese instante dado"; o bien: determinar la distancia cubierta por un cuerpo bajo movimiento uniforme acelerado (hoy en día resuelto con métodos de integración). Este grupo, compuesto por Thomas Bradwardine, William Heytesbury, Richard Swineshead y John Dumbleton, tiene como principal éxito la elaboración del teorema de la velocidad media que más tarde, usando un lenguaje cinemático y simplificado, compondría la base de la "ley de la caída de los cuerpos", de Galileo.

Ritratto di Luca Pacioli, 1495, atribuido a Jacopo de'Barbari (Museo di Capodimonte).

Nicolás Oresme en la Universidad de París y el italiano Giovanni di Casali, proveyeron -independientemente- una demostración gráfica de esta relación.57 En un comentario posterior a los Elementos, Oresme realiza un análisis más detallado

Page 15: LOS INICIOS DE LA MATEMÁTICA

en el cual prueba que todo cuerpo adquiere, por cada incremento sucesivo de tiempo, un incremento de una cualidad que crece como los números impares. Utilizando el resultado de Euclides que la suma de los números impares son los cuadrados, deduce que la cualidad total adquirida por el cuerpo, se incrementará conforme el cuadrado del tiempo.

Luca Pacioli escribe "Summa de Arithmetica, Geometría, Proportioni et Proportionalità" (Venecia, 1494), en donde se incluyen tratados de contabilidad y ecritura; si bien estaba dirigido a mercaderes o aprendices de mercaderes, también contenía acertijos y rompecabezas matemáticos.60 En Summa Arithmetica, Pacioli introduce símbolos por primera vez en un libro impreso, lo que luego se convirtió en una notación convencional. También es el primer libro conocido de álgebra (mucho del contenido es plagiado de Piero della Francesca).

Durante la primera mitad del siglo XVI, Scipione del Ferro y Niccolò Fontana Tartaglia descubren las soluciones complejas de las ecuaciones cúbicas, trabajando en la resolución de ecuaciones. Retomado por Tartaglia y publicado por Cardan, encuentran una primera formulación junto con Bombelli. Gerolamo Cardano publicará el Ars magna junto con un trabajo de su alumno Ferrari, quien resuelve las ecuaciones de cuarto grado. En 1572 Rafael Bombelli publica su L'Algebra, en el que muestra cómo utilizar las cantidades imaginarias que podrían aparecer en la fórmula de Cardano para las ecuaciones de grado tres.

Hasta fines del siglo XVI, la resolución de problemas matemáticos continúa siendo una cuestión retórica. El cálculo simbólico aparecerá en 1591, con la publicación del Isagoge Artem Analycitem de François Viète y la introducción de notaciones específicas para las constantes y las variables (trabajo popularizado y mejorado por Harriot, Fermat y Descartes, cambiará por completo el trabajo algebraico desarrollado en Europa).

La Revolución Científica de los siglos XVII y XVIII

Leonhard Euler por Emanuel Handmann.

Las matemáticas se inclinan sobre aspectos físicos y técnicos. Isaac Newton y Gottfried Leibniz crean el cálculo infinitesimal, con lo que se inaugura la era del Análisis Matemático, la derivada, la integración y las ecuaciones diferenciales.61

Page 16: LOS INICIOS DE LA MATEMÁTICA

El universo matemático de comienzos del siglo XVIII está dominado por la figura de Leonhard Euler62 y por sus aportes tanto sobre funciones matemáticas como teoría de números, mientras que Joseph-Louis Lagrange alumbra la segunda mitad del siglo.

El siglo precedente había visto la puesta en escena del cálculo infinitesimal, lo que abría la vía al desarrollo de una nueva disciplina matemática: el análisis algebraico, en el que, a las operaciones clásicas del álgebra, se añaden la diferenciación y la integración. El cálculo infinitesimal se aplica tanto en la física (mecánica, mecánica celeste, óptica, cuerdas vibrantes) como en geometría (estudio de curvas y superficies). Leonhard Euler, en Calculi différentialis (1755) y en Institutiones calculi integralis (1770), intenta establecer las reglas de utilización de los infinitos pequeños y desarrolla métodos de integración y de resolución de ecuaciones diferenciales. También se destacan los matemáticos Jean le Rond d'Alembert y Joseph-Louis Lagrange. En 1797, Sylvestre François Lacroix publica Traité du calcul différentiel et intégral que es una síntesis de los trabajos del Análisis del siglo XVIII. La familia Bernoulli contribuye al desarrollo de la resolución de las ecuaciones diferenciales.

La función matemática se vuelve un objeto de estudio a parte entera. Matemáticos de la talla de Brook Taylor, James Stirling, Euler, Maclaurin o Lagrange, la utilizan en problemas de optimización; se la desarrolla en series enteras o asintóticas pero sin preocuparse de su convergencia. Leonhard Euler elabora una clasificación de funciones. Se intenta aplicarla a los reales negativos o complejos. El teorema fundamental del álgebra (existencia de raíces eventualmente complejas a todo polinomio) que tenía forma de conjetura desde hacia dos siglos, es revalorizado en la utilización de la descomposición en elementos simples, necesario para el cálculo integral. Sucesivamente, Euler (1749) y Lagrange (1771), intentan demostraciones algebraicas pero se enfrentan a la parte trascendente del problema (todo polinomio de grado impar sobre R posee una raíz real), que necesitará de la utilización de un teorema de valores intermedios.63

La demostración de D'Alembert publicada en 1746 en los anales de la academia de Berlín, es la más completa pero contiene aún algunas lagunas y pasajes obscuros. Gauss, en 1799, que critica a D'Alembert sobre estos puntos, no está exento de los mismos reproches. Hay que hacer intervenir en un momento un resultado fuerte del Análisis que el siglo aún no conoce. Además, este obstáculo se sitúa en la cuestión de los puntos de bifurcación: es una cuestión ya debatida en la polémica sobre los logaritmos y los números negativos a la que pondrá fin Euler. La segunda y tercera demostración de Gauss no adolecen de estas carencias, pero ya no se inscriben dentro del mismo siglo.

En aritmética, Euler demuestra el pequeño teorema de Fermat y da una versión extendida a los números compuestos (1736-1760).

Matemática moderna

Page 17: LOS INICIOS DE LA MATEMÁTICA

Siglo XIX

La historia matemática del siglo XIX es inmensamente rica y fecunda. Demasiado como para ser abarcada en su totalidad dentro de la talla razonable de este artículo; aquí se presentan los puntos sobresalientes de los trabajos llevados a cabo durante este período.

Numerosas teorías nuevas aparecen y se completan trabajos comenzados anteriormente. Domina la cuestión del rigor, como se manifiesta en el «análisis matemático» con los trabajos de Cauchy y la suma de series (la cual reaparece a propósito de la geometría), teoría de funciones y particularmente sobre las bases del cálculo diferencial e integral al punto de desplazar las nociones de infinitamente pequeño que habían tenido notable éxito el siglo pasado. Más aún, el siglo marca el fin del amateurismo matemático: las matemáticas eran consideradas hasta entonces como obra de algunos particulares, en este siglo, se convierten en profesiones de vanguardia. El número de profesionales no deja de crecer y las matemáticas adquieren una importancia nunca antes vista. Las aplicaciones se desarrollan rápidamente en amplios dominios, haciendo creer que la ciencia todo lo puede; algunos sucesos así parecen atestiguarlo, como el descubrimiento de un nuevo planeta únicamente por el cálculo, o la explicación de la creación del sistema solar.

Durante el siglo XIX las matemáticas se vuelven más abstractas. El trabajo revolucionario de Carl Friedrich Gauss (1777–1855) en matemática pura, incluye la primera prueba satisfactoria del «teorema fundamental de la aritmética» y de la «ley de reciprocidad cuadrática», además de numerosas contribuciones en función matemática, variable compleja, geometría, convergencia de series, ...

En este siglo se desarrollan dos formas de geometría no euclidiana, en las que el postulado de las paralelas de la geometría euclídea ya no es válido. El matemático ruso Nikolai Ivanovich Lobachevsky y su rival, el matemático húngaro János Bolyai, independientemente definen y estudian la geometría hiperbólica. La geometría elíptica fue desarrollada más tarde por el matemático alemán Bernhard Riemann, quien también introduce el concepto de variedad (matemática) (y la hoy llamada Geometría de Riemann).

En álgebra abstracta, Hermann Grassmann da una primera versión de espacio vectorial. George Boole divisa un álgebra que utiliza únicamente los números 0 y 1, la hoy conocida como Álgebra de Boole, que es el punto de partida de la lógica matemática y que tiene importantes aplicaciones en ciencias de la computación.

Augustin Louis Cauchy, Bernhard Riemann y Karl Weierstrass reformularon el cálculo de manera más rigurosa.

Siglo XX

Page 18: LOS INICIOS DE LA MATEMÁTICA

Teorema de los cuatro colores.

El siglo XX ve a las matemáticas convertirse en una profesión mayor. Cada año, se gradúan miles de doctores, y las salidas laborales se encuentran tanto en la enseñanza como en la industria. Los tres grandes teoremas dominantes son: los Teoremas de incompletitud de Gödel; la demostración de la conjetura de Taniyama-Shimura, que implica la demostración del último teorema de Fermat; la demostración de las conjeturas de Weil por Pierre Deligne. Muchas de las nuevas disciplinas que se desarrollan o nacen son una continuación de los trabajos de Poincaré, las probabilidades, la topología, la geometría diferencial, la lógica, la geometría algebraica, los trabajos de Grothendieck, entre otras.

En un discurso en 1900 frente al Congreso Internacional de Matemáticos, David Hilbert propuso una lista de 23 problemas matemáticos. Esta lista, que toca varias áreas de las matemáticas, fue un foco central para muchos matemáticos del siglo XX. A la fecha (2011), 10 han sido resueltos, 7 parcialmente resueltos y 2 siguen abiertos; los 4 restantes están formulados de manera muy vaga para decidir si han sido resueltos o no.

Muchas conjeturas notables fueron finalmente probadas. En 1976, Wolfgang Haken y Kenneth Appel usaron una computadora para demostrar el teorema de los cuatro colores. Andrew Wiles, basado en trabajos previos de otros matemáticos, probó el último teorema de Fermat en 1995. Paul Cohen y Kurt Gödel probaron que la hipótesis del continuo es lógicamente independiente de (no puede ser probada o negada de) los axiomas de la teoría de conjuntos. En 1998 Thomas Callister Hales probó la conjetura de Kepler.

Colaboraciones matemáticas de tamaño y dimensiones imprecedentes toman lugar. Un ejemplo es la clasificación de grupos finitos simples (también llamada el "teorema enorme"), para cuya demostración, entre 1955 y 1983, se requirieron 500 artículos de alrededor de 100 autores, llenando miles de páginas. Un grupo de matemáticos franceses, incluyendo Jean Dieudonné y André Weil, publican bajo el pseudónimo «Nicolás Bourbaki», con intención de exponer la totalidad del conocimiento matemático como un todo riguroso coherente. El resultado de varias docenas de volúmenes, reunidos en Elementos de matemática, ha tenido una influencia controversial en la educación matemática.64

Page 19: LOS INICIOS DE LA MATEMÁTICA

La geometría diferencial se convirtió en objeto de estudio como tal cuando Einstein la utiliza en la relatividad general. Áreas enteramente nuevas de la matemática como la lógica matemática, la topología y la teoría de juegos de John von Neumann, cambian el tipo de preguntas a las cuales se podía dar respuesta con métodos matemáticos. Todo tipo de estructura fue reducido a un grupo de axiomas abstracto, y se les dio nombres como espacio métrico, espacio topológico, etc. Estos conceptos, a su vez fueron abstraídos hacia una teoría de categorías, como se suele ser el caso en matemáticas. Grothendieck y Serre relanzan la geometría algebraica utilizando teoría de haces. Grandes avances fueron hechos en el estudio cualitativo de la teoría de sistemas dinámicos que Poincaré había comenzado en los 1890's. La teoría de la medida fue desarrollada en los tardíos 1900´s y comienzos del siglo XX. Las aplicaciones de la medida incluyen la integral de Lebesgue, la axiomatización de Kolmogorov de la teoría de la probabilidad, y la teoría ergódica. La teoría de nudos también se amplió. La mecánica cuántica llevó al desarrollo del análisis funcional. Otras nuevas áreas incluyen la teoría de distribuciones de Laurent Schwartz, los teoremas de punto fijo, la teoría de la singularidad y la teoría de las catástrofes de René Thom, la teoría de modelos y los fractales de Mandelbrot. La teoría de Lie, constituida por los grupos de Lie y las álgebras de Lie se volvieron áreas de gran interés.

La invención y el continuo progreso de las computadoras, al comienzo máquinas mecánicas analógicas y después máquinas electrónicas, permitieron trabajar con cantidades cada vez más grandes de datos, y surgieron áreas como por ejemplo la teoría de la computabilidad de Alan Turing; la teoría de la complejidad computacional; la teoría de la información de Claude Shannon; el procesamiento de señales; el análisis de datos; la optimización y otras áreas de investigación de operaciones. En los siglos precedentes, muchos de los focos matemáticos estaban puestos en el cálculo y las funciones continuas, pero el surgimiento de la computación y la tecnología de las comunicaciones llevan a una importancia creciente los conceptos de las matemáticas discretas y la expansión de la combinatoria, incluyendo la teoría de grafos. La velocidad y procesamiento de datos de las computadoras también les permitieron encargarse de problemas matemáticos que consumirían demasiado tiempo con cálculos hechos con papel y lápiz, llevando a áreas como el análisis numérico y el cálculo formal. Algunos de los métodos y algoritmos más importantes del siglo XX han sido: el algoritmo simplex, la transformada rápida de Fourier, la corrección de errores hacia adelante, el Filtro de Kalman de la teoría de control y el algoritmo RSA de la criptografía asimétrica.

Siglo XXI

En el año 2000, el Clay Mathematics Institute anunció los siete problemas del milenio, y en 2003 la demostración de la conjetura de Poincaré fue resuelta por Grigori Perelmán (que declinó aceptar el premio).

Page 20: LOS INICIOS DE LA MATEMÁTICA

La mayoría de las revistas de matemática tienen versión on line así como impresas, también salen muchas publicaciones digitales. Hay un gran crecimiento hacia el acceso libre, popularizada por el ArXiv.

HISTORIA DE LOS SÍMBOLOS MATEMÁTICOS

Factorial

El símbolo , llamado n factorial, fue introducido en 1808 por Christian Kramp the Strassbourg, que lo escogió así para por problemas de imprenta al querer usar el

símbolo que se usaba anteriormente que se muestra en la figura

Similar y Congruente

Los símbolos usados en geometría para similar y para congruente fueron creados or Leibniz.

Símbolo de ángulo

En 1923, el Comité Nacional de Requerimientos Matemáticos, patrocinado por la Asociación Matemática de América, recomendó el símbolo de arriba para simbolizar el ángulo en los Estados Unidos de América. Históricamente, Pierre Herigone, en un trabajo francés en 1634, fue aparentemente la primera persona en usar un símbolo para el ángulo. El uso el símbolo que está arriba así como el símbolo que está abajo, que ya era usado como el símbolo de "menor que".

El símbolo estándar sobrevivió así como estas otras variantes. (Estos a paresen en Inglaterra alrededor de 1750)

During the 19th century in Europe these forms were used to designate the angle ABC, and the angle between a and b , respectively.

Durante el siglo 19 en Europa estas formas son usadas para designar el angulo ABC y el ángulo entre a y b.

Este símbolo, representando el arco de un ángulo, aparece por primera vez en Alemania el la ultima mitad del siglo 19.

Page 21: LOS INICIOS DE LA MATEMÁTICA

Símbolo de ángulo recto

Este símbolo (a la izquierda) fue usado en 1968 por Samuel Reyher, quien simbolizo "el ángulo B es un ángulo recto" como está ilustrado a la derecha,

usando una línea vertical como la igualdad.

Este símbolo utilizado comúnmente para el angulo recto en América alrededor de 1880 muy usado en el popular libro de Wentworth de geométrica.

El símbolo para pi ( )

El símbolo usado para pi, fue usado por el matemático ingles William Oughtred (1574 - 1660), Isaac Barrow (1630-1677) y David Gregory (1661-1701) para designar la circunferencia, o la periferia de un circulo. El primero en usar el símbolo para la razón de la circunferencia al diámetro fue el escritor ingles, William Jones, en un publicación en 1706. El símbolo no era tan usado en este sentido, sin embargo, hasta que Euler (1707-1783) lo adopto en 1737. (Eves p99)

La notación de Oughtred era precursora para el símbolo de pi, usada por primera vez por William Jones en 1906 en "Synopsis palmariorum matheseos". Euler uso por primera vez pi en 1737. En esta época, el símbolo fue adoptado a nivel general. (Cajori p158)

EVES, HOWARD "An Introduction to the History of Mathematics," fourth edition, Holt Rinehart Winston 1976.

CAJORI, FLORIAN "A History of Mathematics", The Macmillan Company 1926

El símbolo para porcentaje

Este símbolo a sido usado desde el final del siglo 15 en computar el interés, ganancia, perdida y impuestos. Sin embargo, la idea tiene su origen mucho antes. Cuando el emperador romano Augustus impuso un impuesto en todos los bienes que se vendían en una subasta, centesima rerum venalium, el impuesto era de . Otros impuesto romanos eran sobre cada esclavo liberado y en cada

esclavo vendido. Sin reconocer esto como porcentaje, usaban fracciones reducidas a las centenas para su calculo fácil.

El símbolo de porcentaje, , seguramente evoluciono de un símbolo introducido en un manuscrito anónimo de 1425. En lugar de "P cento", que era común en ese tiempo, el autor uso el símbolo que se muestra a la izquierda.

Page 22: LOS INICIOS DE LA MATEMÁTICA

Para 1650, el símbolo se cambió a la forma que se enseña a la izquierda. Finalmente, el "per" se dejó de usar, dejando este símbolo sin la p y se transformó en .

Símbolo de división

La barra horizontal de las fracciones (de origen árabe) ya era usada por Fibonacci en el siglo XIII, aunque no se generalizó hasta el siglo XVI. Es, desde luego, la forma más satisfactoria, pues no solo indica la operación sino que en el caso de que sean varias las operaciones a realizar establece el orden de prioridad entre

ellas (digamos que además de signo es paréntesis). La barra oblicua , variante de la anterior para escribir en una sola línea, fue introducida por De Morgan en 1845.

En 1659 el suizo Johann Heinrich Rahn inventó para la división el signo , que resulta bastante gráfico una vez que la barra de fracción es norma general. No tuvo mucho éxito en su país, Suiza, ni en la Europa continental, pero sí en Gran Bretaña y los Estados Unidos.

Los dos puntos se deben a Leibniz (1684), que los aconsejaba para aquellos casos en los que se quisiese escribir la división en una sola línea y la notación con raya de fracción no fuese por tanto adecuada. Este signo mantiene el parentesco de la división con la multiplicación, para la que Leibniz usaba un punto.

En cuanto al gnomon o ángulo que utilizamos para separar dividendo, divisor y cociente en la división larga no se dispone de una información precisa. Boyer, en su Historia de la matemática, p.282, dice: "Los árabes, y a través de ellos más tarde los europeos, adoptaron la mayor parte de sus artificios aritméticos de los hindúes, y por tanto es muy probable que también provenga de la India el método de "división larga" conocido como el "método de la galera", por su semejanza con un barco con las velas desplegadas." Pues bien: en dicho "método de la galera" se utilizaba un ángulo parecido al que se usa en la actualidad para separar el divisor de los otros números.

Símbolos de Orden ( , , , )

Thomas Harriot (1560-1621) fue in matematico ingles que vivio gran parte de su vida en el siglo 16 pero su mas grande publicación aprecio en el siglo 17. Es considerado el fundador de la escuela de algebristas de Inglaterra. Su gran trabajo en este campo, "Artis Analyticae Praxis" fue publicado en Londres en 1631 y trata de teoria de ecuaciones. En esta publicación el usa los símbolos, ">" para "mayor que", y "<" para "menor que".

Page 23: LOS INICIOS DE LA MATEMÁTICA

No fueren inmediatamente aceptados, muchos matemáticos preferían los siguientes símbolos

"mayor que" "menor que"

que otro ingles William Oughtred (1574-1660) el cual sugirió esa notación en el popular Clavis Mathematicae, un trabajo de aritmética y álgebra que difundió bastante ese conocimiento en ese país.

Estos simbolos ( y ), y algunas de sus variantes, fueron inventados en 1734 por el frances Pierre Bouguer (1698-1758).

Símbolo del Infinito

La historia de la palabra infinito viene del Latin infinitus, una combinación de "in" que significa no o sin, y la palabra finis que significa fin o limite. Una de las primeras personas en considerar la noción de infinito fue el filósofo griego Anaximander, quién usó el terminó "sin fronteras" (apeiron). Infinito ha sido históricamente dividido en dos tipos: aquella concebida como actual (ya sea el espacio, tiempo, o Dios) y aquella que solo existe en nuestras mentes, como los conceptos de lógica y matemáticas. Este segundo tipo de infinito se le conoce más como infinito cuantitativo. El símbolo que hoy día conocemos como infinito se llama realmente lemniscate y fue inventado en el 1655 por el matemático John Wallis. No fue hasta cuarenta años después que otro matemático, Bernoulli, le pusiera Lemniscus (que significa lazo).

TIPOS DE NUMERACIÓN

En aritmética, álgebra y análisis matemático, un sistema numérico es un conjunto provisto de dos operaciones que verifican ciertas condiciones relacionadas con las propiedades conmutativa, asociativa y distributiva.

Los sistemas numéricos se caracterizan por tener una estructura algebraica (monoide, anillo, cuerpo, álgebra sobre un cuerpo), satisfacer propiedades de orden (orden total, buen orden) y propiedades topológicas y analíticas (densidad, metrizabilidad, completitud) adicionales.

Introducción

Convencionalmente diversos conjuntos dotados de "adición" y "multiplicación" se llaman sistemas numéricos. Entre estos conjuntos están los números naturales, los enteros, los racionales, los reales y los complejos, aunque existen otros que generalizan a algunos de los anteriores. Aunque no existe una definición formal de sistema numérico, todos los conjuntos dotados de operaciones binarias que se cuentan convencionalmente entre los sistemas numéricos tienen propiedades comunes.

Page 24: LOS INICIOS DE LA MATEMÁTICA

En todos los sistemas numéricos convencionales hay definidas dos operaciones binarias asociativas denominadas adición y multiplicación, y además se cumple que la multiplicación es distributiva con respecto a la adición. La adición es siempre conmutativa, aunque en algunos sistemas numéricos la multiplicación no siempre es conmutativa1 ): Para a, b y c elementos cualesquiera de :

Propiedad conmutativa de la adición: a + b = b + a Propiedad asociativa de la adición: (a + b) + c = a + (b + c) Propiedad asociativa de la multiplicación: (a • b) • c = a • (b • c) Propiedad distributiva de la multiplicación sobre la adición: a • (b + c) = a • b

+ a • c

La adición y la multiplicación no necesariamente deben ser las de la aritmética elemental.

Más formalmente un sistema numérico se caracterizan por una séxtupla , donde:

es un conjunto de axiomas que definen las propiedades algebraicas de

las operaciones y conjeturan la posible existencia de cierto tipo de

elementos (opuestos, inversos, etc.)

es un conjunto de axiomas referidos a la teoría del orden, que dan cuenta

de ciertas propiedades asociadas a la relaciones existentes ente los

elementos.

es un conjunto de axiomas topológicos, que posiblemente incluyen la

definición de ciertas funciones (distancia) y propiedades (completitud,

densidad, etc.)

Sistemas numéricos con estructura de anillo

Los números enteros son uno de los ejemplos más sencillos de anillos.

Los números enteros módulo n (donde , con p un número entero primo).

Los enteros gaussianos

Sistemas numéricos con estructura de cuerpo

Los números racionales ( ), mínimo cuerpo que contiene al anillo ( ). Los números algebraicos ( ), mínimo cuerpo algebraicamente cerrado que

contiene a

Los números reales ( ), mínimo cuerpo completo que contiene a Los números complejos ( ), mínimo cuerpo algebraicamente cerrado que

contiene a

Page 25: LOS INICIOS DE LA MATEMÁTICA

Los números enteros módulo p (con p primo, ( ) o aritmética modular de módulo p.

Los números hiperreales ( ) son una extensión de los números reales ().

Los números supéreles son una generalización de los números hiperreales. Los números surreales son el cuerpo más grande posible que contiene a

los reales y siguen siendo un cuerpo ordenado.

Sistemas numéricos con estructura de álgebra

Los números cuaterniónicos Los números octoniónicos Los números sedeniónicos

Todos estos conjuntos son ejemplos de números hipercomplejos.

Discusión de los ejemplos

Ejemplos intuitivos

La mayor parte de ejemplos de sistemas numéricos sencillos están relacionados con extensiones de los números naturales:

Los números enteros, generalizar la idea de contar y permiten formalizar el concepto de deuda o defecto de algo, es decir, en ellos se puede formalizar operaciones como "4 - 7", etc. Este sistema numérico tiene una estructura de anillo conmutativo unitario, una topología discreta trivial. Las propiedades de orden son relativamente simples ya que cualquier conjunto acotado es finito tiene un elemento mínimo y un elemento máximo pertenecientes a dicho conjunto.

Los números racionales, permiten formalizar además de la idea de deuda o defecto de algo, la noción de porción de algo, eso implica a su vez propiedades topológicas más complicadas, como la que entre dos números racionales siempre existe al menos otro número racional. Eso hace topológicamente complicados a los racionales ya que un conjunto acotado no tiene porqué tener un máximo o un mínimo (aunque sí una cota superior y una cota inferior). Algebraicamente los racionales tienen estructura de cuerpo. La principal diferencia con los reales es que los racionales no son un conjunto topológicamente completo.

Los restos de módulo 2

Los restos de módulo 2, con las operaciones de suma y multiplicación de restos, forman un sistema numérico. La congruencia de Gauss es una relación de

Page 26: LOS INICIOS DE LA MATEMÁTICA

equivalencia. El cociente del conjunto por una relación de equivalencia lo divide en clases disjuntas. En el caso de las congruencias de módulo 2 lo que se hace es dividir a los enteros en números pares e impares. Las operaciones de suma y multiplicación definidas permiten responder de qué paridad es el resultado de una suma o multiplicación de números pares o impares, en cualquier combinación que se utilice. Los símbolos "0" y "1" representan a los restos posibles de la división entera por 2: 0 para los números pares y 1 para los impares. La expresión 1 + 1 = 0 es equivalente a: impar + impar = par.

Tabla de

sumar

+ 0 1

0 0 1

1 1 0

Tabla de

multiplicar

× 0 1

0 0 0

1 0 1

Page 27: LOS INICIOS DE LA MATEMÁTICA

Con las tablas es fácil comprobar que las operaciones son conmutativas, asociativas y que el producto es distributivo con respecto a la suma. Tenemos, entonces, un sistema numérico de dos símbolos. Para una comprensión más profunda, ver aritmética modular.

Ejemplos según las propiedades de orden

Sistemas numéricos totalmente ordenados

Los naturales , los enteros , los racionales y los reales son ejemplos de conjuntos totalmente ordenados.

Los enteros gaussianos o los complejos no son un conjunto totalmente ordenado, ya que no puede definirse un orden total compatible con las operaciones aritméticas. Ese hecho se sigue de que tanto la hipótesis de que i > 0 como i < 0 conducen a una contradicción, si se admite que el orden propuesto es no-trivial y compatible con la multiplicación.

Tampoco números enteros módulo n no admiten ningún orden total compatible con la suma ya que al ser grupos cíclicos respecto a la suma. Ya que a > 0 debería implicar dos cosas que su opuestos aditivo -a < 0 y además que sumar un número finito de veces a consigo mismo implica n·a > 0, pero dado que (n-1)·a = -a, se llega a una contradicción, al ser el primer miembro positivo y el segundo negativo.

Sistemas numéricos bien ordenados

Los números naturales son un ejemplo de sistema numérico que es además un conjunto bien ordenado.

Los números enteros no son un conjunto bien ordenado, aunque cualquier subconjunto acotado de los enteros sí es finito y por tanto también es un conjunto bien ordenado.

Los números racionales y reales no son un conjunto bien ordenado. Ni siquiera cualquier subconjunto acotado de números racionales o reales es un conjunto bien ordenado. Por ejemplo el intervalo abierto (0,1) es un subconjunto acotado tanto en los racionales como en los reales pero no tiene un elemento mínimo perteneciente al conjunto, ya que 0 no es un elemento de ese subconjunto.

Sistemas numéricos con orden denso

Ni los números naturales, ni los enteros tienen un orden denso, ya que pueden seleccionarse dos números consecutivos tales que entre ellos no exista ningún otro elemento. Por ejemplo, no existe ningún otro número entero entre 2 y 3.

Page 28: LOS INICIOS DE LA MATEMÁTICA

En cambio los racionales y los reales tienen un orden denso, dados dos números diferentes r1 y r2 siempre existe algún otro número entre ellos por ejemplo (r1+r2)/2 ó (2r1+r2)/3

MATEMÁTICOS IMPORTANTES

En esta lista de matemáticos importantes se presenta una selección de

matemáticos desde la antigüedad hasta el presente. La selección se orienta por los aportes científicos, utilizando como criterio para definir el grado de notoriedad la atención que se les brinda en escuelas y universidades cuando se trata de la historia de la matemática.

Hasta ya muy avanzada la época del renacimiento, la mayoría de los matemáticos se dedicaban a varias ciencias diferentes. Con frecuencia eran al mismo tiempo filósofos, ingenieros, astrónomos y astrólogos. El polimatismo cedió con el transcurso de los siglos, de modo que en la época del racionalismo era usual que los mátematicos estudiaran y practicaran sólo una segunda ciencia adicional. Mayoritariamente, y debido al parentesco temático, escogían la física como segunda ciencia o campo de ocupación. A partir del siglo XIX este desarrollo con tendencia a la especialización continuó, de modo que en la actualidad es más frecuente que los matemáticos sólo investiguen en unas pocas ramas o áreas parciales de la matemática.

Antigüedad

Nombre (y datos biográficos)

Área de investigación

Tales de Mileto c. 624 a. C. en Mileto, Asia Menor c. 546 a. C.1

Tales fue un filósofo griego, estadista, matemático, astrónomo e ingeniero. Según se señala en los escritos conservados, Tales habría demostrado teoremas geométricos sobre la base de definiciones y premisas con ayuda de reflexiones sobre la simetría. Tales aspiraba a encontrar una explicación racional del universo. El teorema de Tales se llama así en su honor.

Pitágoras de Samos c. 570 a. C. después de 510 a. C.

Pitágoras de Samos fue matemático, filósofo y fundador de la agrupación secreta de los pitagóricos. El teorema de Pitágoras, llamado así por Euclides, ya era conocido con mucha anterioridad a Pitágoras.

Page 29: LOS INICIOS DE LA MATEMÁTICA

Eudoxo de Cnidos 410 o 408 a. C. 355 o 347 a. C.

Eudoxo fue un matemático, astrónomo, geógrafo y médico griego. Clasificó los conceptos de número, longitud, dimensión espacial y temporal y estableció los fundamentos para la teoría de la proporción. Su teoría de la proporción ya contenía el axioma de Arquímedes o «axioma de continuidad»2 y anticipaba resultados del comportamiento de los irracionales. Desarrolló el método de exhausción y determinó el volumen de la pirámide y del cono.

Euclides de Alejandría c. 365 a. C. probablemente en Alejandría o Atenas c. 300 a. C.

Euclides intentó establecer la matemática, y especialmente la geometría, sobre fundamentos axiomáticos. En su manual de 13 volúmenes «Los Elementos» resumió el conocimiento matemático de aquel entonces. La geometría euclidiana o euclídea y el algoritmo de Euclides son conceptos que se denominan así en su honor.

Arquímedes de Siracusa c. 287 a. C. probablemente en Siracusa, Sicilia 212 a. C. también en Sicilia

Arquímedes fue un matemático, físico e ingeniero griego, considerado el más importante de los matemáticos de la antigüedad. Demostró que la circunferencia de un círculo mantiene la misma relación respecto de su diámetro que la superficie del círculo respecto del cuadrado del radio. La relación se denomina hoy en día con el número pi (π). Además calculó la superficie bajo una parábola. El principio de Arquímedes se llama así en su honor.

Apolonio de Perge 262 a. C. en Perge 190 a. C. en Alejandría

En Κωνικά («Cónicas»), su obra más importante acerca de las secciones de un cono, Apolonio de Perge se dedicó a investigar detenidamente la problemática de las secciones cónicas, determinación de los extremos y de los límites de una sucesión. Entre otros, el círculo de Apolonio se denomina así en su honor.

Page 30: LOS INICIOS DE LA MATEMÁTICA

Diofanto de Alejandría Fechas de nacimiento y muerte desconocidas entre 100 a. C. y 350 a. C.

Diofanto de Alejandría fue un matemático griego sobre quien se conservan muy pocos datos biográficos. Sin embargo, se sabe bastante más sobre sus obras, donde la más conocida es la Aritmética en varios volúmenes.3 Se dedicó a la búsqueda de soluciones de ecuaciones algebraicas con varias incógnitas. Hoy día se denominan ecuaciones diofánticas a las ecuaciones algebraicas para las que se busca una solución dentro del conjunto de los números enteros.

Herón de Alejandría Fechas exactas de nacimiento y muerte desconocidas vivió probablemente entre 200 a. C. y 300 a. C.

Herón de Alejandría fue un destacado matemático e ingeniero griego. Desarrolló un procedimiento que lleva su nombre para el cálculo de raíces cuadradas y la fórmula de Herón, la que permite calcular la superficie de un triángulo conociendo la longitud de sus lados.

Liu Hui ca. 220; ca. 280])

Liu Hui (劉徽) fue un matemático chino. Vivió

en el período del reinado Wei y se le conoce por haber escrito una serie acerca de matemáticas para la vida cotidiana. La obra (que consta de nueve libros) se publicó en el año 263.4 5 Entre sus aportes más destacados se cuentan: el cálculo del número π a través de la inscripción de polígonos regulares en un círculo (propuso una aproximación de 3,14); la solución de sistemas de ecuaciones lineales a través de un procedimiento que corresponde buena medida al que más tarde se denomina procedimiento de eliminación de Gaus y el cálculo del volumen del prisma, el tetraedro, la pirámide, el cilindro, el cono y el tronco cónico. También escribió en 263 el Haidao suanjing (Manuel matemático de las islas marinas) que contiene métodos para la medición de terrenos y que se utilizó con este fin durante más de un milenio en el lejano oriente.6 7

Véase también: :Categoría:Matemáticos de la Antigua Grecia.

Page 31: LOS INICIOS DE LA MATEMÁTICA

Edad Media En el período histórico que desde el punto de vista eurocéntrico se

denomina Edad Media, fueron principalmente eruditos provenientes de la región árabe y persa quienes aportaron nuevos conocimientos y continuaron desarrollando la matemática de los griegos. En la Baja Edad Media se abrieron paso poco a poco aportes de la matemática con influencia islámica, que también llegaron a la Europa cristiana. La fundamentación del álgebra actual constituye el aporte más importante de los matemáticos islámicos.

Nombre (Datos biográficos)

Área de Investigación

Aryabhata 476 en Ashmaka c. 550

Aryabhata fue un sabio, matemático y astrónomo hindú. Se supone que el concepto de 0 (cero) fue conocido por él, aunque fue en trabajos más recientes de Brahmagupta donde el cero se trató como un número independiente. Aryabhata determinó de manera muy precisa, para las condiciones de aquel entonces, el número π (Pi): en 3,1416 y parece haber intuido que se trataba de un número irracional.

Brahmagupta 598 668

Brahmagupta desempeñó sus labores como matemático, así como también de astrónomo en India. Estableció reglas para la aritmética con los números negativos y fue el primero que definió y utilizó el cero para los cálculos. La fórmula de Brahmagupta lleva su nombre.

Al-Juarismi c. 780 entre 835 y 850

Al-Juarismi fue un matemático, astrónomo y geógrafo persa. Se le considera como uno de los matemáticos más relevantes debido a que se dedicó – al contrario que Diofanto, por ejemplo – no a la teoría de los números, sino al álgebra como forma de investigación elemental. Al-Juarismi introdujo de la matemática hindú la cifra cero (árabe: sifr) en el sistema arábico y con ello en todos los sistemas numéricos modernos. En sus libros expone estrategias de solución sistemáticas para ecuaciones lineales y cuadráticas. El término «álgebra» se debe a la traducción

Page 32: LOS INICIOS DE LA MATEMÁTICA

de su libro Hisab al-dschabr wa-l-muqabala.

Thabit ibn Qurra 826 en Harrán, Turquía; 18 de febrero de 901 en Bagdad

Thabit ibn Qurra (latín: Thebit) hizo contribuciones a la generalización del teorema de Pitágoras y del postulado de las paralelas. Además se dedicó a los cuadrados mágicos y a la teoría de números. Su teorema de los números amigos es muy conocido.

Al-Battani entre 850 y 869 en Harrán 929 en Schloss Dschaß

Al-Battani es considerado un gran matemático y astrónomo de la edad media islámica. Transmitió al mundo árabe los fundamentos de la matemática hindú y el concepto de cero. Pero, sobre todo, el mérito de Al-Battanis gira en torno a la trigonometría; fue el primero en utilizar el seno en lugar de las cuerdas. Halló y demostró por primera vez el teorema del seno, así como el hecho de que la tangente representa la relación entre el seno y el coseno.

Abu'l Wafa 10 de junio de 940 en Buzjan 15 de julio de 998 en Bagdad

Abu'l Wafa hizo aportes significativos a la trigonometría. Fue el primero en introducir las funciones secante y cosecante y en utilizar la función tangente. Propuso también la definición de las funciones trigonométricas de la circunferencia unitaria. Además simplificó los métodos antiguos de la trigonometría esférica y demostró el teorema del seno para los triángulos esféricos en general.

Alhazen c. 965 en Basra 1039/40 en El Cairo

Alhazen (Al-Haitham) fue un matemático, óptico y astrónomo árabe. Se dedicó principalmente a problemas de la geometría y, a través de una aplicación temprana del principio de inducción, encontró una fórmula para la suma de las cuartas potencias, pudiendo con ello calcular por primera vez el volumen del paraboloide. Además, logró resolver el problema que lleva su nombre, a través de calcular geométricamente, con secciones cónicas en un espejo esférico, el

Page 33: LOS INICIOS DE LA MATEMÁTICA

punto desde el cual un objeto desde una distancia dada se proyecta en una imagen determinada.

Omar Jayam c. 1048 en Nishapur, provincia de Jorasán 1131

Omar Jayam fue un matemático y astrónomo persa. Halló la solución para las ecuaciones de tercer grado y sus raíces a través de su expresión geométrica. Se dedicó también principalmente al problema de las paralelas y a los números irracionales. Los desarrollos de su obra prevalecieron en álgebra durante mucho tiempo.

Leonardo Fibonacci c. 1180 después de 1241

Leonardo da Pisa, más conocido como Fibonacci es considerado el matemático europeo más importante de la Edad Media. Hoy en día se le conoce sobre todo por los números que llevan su nombre y conforman la sucesión de Fibonacci. A través del estudio de la geometría de Euclides, escribió un compendio de sus conocimientos matemáticos en su obra principal Liber abbaci.

Li Ye 1192 en Tahsing, hoy Pekín 1279 en la provincia de Hopeh (Hebei)

Li Ye fue un matemático chino que vivió durante la Dinastía Song. Dejó como legado dos importantes libros acerca de cálculo de la superficie y perímetro del círculo, así como métodos de cálculo para reducir a ecuaciones algebraicas los problemas geométricos. Se reconoce también su aporte a la definición de los números negativos. Su método de solución de ecuaciones se asemeja mucho al enfoque conocido mucho más tarde como algoritmo de Horner.

Zhu Shijie c. 1260 c. 1320

Zhu Shijie fue uno de los más importantes matemáticos chinos. La obra de Zhu trata sobre aproximadamente 260 problemas del las áreas de la aritmética y del álgebra. Su segundo libro El precioso espejo de los cuatro elementos, escrito en el año 1303 elevó al álgebra china al más alto nivel. La obra incluye una explicación de su método de los cuatro elementos, el que se puede

Page 34: LOS INICIOS DE LA MATEMÁTICA

usar para representar ecuaciones algebraicas con cuatro incógnitas. Zhu aclaró como encontrar raíces cuadradas y aportó un complemento a la comprensión de las series y secuencias. Al comienzo del libro hay una imagen que muestra la representación de los coeficientes binomiales, el hoy día denominado triángulo de Pascal.

Al Kashi (Ghiyath al-Din Jamshid Mas'ud al-Kashi) c. 1380 en Kashan 22 de junio de 1429 en Samarcanda

En su obra r-Risala al-Muhitija determinó el perímetro de la circunferencia goniométrica (es decir, unitaria, cuyo perímetro es el doble del número π) en base al polígono regular de 3·228 lados, con una precisión de 9 posiciones sexagecimales: 6;16,59,28,01,34,51,46,14,50, las que convirtió a 16 posiciones decimales. Esta es una de las más antiguas documentaciones del cálculo con fracciones decimales. Fue partidario del reemplazo del sistema sexagesimal por el decimal para las operaciones con fracciones. Con el objetivo de predecir más fácilmente la ubicación de los planetas construyó una especie de computador analógico, el Tabaq-al-Manateq, el cual estaba construido de manera semejante a un astrolabio8 . En Francia el teorema del coseno se denomina en su honor Théorème d'Al-Kashi.

Véanse también: :Categoría:Matemáticos por siglo, Categoría:Matemáticos del Antiguo Oriente, Categoría:Matemáticos del islam y Categoría:Matemáticos de China.

Renacimiento europeo y Edad Moderna Si ya es difícil trazar una línea claramente divisoria para marcar el comienzo

del Renacimiento sin arreglo a un determinado lugar geográfico, resulta más complicado aún determinar su fin como época histórica. Definir un «comienzo de la modernidad» es una tarea bastante imposible, a menos que se aborde bajo algún criterio claro. Para los fines de esta sistematización, sin embargo, resulta conveniente determinar algún momento en el que el foco de las historiografías se redirige a Europa (Renacimiento), lo que se manifiesta en la historia de las matemáticas con una orientación principal hacia a los desarrollos en Italia. Una figura de enlace para marcar este giro, es Regiomontanus. Hacia adelante, se podría marcar en el siglo XVI el inicio de una matemática moderna, con el

Page 35: LOS INICIOS DE LA MATEMÁTICA

establecimiento de las bases de la geometría analítica, el desarrollo del concepto de función y el tratamiento más sistemático del infinito.

Nombre (y datos biográficos)

Área de investigación

Regiomontanus 6 de junio de 1436 en Königsberg en Baja Franconia 6 de julio de 1476 en Roma

Johannes Müller de Königsberg, más tarde llamado Regiomontanus, fue un matemático, astrónomo y editor de la Baja Edad Media. Regiomontanus destaca como el fundador de la trigonometría moderna y reformador temprano del Calendario Juliano.

Piero della Francesca ca. 1415 en Borgo del Santo Sepolcro cerca de Arezzo 12 de octubre de 1492 en Borgo del Santo Sepulcro

Piero della Francesca (Pietro di Benedetto dei Franceschi) fue un pintor y matemático italiano del siglo XV. Aunque la historia actual recoge principalmente sus aportes a la pintura del Quattrocento, (y dentro de ella, principalmente sus frescos), en su época fue reconocido por sus contribuciones como matemático a la geometría euclidiana. En sus obras de teoría del arte se dedicó principalmente a la perspectiva, como asimismo a la geometría y la trigonometría. Como pintor se destacó además por ser el primero en buscar soluciones matemáticas a los problemas de la representación del espacio en el plano bidimensional (perspectiva). Aparte de estas «matemáticas aplicadas», se conservan obras estrictamente matemáticas de su autoría como el Trattato d'abacco (hay un ejemplar en la (Biblioteca Laurenciana de Florencia).9 Entre sus discípulos notables, se cuenta al matemático Luca Pacioli (1445-1514).

Luca Pacioli ca. 1450 en Borgo del Santo Sepolcro, región de la Toscana ca. 1510 en Florencia

Luca Pacioli fue un matemático italiano y monje franciscano. Su principal obra Summa de arithmetica geometria, proporzioni e proporzionalita se publicó en 1494 y está dividida en dos partes: la primera trata de aritmética y álgebra, principalmente describe reglas de las cuatro operaciones básicas y un

Page 36: LOS INICIOS DE LA MATEMÁTICA

método para extracción de raíces. Su contribución más conocida, sin embargo, es la sistematización de diversos temas de la matemática aplicada al comercio y de contabilidad (principalmente el método de partida doble), a lo que destina amplios capítulos de esta importante obra. La segunda parte está dedicada a temas de geometría. Se le atribuye gran importancia histórica por ser este el primer libro impreso de matemáticas y con ello, la primera sistematización de la aritmética el álgebra y la geometría que alcanza una muy amplia difusión.10 Alrededor del año 1500 Pacioli escribió también una obra sobre el ajedrez: De ludo scacchorum. Supuestamente este libro fue redactado en conjunto con Leonardo da Vinci. Este manuscrito, que estuvo desaparecido durante siglos, fue reencontrado en 2006 y se conserva en la biblioteca de la Fundación Palacio Coronini.11

Michael Stifel c. 1487 en Esslingen am Neckar 19 de abril de 1567 en Jena

Michael Stifel fue un teólogo, reformador y matemático alemán. Se considera que su obra principal es la Arithmetica integra, libro publicado en 1554 y que trata sobre números negativos, exponentes y secuencias numéricas. Esta obra contiene una tabla de enteros y potencias de 2, la que puede considerarse como una especie de tabla de logaritmos primitiva. Además escribió varios libros de cálculo sobre problemas de la vida diaria.

Nicolo Tartaglia 1499 o 1500 en Brescia, Italia 13 de diciembre de 1557 en Venecia

Nicolo Tartaglia fue un matemático veneciano, especialmente conocido por sus relevantes aportes en el tema de las ecuaciones de tercer grado y por la gran controversia en la que se vio envuelto en torno a la solución de las 13 ecuaciones de este tipo que entonces se distinguían. En la actualidad se considera una única forma de la ecuación de tercer grado: x³ + ax² + bx + c = 0, pero esta formulación única es posible gracias a que a, b y c pueden ser números

Page 37: LOS INICIOS DE LA MATEMÁTICA

negativos o cero. En la época de Tartaglia aún no se aceptaban los números negativos y por ello existían trece ecuaciones distintas, de las cuales siete eran completas (todas las potencias representadas), tres sin término lineal y tres sin término cuadrático. En la manera moderna de escribirlo serían x³ + px = q, x³ = px + q y x³ + q = px. La tercera de estas ecuaciones tiene una solución principal negativa, de modo que no se trataba. En otro orden de cosas, a Tartaglia se le reconoce su aporte a la balística por ser el primero en demostrar (en 1537) que una bala lanzada al aire alcanza su máxima distancia si se la dispara en un ángulo de 45º.

Gerolamo Cardano 24 de septiembre de 1501 en Pavía 21 de septiembre de 1576 en Roma

Gerolamo Cardano fue un médico, filósofo y matemático italiano. Cardano hizo importantes descubrimientos en el cálculo de probabilidades, así como también fue el primero en sugerir la existencia de números imaginarios. Cardano encontró un algoritmo para hallar la solución de las ecuaciones de tercer grado, la fórmula de Cardano, que lleva su nombre. También en su honor se denomina así la junta cardán (un componente mecánico que articula dos ejes).

Rafael Bombelli 1526 en Bologna, Italia 1572, probablemente en Roma

Rafael Bombelli fue un matemático e ingeniero italiano. En su libro L'algebra, publicado en 1572 introduce los números negativos e incluso números imaginarios. Con ello, desarrolló las ampliaciones que la consideración de los números negativos implican en las soluciones propuestas por Nicolo Tartaglias y Gerolamo Cardanos para las ecuaciones algebraicas de tercer grado. Se le atribuye la introducción de los paréntesis en la notación algebraica. Sus aportes como ingeniero se centraron en resolver problemas de desagües de pantanos y otras obras de importancia para la explotación agraria.

Page 38: LOS INICIOS DE LA MATEMÁTICA

François Viète 1540 en Fontenay-le-Comte 13 de diciembre12 de 1603 en París

François Viète (Vieta) fue un abogado y matemático francés. A Viète se debe el uso de letras como variables en la notación matemática. En realidad la matemática era para él una ocupación colateral, pero, a pesar de ello, se transformó en uno de los matemáticos más influyentes de su época. Además, destacó en el ámbito de la trigonometría y aportó valiosos trabajos previos para el posterior desarrollo del cálculo infinitesimal. Las fórmulas de Viète llevan su nombre.

Johannes Kepler 27 de diciembre de 1571 en Weil der Stadt 15 de noviembre de 1630 en Ratisbona

Johannes Kepler fue un filósofo natural, matemático, astrónomo, astrólogo y óptico alemán. Se dedicó a la teoría general de polígonos y poliedros. Kepler desarrolló muchas configuraciones espaciales hasta ese entonces desconocidas, que actualmente se conocen como sólidos de Kepler-Poinsot. La definición de antiprisma es también de su autoría. Además desarrolló la regla de Kepler que permite obtener una aproximación numérica de la integral. Su aporte más significativo es el descubrimiento de las leyes que llevan su nombre acerca del movimiento de los planetas que describen una elipse cuyo foco es el sol.

John Wallis 23 de noviembre de 1616 en Ashford, Kent 28 de octubre de 1703 en Oxford

John Wallis fue un matemático inglés. El aporte de sus obras es fundamental para el desarrollo del cálculo infinitesimal por parte de Newton y Leibniz posteriormente. En 1656, en la obra Arithmetica Infinitorum, en la cual publicó investigaciones sobre series infinitas, derivó el producto de Wallis.

Pierre de Fermat c. fines de 1607 en Beaumont-de-Lomagne 12 de enero de 1665 en Castres

Pierre de Fermat fue un jurista y matemático aficionado francés. Fermat hizo importantes aportes a la teoría de números, cálculo probabilístico, cálculo de variaciones y cálculo diferencial.13 Entre otros, el «número de Fermat», el «pequeño teorema de Fermat»14 y el «último teorema de Fermat» llevan su nombre. Este último pudo ser

Page 39: LOS INICIOS DE LA MATEMÁTICA

demostrado 300 años después, en 1995 por Andrew Wiles, mediante métodos muy laboriosos.15

René Descartes 31 de marzo de 1596 en La Haye en Touraine, Francia<br / 11 de febrero de 1650 en Estocolmo, Suecia

René Descartes fue un filósofo, matemático y científico francés. Como matemático se le conoce sobre todo por sus aportes a la geometría. El tratamiento de un sistema de referencias en coordenadas cartesianas es obra suya. En 1640 hizo un aporte a la solución de problema de la tangente del cálculo diferencial.

Blaise Pascal 19 de junio de 1623 en Clermont-Ferrand 19 de agosto de 1662 en París

Blaise Pascal fue un matemático, físico, escritor y filósofo francés. Pascal aportó una serie de conocimientos elementales. Se dedicó al cálculo de probabilidades e investigó especialmente los juegos de dados. El triángulo de Pascal, aunque no fue descubierto por él, se llama así en su honor; también lleva su nombre el teorema de Pascal, sobre hexágonos inscritos en una sección cónica.

Seki Takakazu 1637/1642? en Fujioka 24 de octubre de 1708

Seki Takakazu fue un matemático japonés. Takakazu descubrió numerosos teoremas y teorías que poco antes o poco después se descubrieron de manera independiente a él en Europa y se le considera el matemático más importante del Wasan. Realizó un importante aporte al descubrimiento de los determinantes. En su obra publicada en 1685 Kaiindai no ho describe un antiguo método chino para el cálculo de raíces en funciones polinómicass y lo amplía para hallar todas las soluciones reales. Descubrió también los números de Bernoulli con anterioridad a Bernoulli.

Jakob I. Bernoulli 6 de enero de 1655 en Basilea 16 de agosto de 1705, también en

Jakob Bernoulli fue un matemático y físico suizo. Contribuyó de manera esencial al desarrollo de la teoría de la probabilidad, así como al cálculo de variaciones y a la investigación de las series de potencias. Llevan su nombre, entre otros, los números

Page 40: LOS INICIOS DE LA MATEMÁTICA

Basilea de Bernoulli. Se le considera entre los más famosos representantes de la familia de eruditos Bernoulli.

Gottfried Wilhelm Leibniz 1 de julio de 1646 en Leipzig 14 de noviembre de 1716 en Hannover

Gottfried Wilhelm Leibniz fue un filósofo, científico, matemático, diplomático, físico, historiador y bibliotecario alemán. En 1672 Leibniz construyó una máquina calculadora, que podía multiplicar, dividir y extraer la raíz cuadrada. Entre los años 1672 y 1676, desarrolló los fundamentos del cálculo infinitesimal. A Leibniz se debe la notación

(hasta hoy en uso) del diferencial así como

el signo para integral . Además descubrió el criterio que lleva su nombre, un criterio matemático de convergencia para series infinitas, como asimismo la fórmula de Leibniz que se usa para el cálculo de determinantes en matrices.

Isaac Newton 4 de enero de 1643 en Woolsthorpe-by-Colsterworth, Lincolnshire 31 de marzo de 1727 en Kensington

Isaac Newton fue un físico, matemático, astrónomo, alquimista, filósofo y alto funcionario administrativo inglés. Fundó el cálculo infinitesimal independientemente de Leibniz y realizó importantes aportes al álgebra. En matemática, el método de Newton lleva su nombre y en física, la mecánica newtoniana, con ayuda de la cual, entre otras cosas, se pudieron derivar matemáticamente las leyes de Kepler.

Johann Bernoulli 6 de agosto de 1667 en Basilea 1 de enero de 1748, también en Basilea

Johann Bernoulli fue el hermano menor de Jakob Bernoulli. Su área de trabajo abarcó entre otros las series, las ecuaciones diferenciales y las curvas — desde el punto de vista de los planteamientos geométricos y mecánicos —, como por ejemplo el problema de la braquistócrona. El discípulo más famoso de Johann Bernoulli fue Leonhard Euler.16

Page 41: LOS INICIOS DE LA MATEMÁTICA

Leonhard Euler 15 de abril de 1707 en Basilea 18 de septiembre de 1783 en San Petersburgo

Leonhard Euler fue uno de los matemáticos más importantes y prolíficos de la historia. Escribió en total 866 publicaciones17 y sus resultados fundamentales crearon nuevos campos de la matemática. Una gran parte de la actual simbólica matemática se debe a Euler. Además de su dedicación al cálculo diferencial e integral, trabajó, entre otros temas, con ecuaciones diferenciales, geometría diferencial, ecuaciones recurrentes, integrales elípticas, así como también en la teoría de las funciones gamma y beta. Muchos conceptos y teoremas matemáticos llevan su nombre. El número de Euler e = 2,7182818284590452... cuenta entre los más conocidos.18

Joseph-Louis Lagrange 25 de enero de 1736 en Turín 10 de abril de 1813 en París

Joseph-Louis Lagrange fue un matemático y astrónomo italiano. Trabajó en el problema de los tres cuerpos de la mecánica celeste, en el cálculo de variaciones y en la teoría de funciones complejas. Lagrange realizó aportes a la teoría de las ecuaciones en álgebra y a la teoría de las formas cuadráticas en la teoría de números. Entre otras contribuciones, la función que lleva su nombre («Lagrangiano»), particularmente importante en la mecánica, se debe a su obra.

Gaspard Monge 10 de mayo de 1746 en Beaune 28 de julio de 1818 en París

Gaspard Monge fue un matemático y físico francés. Participó en la revolución francesa y en 1792 en la República desempeñó un pepel político importante. Monge es fundador de la École polytechnique de París y en la matemática se ganó un puesto meritorio a través de la introducción de la geometría descriptiva.

Pierre-Simon Laplace 28 de marzo de 1749 en Beaumont-en-Auge/Normandía 5 de marzo de 1827

Pierre-Simon Laplace fue un matemático y astrónomo francés. Desplegó su actividad en diversas áreas de la matemática. Se le conoce especialmente por los ensayos acerca de la teoría de la probabilidad y de la teoría de juegos. En el período de Napoleón,

Page 42: LOS INICIOS DE LA MATEMÁTICA

en París Laplace fue ministro del interior de Francia. Junto a algunos teoremas, llevan su nombre la transformada de Laplace y la ecuación de Laplace.

Adrien-Marie Legendre 18 de septiembre de 1752 en París 10 de enero de 1833 también en París

Adrien-Marie Legendre fue un matemático francés. Trabajó en las integrales elípticas y desarrolló investigaciones acerca de las esferoides elípticas. Independientemente de Carl Friedrich Gauss descubrió en 1806 el método de mínimos cuadrados. Legendre presentó una demostración inmediata de la irracionalidad de π al demostrar que π² es irracional. Entre otros, el polinomio de Legendre lleva su nombre, como asimismo la transformada de Legendre y el símbolo de Legendre para los residuos cuadráticos (o en su defecto, los no-residuos) en la teoría de números.

Jean Baptiste Joseph Fourier 21 de marzo de 1768 cerca de Auxerre 16 de mayo de1830 en París

Jean Baptiste Joseph Fourier fue un matemático y físico francés. Se dedicó a la propagación del calor en cuerpos sólidos y en este contexto encontró la así llamada serie de Fourier, con ayuda de la cual pudo formular la ley de Fourier para la conducción del calor. Con el análisis de Fourier o la transformada de Fourier estableció una herramienta fundamental para el progreso de la física moderna que aún hoy posee una importancia decisiva para la comunicación digital, la electrotecnia y la ingeniería de telecomunicación.

. Siglo XIX En el siglo XIX comenzó a desarrollarse la matemática como una ciencia

formal, independiente de las ciencias naturales, como por ejemplo de la física. Surgieron nuevos campos de la matemática, como el análisis complejo. También es una característica de este siglo el nuevo rigor que se impone para las demostraciones matemáticas. Cauchy fundamenta la

impecable definición del concepto límite y sitúa con esto el análisis matemático sobre un fundamento riguroso. A través de la autoridad de Carl Friedrich Gauss, los números complejos reciben un completo reconocimiento en la matemática.

Page 43: LOS INICIOS DE LA MATEMÁTICA

A través de la teoría de conjuntos, cimentada por Georg Cantor y el desarrollo de los fundamentos de la lógica formal, entre otros por George Boole en Inglaterra, así como Ernst Schröder y Gottlob Frege en Alemania, se iniciaron en el siglo XIX líneas de desarrollo de la matemática, cuyo real impacto, alcance y envergadura comenzaron a sentirse recién comenzado el siglo XX.

Nombre (y datos biográficos)

Área de investigación

Sophie Germain 1 de abril de 1776 en París 27 de junio de 1831 en París

Marie-Sophie Germain fue una matemática francesa que hizo importantes contribuciones a la teoría de números y la teoría de la elasticidad. A ella se deben conceptos como el término de curvatura media en teoría de la elasticidad, identidad de Sophie Germain o número primo de Sophie Germain. Su trabajo sobre el último teorema de Fermat constituyó el primer acercamiento a una demostración parcial para un determinado tipo general de exponentes y supuso nuevos métodos para conseguir una demostración general.

Carl Friedrich Gauss 30 de abril de 1777 en Braunschweig 23 de febrero de 1855 en Gotinga

Carl Friedrich Gauss, fue un matemático, astrónono, geodésico y físico alemán. Gauss es considerado uno de los más grandes matemáticos de la historia y fue honrado por sus meritorios trabajos científicos ya en tiempos de vida. Se dedicó a casi todos los campos de la matemática y reconoció muy tempranamente la utilidad de los números complejos. Aún siendo muy joven descubrió la posibilidad de construcción del heptadecágono regular con una regla y un compás. Una gran cantidad de procedimientos, conceptos y teoremas llevan su nombre, como por ejemplo el método de eliminación gaussiana y los enteros gaussianos. El Premio Carl Friedrich Gauss, denominado así en su honor, se otorga cada cuatro años a matemáticos destacados por trabajos en el área de la matemática aplicada.

Page 44: LOS INICIOS DE LA MATEMÁTICA

Bernard Bolzano 5 de octubre de 1781 en Praga 18 de diciembre 1848 también en Praga

Bernard Bolzano fue un filósofo, teólogo y matemático bohemio. Bolzano desarrolló investigación básica en el área del análisis matemático. Construyó, probablemente por primera vez, una función que es en todas partes continua pero en ninguna diferenciable19 . El teorema de Bolzano-Weierstrass lleva su nombre.

Augustin Louis Cauchy 21 de agosto de 1789 en París 23 de mayo de 1857 en Sceaux (Altos del Sena)

Augustin Louis Cauchy fue un matemático francés. Se le considera pionero del análisis moderno, que continuó desarrollando en base a los fundamentos establecidos por Leibniz y Newton y demostró formalmente sus afirmaciones básicas. En especial, muchos teoremas centrales del análisis complejo se deben a él. Sus casi 800 publicaciones cubren en lo esencial el espectro casi completo de la matemática de entonces. Las sucesiones de Cauchy llevan su nombre, así como también las ecuaciones diferenciales de Cauchy-Riemann, el teorema integral de Cauchy y la fórmula integral de Cauchy.

August Ferdinand Möbius 17 de noviembre de 1790 en Schulpforte cerca de Naumburgo (Saale) 26 de septiembre de 1868 en Leipzig

August Ferdinand Möbius fue un matemático y astrónomo alemán. Möbius escribió numerosos y extensos ensayos y textos sobre astronomía, geometría y estática. realizó valiosos aportes a la geometría analítica, entre otros, con la introducción de las coordenadas homogéneas y del principio de dualidad. Möbius es considerado un pionero de la topología. La banda de Möbius que lleva su nombre es conocida más allá del ámbito de la matemática.

Nikolái Ivánovich Lobachevski 20 de noviembre 1792 en Nizhni Nóvgorod 12 de Februar 1856 en Kazán

Nikolái Ivánovich Lobachevski fue un matemático ruso. Fue el primero en publicar un trabajo en el que se define una geometría no euclidiana. En el mismo texto desarrolló también una trigonometría no euclidiana. El método propuesto por él para la determinación de raíces en funciones polinómicas de grado n se cuenta entre los otros importantes logros matemáticos de

Page 45: LOS INICIOS DE LA MATEMÁTICA

Lobachevski.

Niels Henrik Abel 5 de agosto de 1802 en la isla Finnøy 6 de abril de 1829 en Froland

Niels Henrik Abel fue un matemático noruego. Abel desarrolló una reformulación de la teoría de la integral elíptica en la teoría de las funciones elípticas, para la la que utilizó sus funciones inversas. Amplió la teoría a las superficies de Riemann de género superior e introdujo la integral abeliana. De allí surgió una teoría de las funciones de Abel, a la que sin embargo el propio Abel no hizo aportes directos. En álgebra lleva su nombre el grupo abeliano. En su honor se otorga también el Premio Abel por trabajos matemáticos destacados.

Carl Gustav Jakob Jacobi 10 de diciembre de 1804 en Potsdam 18 de febrero de 1851 en Berlín

Carl Gustav Jakob Jacobi fue un matemático alemán. Su teoría de las funciones elípticas es considerada como su obra más significativa; estas son funciones meromorfas doblemente periódicas de una variable compleja. En este contexto introdujo las funciones theta como elegantes secuencias convergentes, derivando con su ayuda nuevos teoremas de la teoría de números sobre formas cuadráticas. Además se dedicó a las llamadas funciones cuádruplemente periódicas y desarrolló investigaciones sobre la división del círculo y sobre las aplicaciones de teórico numéricas. Entre otros, llevan su nombre la matriz jacobiana (también llamada «matriz funcional»), el jacobiano, el método de Jacobi y la función elíptica de Jacobi.

Peter Gustav Lejeune Dirichlet 13 de febrero de 1805 en Düren 5 de mayo de 1859 en Gotinga

Peter Gustav Lejeune Dirichlet fue un matemático alemán. Dirichlet trabajó principalmente en las áreas del análisis y la teoría de números. Demostró la convergencia de las series de Fourier y la existencia de infinitos números primos en las progresiones aritméticas. Lleva su nombre el teorema de Dirichlet sobre las progresiones aritméticas.

Page 46: LOS INICIOS DE LA MATEMÁTICA

Évariste Galois 25 de octubre de 1811 en Bourg-la-Reine 31 de mayo de 1832 en París

Évariste Galois fue un matemático francés. A pesar de su corta vida de sólo 20 años (cayó en un duelo) Galois alcanzó reconocimiento póstumo por sus trabajos sobre la solución de ecuaciones algebraicas de la así llamada teoría de Galois. A él se deben algunos teoremas fundamentales de la teoría de grupos, que dieron su origen como rama de la matemática.

Karl Weierstrass 31 de octubre de 1815 en Ennigerloh(Ostenfelde) (/Münsterland 19 de febrero 1897 en Berlín

Karl Weierstrass fue un matemático alemán a quien se le reconoce sobre todo por la elaboración del análisis con fundamentos en la lógica, como por ejemplo la definición

rigurosa de la continuidad . Además realizó importantes contribuciones a la teoría de las funciones elípticas, la geometría diferencial y al cálculo de variaciones. Llevan su nombre el teorema de Bolzano-Weierstrass sobre sucesiones numéricas acotadas, las funciones elípticas de Weierstrass y el teorema de aproximación de Weierstrass (más tarde llamado teorema de Stone-Weierstrass).

Pafnuti Lvóvich Chebyshov 26 mayo 1821 en Okatowo cerca de Moscú 8 de diciembre de 1894 en San Petersburgo

Pafnuti Lvóvich Chebyshov fue un importante matemático ruso del siglo XIX. Chebyshov trabajó en áreas de la interpolación, teoría de la aproximación, análisis complejo, teoría de la probabilidad, teoría de números, mecánica y balística. Llevan su nombre, entre otros, los polinomios de Chebyshov. En el intento de demostrar el teorema de los números primos alcanzó un importante resultado parcial.

Charles Hermite 24 de diciembre de 1822 en Dieuze (Lorena (Francia)) 14 de enero de 1901 en París

Charles Hermite fue un matemático francés. Trabajó en teoría de números y álgebra, sobre polinomios ortogonales y funciones elípticas. Hermite alcanzó especial renombre al demostrar en 1873 que el número de Euler e es un número trascendente. Hermite hacía clases en diversas universidades parisinas. Entre sus discípulos cuentan Gösta Mittag-Leffler, Jacques Hadamard y Henri Poincaré.

Page 47: LOS INICIOS DE LA MATEMÁTICA

Entre otros conceptos, los polinomios de Hermite llevan su nombre en su honor.

Leopold Kronecker 7 de diciembre de 1823 en Liegnitz 29 de diciembre de 1891 en Berlín

Leopold Kronecker fue uno de los más importantes matemáticos alemanes. Sus investigaciones arrojaron como resultado contribuciones fundamentales al álgebra y a la teoría de números, pero también al análisis matemático y al análisis complejo. Con el transcurso del tiempo se transformó en partidario del finitismo e intentó definir la matemática únicamente sobre la base de los números naturales. En este contexto se hizo muy conocida su frase: «Los números enteros los hizo Dios, todo lo demás es obra humana».

Bernhard Riemann 17 de septiembre de 1826 en Breselenz cerca de Dannenberg † 20 de julio 1866 en Selasca a orillas del Lago Maggiore

Bernhard Riemann fue un matemático alemán. Riemann desarrolló su trabajo en el campo de la análisis, la geometría diferencial, la física matemática y la teoría de números. La hipótesis de Riemann, que lleva su nombre, se cuenta entre los problemas no resueltos de la matemática más notables.20 La función zeta de Riemann, una función de variable compleja, desempeña un importante papel en la teoría analítica de números21 . Llevan su nombre las superficies de Riemann, la geometría de Riemann y — dentro de ella — la métrica de Riemann.

Richard Dedekind 6 de octubre de 1831 en Braunschweig 12 de febrero de 1916 también en Braunschweig

Richard Dedekind fue un matemático alemán. Dedekind, que hizo su doctorado con Gauss, se dedicó a la descomposición unívoca de ideales en ideales primos. El importante concepto de ideal de un anillo, un análogo al normalizador de un grupo, fue desarrollado por él. Una cortadura de Dedekind es la descomposición de los números racionales en dos subconjuntos A y B no vacíos, tales que todo elemento de A es más pequeño que todo elemento de B. Con ayuda de estas cortaduras, Dedekind aportó una de las introducciones exactas del cuerpo de los números reales. También realizó una

Page 48: LOS INICIOS DE LA MATEMÁTICA

contribución decisiva a la axiomática de los números naturales, que sirvió más tarde como referencia a Peano. Lleva su nombre también la definición de un conjunto infinito, como un conjunto para el que existe una aplicación biyectiva a uno de sus subconjuntos propios.

Georg Cantor 3 de marzo de 1845 en San Petersburgo 6 de enero de 1918 en Halle (Saale)

Georg Cantor fue un matemático alemán. Cantor hizo importantes contribuciones a la matemática moderna. En particular, es en fundador de la teoría de conjuntos. En 1870, Cantor creó, con sus «conjuntos de puntos», las bases para los más tarde denominados fractales por Benoît Mandelbrot. El conjunto de puntos de Cantor sigue el principio de la repetición infinita de procesos autosimilares. El conjunto de Cantor es considerado como el fractal más antiguo de todos. En su honor se otorga la Medalla Georg Cantor por trabajos destacados en matemáticas.

Felix Klein 25 de abril 1849 en Düsseldorf 22 de junio de 1925 en Gotinga

Felix Klein fue un matemático alemán. Klein obtuvo importantes resultados en geometría en el siglo XIX. Colateralmente recibió reconocimiento también por sus aportes a la matemática aplicada y a la didáctica de las matemáticas. Además se desempeñó en el ámbito de la teoría de funciones. Llevan su nombre la botella de Klein, die Grupo de Klein de cuatro elementos, y sobre todo el modelo de Klein de la geometría no euclidiana (hiperbólica).

Sofia Vasílievna Kovalévskaya 15 de enero de 1850 en Moscú 10 de febrero de 1891 en Estocolmo

Sofia Vasílievna Kovalévskaya fue una matemática rusa y la primera mujer catedrática universitaria de matemáticas en la historia (Estocolmo, 1889). Kovalévskaya tomó clases particulares con Weierstrass, porque en aquel entonces las mujeres no eran aceptadas en la universidad para esta rama de estudios. En 1886 logró una solución para un caso especial del problema de la rotación de cuerpos rígidos en torno a un punto fijo.

Page 49: LOS INICIOS DE LA MATEMÁTICA

Henri Poincaré 29 de abril de 1854 en Nancy 17 de julio de 1912 en París

Henri Poincaré fue un matemático francés, físico teórico y filósofo. Desarrolló la teoría de las funciones automorfas y se le considera el fundador de la topología algebraica. La geometría y la teoría de números constituyeron también áreas de su trabajo. La hipótesis de Poincaré se consideró durante largo tiempo el más importantes de los problemas no resueltos de la topología. Lleva su nombre, entre otros, el semiplano de Poincaré, de la geometría no euclidiana, que posee una característica de transformación conforme, o sea, que conserva los ángulos, pero no así las distancias.

A partir del siglo XX Para evitar redundancias, se han inscrito aquí solamente aquellos

matemáticos que tienen una importancia especial pero a quienes no les ha sido otorgada la Medalla Fields ni el Premio Abel.

Nombre (y datos biográficos)

Área de investigación

David Hilbert 23 de enero de 1862 en Königsberg, Prusia Oriental 14 de febrero de 1943 en Gotinga

David Hilbert fue uno de los matemáticos más importantes. Su obra es fundamental en la mayoría de sectores de las matemáticas y de la física matemática. Muchos de sus trabajos sirvieron de fundamento para áreas de investigación autónomas. En 1900, Hilbert presentó una lista muy completa e influyente de 23 problemas matemáticos no resueltos. Se le considera el fundador y más importante representante de la línea del Formalismo en la matemática. Levantó la exigencia de establecer la matemática como un sistema axiomático completo que fuese desmostrable y carente de contradicciones. Este afán se conoce como programa de Hilbert.

Page 50: LOS INICIOS DE LA MATEMÁTICA

Hermann Minkowski 22 de junio de 1864 en Aleksotas, (entonces perteneciente a Rusia (actualmente Kaunas/Lituania) 12 de enero de 1909 en Gotinga

Hermann Minkowski fue un matemático y físico alemán. Minkowski desarrolló la geometría de los números, cuyo trabajo fue pionero. Su obra principal al respecto apareció en 1896 y fue completada en 1910. Incluye también trabajos sobre cuerpos convexos. En 1907 apareció su segunda obra en teoría de números Aproximaciones diofánticas, en la que entrega aplicaciones de su geometría de los números. El diagrama de Minkowski desarrollado por él muestra de modo gráfico las propiedades de espacio y tiempo en la teoría de la relatividad especial.

Felix Hausdorff 8 noeviembre de 1868 en Breslau 26 de enero de 1942 en Bonn

Felix Hausdorff fue un matemático alemán. Se le considera cofundador de la topología moderna y realizó contribuciones esenciales a la teoría de conjuntos (general y descriptiva), a la teoría de la medida, al análisis funcional y al álgebra. Paralelamente a su profesión de matemático, trabajó bajo el seudónimo de Paul Mongré como escritor de obras filosóficas y literarias. En su honor se denomina en topología, entre otros conceptos, el espacio de Hausdorff.

Henri Léon Lebesgue 28 de junio de 1875 en Beauvais 26 de julio de 1941 en París

Henri Léon Lebesgue fue un matemático francés. Lebesgue amplió en concepto de integral, cimentando con ello la teoría de la medida. Llevan su nombre la medida de Lebesgue y la integral de Lebesgue. La primera, generalizó las medidas anteriormente utilizadas y se transformó, al igual que la correspondiente integral de Lebesgue, en una herramienta estándar del análisis real.

Godfrey Harold Hardy 7 de febrero de 1877 en Cranleigh, Reino Unido 1 de diciembre de 1947 en Cambridge,

G.H. Hardy fue un matemático británico. Fue descubridor y mentor de Srinivasa Aiyangar Ramanujan. Desde 1911 colaboró con J.E. Littlewood en análisis matemático y teoría de números. Alcanzaron avances en el problema de Waring como parte del método del círculo Hardy-Littlewood. En la teoría de los números primos, el trabajo de ambos

Page 51: LOS INICIOS DE LA MATEMÁTICA

Reino Unido (como sus primera y segunda conjeturas) sirvió para el desarrollo de la teoría de números como un sistema de conjeturas a ser probadas.

Luitzen Egbertus Jan Brouwer 27 de febrero de 1881 en Overschie, Países Bajos 2 de diciembre de 1966 en Blaricum, Países Bajos

Luitzen Egbertus Jan Brouwer creó métodos topológicos fundamentales y fundamentó el intuicionismo que define un concepto de verdad matemático más riguroso. Lleva su nombre el Teorema del punto fijo de Brouwer.

Emmy Noether 23 de marzo de 1882 en Erlangen 14 de abril de 1935 en Bryn Mawr, Pennsylvania, Estados Unidos

Emmy Noether fue una matemática y física alemana. Pertenece al grupo de fundadores del álgebra moderna. Llevan su nombre los anillos y módulos noetherianos, así como también el teorema de Noether de normalización. En el último cuarto del siglo XX se desarrolló el teorema de Noether convirtiéndose en uno de los fundamentos más importantes de la física.

Srinivasa Aiyangar Ramanujan 22 de diciembre de 1887 en Irodu, India 26 de abril de 1920 en Kumbakonam, India

Srinivasa Aiyangar Ramanujan fue un matemático hindú. Ramanujan se dedicó principalmente a la teoría de números y alcanzó renombre debido a sus numerosas fórmulas para el cálculo del número π, números primos y funciones de partición.

Stefan Banach 30 de marzo de 1892 en Cracovia 31 de agosto de 1945 en Leópolis

Stefan Banach fue un matemático polaco. Es considerado el fundador del análisis funcional moderno. En su tesis doctoral y en la monografía Théorie des opérations linéaires (Teoría de las operaciones lineales) definió axiomáticamente aquellos espacios que más tarde llevarían su nombre, los «espacios de Banach». Banach estableció los fundamentos definitivos para el análisis funcional y demostró muchos teoremas básicos, como por ejemplo el teorema de Hahn-Banach, el Teorema del punto fijo de Banach y el

Page 52: LOS INICIOS DE LA MATEMÁTICA

teorema de Banach-Steinhaus.

Andréi Nikoláyevich Kolmogórov 25 de abril de 1903 en Tambow 20 de octubre de 1987 en Moscú

Andréi Kolmogórov fue uno de los más notables matemáticos del siglo XX. Realizó aportes esenciales en las áreas de la teoría de la probabilidad y de la topología. Se le considera el fundador de la teoría de la complejidad algorítmica. Su contribución más conocida fue la axiomatización de la teoría de la probabilidad.

John von Neumann 28 de diciembre de 1903 en Budapest 8 de febrero de 1957 en Washington D. C.

John von Neumann fue un matemático de origen austrohúngaro. Realizó notables contribuciones en muchas ramas de las matemáticas. Von Neumann desarrolló la teoría del álgebra de operadores limitados en espacios de Hilbert, cuyos objetos fueron denominados más tarde álgebras de von Neumann y que actualmente encuentran aplicación en la teoría cuántica de campos y en la estadística de partículas. Von Neumann fue consultor para problemas de balística del ejército y la marina de EE.UU. y colaboró en el Proyecto Manhattan. Contribuyó de manera decisiva al desarrollo de las primeras computadoras electrónicas.

Kurt Gödel 28 de abril de 1906 en Brünn 14 de enero de1978 en Princeton, New Jersey

Kurt Gödel fue uno de los más importantes matemáticos y lógicos del siglo XX. Hizo aportes decisivos en el área de la lógica de predicados (problema de la decisión) así como al cálculo proposicional clásico e intuicionista. Llevan su nombre los teoremas fundamentales de la lógica que Gödel demostró: teorema de completitud de Gödel y teorema de incompletitud de Gödel.

Page 53: LOS INICIOS DE LA MATEMÁTICA

André Weil 6 de mayo de 1906 en París 6 de agosto de 1998 en Princeton

André Weil fue un matemático francés. El énfasis central de su trabajo estuvo puesto en áreas de la geometría algebraica y la teoría de números, entre las que encontró sorprendentes vinculaciones. Weil demostró la hipótesis de Riemann para curvas sobre campos finitos. Formuló las conjeturas de Weil, que llevan su nombre y que influyeron en la formulación de la conjetura de Taniyama-Shimura, que relaciona curvas elípticas con formas modulares, resuelta totalmente en 2001 y con unas implicaciones muy profundas en matemáticas.

Alan Turing 23 de junio de 1912 en Londres 7 de junio de 1954 en Wilmslow

Alan Turing fue un lógico, matemático y criptoanalista británico. Creó una buena parte de las bases teóricas para las tecnologías modernas de la información y de la computación. Se evidenciaron también como orientadores sus aportes a la biología teórica. Turing es considerado hoy uno de los más influyentes teóricos del desarrollo temprano de la computación y la informática. El modelo de calculabilidad (o computabilidad) de la máquina de Turing que él desarrolló constituye uno de los fundamentos de la informática teórica.

Paul Erdős 26 de marzo de 1913 en Budapest 20 de septiembre de 1996 en Varsovia

Paul Erdős fue uno de los matemáticos más importantes del siglo XX. Junto con Euler, fue unos de los matemáticos más prolíficos de todos los tiempos. Paul Erdős trabajó en colaboración con cientos de colegas (de ahí que se definiera el Número de Erdős) en las áreas de la combinatoria, teoría de grafos y teoría de números. Erdős formuló numerosas conjeturas y estableció para la solución de varias de ellas premios monetarios. Logró de manera independiente de Selberg una demostración elemental del teorema de los números primos, prescindiendo del análisis complejo, es decir sólo con herramientas matemáticas elementales.

Page 54: LOS INICIOS DE LA MATEMÁTICA

Andrew Wiles 11 de abril de 1953 en Cambridge

Andrew Wiles es considerado uno de los matemáticos más importantes del presente. En 1984 demostró, en conjunto con el matemático estadounidense Barry Mazur la hipótesis central de la teoría de Iwasawa acerca de los números racionales, la que luego amplió también para todo cuerpo real total22 23 . En 1995 logró en conjunto con uno de sus estudiantes la demostración del último teorema de Fermat. A partir de este momento se denomina también como teorema de Fermat-Wiles1

BIBLIOWEBGRAFIA

http://es.wikipedia.org/wiki/Historia_de_la_matem%C3%A1tica

http://es.wikipedia.org/wiki/N%C3%BAmero

http://www.wikimatematica.org/index.php?title=Historia_de_los_s%C3%ADmbolos

_matem%C3%A1ticos

http://es.wikipedia.org/wiki/Anexo:Matem%C3%A1ticos_importantes