36
Markov Chain article version 180705 2 . Cyclic Decomposition Theorem 어야 . 1 Cyclic Decomposition Theorem 2 () . motivation . 2 [I, § 8.5–8.7] Cyclic Decomposition Theorem 끝내, Jordan canonical form 의응, Markov chain — 1 . article 흔히 Markov chain subject . Markov chain 장유고가application . article Markov chain , 는다() (genotype frequency), () Google ranking system . , Markov chain Perron- Frobenius Theory (부분) . article 을읽Jordan canonical form ([I, 238 (j ) t ] [I, 239 i ]) . , Cyclic Decomposition The- orem 다는 . , Jordan canonical form , article () F = C 고가. 1 , , [3] Cyclic Decomposition Theorem. 1”1-,“2”2-다는 . 2 [II, 12] . 1

Markov Chain - 수리과학부에 오신 것을 환영합니다.islee/Markov_Chain.pdf · 2018-07-04 · Markov Chain 李 仁 碩 article version 대개 “학부 2학년 선형대수학”

Embed Size (px)

Citation preview

  • Markov Chain

    article version

    180705 2

    . Cyclic Decomposition Theorem .1

    Cyclic Decomposition Theorem 2 ()

    . motivation.2

    [ I, 8.58.7] Cyclic Decomposition Theorem , Jordan canonical form ,

    Markov chain 1

    .

    article Markov chain subject

    . Markov chain

    application . article Markov chain

    ,

    () (genotype frequency),

    () Google ranking system

    . , Markov chain Perron-

    Frobenius Theory () .

    article Jordan canonical form([I, 238 (j) t ] [ I, 239 i ]) . , Cyclic Decomposition The-orem . , Jordan canonical form ,

    article () F =C.1, , [3] Cyclic Decomposition Theorem .

    1 1- , 2 2-

    .2 [II, 12] .

    1

  • 1 section version

    180705 componentwise .

    1.1 Ck =(c(k)ij

    )Mm,n(C), i, j lim

    kc(k)ij

    , {Ck}k=0 ,

    limk

    Ck =(limk

    c(k)ij

    ) . Mm,n(C) = Cmn identify

    .

    2 (1.2,

    1.3 1.6).

    1.2 (Exponential map) exp : Mn,n(C) Mn,n(C)

    exp(A) =k=0

    1

    k !Ak, (AMn,n(C))

    .

    .3

    , , M. Artin [1, p. 119].

    1.3 (Eigen-vector motivation) () A=

    (2 1

    3 4

    )Mn,n(R)

    ( ) eigen-vector

    . Ae1 = (2, 3)t Ae2 = (1, 4)

    t, LA 1

    S ={ae1+ be2 | a, b 0

    } cone AS =

    {a(2, 3)

    t+ b(1, 4)

    t | a, b 0}

    . A2e1 = (7, 18)t A2e2 = (6, 19)

    t, LA AS cone

    A2S ={a(7, 18)

    t+ b(6, 19)

    t | a, b 0}. ,

    cone sequence

    S AS A2S A3S A4S

    .

    3Exponential map Lie group Lie algebra.

    2

  • () cone half-line .4 , =

    m=0 AmS

    1 () half-line. ,

    A = A(

    m=0 AmS)=

    m=0 Am+1S =

    , LA half-line . X (non-

    zero) vector, AX = X A eigen-value R. > 0.

    () = 5, (1, 3)t half-line

    ([I, 7.2.1 ). (A eigen-value 1.)

    Perron-Frobenius Theory( 7).

    () eigen-value = 5 dominant eigen-

    value.

    1.4 A Mn,n(C) , A eigen-value(in C) maximum ab-solute value A dominant eigen-value. ( A

    dominant eigen-value.) Dominant eigen-value

    eigen-vector dominant eigen-vector . (

    principal eigen-vector.5)

    Numerical Linear Algebra Matrix Computation

    , , size eigen-value( ) eigen-

    vector( ) . n 10( 230)

    characteristic polynomial 10 root

    .

    eigen-vector dominant eigen-vector

    . Matrix Computation ,

    (!), dominant eigen-vector.6

    4 , A Am

    . (, eigen-vector , eigen-

    vector .)5 Principal Component Analysis(PCA) principal.6Matrix Computation Golub-Van Loan[4] Meyer[5]

    . .

    3

  • A Mn,n(C) dominant eigen-vector , 1.3 . , X Cn , lim

    mAmX ( )

    .7 , , 1.3 , m Am

    AmX , .

    limm

    AmXAmX ?

    A,A2, A3, . . . step n2-

    . AX, A(AX), A(A2X), . . . step n-

    . limm

    Am limm

    AmX .

    n, n2 n significant.

    1.5 Numerical Linear Algebra, ,

    Linear Algebra.

    () A Mn,n(C) . det(A) = 0, A() 230

    .

    , .

    () A Mn,n(C) diagonalizable . A(t) ([I, 7.2.18] ).

    AMn,n(C) unique dominant eigen-value.

    1.6 A Mn,n(C), X Cn , lim

    mAmX

    AmX A dominant eigen-vector.

    () m AmX = 0 ( A invertible, X = 0 OK). A diagonalizable. , AXi = iXi i C Xi Cn,

    U1AU = D = diag(1, . . . , n), AmX = UDmU1X

    . U = (X1, . . . , Xn)([I, 7.2.13] ).

    A Mn,n(C) unique dominant eigen-value 1 , 1 > 0. j = 1 1 = j , . U = (uij), U

    1X = (yj), y1 = 0.71.3 , 1 ( ) half-line ,

    limm Am.

    4

  • () limm

    AmXAmX k- , 1 > 0 unique domi-

    nant eigen-value 1 = j(, j = 1),j ukj

    mj yj

    i |

    j uijmj yj |2

    =m1

    j ukj(j1

    )myj

    m1

    i

    j uij

    (j1

    )myj2 y1

    i |ui1y1|2uk1

    . limm

    AmXAmX [U ]

    1 =X1(

    i |ui1y1|2 = 0

    ?). , limm

    AmXAmX A dominant eigen-vector.

    () . ()

    . , 1.5

    1.7 (), .

    () () essential assumption 1 > 0 . (

    () 1 > 0 .)

    .

    positive real number zero.

    () A diagonalizable , A Jordan canonical form

    . Detail.8

    () () () L2-norm L1-

    norm . A Markov matrix

    X provability vector( 2.2 4.5() ),

    m AmX L1-norm 1, limm

    AmX , A

    dominant eigen-vector( 4.9 ).9

    1.7 1.6(), y1 = 0 X / X2, . . . , Xn.10

    , limm

    AmXAmX

    ? Google Ranking System( n 10) A52X

    ( 6).

    8() . 3.2 .9 [6] L1-norm.

    10 Hint: Uei =Xi.

    5

  • terminology .

    1.8 A Mn,n(C), X Cn , AX, A(AX), A(A2X), . . . lim

    mAmX

    AmX () , A dominant eigen-vector()

    power method .

    1.9 () , power method.

    () , n 230 , A X 1.6()

    . power method

    , limm

    AmXAmX . , A X

    230 . ( idea 800 Google Ranking System. 6.)

    () Power method

    .11

    A unique dominant eigen-value positive real number

    , . , , unique dominanteigen-value positive real number square matrix

    . Positive Markov matrix( 2.1 2.2 )

    . ( , non-negative matrix( 2.1 )

    .12 non-negative matrix dominant eigen-vector

    Perron-Frobenius Theory.13)

    , () Cn- norm 180705

    . X = (x1, . . . , xn)t Cn, X norm()

    X=|x1|2 + + |xn|2

    .14 X,Y Cn X Y .

    11. = .127 Meyer[5] . Non-negative case.13, power method computer , power method

    Perron-Frobenius Theory . Perron-Frobenius Theorem

    20 . non-negative matrix

    , .14 Cn R2n naturally identify.

    6

  • 2 A Toy Example

    section version

    180102 Markov matrix, toy example.

    2.1 C = (cij) Mm,n(C) , [cij > 0 for all i, j ], C > 0 C positive .15 [cij 0 for all i, j ],C 0 C non-negative . , X Cn ,X > 0 X 0.

    2.2 () X Cn , X 0 X 1, X probability vector . A = (aij) Mm,n(C) , A column probability vector(, A column sum 1),

    A (left) Markov matrix( A 0).16

    () At Markov matrix, A right Markov matrix.

    Markov matrix. :

    2.3 (Right) Markov matrix 1 eigen-value .

    : A(t) = At(t)([I, 7.6.24]), right

    . . A

    right Markov, A row sum 1,

    A (1, . . . , 1)t = 1(1, . . . , 1)t

    . , A Markov, (AI) row zero vector, (A I) row, det(1A I) = 0.

    (2 2)- example , Markov matrix (2 2)- . toy example [3] ( )

    . ( toy example idea 5 6(Random Surfer

    Model).)

    15 positive definite matrix (Linear Algebra)

    . [I, , 15.3] .16Markov matrix stochastic matrix, probability matrix, transition matrix

    . Probability vector stochastic vector.

    7

  • 2.4 () (city) (suburbs)

    (probability vector) X = (c0, s0)t (, , c0, s0 0

    c0+s0 = 1).17 ,

    A=

    (0.90 0.02

    0.10 0.98

    )=

    (city city suburbs city

    city suburbs suburbs suburbs

    )

    . , , 1 city 90%

    city , city 10% suburbs .

    , 1 (c1, s1)t(

    c1

    s1

    )=

    (0.90c0+0.02s0

    0.10c0+0.98s0

    )=

    (0.90 0.02

    0.10 0.98

    )(c0

    s0

    )= AX

    . , 2 (c2, s2)t(

    c2

    s2

    )= A

    (c1

    s1

    )= A2X

    , m- AmX.18

    () A,

    U1AU =

    (16

    16

    56

    16

    )1(0.90 0.02

    0.10 0.98

    )(16

    16

    56

    16

    )=

    (1 0

    0 0.88

    )=D

    . ,

    Am =UDmU1 =

    (1+5(0.88)m

    61(0.88)m

    655(0.88)m

    65+(0.88)m

    6

    ), lim

    mAm =

    (16

    16

    56

    56

    )

    ,

    AmX =

    (1+5(0.88)m

    6 c0+1(0.88)m

    6 s055(0.88)m

    6 c0+5+(0.88)m

    6 s0

    ), lim

    mAmX =

    (1656

    )

    ().

    17c for city, s for suburbs.18 , mathematical model A constant,() () ( ) . ,

    , 1.

    8

  • () A , suburbs city

    . (16 ,

    56

    )t equilibrium()

    . city 0 . ( suburbs

    2% city, suburbs .)

    () A positive Markov matrix. 1 A unique dominant

    eigen-value, dominant eigen-vector U column(16 ,

    56

    )t. (Dominant eigen-vector probability vector

    (16 ,

    56

    )t.)

    , () limm

    AmX A dominant eigen-vector

    1.6.

    () , limm

    Am column A dominant eigen-vector

    .

    () equilibrium(16 ,

    56

    )t

    X = (c0, s0)t .

    c0 = 0 s0 = 0 equilibrium.

    () () Am AmX, 0.88m 0

    , .

    toy example [ I, 7 ].

    toy example ( 4.8 4.9

    ).

    9

  • 3 Preliminary Resultssection version

    180102, F = C, A Mn,n(C) . A

    characteristic polynomial

    A(t) = (t1)e1(t2)e2 (tk)ek

    (, ei 1, i distinct). ei eigen-value i multiplicity, ei = multA(i). A -eigen-space

    EA = ker (AI) = {X Cn |AX = X}

    ([I, 7.6.20] ).

    , article !

    3.1 Prove or disprove : dimEA = multA().19

    Jordan canonical form .20 A similar Jordan

    canonical form J i-Jordan block Ji Mei,ei(C) block diag-onal matrix. Ji i-Jordan -block Jij Mrij ,rij (C) block diagonal matrix. ,

    A J = diag(J1, J2, . . . , Jk), Ji = diag(Ji1, Ji2, . . . , Jihi)

    .21 -Jordan -block Jij

    K = (),

    ( 1

    0

    ), . . . ,

    1

    1 0

    0 1

    . , A diagonalizable, A Jordan canonical form

    diag(1Ie1 , 2Ie2 , . . . , kIek).

    19 A eigen-value, dimEA =0= multA().20, Cyclic Decomposition Theorem OK.21Jordan block, Jordan -block.

    10

  • Jordan canonical form (upper-)triangular matrix, triangular

    matrix diagonal matrix .

    Jordan canonical form

    . , m Jm

    . , J A Jordan canonical form , Jm ,

    {Am}m=0.

    3.2 K = I+N Mr,r(F ) , N2, N3, . . . . , m, m r1,

    (K)m =

    m mm1(m2

    )m2

    (m3

    )m3

    (m

    r1)mr+1

    m mm1(m2

    )m2

    (m

    r2)mr+2

    . . .. . .

    . . ....

    0. . .

    . . ....

    m mm1

    m

    .22 (, , m < i binomial coefficient

    (mi

    )= 0

    . , = 0 m < r 1 . = 0, (K)

    m =Nm.23)

    , , .

    3.3 Ak Mn,n(C), B Mm,n(C), C Mn,r(C) U Mn,n(C), .

    () {Ak}k=0 , limk

    Ak = L . , {BAk}k=0{AkC}k=0. lim

    k(BAk) =BL lim

    k(AkC) =LC.

    () {U1AkU}k=0 {Ak}k=0 . lim

    kAk =L, lim

    k(U1AkU) =U

    1LU .

    22Hint: I N commute , (I)N =N(I) (I+N)m 2-

    .23 N nilpotent.

    11

  • .

    3.4 D={C

    || < 1 or = 1}.24 . , {m}m=0

    D. {Am}m=0.

    3.5 AMn,n(C) , {Am}m=0

    (i) C A eigen-value, D,(ii) 1 A eigen-value, dimEA1 = multA(1)(, A 1-Jordan

    block ).

    : J A Jordan canonical form , 3.3()

    , {Am}m=0 {Jm}m=0 . 3.2 (K)

    m. (.)

    3.1 ,

    .

    3.6 A eigen-value,

    (1) dimEA = multA().

    (2) A -Jordan block I.

    .

    Linear Algebra A eigen-value 1, . . . , k

    . , Numerical Linear Algebra 3.5

    eigen-value () . Eigen-value

    .

    3.7 A= (aij)Mn,n(C),

    i(A) =n

    j=1 |aij |, j(A) =n

    i=1 |aij |

    . A row sum column sum

    (A) = max {i(A) | 1 i n}, (A) = max {j(A) | 1 j n}

    .

    24D disk.

    12

  • simple, .

    3.8 (Gershgorins Disk Theorem, 1931) A = (aij) Mn,n(C)eigen-value eigen-vector X = (xi) Cn . |xk|= max

    {|xi|

    1 i n} ,25 |akk| k(A)|akk|

    .26

    : AX = X,n

    j=1 akjxj = xk, j =k akjxj = xkakkxk

    . , xk = 0,

    |akk| =j =k akj xjxk j =k |akj | = k(A)|akk|

    .27

    3.7 row sum column sum.

    3.9 AMn,n(C) eigen-value, || min{(A), (A)}.

    : Gershgorins Disk Theorem,

    || |akk|+ |akk| (k(A)|akk|

    )+ |akk| = k(A) (A)

    . At eigen-value( ?),

    || (At) = (A)

    .

    Gershgorins Disk Theorem 3.9

    . , A eigen-value A similarity class invariant

    , (A), (A) similarity class invariant . , , A eigen-value A n2-.

    25 k.26 akk k(A)|akk| disk Gershgorins disk.27 1931 . (

    A. Markov(18561922) .) historical comment

    Meyer[5, p. 497] .

    13

  • Positive matrix eigen-value a technical lemma

    . motivation .28

    3.10 A Mn,n(C) , A > 0 . A || = (A)eigen-value .29 , .

    () = (A)> 0.

    () dimEA = 1. EA =

    (1, 1, . . . , 1)

    t. : 3.8(Gershgorins Disk Theorem),

    |||xk|=

    j akjxj j |akjxj | j |akj ||xk|= k(A)|xk| (A)|xk|

    . , ||= (A), ()(=). ,

    (i)

    j akjxj= j |akjxj |,

    (ii)

    j |akjxj |=

    j |akj ||xk|,

    (iii) k(A) = (A)

    . (i),

    akjxj = cj z, (1 j n), |z|= 1

    real number c1, . . . , cn 0 z C ( 3.11 ). , A> 0, (ii)

    |xj | = |xk|, (1 j n)

    . , A> 0,

    akj |xk| = akj |xj | = |cj z| = cj , (1 j n)

    . ,

    xj =cjakj

    z = |xk|z, (1 j n)

    . , X = |xk|z(1, 1, . . . , 1)t. eigen-vector 1 = (1, 1, . . . , 1)t . 1 eigen-

    vector. A1> 0, A1= 1, > 0.30 28 3.10 [3].29, 3.9, A dominant eigen-value.30(iii).

    14

  • 3.11 1, . . . , r C

    |1 + + r| = |1|+ + |r|

    ,

    i = ci, (i = 1, . . . , r)

    C 0 c1, . . . , cr R . ||= 1 OK.31

    3.12 A Mn,n(C) , A > 0 . A || = (A)eigen-value . = (A)> 0, dimEA = 1

    .32

    3.13 ,

    (2 00 1

    )

    (0 1

    1 0

    ) , 3.10 A

    positive . .33

    . :

    3.14 A= (aij)Mn,n(C), A matrix norm

    A = max{|aij |

    1 i, j n}.34

    . .

    3.15 A,B Mn,n(C), .

    () A = 0, A> 0.

    () cC, cA= |c|A.

    () A+B A+B.

    () AB nAB.

    31Hint: r. [I, , 7.5] .32 [I, 7.6.24()] . ( (1, 1, . . . , 1)t eigen-vector.)33 Markov matrix.34 matrix norm . max norm .

    Mn,n(C) =Cn2 identify, max norm L-norm. Matrix norm exp(A)

    (1.2 ).

    15

  • 4 Markov Matrix

    version

    150909 2 toy example .

    3 Markov matrix.

    4.1 AMn,n(C) Markov matrix,

    () j(A) = (A) = 1 for all j = 1, . . . , n.

    () C A eigen-vector, || 1.() 1 is a dominant eigen-value of A.

    : () Markov matrix . () 3.9

    (Gershgorins Disk Theorem ) () . () 2.3

    ().

    positive Markov matrix.

    4.2 AMn,n(C) positive Markov matrix,

    () C A eigen-vector , = 1, ||< 1. , 1 Aunique dominant eigen-value.

    () dimEA1 = 1.

    : 3.12( 3.10 transpose version) 4.1 direct con-

    sequence.

    4.3 A Mn,n(C) right Markov matrix , 4.1 4.2.

    4.2, A positive Markov, dimEA1 = 1

    , dimEA1 = multA(1) .

    Markov chain essence !

    easy exercise. ( 1= (1, 1, . . . , 1)t.)

    4.4 .

    () 0AMn,n(C) Markov matrix At 1= 1.() 0X Cn probability vector Xt 1= (1)11.

    16

  • 4.5 .

    () A,B Mn,n(C) Markov matrix, AB Markov matrix.

    () A Mn,n(C) Markov matrix, X Cn probability vector,AX probability vector.

    4.6 A Mn,n(C) right Markov matrix, 4.4 4.5.35

    Final touch matrix norm.36

    4.7 AMn,n(C) (right) Markov matrix, dimEA1 = multA(1)(,A 1-Jordan block ).

    : (i) m , Am Markov( 4.4()

    ), Am 1.

    (ii) U1AU = J A Jordan canonical form,

    Jm = U1AmU n2U1Am|U n2U1U

    . ,{Jm

    m 0} bounded above.(iii) J 1-Jordan -block (1 1)- ( 3.2 ). , J 1-Jordan block( 3.6 ).

    (iv) A right Markov [ I, 7.6.24] .

    article main theorem state.

    4.8 AMn,n(C) positive (right) Markov matrix,

    () dimEA1 = multA(1) = 1.37 ( A unique dominant eigen-value 1

    dominant eigen-vector (up to scalar) unique.)

    () limm

    Am.

    : () 4.1, 4.2 4.7.

    () 3.5. 35X probability vector, AX probability vector.36, 4.7 4.1, first touch OK.37 multA(1)= 1, dimE

    A1 =1. ?

    17

  • 4.9 A Mn,n(C) positive Markov matrix , limm

    Am =L

    . A unique dominant eigen-value 1 dominant

    eigen-vector unique probability vector P ,

    () AL=LA=L.

    () L Markov matrix, L= (P, P, . . . , P ).

    () probability vector X , limm

    AmX =LX = P .38

    () P > 0. ( L> 0.)

    : () AL=A limm

    Am = limm

    Am+1 =L. (LA=L.)

    () Am Markov( 4.5),

    1t L = 1t limm

    Am = limm

    1t Am = limm

    1t = 1t

    ( L 0), L Markov( 4.4). , L columnprobability vector. , AL = L, L column eigen-

    value 1 A eigen-vector. , L column P .

    () P = (p1, . . . , pn)t, X = (x1, . . . , xn)

    t . , L = (P, P, . . . , P )

    , LX i-

    pix1+ +pixn = pi(x1+ +xn) = pi

    . , LX = P .

    () . AP =P , A> 0, P 0, P > 0.

    , positive Markov matrix A , probability

    vector X AX, A(AX), A(A2X), . . . limm

    AmX

    , A dominant eigen-vector P .

    ( limm

    Am = L. ?)

    power method(1.8), , X depend

    . , P .

    4.9 dominant eigen-vector P Perron-Frobenius

    vector, stochastic vector, stationary vector, fixed probability vector

    .39

    38, , LP =P .39 6 PageRank vector.

    18

  • .

    4.10 Ai Mn,n(C) positive Markov matrix , block diagonalmatrix A= diag(A1, . . . , Ak).

    () limm

    Am.

    () Eigen-space EA1 basis.

    Right Markov matrix. (.)

    4.11 A Mn,n(C) positive right Markov , limm

    Am = L

    . At unique dominant eigen-value 1 dominant

    eigen-vector unique probability vector P ,40

    () AL=LA=L.

    () L right Markov matrix, L= (P, P, . . . , P )t.

    () probability vector X , Xt L=P t,41 LX = (P t X) 1.

    comment().

    4.12 () , A diagonalizable

    , article . Jordan

    canonical form.

    () A Markov matrix , As > 0 s , A

    regular Markov matrix( primitive Markov matrix) . Regular

    Markov matrix 4.2 4.8 4.9

    4.11 .42 [ ] : A eigen-value

    ||= 1, s As > 0 eigen-value, s =1( 4.2). , As+1 > 0, s+1 = 1. = 1. dimEA

    s

    1 = 1

    ( 4.8), EA1 =EAs

    1 .

    , article Markov chain( Markov process)

    chain .

    , . .43

    40A dominant eigen-vector 1( 2.3).41 Right Markov right right notation( ). , L

    act.42, n, A regular.43Wikipedia . stochastic process.

    19

  • 5 Hardy-Weinberg Equilibrium

    version

    180102 Population Genetics ( ) .44

    19081909 Hardy-Weinberg equilibrium(principle, law)

    .45

    5.A.

    , .

    allele() (T, t) . genotype TT Tt

    phenotype, genotype tt phenotype.46

    , m 0, m-(m-) genotype frequency

    pm = Probm-(TT ), qm = Probm-(Tt), rm = Probm-(tt)

    , m- genotype frequency vector Pm = (pm, qm, rm)t

    .47 (0-) genotype frequency vector

    P0 = (p0, q0, r0)t= (p, q, r)

    t

    . m- allele frequency

    am = Probm-(T ), bm = Probm-(t)

    , m- allele frequency vector Qm= (am, bm)t .

    0- allele frequency vector

    Q0 = (a0, b0)t= (a, b)

    t

    . , Pm, Qm 0,

    pm+ qm+ rm = 1, am+ bm = 1

    .

    44 population , . . .

    45G. H. Hardy(18771947) Hardys Theorem, Hardys Inequality, Hardy-Littlewood

    Theorem (). 20 neo-Darwinism(modern

    synthesis) Hardy. (W. Weinberg(18621937) ().)46Mendel. Dominant trait recessive trait .47Frequency vector = probability vector.

    20

  • , m- allele frequency

    am = pm+12 qm, bm =

    12 qm+ rm

    ( ?).48 0-

    a = p+ 12 q, b =12 q+ r

    .

    , 1- genotype frequency. TT -type

    genotype table(Markov matrix)

    ATT = [ TT -type]

    TT Tt tt

    TT 1 12 0

    Tt 0 12 1

    tt 0 0 0

    . Tt-type tt-type

    genotype Markov matrix

    ATt = [ Tt-type] Att = [ tt-type]

    TT Tt tt

    TT 1214 0

    Tt 1212

    12

    tt 0 1412

    TT Tt tt

    TT 0 0 0

    Tt 1 12 0

    tt 0 12 1

    . ,

    A = pATT + qATt+ rAtt

    ,

    A =

    p+ 12 q

    12 p+

    14 q 0

    12 q+ r

    12 p+

    12 q+

    12 r p+

    12 q

    0 14 q+12 r

    12 q+ r

    =a 12 a 0

    b 12 a

    0 12 b b

    . A Markov matrix.

    48, , allele frequency genotype frequency.

    21

  • Markov matrix A 2 toy example,

    A =

    a 12 a 0

    b 12 a

    0 12 b b

    =TT TT Tt TT tt TTTT Tt T t Tt tt TtTT tt T t tt tt tt

    . , , TT Tt () TT() Tt . , 2 toy example

    ,49 1- genotype frequency vector

    P1 =

    p1

    q1

    r1

    = AP0 =a 12 a 0

    b 12 a

    0 12 b b

    p

    q

    r

    =

    ap+ 12 aq

    bp+ 12 q+ar12 bq+ br

    =

    a2

    2ab

    b2

    ().50 , 1- allele frequency vector

    Q1 =

    (a1

    b1

    )=

    (a2+ 12 2ab12 2ab+ b

    2

    )=

    (a

    b

    )= Q0

    . , allele frequency !

    , 2- genotype frequency vector

    P2 =

    p2

    q2

    r2

    =a1

    12 a1 0

    b112 a1

    0 12 b1 b1

    p1

    q1

    r1

    =a 12 a 0

    b 12 a

    0 12 b b

    a2

    2ab

    b2

    =

    a3+a2b

    a2b+ab+ab2

    ab2+ b3

    =

    a2

    2ab

    b2

    = P1, allele frequency vector Q2 = (a, b)

    t=Q0. ,

    Pm =

    pm

    qm

    rm

    = AmP0 =

    a2

    2ab

    b2

    = P1, Qm =(a

    b

    )= Q0, (m 1)

    .

    49= .50 , , mathematical model random mating, sex

    independent genotype frequency . (

    ) . , (, m- m-).

    22

  • ,51 allele frequency vector (a, b)t constant

    , genotype frequency vector equilibrium(Hardy-

    Weinberg equilibrium) (a2, 2ab, b2)t . (20 neo-Darwinism

    (modern synthesis).)

    equilibrium , ,

    A regular Markov matrix.52 , P1 = (a2, 2ab, b2)t

    A dominant eigen-vector.53 , limm

    AmP0 = P1.

    5.B. Sex Linked Gene

    , () X- .

    allele (X,x). genotype

    XX, Xx, xx xx, genotype XY, xY xY

    .54

    , m- genotype frequency

    pm = Probm-(XX), qm = Probm-(Xx), rm = Probm-(xx)

    , m- genotype frequency vector Pm = (pm, qm, rm)t

    . ( Pm 0, pm + qm + rm = 1.) m- allelefrequency

    am = Probm- (X), bm = Probm- (x)

    ( am, bm 0, am+ bm =1), 5.A,

    am = pm+12 qm, bm =

    12 qm+ rm, (m 0)

    . m- genotype frequency

    cm = Probm-(XY ) = Probm- (X),

    dm = Probm-(xY ) = Probm- (x)

    ( allele frequency genotype frequency ), m-

    allele frequency vector Rm = (cm, dm)t.

    51 (!) [ : = 3 : 1]. ?52a, b =0, A2> 0. 4.12().53A eigen-value 1, 1

    2, 0. , , A diagonalizable, det(A) = 0.

    54.

    23

  • , (m+1)- genotype frequency. 5.A, genotype Markov matrix

    AXY = [ XY -type] AxY = [ xY -type]

    XX Xx xx

    XX 1 12 0

    Xx 0 12 1

    xx 0 0 0

    XX Xx xx

    XX 0 0 0

    Xx 1 12 0

    xx 0 12 1

    . ,

    Am = cmAXY + dmAxY =

    cm

    12 cm 0

    dm12 cm

    0 12 dm dm

    , (m 0)(Am Markov matrix), (m+1)- genotype frequency

    vector

    Pm+1 =

    pm+1

    qm+1

    rm+1

    = AmPm =cm

    12 cm 0

    dm12 cm

    0 12 dm dm

    pm

    qm

    rm

    =

    amcm

    dmpm+12 qm+ cmrm

    bmdm

    =

    amcm

    1amcm bmdmbmdm

    .55

    5.1 () (m+1)- genotype(allele) frequency

    table(Markov matrix) BXX , BXx, Bxx

    .

    () Bm = pmBXX + qmBXx+ rmBxx,

    Rm+1 =

    (cm+1

    dm+1

    )= BmRm =

    (am am

    bm bm

    )(cm

    dm

    )=

    (am

    bm

    )

    .

    55 vector probability vector( 4.5), .

    24

  • () , , genotype

    ( ?), . , dm+1 = bm. ,

    allele frequency bm+1

    bm+1 =12 (1amcm bmdm)+ bmdm

    = 12(1 (1 bm)(1dm) bmdm

    )+ bmdm

    = 12 (bm+ dm)

    . M =

    (12

    12

    1 0

    ), Xm =

    (bm

    dm

    ),

    Xm+1 =

    (bm+1

    dm+1

    )=

    (12

    12

    1 0

    )(bm

    dm

    )= MXm

    . ,

    X1 = MX0, X2 = MX1 = M2X0, . . . , Xm = M

    mX0

    .

    , M2 > 0, M regular right Markov matrix.

    , 4.11 ( 4.12() ). M t

    dominant eigen-vector(23 ,

    13

    )t(),

    limm

    (bm

    dm

    )= lim

    mMm

    (b0

    d0

    )=

    (23

    13

    23

    13

    )(b0

    d0

    )=

    (23 b0+

    13 d0

    23 b0+

    13 d0

    )

    . , , allele frequency vector

    allele frequency vector . , ,

    allele frequency vector,

    b = limm

    bm =23 b0+

    13 d0, a = limm

    am = 1 b

    , Hardy-Weinberg equilibrium

    limm

    pm

    qm

    rm

    = limmam1cm1

    bm1dm1

    = limmam1am2

    bm1bm2

    =

    (a)2

    2ab

    (b)2

    ( 5.1).56

    56.

    25

  • , , 112 = 0.0833

    , 1200 = 0.0050 . ,

    limm

    dm = b,

    limm

    rm = (b)2.

    (112

    )2= 0.0069,

    () .57

    5.C. Generalization

    . :

    () r- T, S, . . . ( genotype

    3r-),

    () Allele pair (T, t), s-tuple (T1, . . . , Ts)( genotype

    (s+12

    )-),

    () ,

    () ()() genotype frequency,

    () ()() sex linked gene,

    () mutation, sexual selection,

    mathematical model

    .

    (. (?).)

    5.2 20 neo-Darwinism(modern synthe-

    sis) G. H. Hardy Hardy ,

    , . , Hardy I have never done anything

    useful. No discovery of mine has made, or is likely to make the least differ-

    ence to the amenity of the world ,

    . Hardy cricket team geneticist

    , () . Hardy thus became the

    somewhat unwitting founder of a branch of applied mathematics.58

    57 (0.019) . . ( limm

    rm = (b)2

    initial condition( founder effect).)58Wikipedia.

    26

  • 6 Google Ranking System

    version

    180102 Markov chain PageRank algorithm(Google ranking

    system) . Internet search engine (

    web page ). ranking system

    : search result(rank) ?

    1995(?) Stanford University Computer Science

    L. Page S. Brin G. H. Golub[4] Matrix Computation

    (Golub dominant eigen-vector power method). Page Brin

    ,59 dominant eigen-

    vector Marcov chain.

    PageRank idea :

    . ,

    .

    6.1 i ri(, 0 ri R) ? follower , i

    . , follower , ri

    j i rj

    . j i j i.,

    ri =j i

    1

    Njrj , , Nj =

    {k | j k}.60

    , ? ?

    (Golub (?)) ? .

    59 (1998) [6] eigen-value

    . [6] T. Winograd Page .Google ,

    honor system . [6]

    , , .60, 0 follower 0.

    27

  • 6.1, rank(, reputation, , ) ri

    . , rank.

    800 !61

    6.2 web page i rank ri

    ri =j i

    1

    Njrj , , Nj =

    {k | j k} (, 0 ri R).62 j i web page j webpage i link.

    , ri ? ri ?

    ri 1- ? ,

    aij =

    1

    Nj(if j i and i = j)

    0 (otherwise)

    , 1-

    ri =

    j aij rj

    . ( aii = 0. , self-link.) , , A= (aij)Mn,n(R), rank vector R= (rj)Rn,

    AR = R

    . , R eigen-value 1 A eigen-vector. ,

    A matrix size n 230.

    6.3 A zero column, A Markov matrix

    . (, A dominant eigen-value 1.)

    , A zero column , outlink web

    page A eigen-value 1 . (

    R eigen-value 1 , .)

    61 2017 Google 800.62 web page.

    28

  • R , R (up to scalar multiple) ? , dimEA1

    1 ? multA(1) ? A 0 A very very sparse matrix.63 , 0 .

    , A (after renumbering) block diagonal matrix

    . (Page-Brin[6] there is a small problem , two web pagesthat point to each other but to no other page . , A

    diagonal block

    (0 1

    1 0

    ) . , (1)

    A eigen-value, 1 unique dominant eigen-value.) ,

    multA(1) diagonal block (

    4.10).64

    dominant eigen-vector Marcov chain

    , .

    , 1.5 , A 230

    .65

    1- : A Mn,n(C) zero column , zerocolumn 1n 1 (, 1 = (1, 1, . . . , 1)

    t). A

    , A Markov matrix( 6.3 ).

    , outlink page(

    ) page outlink . ,

    ( ) (?).

    1n , A A . (

    .)

    , Markov matrix A very very sparse.

    6.2 , .

    63Sparse matrix non-zero entry.64 diagonal block ,

    , .65 PageRank algorithm , 1.5, 230

    .

    29

  • Page-Brin 800 () :

    theory positive Markov matrix, A

    positive Markov matrix ! ,

    A 230 .

    2- : Google matrix GMn,n(R)

    G = dA+1dn

    1n

    (, 1n Mn,n(C) 1).

    d = 0.85

    (d damping factor). G positive Markov matrix

    ().

    Google matrix G = (gij) . Nj = 0

    (, j -page outlink , A j -th column 0,

    A j -th column 1n 1), G j -th column1n 1. ,

    Nj = 0, gij =1n for all i. , Nj = 0

    gij =

    0.15

    n+

    0.85

    Nj(if j i and i = j)

    0.15

    n(otherwise)

    . (, G positive Markov.)

    , 1n0.15n

    , 1Nj0.85Nj 0.15Nj . ,

    A non-zero component 1Nj . ,

    damping factor, , 0.5 0.88, 0.85

    ? damping factor 0.9999 1 1230 , 6.2 ?66

    , damp,

    / . , limm

    GmX

    (, X Rn probability vector).66 0 < d < 1, G positive Markov matrix.

    30

  • G positive Markov matrix, Perron-Frobenius vector

    limm

    GmX = P theory( 4.8 4.9)

    (, X Rn probability vector). dominant eigen-vector P PageRank vector (P i- i-page

    PageRank).67 P power method. Page-Brin[6]

    , G52X.68 69

    damping factor d = 0.85 Page-Brin[6]

    .70 Random Surfer Model.

    Random Surfer Model G (i, j)- gij j -page random

    surfer i-page ( ) . , X web

    page ,71 - lim

    mGmX . ( 2 toy example .) ,

    backlink (, ) page surfer

    . , (? !) , page surfer

    page outlink click 85%, outlink

    15% .72 (, j i , j -page surfer i-page outlink click i-page

    0.15n , (j -page)0.15n .)

    PageRank algorithm implement,

    () .73 , ()

    , .

    676.2 rank vector.68 [2], can be computed in a few hours on a medium size workstation.69, X PageRank vector, .70 [6] 0.85, [2].71 (random) surfer.72Random surfer 85% randomly . ,

    random imaginary virtual.73 0.85().

    31

  • 7 Perron-Frobenius Theory

    version

    160102 Perron-Frobenius Theory

    . 4 ,

    4 . ,

    , article

    . Meyer[5].

    A> 0. A 0, .74

    7.1 C,D Mm,n(C) , .

    () C = (cij), |C| =(|cij |

    )Mm,n(C) .75 X Cn

    , |X|.() C >D if and only if CD> 0.() C D if and only if CD 0.

    main theorem, .

    7.2 (Perron-Frobenius Theorem : Positive Case) A Mn,n(C)A> 0 , A dominant eigen-value . :

    () = ||> 0.() AX = X( 0 =X Cn), A |X|= |X|, |X|> 0.() dimEA = multA() = 1.

    , (), A> 0 unique dominant eigen-value > 0

    . , (), positive eigen-vector

    . , () , positive eigen-vector

    probability vector P , P EA = P . P A Perron-Frobenius vector.

    7.3 A Mn,n(C) , m(A) = max{|| A eigen-value}

    . (, A dominant eigen-value, ||=m(A).)

    74 A > 0 Perron Theory , A 0 Perron-FrobeniusTheory. Meyer[5]

    75, |C| det(C).

    32

  • AMn,n(C), A> 0.

    7.4 .

    () m(A)> 0.

    () 1m(A) A> 0, m(

    1m(A) A

    )=1.

    7.5 0 = cC, .

    () EA =EcAc .

    () A(t) = (t1) (tn), cA(t) = (t c1) (t cn).76 ,multA() = multcA(c).

    7.2 , , 3.10 4.7 modify

    . technical .

    7.6 () m(A) A eigen-value.

    () AX = X(, ||=m(A), 0 =X Cn), A |X|=m(A) |X|, |X|> 0.

    : (i) (notational convenience) A 1m(A) A normalize,

    m(A) = 1().

    (ii) ||=m(A) = 1, AX = X(, 0 =X Cn). ,

    |X| = || |X| = |X| = |AX| |A| |X| = A |X|

    . A |X|= |X|, A |X| = |X|, A

    (A|X||X|

    )> 0( ?). , Z =A|X|

    , Z > 0. A(Z|X|

    )> Z > 0.

    AZZ > Z, 11+AZ >Z, B =1

    1+A

    , BZ >Z. ,

    B2Z = B(BZ) > BZ > Z, . . . , BmZ > Z, (m 1)

    . , m(A) = 1, m(B) = 11+ < 1, limmBm = 0

    ( 3.2 3.5 ). , BmZ >Z limit

    , 0 Z. ! , A |X|= |X|=m(A) |X|. , A |X|> 0, A |X|= |X|> 0.

    76Hint: .

    33

  • 7.7 A dominant eigen-value(, ||=m(A)),

    () = ||> 0.

    () dimEA = multA() = 1.

    : (i) A normalize, m(A) = 1 = || ().

    (ii) 0 =X = (x1, . . . , xn)t Cn A eigev-vector(, AX = X). , 7.6 , A |X| = |X|> 0 . ,

    A |X| = |X| = || |X| = |X| = |AX|

    , i () (, 1 i n), i-,j aij |xj | =

    j aijxj

    . , 3.11,

    aijxj = cj z, , xj = zcjaij

    (1 j n)

    c1, . . . , cn 0 z C . eigen-vector Y =

    (c1ai1

    , . . . , cnain

    )t.77 ( dimEA =1

    . Y X depend.78)

    (iii) (ii) eigen-value A eigev-vector Y 0 . , , EA vector 0

    0 . , dimEA = 1

    EA probability vector

    ( ?). P,Q EA probability vector .

    0 = P Q EA , P Q 0, P Q . . dimEA =1.

    (iv) (ii), |X|> 0, c1, . . . , cn = 0, Y > 0. ,

    Y = AY = |AY | = |Y | = || Y = Y

    , = 1= ||.

    77 i.78 gap.

    34

  • (v) dimEA = multA() , dimEA = multA()

    . J = U1AU A Jordan canonical form

    , limm

    Jm=( 3.2 3.14 ). ,

    Jm = U1AmU n2U1UAm

    ( 3.15()), limm

    Am=. Am =(a(m)ij

    )

    , Am = a(m)imjm . , Y = (y1, . . . , yn)t

    , AY = Y ,

    yim =

    j a(m)imj

    yj (

    j a(m)imj

    )min

    k{yk} Ammin

    k{yk}

    . .

    7.2 ( 7.6 7.7) . , A > 0

    , A positive dominant eigen-vector probability vector P

    , P . P A Perron-Frobenius vector. ,

    At > 0, At Perron-Frobenius vector Q(At

    dominant eigen-value ).

    Perron-Frobenius Theorem.

    7.8 X 0 A eigen-value eigen-vector,=m(A). ( X Perron-Frobenius vector P positive scalar multiple.)

    : Q At Perron-Frobenius vector. ,

    At Q=m(A)Q, Qt X > 0. , AX = X,

    Qt X = Qt (X) = (Qt A)X = m(A)Qt X

    , =m(A).

    7.9 (Collatz-Wielandt Formula) N = {X Cn |X 0 and X = 0}, f : N R

    f(X) = f((x1, . . . , xn)

    t)= min

    {AX i-

    xi

    1 i n, xi =0}, (X N ), m(A) = max{f(X) |X N}.

    35

  • version

    180102 [1] M. Artin, Algebra, Prentice-Hall, 1991.

    [2] S. Brin and L. Page, The anatomy of a large-scale hypertextual Web search

    engine, Computer Networks and ISDN Systems, 30, 107117, 1998.

    [3] S. H. Friedberg, A. J. Insel and L. E. Spence, Linear Algebra, 4th ed.,

    Pearson, 2002.

    [4] G. H. Golub and C. F. Van Loan, Matrix Computation, 4th ed., JHU

    Press, 2012.

    [5] C. D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, 2000.

    [6] L. Page, S. Brin, R. Motwani and T. Winograd, The PageRank citation

    ranking : bringing order to the web, Technical Report, Stanford InfoLab,

    1999.

    36