158

MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

Embed Size (px)

Citation preview

Page 1: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

Page 2: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

!"#$ %&'(!) *

!"#$%&' %+!) ,-+!"( )( . +$+ /-+ /01( /23 /*$+" /,-+!"(24 +$+ /+$+23 0+$+21 5+!6( $+21%$+ 123 *5+!6( $+2#.5+!6( $+23 0/'!)$+0

!"#$%$' %4 0-+!" )7( 0%" 0*+ 0.+2" 5+!6( 0478 47& ,&23 '!"4

!"#$%($!)*+(! +(9: %9:73 '!" . 6 %/ % %0$( %9: 6 %9:238 %*;4 # %.4 #238*/ ((2$!)* ((2<!"*% ((238*,

Page 3: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

!"#$%(&',-.$%*+(&%%"*/%=+81 < *.>+ =+8 ,3 +'=+8 < ,=+8 ,*=+8;( .=+8 6 .04 #+ .%4 #+238 .,;4 =? /;!) /*3( /.

0 )*%0$"*%4:/ //04:/ //4: //*4: //,4:0 /4:0 /04: /*4: /,4: /0/4: /04:% /04:% /0%4:* //4:* /4:, /4:, /,4:. //

0 %4 @@$(-A + /

Page 4: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

!"# $ %

& '( $ %

($ # )*+

) # (,$ $#

* - $%* *$

. ./0 $ #

122$3 $1 $

)

4$ #

5

6

Page 5: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

19/04/12 Ementa

1/1mac2166.ime.usp.br/pluginfile.php?file=%2F4788%2Fmod_resource%2F…

Conteúdo e Bibliografia

Objetivos da Disciplina: Estudar integrais de funções de duas e três variáveis, aplicações e interpretações

na física e em outras áreas..

Conteúdo: Integrais duplas e triplas. Mudanças de variáveis em integrais (polares, cilindricas eesféricas). Integrais de linha - Teorema de Green. Integrais de superfícies.Teoremas de Gauss eStokes. Aplicações.

Bibliografia:

[S] J. Stewart, "Calculo", Ed. Pioneira-Thomson Learning, São Paulo, 2001; [BCHS] J. Bouchara, V. Carrara, A.C. Hellmeister e R. Salvitti, "Cálculo Integral Avançado", Ed.Edusp, 1996. [G] H. Guidorizzi, "Um Curso de Cálculo", Vol. 3, Livros Técnicos e Científicos, Rio de Janeiro, 5aedição, 2002.

Software Gráfico Winplot http://math.exeter.edu/rparris/winplot.html

Outros textos: APOSTOL, Tom M. Cálculo. Rio de Janeiro: Editora Reverté, 1979; BOULOS,Paulo. Introdução ao Cálculo. (vários volumes) São Paulo: Edgard Blücher Ltda, 1974; BOYER, CarlB. Cálculo. São Paulo: Atual, 1996; CORANT, Richard. Differential and integral calculus. V. I.Translation E. J. McShane. New York: Nordeman Publishing Company, Inc., 1945. KAPLAN, W."Cáculo Avançado", vol 1, Ed. Edgard Blücher Ltda, 1972, LEITHOLD, Louis. Cálculo comgeometria analítica. Tradução: Cyro de Carvalho Patarra. São Paulo: Harbra, 1994. PISKUNOV, N.Differential and integral calculus. Moscou: Éditions de la Paix, s.d. SIMMONS, George F. Cálculocom Geometria Analítica. Tradução: Seiji Hariki. São Paulo: McGraw-Hill, 1987. SWOKOWSKI,Earl W. Cálculo com Geometria Analítica. Tradução Alfredo Alves de Faria. São Paulo: MakronBooks, 1994. THOMAS, George B. Cálculo - Volume 1. Tradução: Paulo Boschcov. São Paulo:Pearson Education do Brasil, 2002. Textos sobre história da Matemática: EVES, Howard W. Introdução à história da matemática.Tradução: Hygino H. Domingues. Campinas: Editora da Unicamp, 1995. BOYER, Carl B. História damatemática. Tradução: Elza Gomide. São Paulo: Edgard Blücher Ltda, 1974Sites na Internet: The MacTutor History of Mathematics archive (http://www-groups.dcs.st-andrews.ac.uk/~history) , Cálculo - Thomas(http://cwx.prenhall.com/bookbind/pubbooks/thomas_br/medialib/indexb.html), Visual Calculus(http://archives.math.utk.edu/visual.calculus) The Calculus Page (http://www.calculus.org), S.O.S.mathematics - Calculus (http://www.sosmath.com/calculus/calculus.html), Gacetilla Matemática(http://www.arrakis.es/~mcj ), Historia de Matemáticos Famosos(http://www.mat.usach.cl/histmat/html/indice.html) History of Mathematics at the School ofMathematics (http://www.maths.tcd.ie/pub/HistMath/People/RBallHist.html)

Page 6: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

19/04/12 Informações Gerais 1

1/1mac2166.ime.usp.br/pluginfile.php?file=%2F5537%2Fmod_resource%2F…

MAT 2455 Cálculo Diferencial e Integral para Engenharia III

Turma Especial Ministrada à Distância pela WEB

1o semestre 2010 Caro(a) aluno(a). Uma das experiências pioneiras no ensino "não presencial" ou "a distância" na USP foi o oferecimento deturmas de MAT 2455 para alunos dependentes dessa disciplina da POLI. Desde o primeiro oferecimento,no 2o semestre de 2000, essa experiência vem sendo analisada e aprimorada. O(a) aluno(a) matriculado(a)nestas turmas tem a oportunidade de estudar o conteúdo destas disciplinas de forma autônoma, dentro doseu ritmo e da sua disponibilidade, com textos e atividades feitas especialmente para a turma. Somente paraestes alunos estão à disposição ferramentas para comunicação (Forum e Chat) que propiciam umatendimento mais personalizado e frequente (mesmo a distância). Além disso, são disponibilizadas atividadesperiódicas para que cada aluno possa estudar e se preparar melhor para as avaliações. É importante que você saiba que nesta modalidade de oferecimento "a distância" não há pouco trabalho.Num curso desse tipo o aluno desempenha um papel ativo e sua participação é fundamental. Afinal "a aula"só acontece se o aluno tomar a decisão de entrar no site e participar. É importante que você se organize etenha disciplina para estudar sozinho e com frequência, acessar o site regularmente e fazer as tarefas pedidas. Nesse semestre utilizaremos o ambiente Moodle. Na área da disciplina haverá textos com resumos dosdiversos conteúdos tratados em Cálculo III, listas de exercícios, gabaritos etc. Mas atenção: os textos são

apenas um resumo e um roteiro de estudo. Para que seu aproveitamento seja bom você devecompletementar os estudos lendo os livros indicados na Bibliografia. Estarão também disponíveis Fóruns para discussão de temas relacionados a disciplina, como dúvidas damatéria ou de exercícios. Monitores darão atendimento diariamente na sala de monitoria do Biênio. Lembre-se que seu aproveitamento será avaliado periodicamente no decorrer do semestre, através detarefas programadas, trabalhos, provas e de sua participação nas atividades propostas. Para maioresdetalhes veja os Critério de Avaliação. Estamos empenhados em fazer o melhor, mas esta iniciativa só poderá ter êxito com seu envolvimento eparticipação. Temos certeza que você vai levar a sério esta proposta e colaborar para tudo dar certo. Umbom semestre a todos!

Profa Cristina CerriRamal : 6278

e-mail: [email protected]

Page 7: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

19/04/12 Criterio de Avaliacao

1/1mac2166.ime.usp.br/pluginfile.php?file=%2F5557%2Fmod_resource%2F…

Critério de Avaliação

A média final dos alunos desta Turma 13 - Web será calculada da seguinte forma:

MF = K (P1 + P2 + P3 + T)/4

sendo que

Pi são as notas das provas, i = 1,2,3;

T é a média das nota dos trabalhos realizados durante o semestre que tiveram uma nota atribuída. Os

trabalhos devem ser redigidos e entregues até a data limite estabelecida conforme cronograma. Serão

propostos 9 trabalhos durante o semestre que somarão no máximo 30 pontos. Sendo S é a

soma das notas dos trabalhos então T será igual a S/3.

Ao longo do semestre serão propostas várias atividades dentro do ambiente Moodle. Cada uma

dessas Atividade deverá ser feita on-line. Cada atividade realizada pelo aluno conta

participação e não vale nota. Essas atividades terão prazos pré-estabelecidos conforme

cronograma.

K é o fator de participação que varia de 0 a 1, tendo em vista a participação do aluno, ou seja, a

quantidade de atividades realizadas. Será atribuído K = 1 para o aluno que fizer 70% das

atividades propostas (Atividades e Trabalhos). O fator K também fornecerá a porcentagem de

frequência que será atribuída a cada aluno no final do semestre.

Atenção: o aluno que só fizer as provas tradicionais terá K = 0 e assim estará automaticamente

reprovado. Este é um ponto fundamental e o diferencial desta proposta, que teve o apoio total das

Comissões de Graduação da POLI e do IME.

Datas das Provas: todas às 13h10

P1: 06 de abril

P2: 18 de maio

P3: 22 de junho

PSUB: 29 de junho - SEMI ABERTA ( a nota da PSUB entra obrigatoriamente no lugar da

menor das Pi)

Professora responsável pela Turma-Web: Profa.Cristina Cerri

Coordenador da disciplina: Prof. Luiz Augusto Fernandez de Oliveira

Page 8: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Integrais Duplas - uma introdução

2/2www.ime.usp.br/mat/mat2455/1-intdupla/1-1-intdupla-intro.htm

Integrais Duplas - Introdução

Como calcular o volume de sólidos? Para certos sólidos, como

pirâmides, cilindros, esferas, temos fórmulas que permitem

calcular seus volumes. Mas por que valem tais fórmulas?

Matemáticos gregos, como Arquimedes (287-212 a.C.)

dedicaram muita atenção a problemas relacionados com o cálculo

de áreas e volumes. Há mais de dois milênios atrás esses

matemáticos calculavam áreas e volumes de figuras geométricas

por procedimentos como os do Cálculo Integral. Usava-se o

processo de "exaustão". Por exemplo, para se obter a área de um

círculo inscreve-se nele polígonos regulares cuja área é facilmente calculável; aumentando-se o

número de lados obtém-se aproximações cada vez melhores. Obtém-se então a área do círculo por

um processo de limite das áreas dos polígonos. Esse processo era também usado para calcular área

de outras regiões, como a região interior a um arco de parábola. Com as mesmas idéias do cálculo

de áreas os matemáticos gregos também tratavam do volume de sólidos.

As idéias básicas do Cálculo Integral estavam lá presentes. Contudo essas idéias ficaram

escondidas ou perdidas, pois os matemáticos gregos descreviam tudo geometricamente e não por

meio de fórmulas numéricas como fazemos hoje. Além disso, esse método funcionava para

particulares regiões e uma generalização só poderia ser possível com uma nova formulação do

problema. Somente muito mais tarde, no século XVII, com uma simblogia mais desenvolvida e com

o surgimento da moderna notação da Geometria Analítica, foi possível criar métodos sistemáticos

para o tratamento de áreas e volumes.

Por volta de 1820, o matemático francês Augustin-Louis Cauchy definiu integral em termos de

somas, mas ainda de forma incompleta. Na época problemas de Física como o da propagação do

calor motivaram o desenvolvimento de teorias matemáticas. Por volta de 1854 o matemático alemão

Bernhard Riemann fez um estudo aprofundado da integral e contribuiu de forma decisiva para o

desenvolvimento da teoria. tanto que até hoje as somas usadas para definir a integral são chamadas

de Somas de Riemann, bem como a própria integral leva seu nome.

Lembremos que para funções de uma variável a integral é definida como o limite de somas:

A idéia básica da integral, como limite de somas, pode ser estendida para funções definidas em

regiões do plano e do espaço: surgem assim as integrais duplas e triplas, respectivamente. E tais

integrais estão associadas a cálculos de volume, massa etc.

Nos textos trataremos, primeiramente, de definir a integral dupla de funções de duas variáveis,

utilizando como motivação o cálculo de volume. Veremos a seguir propriedades e resultados

básicos. E, é claro, métodos para o cálculo de integrais duplas. Leia o texto Integrais Duplas -

definição

istina Cerri -2010

Page 9: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Funções Integráveis e Não Integráveis

2/2www.ime.usp.br/mat/mat2455/1-intdupla/1-3-intdupla-integraveis.htm

Funções integráveis e não-integráveis Alguns Resultados e Exemplos

Que funções são integráveis? Existem funções não-integráveis? Da maneira como foi dada a definição pode-se pensar que sempre existe a integral dupla de uma função.Afinal pode parecer que se f é positiva então sempre se pode calcular o volume do sólido que se formaabaixo do gráfico de f e acima do plano z = 0. Mas você viu que existem funções de uma váriável que nãosão integráveis. Com duas váriáveis isto também ocorre. Um exemplo de função não integrável: Considere a função f definida em R = [0,1]x[0,1] (quadradode lado 1) da seguinte forma: f(x,y) = 1 se x e y são racionais e 0 caso contrário. Tome uma partiçãoqualquer de R e em cada Ri . Escolha primeramente (xi ,yi) tal que se xi e yi são racionais. Assim um cálculo

simples mostra que

Entretanto podemos escolher (xi ,yi) de forma ambos xi e yi não são racionais. Dessa forma

Portanto o limite dessa somas dependerá da escolha de (xi ,yi) . Portanto f não é integrável.

Agora enunciaremos um resultado útil.

PROPOSIÇÃO. Se f é uma função integrável em R , retângulo, então f é limitada em R, isto é,existe M > 0 tal que |f(x,y)| < M, para todo (x,y) em R .(veja a demonstração, que não é difícil, emTeorema III.1.2 de [BCHS] ).

Outro exemplo: O resultado acima é útil no seguinte sentido: se uma função de duas variáveis não élimitada em R então ela não é integrável em R. Por exemplo, a função

não é limitada em [0,1]x[0,1] (prove isso!), logo não é integrável.

Exercício: Obtenha um outro exemplo de função não integrável usando o resultado anterior.

Já temos exemplos de funções não integráveis. Ótimo! Mas que funções são integráveis? Será semprenecessário encontrar a integral dupla de uma função usando a definição e tendo que calcular aquelelimite. Como para funções de uma variável, as funções "bem comportadas" são integráveis. Vale que

TEOREMA. Toda função contínua definida em um retângulo R é integrável em R.

Muito bem, mas como se calcula a integral dupla de uma função? Para isso vamos ver as IntegraisIteradas.

Cristina Cerri - 2010

Page 10: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Integrais Duplas - Como calcular?

2/4www.ime.usp.br/mat/mat2455/1-intdupla/1-4-intdupla-iterada-intro.htm

Integrais Duplas - Como calcular?

Cálculos de áreas e volumes de regiões são problemas antigos. A idéia de fazer aproximações por regiõescom áreas e volumes conhecidos já era utilizada pelos gregos. Outra forma de tentar calcular volume de sólidos usa a idéia de "fatiar" o sólido. Por exemplo, fatiando umparalelepípedo ele pode ser visto como "uma pilha de retângulos"; um cilindro pode ser visto como um"monte de discos empilhados". Como cada fatia tem a mesma área, "somamos" as áreas e temos o volume.Então é razoável que o volume desses sólidos sejam Area da base x Altura. Tal argumento pode seraplicado aos prismas também. A idéia de "fatiar" um sólido para obter seu volume, basea-se na sua teoria de que toda figura geométricapode ser considerada como uma totalidade de elementos primordiais, chamados "indivisiveis". Um princípiobem natural baseado nessa idéia e que estabelece um fato útil sobre volumes foi estabelecido pelomatemático italiano Bonaventura Cavalieri (1598-1647), no século XVII. É conhecido como o Príncípio

de Cavalieri.

Vamos usar essa idéia de fatiar para chegar num resultado que permita calcular volume de certos sólidos. Considere uma função de duas variáveis f definida num retângulo fechado R=[a,b]x[c,d] e suponha que

f(x,y) é positiva e contínua para (x,y) em R. O gráfico desta função é um subconjunto do R3 . Considere osólido limitado pelo gráfico de f e o plano xy com (x,y) em R, isto é,

Nosso objetivo é o de calcular o volume de S . Por exemplo tome a função f(x,y) = x (1-y4) e R =[0,2]x[0,1] . O gráfico de f está representado na figura abaixo.

Poderiamos pensar em calcular o volume de S (sólido delimitado pelo gráfico de f) “fatiando” o sólido complanos paralelos ao plano yz.

Page 11: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Integrais Duplas - Como calcular?

3/4www.ime.usp.br/mat/mat2455/1-intdupla/1-4-intdupla-iterada-intro.htm

Para cada x fixo entre 0 e 2 temos uma região onde a área se calcula facilmente usando integral de umavariável

Vamos denotá-la por A(x). Então

Page 12: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Integrais Duplas - Como calcular?

4/4www.ime.usp.br/mat/mat2455/1-intdupla/1-4-intdupla-iterada-intro.htm

Assim, como fizemos no caso do cilindro, o volume do sólido poderia ser definido como sendo a “soma”de todos os A(x). Somar em x é integrar. Então uma boa definição do volume de S parece ser

Poderiamos ter feito outro tipo de “fatiamento”, por exemplo com planos paralelos ao plano xz. Teriamosobtido o mesmo valor? Podemos usar esta idéia para qualquer tipo de função? Leia Integrais Duplas

Iteradas.

Cristina Cerri - 2010

Page 13: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Integrais Iteradas

1/2www.ime.usp.br/mat/mat2455/1-intdupla/1-4-0-intdupla-iterada.htm

Integrais Duplas Iteradas

Teorema de Fubini

A definição de integral dupla é consequência natural da idéia de calcular o volume de determinado tipo de

sólido. Porém é difícil obter o valor de uma integral dupla diretamente da definição. Vamos aqui ver uma

forma de calcular tal integral.

Tomemos, em particular, uma função f(x,y) positiva e definida num retângulo R=[a,b]x[c,d] e considere a

região

Para se calcular o volume do sólido S poderíamos pensar em “fatiá-lo” paralelamente ao plano x = 0 ou

ao plano y = 0.

Fixe um x entre a e b e considere a intersecção do plano paralelo a x = 0 passando por x e o sólido S.

A área da fatia pode ser calculada com a integral

Intuitivamente o volume é a "soma" de todas as áreas. Então o volume de S deve ser

Entretanto, fixando y entre c e d, poderíamos também calcular a área de cada fatia e depois o volume

fazendo

Page 14: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Integrais Iteradas

2/2www.ime.usp.br/mat/mat2455/1-intdupla/1-4-0-intdupla-iterada.htm

Estas integrais são chamadas de integrais iteradas e usualmente se escreve apenas

ou

Exemplos:

Teria sido mera coincidência as duas integrais acima terem dado o mesmo valor? Não é coincidência, e o que vale é o seguinte:

Teorema de Fubini. Se é integrável em =[a,b]x[c,d] então

Ou seja se é integrável não importa a ordem que fazemos a integração. Assim temos uma formade cálcular integrais. OBS: É comum denotar a integral dupla de f em R por , lembrando que isso não

significa que estamos indicando integrais iteradas. Na hora de calcular pode-se fazer de duas maneiras.Para estudar: leia o parágrafo 2 do capítulo 15 (15.2) de [S]

Curiosidade: O teorema acima foi provado em 1907 pelo matemático italiano Guido Fubini (1879-

1943), entretanto a versão para funções contínuas era conhecida pelo matemático francês Augustin-

Louis Cauchy, quase um século antes.

Cristina Cerri - 2010

Page 15: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Principio de Cavalieri - Fórmula do Volume da Esfera - aplicando principio…

1/2www.ime.usp.br/mat/mat2455/1-intdupla/1-4-1-intdupla-cavalieri.htm

O Princípio de Cavalieri

Bonaventura Cavalieri (1598-1647)

Matemático italiano nascido em Milão e falecido em Bolonha. Foi discípulo de

Galileo e escreveu sobre diversos temas como geometría, trigonometría, astronomia,

óptica, etc. Foi o primeiro matemático italiano que apreciou em todo seu valor os

logarítimos. Também figurou entre os primeiros que ensinaram a teoria copérrnica dos

planetas. Outros trabalhos seus são o desenvolvimento dado a trigonometria esférica,

assim como o descobrimento das fórmulas relativas aos focos dos espelhos e de las

lentes. Mas sua obra fundamental é a "Geometría dos indivisiveis", pela qual é

considerado como um dos precursores do cálculo infinitesimal. A base da nova teoria é que toda figura

geométrica pode ser considerada como uma totalidade de elementos primordiais, chamados "indivisiveis". Deste

modo, o cálculo de longitudes, áreas e volumes foi levado por Cavalieri ao cálculo da soma de infinitos

indivisiveis".

O Principio de Cavalieri nos diz que se dois

corpos têm a mesma altura e os cortes por planos

paralelos a suas bases são figuras com a mesma

área, então eles têm o mesmo volume.

Com esse princípio se pode obter o volume da esfera, por exemplo. A idéia é comparar o volume da esfera

com os volumes do cilindro e do cone.

Tome uma esfera de raio R. Considere o sólido X que é cone dentro de um cilindro de altura 2R e raio R,

como mostra a figura. Corte por um plano horizontal B (perpendicular ao eixo do cilindro), que dista h do

centro da esfera. Vamos calcular as áreas das secções planas. Na esfera a secção plana dá um cículo. Já no

cilindro temos um anel.

Page 16: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Principio de Cavalieri - Fórmula do Volume da Esfera - aplicando principio…

2/2www.ime.usp.br/mat/mat2455/1-intdupla/1-4-1-intdupla-cavalieri.htm

Aplicando o Principio de Cavalieri temos que o volume da esfera é igual ao volume do sólido X. Mas

Vol(X) = Volume de cilindro - 2x Volume do cone =

= pi R2 (2R) - 2 pi R2 (R)/3 = 4 pi R3 / 3

Portanto volume da esfera é 4 pi R3/3.

Extraído de

http://www.members.tripod.com/caraipora/cavprin.htm

Outros sitios (mas só usar o "Google" e pesquisar)

http://www.youtube.com/watch?v=vtsWUjk-CtY

http://pt.wikipedia.org/wiki/Bonaventura_Cavalieri

http://en.wikipedia.org/wiki/Cavalieri%27s_principle

Page 17: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Integrais Iteradas - Exemplos

2/2www.ime.usp.br/mat/mat2455/1-intdupla/1-4-2-intdupla-exemploA1.html

Integrais Iteradas - Exemplos

Como já foi visto, o cálculo de integrais duplas pode ser feito utilizando a integração iterada. Veja esse

exemplo

Exemplo A1. Sejam f(x,y) = 2 – x2 + y2/3 e D = [-1,1] x [-1,2] (um retângulo). Então podemos calcular a

integral dupla de duas maneiras, pois

Então

Nesse caso o valor da integral dupla é o volume do sólido que está abaixo do gráfico de f e acima do

plano z = 0 (pois f é positiva).

Clicando no ícone ao lado você poderá ver o gráfico dessa função e de

outras do tipo f(x,y) = A – x2 + B y2 . Na animação você poderá

interagir: variando x e y dentro do domínio você poderá visualizar o

sólido sendo formado. Explore!

Cristina Cerri - 2010

Page 18: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Integrais Duplas sobre Regiões

2/3www.ime.usp.br/mat/mat2455/1-intdupla/1-5-intdupla-regiao.htm

Integrais Duplas em Regiões - definição No texto Integrais Duplas em Retângulos definimos integrais duplas sobre retângulos. Contudo são várias as funções definidas em regiões que não são retângulos. Seja f uma função definidanuma região D do plano . Se f é positiva desejamos que o volume do sólido esteja

relacionado com integral dupla. Nesse texto vamos definir a integral dupla sobre regiões planas D limitadas, isto é, regiões contidas emalgum retângulo R. Vamos utilizar um pequeno "truque". Como só temos a definição de integral dupla para funções definidasnum retângulo, vamos estender f para um retângulo R que contém D de forma conveniente. Defina F(x,y) emR de forma que

chamada de "função característica do conjunto D". Dizemos que f é integrável em D quando F éintegrável em R. E definimos a integral dupla de f em D por

Observe o desenho. Primeiramente como F é 0 fora de D região de R-D (complementar de D) a definiçãoacima não depende do particular retângulo R. Assim sempre podemos considerar um retângulo de ladosparalelos aos eixos. E perceba também que R-D não interfere no cálculo da integral. DEFINIÇÃO. Se f(x,y) é positiva e integrável em D definimos o volume do sólido

como sendo

Suponha que f seja contínua em D. É razoável esperar que f seja integrável em D. Mesmo f sendocontínua em D não temos necessariamente a continuidade de F em R. Observe que as descontinuidadesocorrem no bordo (ou fronteira) de D (veja a figura acima), que denotamos por ∂D. De fato, nesse caso, oconjunto dos pontos de descontinuidade de f está contido em ∂D. A integrabilidade de f dependerá do tipo

Page 19: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Integrais Duplas sobre Regiões

3/3www.ime.usp.br/mat/mat2455/1-intdupla/1-5-intdupla-regiao.htm

do bordo de D: de uma forma informal, ele tem que ser "magrinho" para não interferir no cálculo da integral. Mas o que significa isso? Que tipos de conjuntos são esses? O conceito que desejamos introduzir agora é ode conteúdo nulo. Um conjunto A do plano tem conteúdo nulo se, dado ε > 0 arbitrário, existem retângulos R1 , R2 , ... Rn

, de lados paralelos aos eixos coordenados, tais que e .

Não é difícil mostrar que um segmento no plano tem conteúdo nulo. Um fato importante é que PROPOSIÇÃO. O gráfico de uma função contínua definida num intervalo [a,b] tem conteúdonulo. Esse resultado já é mais difícil de provar. Contudo em [BCHS] (capítulo 3) você encontrará a

demostração para o caso de função de classe C1. Finalmente temos um resultado esperado:

TEOREMA. Seja D um subconjunto limitado do plano e seja f uma função contínua e limitadaem D. Se o bordo de D tem conteúdo nulo então f é integrável em D.

A prova desse resultado pode ser encontrada no Apêndice 2 de [G]. Para ver um pouco mais sobre essateoria veja o texto Funções Integráveis - teoria.

Cristina Cerri - 2010

Page 20: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Funções Integráveis - teoria

2/3www.ime.usp.br/mat/mat2455/1-intdupla/1-5-1-intdupla-integraveis.htm

Funções Integráveis - teoria

Já sabemos que temos funções que não são integráveis. Será que existe alguma caracterização das

funções integráveis?

Seja D um subconjunto limitado do plano. E seja o sólido .

Como temos altura constante é razoável pensar que o volume de S é igual a área de D, pois espera-se que

V(S) = 1.A(D). Mas a integral dupla de f(x,y) = 1 sobre D é, caso exista, o volume deste sólido.

Dizemos que D tem área se f(x,y) = 1 é integrável em D e define-se a área de D por

Lembre que para definir a integral de f sobre D defininimos uma função F como sendo f em D e 0 em R-

D onde é um retângulo qualquer. Então nesse caso F é 1 em D e 0 em R-D. A descontinuidade de F

ocorre na fronteira, ou bordo, de D. Para que tenhamos F integrável será preciso que o bordo de D não

atrapalhe, seja "desprezível".

O bordo ou fronteira de um subconjunto D, que é denotado por ∂D, é o conjuntos dos pontos (x,y)

tais que qualquer retângulo (ou disco) centrada em (x,y) contém pontos de D e do complementar de D.

As regiões que nos interessam são as regiões cujo bordo tem conteúdo nulo.

Formalmente, um conjunto A tem conteúdo nulo se para todo ε > 0 εξιστεµ ρετνγυλοσ Ρ1, Ρ2,...,

Rn cuja união contem A e que a soma das suas áreas é menor que ε..

As regiões que nos interessam são as regiões que tem área, As regiões que tem área são aquelas que o

bordo tem conteúdo nulo.

Note que felizmente os retângulos tem área. Pode parecer estranha mas existem regiões do plano que não

tem área. Por exemplo, se D = Q x Q em [0,1]x[0,1] seu bordo é todo o quadrado [0,1]x[0,1]. Estranho,

não é? Mas isso acontece pois perto de todo o par de números racionais tem sempre pares de racionais e de

irracionais. Então a função constante 1 em D não é integrável. (Veja o texto Funções integráveis e não-

integráveis.) O problema aqui é com o conjunto D .

Queremos evitar isso e tratar de conjuntos D “bem comportados”, ou seja, que tenham área.

Assim afirmamos que D tem área se, e somente se, ∂D tem conteúdo nulo.

Conjuntos de área nula representam papel importante na Teoria de Integração. Esses são conjuntos que

não interferem na integração.

TEOREMA. Seja uma região D com área e limitada do plano e seja f uma função limitada em

D. Se f é contínua, exceto num conjunto de área nula, então f é integrável em D.

O resultado acima vale em contextos mais gerais e não apenas para funções de duas variáveis. Foi

o matemático Henri Lebesgue (1875-1941) que estabeleceu a conexão entre a integrabilidade segundo

Riemann e o conjunto dos pontos de descontinuidade da função. Resumidamente, Lebesgue provou que uma

condição necessária e suficiente para que uma função seja Riemann integrável é que o conjunto dos pontos

de descontinuidade tem área (ou medida) nula. Ele criou toda uma teoria nova para integração, que hoje leva

seu nome: integral de Lebesgue.

Page 21: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Cálculo de Integrais Duplas

2/3www.ime.usp.br/mat/mat2455/1-intdupla/1-6-intdupla-calculo.htm

Cálculo de Integrais Duplas

Depois de definida a Integral Dupla sobre Regiões planas D temos que saber como calculá-la.

Sabemos que se f é contínua em D e se o bordo da região D tem conteúdo nulo então f é

integrável em D.

Mas afinal quais regiões são desse tipo e como calcular a integral dupla nessas regiões?

Vamos ver dois tipos de regiões cujo calculo da integral dupla pode ser feito.

Região do Tipo I: região do plano entre gráficos de funções contínuas de x definidas num intervalo

[a,b]. Mais explicitamente são regiões do tipo

onde g1 e g2 são funções contínuas em [a,b]. Graficamente:

Nesse caso D é limitada e se tomamos um retângulo R=[a,b]x[c,d] que contém D então

Região do Tipo II: região plano entre gráficos de funções contínuas de y definidas em [c,d]. Mais

explicitamente, são regiões do tipo

onde h1 e h2 são funções contínuas em [c,d]

Page 22: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Cálculo de Integrais Duplas

3/3www.ime.usp.br/mat/mat2455/1-intdupla/1-6-intdupla-calculo.htm

Também podemos calcular a integral dupla fazendo

Cristina Cerri - 2010.

Page 23: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Cálculo de Integrais Duplas - Exemplos

1/2www.ime.usp.br/mat/mat2455/1-intdupla/1-6-1-intdupla-exemplos.htm

Cálculo de Integrais Duplas - Exemplos

1. Calcular a onde é a região limitada pelas parábolas = 2 2 e = 1 + 2 .

2. Encontre o volume do sólido que fica abaixo do parabolóide = 2 + 2 e acima da região no plano e delimitada

pelas superfícies = 2 e = 2 .

Temos neste caso a região de integração (no plano ) é

e o volume é dado pela integral dupla de ( ) = 2 + 2 logo

3. Calcule .

Se tentarmos calcular da forma que a integral aparece teremos problemas. Mas a integral acima é igual a integral dupla de

( ) sen( 2) em

Page 24: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Cálculo de Integrais Duplas - Exemplos

2/2www.ime.usp.br/mat/mat2455/1-intdupla/1-6-1-intdupla-exemplos.htm

Desenhe a região e perceba que também podemos escrevê-la na forma

Então, usando o Teorema de Fubini,

Explore mais exemplos clicando aqui.

Leia a teoria e veja mais exemplos em 15.3 de [S] e III.4 de [BCHS].Pratique fazendo exercícios do livro [S] e da

Lista 1.

Dica: O livro de J. Stewart [S] traz muitos exercícios resolvidos e muitos gráficos e figuras. Consulte pois para um

melhor aproveitamento visualizar os gráficos e as regiões de integração é fundamental. Use para isso programas gráficos

como Winplot .

2010

Page 25: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Integrais Duplas - propriedades

2/2www.ime.usp.br/mat/mat2455/1-intdupla/1-8-intdupla-propriedades.html

Integrais Duplas - Propriedades

As seguintes propriedades básicas são válidas para integrais duplas.

Proposição. Se f e g são funções integrais em D, região limitada do plano e com área, e c é constante

então

Uma outra propriedade muito útil para o cálculo de integrais duplas é a seguinte.

Proposição. Suponha que f(x,y) seja integrável em D1 e em D2 , que são regiões limitadas do plano. Se

D1 ∩ D2 tem área nula então f é integrável em D1 U D2 e vale

Por exemplo, seja f(x,y) = 1, se (x,y) pertence a [0,3]x[0,1] e f(x,y) = 2, se (x,y) pertence a

[3,5]x[0,1] . Claramente essa função não é contínua em R = [0,5]x[0,1], mas é descontínua apenas no

conjunto ( 3,y ) : 0 ≤ y ≤ 1 que tem área nula no plano.

Então f é integrável em R e

Cristina Cerri - 2010

Page 26: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Mudança de Variáveis em Integrais Duplas

2/2www.ime.usp.br/mat/mat2455/1-intdupla/1-9-intdupla-mudapolares.html

Mudança de Variáveis em Integrais Duplas

Coordenadas Polares Nas integrais de funções de uma variável real muitas vezes uma mudança de variável conveniente permite seu cálculomais facilmente. A fórmula nesse caso é

onde g (c) = a e g (d) = b , sendo g estritamente crescente. É comum escrevermos que “dx = g'(u) du”.

Para integrais duplas também é possível fazer mudanças de variáveis. Nesse caso temos que fazer mudanças dosistema de coordenadas Oxy para outro sistemas de coordenadas Ouv. E como fica a integral dupla quando mudamosde coordenadas? O que irá substituir o fator “g'(u) du” nesse caso?

Antes de tratar do caso geral veremos como fica a integral dupla quando mudamos do sistema de coordenadascartesianos Oxy para o sistemas de coordenadas polares Orθ.

Sabemos que x = x(r,θ) = r cos(θ) e y = y(r,θ) = r sen(θ), onde r representa a distância do ponto P de coordenadas(x,y) e θ é o ângulo formado pelo segmento OP e o eixo Ox no sentido anti-horário.

Suponha que f(x,y) é integrável numa região D do plano Oxy. Como a integral dupla é o limite das somas de Riemannvamos avaliar a soma para uma partição qualquer de D. Para cada retângulo da partição sua área é aproximadamente aárea de um setor circular. Mas a área de um setor circular pode ser calculada usando as variações de r e de θ . (Veja otexto sobre Coordenadas Polares ) Logo

Fazendo o limite temos que

onde Dxy denota a região D descrita em coordenadas cartesianas Oxy e Drθ denota a região descrita em coordenadas

polares.

Atenção: nunca se esqueça de multiplicar pelo fator r !

Para ver mais exemplos clique aqui!

Cristina Cerri - 2010

Page 27: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Integral Dupla em Coordenadas Polares - Exemplos

2/3www.ime.usp.br/mat/mat2455/1-intdupla/1-9-2-intdupla-mudapolar-ex.html

Mudança de Variáveis em Integrais Duplas

Coordenadas Polares - Exemplos

Exemplo 1. Queremos calcular o volume do sólido que está sob o parabolóide z = x2 + y2 , acima do

plano xy e dentro do cilindro x2 + y2 = 2x.

Então

onde

E então nas coordenadas cartesianas

Não é uma integral muito simples. Mudando para coordenadas polares a região D passa a ser

pois substituindo x(r,θ) = r cos(θ) e y(r,θ) = r sen(θ) na equação x2 + y2 = 2x temos que r2= 2 r cos(θ),

logo na circunferência r = 2cos(θ). Como θ é o ângulo entre o segmento do ponto a origem e o eixo x, a

variação do ângulo é de −π/2 a π/2.

Região em coordenadas cartesianas

Região em coordenadas polares

Page 28: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Integral Dupla em Coordenadas Polares - Exemplos

3/3www.ime.usp.br/mat/mat2455/1-intdupla/1-9-2-intdupla-mudapolar-ex.html

E então

Exemplo 2. Desejamos calcular o volume do sólido que está sob o parabolóide z = 4 - x2 - y2 , acima do

plano xy e dentro do cilindro x2 + y2 = 1.

Sabemos que onde D é o

disco de centro (0,0) e raio 1. Logo

Então

Contudo o cálculo dessa integral é elaborado. A região D pode

ser facilmente descrita em coordenadas polares.

Assim usando que x = x(r,θ) = r cos(θ) e y = y(r,θ) = r sen(θ)

então o disco pode ser representado por

Portanto

Exemplo A3. Se a função está definida na regão

então

Clique e veja a região acima para diferentes raios. Explore!

Cristina Cerri - 2010

Page 29: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Mudança de Variáveis em Integrais Duplas

1/2www.ime.usp.br/mat/mat2455/1-intdupla/1-10-intdupla-mudavar.html

Mudança de Variáveis em Integrais Duplas

Caso Geral

Para o cálculo de funções de uma variável temos que, às vezes, fazer uma mudança de variável de

integração. Quando fazemos isso temos que fazer uma "correção" e multiplicar pela derivada:

No cálculo de integrais duplas também precisamos as vezes mudar de variáveis. Uma mudança de

coordenadas em R2 é uma transformação ϕ contínua e injetora no interior da região. Escrevemos ϕ(u,v) =

(x(u,v),y(u,v)).

Assim para funções de duas variáveis devemos ter uma fórmula do tipo

O que viria no lugar do ?????? ?

Antes de dar a fórmula vamos ver um exemplo de mudança de variável. Seja

ϕ(u,v) = (x(u,v),y(u,v)) onde x(u,v) = (u - v)/2 e y(u,v)=(u + v)/2, ou seja, u = x + y e v = y - x .

Seja Dxy a região limitada pelas retas x + y = 4 , x + y = 3, y - x = 3 e y - x = 1. Note que uma reta y +

x = a no plano Oxy corresponde a reta u = a no plano Ouv e que uma reta y - x = b no plano Oxy

corresponde a reta v = b no plano Ouv.

Com esta aplicação transformamos o retângulo Dxy (amarelo) no retângulo Duv = [3,4]x[1,3] (verde).

Note que as áreas dos retângulos são diferentes!!! Veja que a área de Duv é 2, mas a área de Dxy é 1.

Note que todo retângulo de lados paralelos aos eixos Ou e Ov se transforma pela ϕ em outro retângulo e

que A(Dxy) = A(Duv)/2. Esta transformação não preserva áreas, mas há uma relação entre elas. Para

calcularmos uma integral dupla teremos que levar isso em conta.

Se queremos calcular a integral

onde D = Dxy diretamente com as variáveis x e y vamos ter algum trabalho. Entretanto se rodamos a figura,

ou seja, fazemos uma mudança de variáveis, passaremos a ter um retângulo paralelo aos eixos e assim a

integração ficará mais simples. Se u = x + y e v = y - x, ou x = (u - v)/2 e y = (u + v)/2 transformamos Dxy

em Duv = [3,4]x[1,3]. Como A(Dxy) = A(Duv)/2

Page 30: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Mudança de Variáveis em Integrais Duplas

2/2www.ime.usp.br/mat/mat2455/1-intdupla/1-10-intdupla-mudavar.html

Mas esse foi um caso muito particular. Em geral dada uma mudança de variáveis o fator de correção da

área não é constante. Esse fator é o Jacobiano da transformação. Em geral, dada uma transformação

ϕ(u,v) = (x(u,v),y(u,v)) do plano o Jacobiano é

O que vale é o seguinte resultado:

TEOREMA. Seja ϕ uma transformação de uma aberto Ω de R2 em R2 de classe C1 onde ϕ(u,v) =

(x(u,v),y(u,v)). Seja Duv subconjunto de Ω limitado, com bordo de conteúdo nulo também em Ω, e Dxy =

ϕ(Duv). Suponha que ϕ é injetora e Jϕ(u,v) não é nulo o interior de Duv. Se f é contínua em Dxy então

Note que na fórmula aparece o módulo do Jacobiano!

Voltando ao exemplo e calculando o Jacobiano temos Jϕ(u,v)= 1/2 . Logo

Agora é com você: calcule a integral!

Mais exemplos e muito mais você verá em Mudança de Variáveis em Integrais Duplas -

Exemplos

Como você deve se lembrar, as coordenadas polares x(r,θ) = r cos(θ) e y(r,θ) = r sen(θ) são úteis e

de grande importância. Várias integrais duplas ficam mais fáceis de serem calculadas se usamos a mudança

de coordenadas polares, cujo Jacobiano é r.

Referências: 15.9 de [S] e III.5 e IV.5 de [BCHS] ou 4,2 de [G].

Cristina Cerri -2010

Page 31: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Mudança de Variáveis em Integrais Duplas - Exemplos

2/2www.ime.usp.br/mat/mat2455/1-intdupla/1-10-1-intdupla-mudavar-ex.html

Mudança de Variáveis em Integrais Duplas

Exemplos

Vimos que nas condições do enunciado do Teorema a fórmula de mudança de variáveis é

Vejamos alguns exemplos:

Exemplo 1. Para calcular uma integral sobre uma região D = (x,y) : (x-p)2 + (y-q)2 ≤ a2 , com a > 0, que

é a região interior a circunferência de raio a, podemos, para facilitar, fazer uma mudança de variável do tipo

polar, tal que x-p = r cos(θ) e y-q = r sen(θ), ou seja, x(r,θ) = r cos(θ) + p e y(r,θ) = r sen(θ) + q .

Verifique que nesse caso o Jacobiano é também r.

Exemplo 2. Para calcular uma integral sobre uma região D = (x,y) : x2/a2 + y2 /b2 ≤ 1 , com a, b > 0,

que é a região interior a uma elipse, podemos, para facilitar, fazer uma mudança de variável do tipo polar, tal

que x/a = r cos(θ) e y/b = r sen(θ), ou seja, x(r,θ) = a r cos(θ) e y(r,θ) = b r sen(θ) . Verifique que nesse

caso o Jacobiano é abr.

Compondo essas transformações podemos resolver o seguinte exercício (extraído da prova de 1999).

Exemplo 3. Determine o volume do sólido limitada pelas superfícies: ; z = x2 + y2 e z =

0.

Solução. Note que desejamos calcular o volume do sólido dado por

Mas isso pode ser feito com integrais duplas.

onde D é a região interior a elipse . Portanto fazendo a mudança de variável

Então e o Jacobiano é ,

não nulo no interior.

Portanto

.

Cristina Cerri - 2010

Page 32: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Aplicações da Integral Dupla

1/2www.ime.usp.br/mat/mat2455/1-intdupla/1-11-intdupla-aplica.html

Aplicações da Integral Dupla

Algumas aplicações das Integrais Duplas já foram discutidas. O cálculo de volume, por exemplo, foi

inclusive motivação para a definição dessas integrais. Algumas outras aplicações apresentamos aqui, porém

ainda mais podem ser encontradas em física, biologia, ecomonia etc.

1. Cálculo de volume. Dada f e g são contínuas em D, região limitada do plano Oxy com área, e então o volume da

região entre os gráficos de f e g é dado por

2. Área de uma região plana

Seja D uma região limitada do plano Oxy, com área. Se criamos um "prisma" B de base D e altura 1 é

esperado que o volume de B seja area da base vezes a altura, que é 1. Logo devemos ter Vol(B) = Area (D)

x 1. Então

3. Massa e Centro de Massa Recordamos que a massa total de um sistema de k partículas cuja massa de cada partícula é mi , i =

1,...,k, é a soma m = m1+m2+...+mk . Considere uma lâmina ou placa fina plana (sem volume) cujo formato

é uma região D, região limitada do plano Oxy, com bordo de conteúdo nulo. Se ρ(x,y) é uma função

contínua positiva em D que representa a densidade superficial de massa, então a massa total de D deve ser

“a soma das massas em cada ponto (x,y) de D”.

Pensando assim faz sentido definir a massa de D como sendo

já que ρ(x,y) dA pode ser interpretado como a massa do elemento de área dA.

Fazendo também a analogia com um sistema finito de partículas temos que o centro de massa da lâmina

é o ponto onde

2. Momento de inércia

O momento de inércia de uma partícula de massa m com relação a uma reta é dado por md2 onde d é

a distância da partícula a esta reta. Estendendo esse conceito a uma placa de formato D, região limitada do

plano Oxy, com bordo de conteúdo nulo, com densidade pontual de massa dada por uma funçao contínua

positiva ρ(x,y), temos as seguintes definições:

O momento de inércia com relação ao eixo x é

Page 33: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Aplicações da Integral Dupla

2/2www.ime.usp.br/mat/mat2455/1-intdupla/1-11-intdupla-aplica.html

O momento de inércia com relação ao eixo y é

O momento de inércia polar (ou com relação à origem) é definido por

Um exemplo. A densidade de cada ponto de uma placa semicircular é proporcional a distância ao centro do

círculo. Encontre o centro de massa da placa.

Vamos colocar a placa na parte superior do circulo de raio a. A distância de (x,y)

ao centro (origem) é portanto a densidade ρ(x,y) é

para alguma constante K. Calculemos primeiramente a massa M

Como a região é simétrica com relação ao eixo y temos que . E

Logo o centro de massa é o ponto (0,(3a)/2π). Localize-o no desenho.

Observação: se a densidade for constante então o centro de massa será o ponto (0, (4a)/2π).

Leia mais e veja mais exemplos em III.6 de [BCHS] e 15.5 de [S] e faça exercícios da Lista 1.

Cristina Cerri -2010

Page 34: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Integrais Triplas

1/2www.ime.usp.br/mat/mat2455/2-inttripla/2-1-inttripla-def.html

Integrais Triplas em ParalelepípedosDefinição

Vamos agora considerar funções de três variáveis , isto é, f é uma função que a cada terna (x,y,z) de um

subconjunto do R3 associa-se um valor f(x,y,z) em R. Já não podemos visualizar o gráfico desse tipo de

função pois é um subconjunto do R4, mas podemos definir uma integral, que será a integral tripla de f.

Vamos motivar a definição usando o cálculo de massa de um paralelepídedo.

Seja P um paralelepípedo feito de um material com densidade de massa constante ρ. Então a massa total

de P é ρ.V(P), onde V(P) denota o volume de P. Se tivessemos um conjuto de Pi parelelepípedos, i =

1,..,n com densidade de massa ρi então Massa Total é a soma das massas Mi = ρi .V(Pi) .

Agora suponha que o paralelepípedo P não é feito de um material com densidade de massa constante .

Como calcular sua massa total? Vamos tentar obter esse valor por aproximações.

Num sestema de coordenadas Oxyz o paralelepípedo P é o produto cartesiano de segmentos

[a,b]×[c,d]×[p,q], ou seja,

Suponha que a densidade de massa depende de cada ponto de P , ou seja, e a densidade pontual de massa

é uma função ρ(x,y,z), contínua e positiva, definida em P.

Particione P em pequenos paralelepípedos P1 , P2 ,..., Pn, dividindo

os intervalos [a,b] , [c,d] e [p,q] . Para cada i =1,...,n escolha um

ponto (xi , yi , zi) de Pi . Como estes Pi são pequenos podemos dizer

que a massa de Pi é aproximadamente ρ(xi , yi , zi).V(Pi) . Portanto

a massa de P é aproximadamente a soma das massas de cada Pi

Como no caso das funções de duas variáveis, estas somas são conhecidas como Somas de Riemann.

Intuitivamente a aproximação deve melhorar quanto menores forem os retângulos Pi . Assim é natural

pensarmos que a Massa Total de P deve ser o LIMITE destas somas, quando as dimensões de Pi vão para

zero. Isto é, se o limite existir, a massa total deve ser

onde d(Pi) denota a diagonal de Pi.

Podemos generalizar e temos assim a seguinte definição

DEFINIÇÃO: Seja f uma função definida em P. A integral tripla de f sobre P é

se tal limite existe, e é o mesmo para qualquer escolha de (xi , yi , zi) em P. Neste caso se diz que

Page 35: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Integrais Triplas

2/2www.ime.usp.br/mat/mat2455/2-inttripla/2-1-inttripla-def.html

f é integrável em P.

As mesmas propriedades operatórias que valem para integrais duplas valem para integrais triplas.

Propriedades: Se f e g são funções integráveis em P então

sempre que

Como no caso de integrais duplas, existem funções que não são integráveis. Contudo as funções "bemcomportadas" são integráveis. Temos que

TEOREMA Se f é contínua em P então f é integrável em P.

Portanto, se f(x,y,z) for uma função contínua e positiva e representar a densidade de massa de cada ponto(x,y,z) de P, a massa total de P deverá ser a integral tripla acima (caso existir). Como no caso de integrais duplas existem funções que não são integráveis. Veja aqui um exemplo.

Mas como calcular integrais triplas? Usaremos também as integrais iteradas, que podem ser feitas emqualquer ordem. Veja como nos próximos textos da disciplina. É claro que os domínios das funções não são sempre paralelepípedos. Também veremos como definir ecalcular a integral tripla em diferentes regiões do espaço.

Cristina Cerri - 2010

Page 36: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Funções Integráveis e Não Integráveis

1/1www.ime.usp.br/mat/mat2455/2-inttripla/2-1-1-inttripla-naointegra.html

Exemplos de funções não-integráveis

Existem funções de três variáveis que não são integráveis.

Um exemplo de função não integrável: Considere a função f definida em R=[0,1]x[0,1]x[0,1] (cubo

de lado 1) da seguinte forma: f(x,y,z) = 1, se x, y e z são racionais e 0 caso contrário. Basta calcular a soma

de Riemann para convenientes escolhas de (xi , yi, zi ) que teremos somas com valor 1 e outras que valem 0.

Portanto o limite não existe. (Lembre-se do exemplo que demos para integrais duplas.)

Um resultado útil: Usando a definição pode-se mostrar que se ! é uma função integrável em " então

! é limitada em " , isto é, existe M > 0 tal que |! (# $ % $ & )| < M, para todo (# $ % $ & ) em " . Para a

demonstração veja Teorema IV.1.4 de [BCHS].

Como para funções de duas variáveis o resultado acima é útil para encontrar exemplos. Se uma função

não é limitada em " então ela não é integrável em " .

Desafio: encontre um exemplo de função não é limitada em [0,1]x[0,1]X[0,1], e assim você terá um

exemplo de função não integrável.

Cristina Cerri - 2010

Page 37: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Integrais triplas sobre regiões

1/2www.ime.usp.br/mat/mat2455/2-inttripla/2-2-inttripla-regiao.html

Integrais Triplas sobre Regiões

Considere uma região limitada S do R3, isto é, S está contida num paralelepípedo P, e seja f(x,y,z)

uma função definida em S. Como fizemos para integrais duplas vamos definir a integral tripla de f em S

usando a integral tripla de uma função auxiliar F(x,y,z) em P.

Defina F(x,y,z) = f(x,y,z) em S e F(x,y,z) = 0 nos pontos que estão em P, mas não em S.

Dizemos que f é integrável em S, se F é integrável em P e definimos a integral tripla de f(x,y,z) sobre S

como sendo

.

Como no caso das integrais duplas, como F é nula nos pontos de P-S, a definição acima não depende da

escolha do paralelepípedo P. As mesmas propriedades válidas para integrais duplas são também válidas

para integrais triplas (veja Integrais Duplas sobre Regiões).

Como você sabe existem funções que não são integráveis. Contudo, assim como para funções de duas

variáveis, a integrabilidade da f pode ser garantida quando f é contínua em S e a região S é de um tipo

especial. Note que se f é contínua em S a função F definida acima será descontínua num conjunto que

contém o bordo de S. Logo para existir a integral esse bordo deve ser "magrinho", ou seja, não pode ter

volume em R3. Estes são os tais conjuntos de conteúdo nulo. Por exemplo, um segmento de reta ou um

pedaço de plano são conjuntos com volume nulo. Formalmente um conjunto A tem conteúdo nulo, se dado

ε > 0 arbitrário, existem paralelepípedos P1 , P2 , ... Pn , de arestas paralelas aos planos coordenados, tais

que A está contido na união P1 U P2 U ...U Pn e a soma dos volumes .

Temos então o seguinte resultado.

TEOREMA.

O próximo resultado nos dá varios exemplos de conjuntos desse tipo.

PROPOSIÇÃO. Seja D um subconjunto limitado do plano, com bordo de conteúdo nulo. Se g é uma

função contínua e limitada em D, então seu gráfico é um subconjunto de conteúdo nulo no R3.

Superfícies parametrizadas também são exemplos de conjuntos de volume nulo.

Por isso trabalharemos com regiões S cujo bordo é formado por gráficos de funções contínuas. Vamos

destacar alguns tipos dessas regiões que aparecem com mais frequência.

Page 38: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Integrais triplas sobre regiões

2/2www.ime.usp.br/mat/mat2455/2-inttripla/2-2-inttripla-regiao.html

1. Região do Tipo I. São regiões do espaço da forma

onde u1 e u2 são funções contínuas em D. Um exemplo:

2. Regiões Tipo II. São regiões do tipo

onde v1 e v2 são funções contínuas em D. Um exemplo:

3. Região Tipo III. São regiões do tipo

onde w1e w2 são funções contínuas em D onde D é a projeção de S no plano xz. (exercício: faça um

desenho deste tipo de região).

Observação importante: O bordo de S é contituído da união dos dois gráficos e das superfícoes que

constituem as "laterias" pois S é um sólido no espaço.

Veja no texto sobre Cálculo de Integrais Triplas como calcular integrais deste tipo.

Cristina Cerri - 2010

Page 39: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Cálculo de Integrais Triplas

1/1www.ime.usp.br/mat/mat2455/2-inttripla/2-3-inttripla-calculo.html

Cálculo de Integrais Triplas

Como calcular integrais triplas?

Como no caso de Integrais Duplas, se f está definida num paralalelepípedo temos as integrais iteradas. E

como antes não importa a ordem que fazemos o cálculo. Só que neste caso como temos três variáveis teremos 6

combinações possíveis. Este resultado também é devido a Fubini.

Teorema de Fubini. Se f é uma função integrável em P = [a,b]×[c,d]×[p,q] então

Exemplo 1: Se P = [0,1]× [-1,2] × [0,3] e f(x,y,z) = xyz2 então

Exemplo 2: A integral tripla da função f(x,y,z) = x sen(y+z) em P, onde P é o cubo de arestas os segmentos

[0,1] nos eixos x,y e z é

.

E como podemos calcular a integral tripla em regiões dos tipos I, II e III? Veja clicando aqui.

Cristina Cerri - 2010

Page 40: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Cálculo de Integrais Triplas sobre Regiões

1/3www.ime.usp.br/mat/mat2455/2-inttripla/2-3-1-inttripla-calculo-regiao.html

Cálculo de Integrais Triplas sobre Regiões

Como no caso de integrias duplas para calcular integrais triplas usamos as integrais iteradas e o Teorema

de Fubini. Vamos ver como fica a integral tripla no caso de S ser do tipo I, II ou III.

1. Região Tipo I. Seja S do tipo

onde u1 e u2 são funções contínuas em D (D é a projeção de S no plano xy), e D é como as regiões vistas

anteriormente em Integrais Duplas. Então

Assim usando integração iterada, dependendo da região D podemos ter

ou

2. Regiões Tipo II. Seja S do tipo

onde v1 e v2 são funções contínuas em D ( D é a projeção de S no plano yz) e D é como as regiões vistas

anteriormente em Integrais Duplas. Então

Da mesma forma que antes, podemos ter dois tipos de integração, dependendo da forma da região D.

ou

3. Regiões Tipo III. Seja S do tipo

onde w1e w2 são funções contínuas em D onde D é a projeção de S no plano xz. Também nesse caso

E pode-se ter dois tipos de integração, dependendo da forma da região D.

Page 41: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Cálculo de Integrais Triplas sobre Regiões

2/3www.ime.usp.br/mat/mat2455/2-inttripla/2-3-1-inttripla-calculo-regiao.html

ou

Melhor mesmo é ver um exemplo.

Exemplo. Calcule onde S é a região limitada pela parábola y = x2 + z2 e pelo plano y =

4.

Lembre sempre que S é o sólido “cheio”.

Pode-se descrever esta região de várias formas.

Projetando S no plano xy temos a região D

limitada pela parábola y = x2 (z = 0) e a reta y =

4.

E se (x,y) está nesta região D então

E assim

Entretanto a integral que temos que calcular é um pouco complicada (vai ter que fazer mudança de variável).

Vamos tentar escapar disto vendo S de outra maneira. Projetando S no plano xz temos um disco D de raio

2 e centro na origem (pois encontramos a intersecção fazendo x2 + z2 = 4). Para (x,z) em D temos que y

varia entre v1(x,z) = x2 + z2 e v2(x,z) = 4.

Page 42: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Cálculo de Integrais Triplas sobre Regiões

3/3www.ime.usp.br/mat/mat2455/2-inttripla/2-3-1-inttripla-calculo-regiao.html

Então fazendo a mudança para coordenadas polares temos

Importante: Na integração dupla ou tripla cada vez que se integra com relação a uma determinada

variável ela deve "desaparecer", pois estamos fazendo uma integral definida, e o que sobra é

apenas função das variáveis restantes. O resultado de integração dupla ou tripla é sempre um

número.

Crisitna Cerri-2010

Page 43: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Mudança de Variável

1/2www.ime.usp.br/mat/mat2455/2-inttripla/2-4-inttripla-mudavar.html

Mudança de Variáveis em Integrais Triplas

Como nas integrais duplas, podemos fazer mudança de variáveis em integrais triplas para facilitar os

cálculos.

Uma mudança de coordenadas em R3 é uma transformação ϕ de um aberto do R3 em R3 , que é

contínua e injetora. Por exemplo, ϕ(u,v,w) = (x(u,v,w), y(u,v,w), z(x,y,w)) = (u + w, v - w , u - v ) é uma

mudança de coordenadas. O Jacobiano de ϕ é

Numa transformação o volume de sólidos nem sempre é presenvado. Por isso quando fazemos uma

mudança de variáveis temos que fazer uma correção para manter a ingualdade na integração. Vale o seguinte

TEOREMA. Seja ϕ uma transformação de uma aberto Ω de R3 em R3 de classe C1 onde ϕ(u,v, w) =

(x(u,v,w), y(u,v,w), z(x,y,w)). Seja Duvw subconjunto de Ω limitado, com bordo de conteúdo nulo

também em Ω, e Dxyz = ϕ(Duvw). Suponha que ϕ é injetora e o Jacobiano Jϕ(u,v,w) não é nulo o

interior de Duvw. Se f é contínua em Dxy então

onde Dxyz é a região de integração descrita nas variáveis x,y e z, Duvw, a mesma região descrita com as

variávies u,v e w .

Atenção: na fórmula aparece o módulo do Jacobiano!

Exemplo. Calcule

para D limitada por: x + y + z = 1, x + y + z = 2, x + y - z = 0, x + y - z = 2, x - y - z = 1, x - y - z = 2.

Solição. Note que D é uma região limitada por planos. Fazendo u = x + y + z, v = x + y - z e w = x - y - z

transformamos a região D no paralelepípedo [1,2] × [0,2] × [1,2] no sistema de coordenadas Ouvw.

Page 44: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Mudança de Variável

2/2www.ime.usp.br/mat/mat2455/2-inttripla/2-4-inttripla-mudavar.html

Então

Como usamos o módulo do Jacobiano temos

As mudanças de variáveis mais comuns são as mudanças por coordenadas cilíndricas e

coordenadas esféricas. Veja em outros textos detalhes sobre essas mudanças de coordenadas .

Leia mais em 15.9 de [S] e III.5 e IV.5 de [BCHS].

Cristina Cerri - 2010

Page 45: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Integrais Tripla - Coordenadas Cilindricas

1/3www.ime.usp.br/mat/mat2455/2-inttripla/2-5-inttripla-cilindrica.html

Mudança de Variáveis em Integrais Triplas

Coordenadas Cilíndricas

Um ponto P do espaço pode ser descrito em coordenadas cartesianas (x,y,z), mas também pode ser

descrito com coordenadas chamadas cilíndricas.

Dado um sistema de coordenadas cartesiano e um ponto P de coordenadas (x,y,z) , podemos descrever

(x,y) em coordenadas polares, no plano Oxy. Então temos uma terna (r, θ, z) onde x = r cos θ e y = r

sen θ e z = z.

Para obter todos os ponto do espaço basta variar θ entre 0 e 2π, tomar r real positivo e z qualquer número

real.

Nesse caso, se fazemos essa mudança de variáveis, como Jϕ (r,θ, z) = r (verifique! ) então da fórmula

geral de mudança de variável em integral tripla temos

Exemplo 1: Calcule onde S é a região interior ao cone z2 = x2 + y2 para z entre 0 e

2.

Note que

Page 46: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Integrais Tripla - Coordenadas Cilindricas

2/3www.ime.usp.br/mat/mat2455/2-inttripla/2-5-inttripla-cilindrica.html

onde D é o disco de centro 0 e raio 2. Em coordenadas cilíndricas temos

Exemplo 2 (questão da 1ª prova de 2000). Seja D a região do espaço interior ao cilindro x2 + y2 = 16 e

exterior ao cilindro x2 + y2 - 4x = 0 , compreendida entre os planos z = 0 e z = y + 6. Calcule

Solução: A região D é

Para calcular a integral percebemos que a região D é mais facilmente descrita em coordenadas cilindricas.

Contudo temos que separá-la em duas regiões. Considere D1 a região compreendida entre os planos e

interior ao cilindro maior e D2 a região compreendida entre os planos e interior ao cilindro menor. Usando

coordenadas cilíndricas temos as seguintes parametrizações (em r, θ , z)

Então

= 0

Page 47: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Integrais Tripla - Coordenadas Cilindricas

3/3www.ime.usp.br/mat/mat2455/2-inttripla/2-5-inttripla-cilindrica.html

Portanto

OBS: O nome coordenadas cilindricas vem do fato de que um retângulo em 0rθ z é transformado em um

setor de cilindro. Verifique que se 0 < r < a, 0 < θ < 2π e 0 < z < b , então temos um cilindro de raio a

e altura h.

Não esqueça: na mudança de coordenadas cilíndricas o Jacobiano é r.

Cristina Cerri-2010

Page 48: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Integrais Triplas - Coordenadas Esfericas

1/2www.ime.usp.br/mat/mat2455/2-inttripla/2-6-inttripla-esferica.html

Mudança de Variáveis em Integrais Triplas

Coordenadas Esféricas

Um ponto P do espaço pode ser descrito em coordenadas cartesianas ( ), mas também pode ser descrito com

coordenadas chamadas esféricas.

Dado um sistema de coordenadas cartesiano e um ponto P de coordenadas ( ) , podemos descrever ( ,z)

usando variáveis ρ , θ , φ , onde ρ é o comprimento do segmento OP, φ é o ângulo que este forma com o eixo

e θ representa o ângulo que a projeção de OP forma com o eixo . Então

x = ρ senφ cosθ

y = ρ senφ senθ

z = ρ cosφ .

Um ponto P do espaço pode ser escrito tanto em coordenadas cartesianas ( ) como em coordenadas esféricas

(ρ,θ, φ) . Para representar todos os pontos fazemos ρ qualquer real positivo, θ variando de 0 a 2π e φ de 0 a π .

Note que no sistema de coordenadas cartesianas uma esfera de raio é o conjunto

que em coordenadas esféricas passa a ser o paralelepípedo [0,a]×[0,π]×[0,2π]. Por isso essas coordenadas são

chamadas de esféricas. Note que um retângulo no sistema Ορθφ se transforma num setor esférico em ..

Se queremos calcular uma integral tripla sobre uma região que é mais facilmente descrita em coordenadas esféricas

devemos fazer uma mudança de variável. Como vimos, no caso geral temos que

No caso de coordenadas esféricas temos que o Jacobiano é ρ2senφ .

Page 49: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Integrais Triplas - Coordenadas Esfericas

2/2www.ime.usp.br/mat/mat2455/2-inttripla/2-6-inttripla-esferica.html

E então

Como no caso das integrais duplas o Jacobiano fará a correçào necessária para manter a igualdade das integrais, já

que o volume por esta mudança não é preservado. Uma esfera de raio é o conjunto

que em coordenadas esféricas passa a ser o paralelepípedo [0,a]×[0,π]×[0,2π]. Sabemos que o volume da esfera é

4πa3/3, mas o volume do paralelepípedo é 2π2a . Logo o volume não é preservado através da mudança de

coordenadas esféricas. Quando definimos integral fizemos partições do domínio de integração. Vamos particionar o

domínio em pequenos setores esféricos. Gostariamos de estabelecer alguma relação entre o volume de um “pedaço” da

esfera, onde

Considerando que ∆ρ ∆φ ∆θ são as variações das respectivas coordenadas e supondo que são pequenos temos que o

volume da região é aproximadamente ρ2senφ∆ρ∆θ∆φ (e não apenas ∆ρ∆θ∆φ). Portanto é razoável que este seja o

fator de correção quando se passa de coordenadas cartesianas para esféricas numa integração.

Veja exemplos e aplicações clicando aqui.

- 2010

Page 50: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Coordenadas Esfericas - Exemplos

1/2www.ime.usp.br/mat/mat2455/…/2-6-inttripla-esferica-exemplos.html

Integrais Triplas em Coordenadas Esféricas

Exemplos

Exemplo 1. Calcule sendo S a região interior ao cone 2 = 2 + 2 , com positivo, e limitada

pela esfera 2 + 2 + 2 = 2 (esfera de centro (0,0,1) e raio 1).

Solução:

A equação 2 + 2 + 2 = 2 em polares fica ρ= 2cosφ. A intersecção do cone com a esfera é quando z = 1 e

x2 + y2 = 1. O ângulo φ varia de 0 até o encontro da esfera com o cone que é quando z = 1 e daí temos que o

ângulo φ é π/4. Então nossa região que é o interior do “sorvete” é

Logo

Exemplo 2. (questão da 1ª prova de 2000) Seja a região do primeiro octante limitada pela esfera x2 + y2 +

z2 = 4 e pelos planos y = 0 e . Calcule

Solução:

Page 51: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Coordenadas Esfericas - Exemplos

2/2www.ime.usp.br/mat/mat2455/…/2-6-inttripla-esferica-exemplos.html

Em coordenadas esféricas a parametrização de é

Portanto

Não se esqueça o Jacobiano é ρ2senφ nas mudança para coordenadas esféricas.

- 2010

Page 52: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Aplicações de Integrais Triplas

1/2www.ime.usp.br/mat/mat2455/2-inttripla/2-7-inttripla-aplica.html

Aplicações de Integrais Triplas

1. Massa e Volume De forma análoga ao que fizemos para lâminas planas podemos calcular a massa de sólidos usando integrais

triplas. Considere um sólido S que pode ser descrito como uma região S limitada do R3 cujo bordo tem conteúdo

nulo (do Tipo I, II ou III, por exemplo), e tal que a densidade de massa do material é uma função ρ(x,y,z) positiva

e contínua em S. Então a massa de S é definida por

Se a densidade é constantemente 1, então a massa coincide com o volume de S, que é definido por

Note que em particular se D é uma região plana com bordo de conteúdo nulo e se f (x,y) é uma funçào contínua

e positiva em D, e se

então

ou seja

como já tinhamos anteriormente.

2. Centro de Massa De forma análoga ao que fizemos para lâminas planas podemos calcular o centro de massa de sólidos usando

integrais triplas. Se S é como antes e ρ(x,y,z) é uma função positiva e contínua em S que representa a densidade do

material então o centro de massa de S é um ponto de coordenadas

onde

3. Momento de Inércia

Também podemos definir os momentos de inércia de um sólido S com relação aos eixos coordenados. As

fórmulas de cada momento de inércia em relação aos eixos x, y e z , respectivamente são

Exercício: Seja S o sólido limitado pela "calha" x = y2 e pelos planos x = z, z = 0 e x = 1.

Page 53: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Aplicações de Integrais Triplas

2/2www.ime.usp.br/mat/mat2455/2-inttripla/2-7-inttripla-aplica.html

(a) Calcule o volume de S

(b) Encontre o centro de massa de S considerando que a densidade é constante.

Solução: A região S é

Projetando S no plano xy temos a região

Então

(a) O volume de S é

(b) Como a densidade é constante k em S (isto é, ρ(x,y,z) = k) a massa de S será simplesmente k.V(S). Como a

região e a função ρ(x,y,z) são simétricas com relação ao plano xz então a segunda coordenada do centro de massa

é 0. Calculado as outras temos que

que não dependem de k.

OBS: Veja mais sobre isso em 15.7 de [S] e IV.6 de [BCHS]. E faça os exercícios da Lista 1.

Cristina Cerri - 2010

Page 54: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Curvas

1/2www.ime.usp.br/mat/mat2455/3-intlinha/3-1-intlinha-curva.html

Curvas

Seja γ uma aplicação de um intervalo I da reta em R2 ou R3. Então para cada valor de t em I temos

vetores γ(t) = (x(t),y(t)) ou γ(t) = (x(t),y(t), z(t)). A imagem de γ (traço de γ ), que é o conjunto dos

pontos γ(t) = (x(t),y(t)) ou γ(t) = (x(t),y(t), z(t)), onde t pertence a I, é chamado de curva. As funções

x(t), y(t) e z(t) são as chamadas de parametrizações de γ.

Uma curva pode ser vista como a trajetória de uma partícula no plano ou no espaço num intervalo de

tempo I. Nesse caso, γ(t) = (x(t),y(t), z(t)) é a posição da partícula no instante t.

Uma curva pode ter várias parametrizações. Por exemplo, a curva plana formada pelos pontos (x,y) tais

que x2 + y2 = 1 pode ser parametizada de várias maneiras:

(1) x(t) = cos(t) e y(t) = sen(t), onde t varia de 0 a 2π ;

(2) x(t) = sen(2t) , y(t) = cos(2t), onde t varia de 0 a π .

Se as funções x(t),y(t) e z(t) são contínuas, dizemos que γ é contínua; se x(t),y(t) e z(t) são deriváveis,

dizemos que γ é derivável. Nesse caso, γ '(t) = (x'(t), y'(t), z'(t)) é chamado de vetor tangente a curva no

ponto γ(t). Dizemos que uma curva é “lisa”, se γ ' é contínua e se γ '(t) é diferente do vetor nulo no

interior de I. Se o intervalo I é união finita de intervalos I1 , I2 ,...In e se a curva γ é contínua e lisa em cada

intervalo Ik , então dizemos que é lisa por partes.

Exemplos.

1. Uma parametrização da curva dada pela intersecção do cilindro x2 + y2 = 1 e o plano y + z = 2 é

x(t) = cos(t) , y(t) = sen(t) e z(t) = 2-sen(t) onde t varia de 0 a 2π.

2. A curva dada por x(t) = t cos(t) , y(t) = t sen(t) e z(t) = t está contida no cone z2 = x2 + y2

Page 55: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Curvas

2/2www.ime.usp.br/mat/mat2455/3-intlinha/3-1-intlinha-curva.html

Cristina Cerri - 2010

Page 56: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Integral de Linha de Campo Escalar

1/3www.ime.usp.br/mat/mat2455/3-intlinha/3-2-intlinha-escalar.html

Integral de Linha de Campo Escalar

Definiremos aqui a chamada Integral de Linha de uma função f a valores reais. Esta integral é semelhante

a integral de Riemann de funções que foi vista no Cálculo 1. A diferença é que em vez de fazermos a

integração sobre um intervalo faremos a integração sobre uma curva γ . Este tipo de integral foi desenvolvida

no início do século 19 para resolver problemas envolvendo escoamento de fluidos, eletricidade, magnetismo

etc.

Vamos começar tomando uma curva γ(t) = (x(t),y(t)) onde t pertence ao intervalo [a,b]. Vamos assumir

que a curva é “lisa”, isto é, que γ' é contínua e que γ'(t) é diferente do vetor nulo.

Particionando o intervalo [a,b] em k subintervalos [ti -1 , ti] temos os correspondentes pontos na curva Pi

= γ (x(ti),y(ti)). A imagem do intervalo [ti -1 , ti] é o pedaço da curva (arco) que vai de Pi-1 a Pi . Vamos

denotar por ∆si o comprimento de cada um desses arcos. A curva γ fica dividida em sub-arcos de

comprimentos ∆s1, ∆s2, ... ∆sn .

Mas com arcos bem pequenos podemos dizer que . Portanto para obter o comprimento

da curva basta somar todos os comprimentos dos arcos. fazendo o limite para ∆ti vai a zero temos uma

integral. O comprimento da curva é então dado por

Vamos generalizar. Suponha que γ representa um arame fino com densidade de massa variável dada por

uma função f positiva e contínua definida num aberto que contem o traço de γ . Desejamos calcular a massa

total do arame.

Considere a função , n = 2 ou 3, isto é, o domínio D de f é um subconjunto do plano ou

do espaço e a imagem de f é um subconjunto da reta real. Suponha que o domínio D contém a curva γ

(lembre que isto quer dizer que a imagem γ(t)=(x(t),y(t)) está contido em D, para todo t em [a,b]).

Page 57: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Integral de Linha de Campo Escalar

2/3www.ime.usp.br/mat/mat2455/3-intlinha/3-2-intlinha-escalar.html

Calculando f em Pi , multiplicando pelos comprimentos do arco ∆si e somando tudo temos uma

aproximação da massa total.

Fazendo o limite para partições de forma que os intervalos [ti -1 , ti] sejam de tamanho cada vez menores

devemos melhorar a aproximação. Note que a soma acima é tipo uma Soma de Riemann. Então a massa

procurada deve ser esse limite (quando existir). Temos então a seguinte definição.

Definição: A integral de linha de ao longo de γ é

quando tal limite existe. Chamada de integral de linha de um campo escalar (que é a função ).

Mas o comprimento de um pequeno arco da curva é aproximadamente o tamanho do vetor tangente,

assim

lembrando que

ouu

Se f for uma função contínua o limite acima sempre existe. Então a integral de linha de sobre γ é

Se f representa a densidade de massa, a integral acima nos dá a massa total do arame.

Exercício importante: Aparentemente a definição acima depende da particular parametrização da curva.

Mas seria estranho já que a massa total não deve depender na parametrização, mas apenas do formato da

curva. Prove que a integral de linha não depende da parametrização de γ .

Page 58: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Integral de Linha de Campo Escalar

3/3www.ime.usp.br/mat/mat2455/3-intlinha/3-2-intlinha-escalar.html

Note que comprimento de uma curva é que uma integral de linha pois

Se temos uma curva “lisa por partes”, isto é, se γ é a união finita de curvas lisas γ1 , γ2 , ... γn onde o

ponto inicial de γι+1 coincide com o ponto final de γι , então definimos a integral de f ao longo de γ por

Exercício. Denota-se por -γ a curva que tem os mesmo pontos de γ mas com orientação contrária. Mostre

que integrais de linha

são iguais.

Clique aqui e veja exemplos e aplicações deste tipo de integral.

Cristina Cerri - 2010

Page 59: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Integral de Linha - Exemplos e Aplicações

1/2www.ime.usp.br/mat/mat2455/3-intlinha/3-2-1-intlinha-escalar-ex.html

Integral de Linha de Campo Escalar

Exemplos e Aplicações

Algumas Aplicações

Considere um cabo delgado entortado em forma de uma curva γ de R2 (ou R3). Se a densidade linear é

uma função contínua δ(x,y) (ou δ(x,y,z)) a massa e o centro de massa do cabo podem ser calculadas.

Suponha que γ(t) = (x(t),y(t)) é uma curva lisa onde t percorre o intervalo [a,b].

O comprimento do cabo é o comprimento da curva γ e é a integral

A massa do cabo M é

O centro de massa do cabo é definido como sendo o ponto de coordenadas

Alguns Exemplos

1. Calcule onde γ é a hélice circular de equação x(t) = cos t , y(t) = sin t e z(t) = t

, para t entre 0 e 2 π .

Solução:

2. Seja um cabo que é dobrado na forma de um semi-círculo x2 + y2 = 4 para x positivo. Se a

densidade linear é uma constante K, determine a massa e o centro de massa do cabo.

Solução: O traço da curva x2 + y2 = 4 que nos dá o cabo está no semi- plano direito e é uma semi-

circunferência, pois x é positivo.

Parametrizando a curva temos γ(t) = (2cos t , 2 sen t ) para t entre -π/2 e π/2.

Derivando temoso vetor tangente a curva γ : γ'(t) = (-2sen t , 2cos t ) então |γ'(t)| = 2. Portanto, sendo a

densidade constante ρ(x,y) = K, temos que:

Massa:

Centro de massa:

Page 60: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Integral de Linha - Exemplos e Aplicações

2/2www.ime.usp.br/mat/mat2455/3-intlinha/3-2-1-intlinha-escalar-ex.html

Por simetria temos que a coordenada y do cntro de massa é 0

(verifique!). Portanto o centro de massa é, (π/4, 0).

OBS: Como a densidade é constante e a curva é simétrica com relação

ao eixo x nem pecisariamos calcular para saber que o centro de massa do

cabo estaria do eixo x. Mas cuidado: se a densidade não for constante

isto pode não ocorrer.

ATENÇÃO: Para aprender bem estes conceitos e obter um bom aproveitamento os textos na WEB acima

não é suficiente. Apresentamos aqui apenas um resumo da teoria com alguns exercícios. Você deve estudar

pelo livro ( por exemplo [S] ) e fazer os exercícios da Lista 2.

Cristina Cerri - 2010

Page 61: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Campos Vetoriais

1/1www.ime.usp.br/mat/mat2455/3-intlinha/3-3-campos.html

Campos Vetoriais

O "vento" possui uma direção, um sentido e uma intensidade. Assim uma boa representação do "vento"

em cada instante e em cada ponto do espaço é um vetor. Este é um típico exemplo de um campo de vetores.

Outro exemplo é um campo de força: a cada ponto associa-se um vetor "força", que tem intensidade,

direção e sentido.

Em linguagem matemática um campo de vetores do R2 , ou do R3, é uma função que associa a cada ponto

(x,y), ou (x,y,z), de uma região D , um vetor do R2, ou do R3 . Podemos escrever

onde P e Q são funções de D no conjunto dos numeros reais R. Ou escrevemos

onde P, Q e R são funções de D em no conjunto dos numeros reais R.

Um campo é dito contínuo se as funções P, Q e R são contínuas. E de classe C1 se P, Q e R são C1.

São muitos os exemplos de campos vetoriais, principalmente em Física. Um tipo importante de

campo é o campo gradiente e os campos conservativos. Associado a um campo temos outro campo

chamado de rotacional.Também pode-se calcular o divergente de um campo, obtendo-se uma função.

Clique em cada link e recorde.

Cristina Cerri - 2010

Page 62: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Campos gradientes

1/2www.ime.usp.br/mat/mat2455/3-intlinha/3-3-1-gradiente.html

O Campo Gradiente - Campos Conservativos

Dada uma função f de D subconjunto do R2 (ou R3) a valores em R (conjunto dos números reais) comderivadas parciais, o campo gradiente de f é o campo que a cada ponto (x,y) (ou (x,y,z)) de D associa-se ovetor

ou

.

Obs: É comum e prática a notação

com versão análoga para o caso R2 .

Um campo de vetores é chamado campo conservativo se ele é um campo gradiente de

alguma função f, isto é, se existe uma função f tal que

.

Nesta situação chamamos de f potencial de .

Um exemplo: Da Lei de Gravitação de Newton a intensidade da força gravitacional entre dois objetos de

massa M e m é F = mMg/r2, onde r é a distância entre os objetos e g é a constante gravitacional. Vamos

assumir que um objeto de massa M está localizado na origem de R3 (por exemplo M pode ser a massa daTerra e a origem seu centro). Se o objeto de massa m está no ponto (x,y,z) então a força gravitacional queestá agindo em m é

Temos aqui um exemplo importante de campo vetorial, chamado de campo gravitacional. Este é um exemplode campo conservativo pois

é um potencial para . ( verifique !)

Para pensar: Todo campo é conservativo? Quando o campo é conservativo só existe um potencial paraeste campo? Como são todos os pontenciais de um campo conservativo?

Page 63: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Rotacional

1/1www.ime.usp.br/mat/mat2455/3-intlinha/3-3-2-rotacional.htm

O Rotacional

Dado um campo vetorial

definido em D, subconjunto do R3 , tal que P, Q e R possuam derivadas parciais em D, então o rotacional

de é

.

que é um campo de vetores defindo em D. Simbolicamente podemos denotá-lo como um “produto vetorial”

ou o determinante de uma "matriz":

.

Se então .

Um exercício: Tomando uma função f de classe C2 , verifique que

Cristina Cerri - 2010

Page 64: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Divergente

1/1www.ime.usp.br/mat/mat2455/3-intlinha/3-3-3-divergente.html

O Divergente

Dado um campo vetorial definido em D, subconjunto do R2 ,

tal que P e Q possuam derivadas parciais em D, então o divergente de é

.

Analogamente, se tal que P, Q e R

possuam derivadas parciais

.

Note que o divergente é uma função de D a valores em R (conjunto dos números reais).

Simbolicamente o divergente pode ser expresso como o “produto interno”

.

Um exercício: Se é um campo de classe C2 , isto é, as funções P, Q e R são de classe C2 , verifique

que

Cristina Cerri - 2010

Page 65: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Integrais de Linha de Campos Vetoriais

1/2www.ime.usp.br/mat/mat2455/3-intlinha/3-4-intlinha-vetorial.htm

Integrais de Linha de Campos Vetoriais

Considere uma partícula que se move no plano ao longo da curva γ(t) = (x(t),y(t)), onde t pertence ao intervalo

[a,b], isto é, em cada instante t a partícula encontra-se na posição γ(t). Suponha que ela está sob a ação de um

campo de forças

Queremos calcular o trabalho realizado pela força quando a partícula se desloca de γ(a) até γ(b). Se

fosse uma força constante e se a partícula se deslocasse sob um segmento de reta AB então o trabalho W é

dado pelo produto escalar .

Dividindo o intervalo [a,b] em pequenos subintervalos [ti-1 , ti]

criamos pequenos arcos na curva γ(t): γ([ti-1 ,ti]) . Se estamos

com intervalos pequenos o deslocamento de Ai-1 = γ(ti-1) a Ai =

γ(ti) é aproximadamente um deslocamento ao longo do segmento

Ai-1Ai . Se também a variação de ao longo do arco γ([ti-1

, ti]) for muito pequena podemos pensar que é quase constante.

Assim o trabalho neste trecho será aproximadamente

onde ∆xi = x(ti) - x(ti-1) e ∆yi = y(ti) - y(ti-1) . Aplicando o TVM podemos dizer que o trabalho total é

Assim uma definição razoável de trabalho é

Pode-se fazer raciocínio análogo para o caso de R3.

Definição: Sejam γ(t) = (x(t),y(t)) (ou γ(t) = (x(t),y(t),z(t)) ) curva lisa por partes e campo contínuo

cujo domínio contém a curva. A integral de linha de ao longo de γ é

dt

Page 66: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Integrais de Linha de Campos Vetoriais

2/2www.ime.usp.br/mat/mat2455/3-intlinha/3-4-intlinha-vetorial.htm

dt

No caso R2 fica

No caso R3 fica

Usando a notação dx = x '(t)dt , dy = y'(t)dt e dz = z'(t)dt podemos escrever que

ou

Importante: Não é difícil provar que a integral de linha não depende da particular parametrização da curva, desde que

não se inverta a orientação da curva.

Veja alguns exercícios resolvidos, clicando aqui.

Cristina Cerri- 2010.

Page 67: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Integrais de Linha - Exercicios

1/2www.ime.usp.br/mat/mat2455/…/3-4-1-intlinha-vetorial-exemplos.htm

Integrais de Linha de Campos Vetoriais

Exemplos

1. Calcule sendo e a curva é a hélice γ( ) = (cos ,sin , ),

para entre 0 e 2π .

Solução:

2. Calcule o trabalho realizado pelo campo de força quando uma partícula se move

ao longo da curva γ( ) = (cos ,sin ), para entre 0 e π/2 (a quarta parte da circunferência 2 + 2 = 1,

partindo de (1,0) até (0,1)) .

Solução:

3. Calcule o trabalho realizado pelo campo de força quando uma partícula se move

ao longo da curva γ( ) = (sin( ),cos( )), para t entre 0 e π/2 (a quarta parte da circunferência 2 + 2 = 1,

partindo de (0,1) até (1,0)).

Solução: Neste caso

Page 68: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Integrais de Linha - Exercicios

2/2www.ime.usp.br/mat/mat2455/…/3-4-1-intlinha-vetorial-exemplos.htm

4. Nos dois exemplos anteriores temos o mesmo campo e curvas com o mesmo traço. Por que as

integrais são diferentes?

Resposta: As curvas tem o mesmo traço, mas no exemplo 2 estamos percorrendo-a no sentido anti-

horário enquanto no exemplo 3 no sentido horário.

Em geral, vale que .Verifique isto !

5. Considere o mesmo campo do exemplo 2, mas a curva γ( ) = (cos(2 ),sin(2 )), para entre 0 e π.

Calcule a integral de linha .

Solução:

6. As respostas dos exercícios 2 e 5 são iguais. Como se explica isso?

Resposta: As curvas dos dois exercícios são iguais (traço e sentido) só foram parametrizadas de formas

diferentes. A integral de linha não depende da parametrização, desde que não se inverta sua

orientação.

2010

Page 69: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 O Teorema de Green

1/3www.ime.usp.br/mat/mat2455/3-intlinha/3-5-intlinha-teogreen.html

O Teorema de Green

O Teorema de Green nos dá uma relação entre integrais de linha sobre curvas fechadas e integraisduplas sobre regiões limitadas pela curva. É um resultado muito importante e com muitas aplicações. Paracompreendê-lo precisamos de algumas definições.

Uma curva γ em [ ] é dita fechada, se os pontos inicial e final coincidem, isto é, γ( ) = γ( ). Uma curva é chamada de simples se a curva não se auto-intercepta entre o ponto inicial e final.Formalmente, uma curva γ é simples se γ( ) é diferente de γ( ) , para todo . Veja alguns exemplos de curvas planas:

As regiões que vamos considerar nas hipóteses do Teorema de Green são regiõesplanas fechadas e limitadas cuja fronteira (ou bordo) é composto por um número

finito de curvas simples, fechadas, lisas por partes, duas a duas disjuntas.Um exemplo de região assim é a região ao lado.

O Teorema de Green estabelece uma relação entre a integral de linha de um campo sobre as curvas dafronteira de e a integral dupla sobre a região da componente do rotacional deste campo.

Teorema de Green Seja uma região fechada e limitada de R2 cuja fronteira (ou bordo),

denotado por δ é formada por um número finito γ1 ,γ2 ,..., γn de curvas simples, fechadas e

lisa por partes, duas a duas disjuntas orientadas no sentido que deixa à esquerda das curvas.

Seja um campo vetorial

de classe C1 (as derivadas parciais de P e Q são contínuas) em um aberto que contem . Então

Page 70: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 O Teorema de Green

2/3www.ime.usp.br/mat/mat2455/3-intlinha/3-5-intlinha-teogreen.html

ou pode-se escrever

onde a integral de linha é a soma de integrais sobre as curvas componentes da fronteira (ou

bordo) de , isto é, δ = γ1 + γ2 + ... + γn.

Atenção. A orientação das curvas que compoem a fronteira de

para o Teorema acima seja válido é aquela que deixa a região à

esquerda. Ou seja, ao caminharmos sobre a curva a região fica

sempre à esquerda. Esta orientação definimos como positiva. Na

região ao lado o bordo de é formado por 4 curvas e a orientação

do bordo para que o Teorema seja verdadeira é a indicada na figura.

A prova deste Teorema é bem complicada, mas no caso de regiões simples é mais fácil e pode ser

encontrada em [BCHS] (veja página 230), em [S] ou em muitos outros livros. Vale a pena ler estas

demostrações para compreender por que o resultado vale. Vamos ver nos próximos textos algumas

aplicações do Teorema de Green.

Obs: Alguns textos usam a notação quando se trata de integrais de linha de curvas

fechadas.

Exercícios: Clique aqui é veja alguns exercícios resolvidos. Faça também os exercícios da Lista 2.

Page 71: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Teorema de Green - Exercícios

1/3www.ime.usp.br/mat/mat2455/3-intlinha/3-5-1-intlinha-teogreen-ex.html

O Teorema de Green - Exercícios Resolvidos

Exercício 1. Calcule para γ o bordo do quadrado de vértices (0,0) , (1,0),

(1,1) e (0,1) orientado positivamente (anti-horário) .

Obs: Alguns textos usam a notação quando se trata de integrais de linha de curvas

fechadas.

Solução: Claramente poderíamos calcular diretamente esta integral:

Usando o Teorema de Green: seja o quadrado de vértices (0,0) , (1,0), (1,1) e (0,1). Note que o campo

F( ) = ( 2 3 ) = ( ( ), ( )) está definida em D. As funções e tem derivada parciais contínuas

em e a curva está orientada de forma a deixar a região D a esquerda. Então aplicando o Teorema de

Green vale que

É claro que o Teorema é mais útil quando alguma das integrais envolvidas é muito difícil decalcular.

Exercício 2. Calcule onde γ é o círculo de raio 3

centrado na origem orientado no sentido anti-horário.

Solução: Ao se tentar calcular diretamente a integral de linha acima logo se chega a integrais complicadas

(verifique isso!). Uma saída é tentar usar o Teorema de Green. Tome o disco de raio 3 centrado na

origem (interior do círculo). O campo ( ) = (3 + sin , 7 + ( 4 + 1)1/2 ) está definido em e as

funções e tem derivadas parciais contínuas. Portanto usando o Teorema de Green temos que

O Teorema de Green nos permite passar de integrais de linha complicadas para integrais de linhamais simples de se calcular.

Exercício 3. Calcule onde onde γ é o

gráfico de y = cos x percorrido de (-π/2, 0) a (π/2,0).

Solução: Tentado calcular diretamente a integral de linha iremos encontrar funções cujas integrais não são

simples. Assim vamos usar o Teorema de Green. Para isso temos que criar uma região cujo bordo (ou

fronteira) contenha a γ. Uma idéia é obter uma curva fechada usando o segmento [ -π/2, π/2]. Com isso

criamos uma região D do plano (a região amarela) que tem como bordo (ou fronteira) a curva γ e o

Page 72: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Teorema de Green - Exercícios

2/3www.ime.usp.br/mat/mat2455/3-intlinha/3-5-1-intlinha-teogreen-ex.html

segmento [ -π/2, π/2].

Orientando as curvas de forma que a região fica a esquerda (no desenho indicamos a orientação)

podemos usar o Teorema de Green. E assim temos que

Note que a orientação da curva γ dada não é a que deve ser usada no Teorema de Green. Por isso aparece

o sinal "-" na frente da integral de linha de γ.

Muito cuidado ao se usar o Teorema de Green. Todas as hipóteses devem ser verificadas. Écomum os alunos se esquecerem de verificar se a região D está contida no domínio do campo.

Exercício 4. Calcule a integral de linha de sobre γ uma curva fechada,

simples, lisa por partes qualquer que contem a origem no seu interior, percorrida uma vez no sentido anti-

horário.

Solução: Temos que (verifique!!). O aluno apressado vai concluir que a integral de

linha é zero, usando o Teorema. Errado!!!!! O aluno deve ter pensado em usar como região a região

interior a curva γ. Mas o campo em questão não está definido na origem! E (0,0) pertence a onde o

campo não está definido!!!! Não podemos usar o Teorema de Green para esta região. Note, entretanto que

podemos pegar outra região que "isola" o ponto (0,0).

Page 73: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Teorema de Green - Exercícios

3/3www.ime.usp.br/mat/mat2455/3-intlinha/3-5-1-intlinha-teogreen-ex.html

Tomemos um círculo γr de centro na origem e raio r que está no interior da curva γ (sempre existe?). Agora

sim pelo Teorema de Green

Portanto sendo γr ( ) = (r cos , r sin ) para t em [0,2π] temos uma parametrização de γr no sentido anti-

horário, e assim

OBS: Para curvas contínuas, fechada e simples vale um Teorema (de Jordan) que afirma que a curva divide

o plano em duas partes: uma região fechada e limitada, que é o interior da curva e outra não limitada, em

ambas o bordo é a curva dada.

2010

Page 74: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Campos Conservativos

1/2www.ime.usp.br/mat/mat2455/3-intlinha/3-6-intlinha-conservativo.html

Campos Conservativos - Definição

Para funções de uma variável real o Teorema Fundamental do Cálculo nos dá a seguinte igualdade

para funções f tais que f´ é função integrável.

Vamos estabelecer um resultado semelhante para funções f(x,y) de duas ou f(x,y,z) de três variáveis. Neste caso, a e b

seriam substituidos por pontos A e B do plano ou do espaço. A integral que faria sentido seria a integral de linha, pois

podemos pensar em vários caminhos que ligam A a B. Mas o que substituiria a derivada? Vamos fazer algumas contas.

Tomemos uma curva γ de [a,b] em R2 ou R3, lisa por partes, e uma função f de classe C1 cujo domínio Ω contém a

curva γ . Calculando, temos

Portanto se temos um campo vetorial contínuo tal que então vale, nas condições acima, que

Um campo de vetores é chamado de se ele é um campo gradiente de alguma

função , isto é, se . Nesta situação chamamos de

Assim o que mostramos acima pode ser escrito da seguinte forma:

Se é um campo gradiente, ou conservativo contínuo em Ω , subconjunto de R2 (ou R3 ), e se γ é

uma curva de [a,b] em R2 (ou R3 ) curva lisa por partes contida em Ω então

Note que o valor da integral de linha de um campo gradiente sobre uma curva só depende do ponto inicial e

final da curva e não da particular curva. E portanto a integral de linha de um campo gradiente sobre qualquer

curva fechada lisa por partes é 0.

Atenção: Não é verdade que todo campo é conservativo: sejam e dois caminhos

ligando os pontos (-2,0) a (0,2) : γ1 (t) = (2cos t , 2sin t ) para t em [π/2, π] e γ2 o segmento ligando (-2,0) a (0,0) e de

(0,0) a (0,2).

Page 75: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Campos Conservativos

2/2www.ime.usp.br/mat/mat2455/3-intlinha/3-6-intlinha-conservativo.html

Então

Como os valores são diferentes concluimos que o campo não é conservativo.

Mas e se temos um campo cujas integrais ao longo de qualquer curva são iguais podemos concluir que o campo é

conservativo? Vamos estudar esta questão. Clique aqui e leia sobre isso.

Cristina Cerri - 2010.

Page 76: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Campos Conservativos - Caracterizações

1/2www.ime.usp.br/mat/mat2455/3-intlinha/3-6-1-intlinha-conservativo-car.html

Campos Conservativos - Caracterizações

Tome um campo definido em Ω subconjunto do R2 que tem a

seguinte propriedade: dados dois pontos A e B do domínio Ω , o valor das integrais de linha do campo

sobre curvas ligando A a B em Ω não dependem da curva, ou seja, só dependem dos pontos finais e

iniciais. Será que o campo é conservativo? Queremos encontrar uma função potencial f tal que

,

Para funções reais sabemos do TFC que .

Usando essa idéia vamos definir f da seguinte forma: se X = (x,y) e γ uma curva qualquer ligando A a X

tome

Note que por hipótese a integral não depende da particular curva o valor não depende de γ. De fato,

resumidamente teriamos

e analogamente podemos mostrar que . ( para uma prova mais detalhada veja [BCHS] VI.4

ou em [S] ou em [G]). Portanto parece que a resposta é sim. Mas para provar usamos que existe uma

curva γ ligando A a X em D. Mas será que sempre existe uma curva ligando A a X em D ?

Veja a seguinte região D:

Para esta região não existe uma curva ligando A a X toda contida em Ω . Assim o que fizemos funciona em

certas regiões que são chamadas de conexas.

Um conjunto Ω é dito conexo se para dois pontos quaisquer de Ω existe uma curva curva lisa

por partes contida em Ω ligando esses pontos .

Lembramos que um subconjunto Ω do R2 ou R3 é dito aberto se para todo ponto P de Ω existe uma

“bola” (disco ou esfera) de centro P contida em Ω . Desta forma o que vimos acima é um esboço da prova

do seguinte Teorema, importante e útil.

Se é um campo contínuo num domínio aberto conexo Ω do R2 ou R3 tal que para cada

Page 77: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Campos Conservativos - Caracterizações

2/2www.ime.usp.br/mat/mat2455/3-intlinha/3-6-1-intlinha-conservativo-car.html

par de pontos (A,B) a integral de linha de é a mesma ao longo de qualquer curva lisa

contida em Ω ligando A e B, entao o campo é conservativo.

Juntando os resultados temos que

Se é um campo contínuo num domínio aberto conexo Ω , entao é conservativo se, e

somente se, para cada par de pontos (A,B) em Ω a integral de linha de é a mesma ao longo

de qualquer curva lisa ligando A e B contida em Ω .

Como já vimos, para um campo contínuo num domínio aberto conexo e conservativo então

para qualquer curva lisa por partes fechada em Ω . Será que vale a recíproca? Vamos

tentar responder.

Sejam β e α curvas lisas p.p. ligando dois pontos A e B do domínio Ω. A

união das duas curvas β e −α , que denotaremos por γ , forma uma curva

fechada lisa p.p.. Portanto , .

Logo a integral de linha sobre β é igual a integral de linha sobre α , o que

prova que a integral de linha não depende do caminho que liga A a B.

Porém um resultado mais forte também vale.

Se é um campo contínuo num domínio aberto conexo Ω , entao é conservativo se, e

somente se, para toda curva fechada SIMPLES lisa por partes em Ω a integral de linha

de é ugual a 0.

Clique aqui e veja alguns exercícios e problemas.

Cristina Cerri - 2010

Page 78: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Campos Conservativos - Exercícios

1/1www.ime.usp.br/mat/mat2455/3-intlinha/3-6-2-intlinha-conservativo-ex.html

Campos Conservativos - Exercícios

Exercício resolvido. Seja um campo conservativo, onde P e Q

são funções C1 em um aberto conexo Ω . Mostre que

Solução: Como é conservativo então e daí

Mas

e então

Exercício proposto. Quais dos campos abaixo são conservativos? Justifique a resposta. Em caso afirmativo

ache uma função potencial.

Sugestão: Em cada caso procure uma função que seja potencial do campo.

Exercício resolvido. Quando o campo é conservativo só existe um potencial para este campo? Como são

todos os potenciais de um campo conservativo?

Solução: Se o domínio do campo conservativo é conexo então os potenciais diferem de constante, isto é, se

e são potencial então

2010

Page 79: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Superfícies Parametrizadas

1/3www.ime.usp.br/mat/mat2455/4-intsuper/4-1-intsuper-param.html

Superfícies Parametrizadas

Sabemos que uma curva é uma "linha" do plano ou do espaço que pode ser vista como um segmento

"deformado". Uma superfície é uma região do espaço R3 que pode ser vista como uma região plana

"deformada". Por exemplo, um plano, um parabolóide, uma esfera ou elipsóide são superfícies. O gráfico de

uma função de duas variávies f(x,y) também é uma superfície. Assim como nas curvas, temos funções que

descrevem as superfícies. São as parametrizações.

Desejamas trabalhar com superfícies parametrizadas, isto é, superfícies que possuem parametrizações.

Uma parametrização é uma função X (u,v) = (x(u,v), y(u,v), z(u,v)), onde (u,v) pertence a uma região

plana D contida em R2. Uma superfície parametrizada S é a imagem de X no espaço, isto é, S = X(D). As

função x(u,v) , y(u,v) e z(u,v) são chamadas de equações paramétricas de S.

Aqui sempre as funções x(u,v) , y(u,v) e z(u,v) são de classe C1.

Por exemplo, o cone reto dado pela equação z2 = x2 + y2 é uma superfície parametrizada.. Podemos

descrever o cone com a equações: X(u,v) = (u cos v , u sen v, u)

Variando v no intervalo de [0,2π] e u no intervalo [0,h] obtemos a parte do cone desenhada acima. Note

que X(u,v) leva um retângulo na superfície do cone.

A parametrização de uma superfície é única? Ou seja, só existe uma maneira de descrever os pontos de

uma superfície S usando duas variáveis? Veja o exemplo a seguinte.

Exemplo 1. Vamos exibir duas parametrizações da parte superior (z positivo) da esfera x2 + y2 +z2 = a2 .

Parametrização 1: como z é positivo podemos escrever que . Então podemos

parametrizar esta superfície tomando

Mas qual a variação de (u,v)? Temos que fazer (u,v) variar no disco de raio a, assim (u,v) pertence a

Parametrização 2: usando coordenadas esféricas x = x(u,v) = a cos u sen v , y = y(u,v) = a sen u sen v e z

= z(u,v) = a cos v

onde D = [0,2π]x[0,π].

Page 80: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Superfícies Parametrizadas

2/3www.ime.usp.br/mat/mat2455/4-intsuper/4-1-intsuper-param.html

Observação: num programa gráfico, como o Winplot, para se desenhar superfícies é preciso conhecer suas

parametrizações. No Winplot as variáveis estão sempre dentro de intervalos, isto é D é sempre retângulo.

Podemos desenhar a superfície esférica usando cada uma das parametrizações acima. Note a diferença.

usando coordenadas cartesianas

Pode-se perceber que esses programas desenham as superfícies usando curvas. São as chamados curvas

coordenadas.

fixe uo e faça variar o v; temos a curva γ(v) = (x(uo,v), y(uo,v), z(uo,v))

fixe vo e faça variar o u: temos a curva α(u) = (x(u,vo),(u,vo), z(u,vo)).

Veja os desenhos acima. Um uma parametrização as curvas coordenadas são os meridianos e os

paralelos. Já na outra as curvas coordenadas são cortes por planos paralelos aos planos x = 0 e y = 0.

Exemplo 2. Gráficos de funções de duas variáveis são sempre superfícies parametrizadas. De fato,

se z = f(x,y) onde (x,y) pertence a D que é o domínio de f (D é uma região do plano xy) uma

parametrização do gráfico de f (que está no R3) é x = u, y = v e z = f(u,v) para (u,v) em D.

Como no caso das curvas, podemos escrever a parametrização de uma superfície na forma vetorial.

Temos então sua equação vetorial.

Exemplo 3. A equação vetorial com (u,v) em D = R2

descreve o cilindro infinito de raio 2 com eixo no y. Se mudamos a região D e tomamos D = [-1,1]x[0,4]

temos outra superfície, que é uma parte da anterior.

Page 81: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Superfícies Parametrizadas

3/3www.ime.usp.br/mat/mat2455/4-intsuper/4-1-intsuper-param.html

As equações x = x(u,v) = 2cos(u) , y = y(u,v) = v e z = z(u,v) = 2sin(v) são equações paramétricas de

S, ou, uma parametrização de S. Note que para essa parametrização deixando u = uo constante e fazendo v

variar na superfícies uma curva, γ(v) = X(uo,v) , que é uma reta (ou segmento de reta). Analogamente se

fixamos v = vo temos, variando u, temos a curva α(u) = X(u,vo) que é uma circunferência. Estas curvas são

as curvas coordenadas nessa superfície.

Exemplo 4. Usando o Winplot desenhamos a superfície parametrizada dada por X(u,v) = ((2 +sin v) cos u,

(2+sin v) sin u, u+cos v) para (u,v) em [0,4π]x[0,2π]. Observe as curvas coordenadas.

Exercício: Use o Winplot (ou outro programa gráfico) para desenhar as seguintes superfícies parametrizadas

e identifique as curvas coordenadas. Quais destas superfícies são gráficos de funções de duas variáveis

f(x,y)? Quais são superfícies conhecidas?

(a) x(u,v) = u cos v, y(u,v) = u sen v , z(u,v) = u2 , com (u,v) em [0,4]x[0,π]

(b) x(u,v) = 1+2u , y(u,v) = -u + 3v , z(u,v) = 2+4u+5v , com (u,v) em [-3,4]x[0,7]

(c) x(u,v) = sen u cos v, y(u,v) = sen u sen v , z(u,v) = cos u + ln(tg(v/2)) , com (u,v) em [0,2π]x[1, 6.2]

(d) x(u,v) = cos3 u cos3 v, y(u,v) = sen3 u cos3 v , z(u,v) = sin3 v , com (u,v) em [0,π]x[0,2π]

(e) x(u,v) = u sen u cos v, y(u,v) = u cos u cos v , z(u,v) = u sen v , com (u,v) em [0,2π]x[0,2π]

(f) x(u,v) = u , y(u,v) = u cos v , z(u,v) = u sen v, com (u,v) em [0,π]x[0,π]

Exercício: Recorde que no Cáculo 1 e 2 você viu suoerfícies de revolução. Obtem-se essas superfícies

"rodando" o gráfico de uma função f(x) em torno do eixo z. Dê uma parametrização desse tipo de

superfícies.

Cristina Cerri - 2010

Page 82: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Área de uma Superfície

1/2www.ime.usp.br/mat/mat2455/4-intsuper/4-2-intsuper-area.html

Área de uma Superfície Parametrizada

Como calcular a área de uma superfície? Para algumas superfícies conhecemos uma fórmula, como é o caso das superfície de

um cilindro, de um cone e de uma esfera. No caso do cilindro ou do cone uma "planificação" justifica a fórmula. Mas e a área da

superfície da esfera, como justificar a fórmula? Poderiamos usar a idéia de planificação? E para uma superfície qualquer?

O procedimento para obter uma forma de calcular (e definir) área de uma superfície é semelhante ao que já fizemos antes para

área de regiões planas, volume de sólidos e comprimento de curva.

Vejamos um exemplo. O telhado de uma estrutura tem o formato da superfície S dada por = 2- 2/4 para ( ) em [0,5]x[0,2].

Tomemos uma parametrização de S : X( ) = ( ( ), ( ), ( )) onde

( ) = , ( ) = e ( ) = 2 – 2/4

para ( ) em D = [0,5]x[0,2] . A fim de calcular a área do telhado podemos dividi-lo em pequenos pedaços Si tão pequenos que

são quase planos. Cada pedaço Si é proveniente de um pequeno retângulo em D obtido de partições: [ +1 ] x [ +1 ].

Para cada fixado temos uma curva coordenada e para cada outra curva coordenada na superfície. Cada curva tem seus

vetores tangentes (são curvas no espaço). Sendo cada Si bem pequeno sua área é aproximadamente a área de paralelogramos Pi

sobre Si como na figura. Como calcular a área de cada um desses paralelogramos? Temos dois vetores que extraímos de cada

curva coordenada e que são tangentes a estas curvas. São os vetores

no ponto ( , ). Sabemos que a área do paralelogramo formado por dois vetores é dada pelo módulo do produto vetorial. O

tamanho de cada um deses vetores pode não ser apropriado para o calculo da área de Pi . Mas uma aplicação do TVM nos

permite afirmar que a área de cada Si é aproximadamente

onde ∆ e ∆ são as dimensões do retângulo [ +1 ] x [ +1 ]. E assim a área do telhado é aproximadamente a soma

das áreas de cada pequeno paralelogramo:

Page 83: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Área de uma Superfície

2/2www.ime.usp.br/mat/mat2455/4-intsuper/4-2-intsuper-area.html

Intuitivamente parece que quanto menor a partição (divisão) mais próximos estamos da área "real" do telhado. Assim é razoáveldizer que a “área da superfície” é

No caso do exemplo:

Assim sendo a área do nosso telhado deve ser

Exercício: calcule esta integral!

Portanto, para uma superfície parametrizada S qualquer parece razoável definir sua área como fizemos acima. É claro quetemos alguns probleminhas aqui. Precisamos ter o paralelogramo, isto é, temos que ter .

Assim nos restringimos a superfícies parametrizadas S onde certas condições são satisfeitas. Resumidamente temos que ter uma região limitada e fechada cuja fronteira é composta de um número finito de curvas lisas por partes, simples e fechadas, duas aduas disjuntas, com parametrização tal que no interior de e biunívoca. Uma superfície assim chamaremos de

superfície lisa parametrizada. As superfícies mais usadas e as que veremos aqui são deste tipo. Veja mais sobre isto em VII.2 eVII.3 de [BCHS].

Segue então a seguinte definição.

Definição: Seja S uma superfície lisa parametrizada dada por (u,v) , (u,v) e (u,v) onde (u,v) pertence a D

de R2. A área de S é dada pela integral

A definição de área de superfície depende da parametrização de S? A resposta é não e seria uma definição estranha sedependesse , não é? Veja demostração deste fato em [BCHS].

Observação: Às vezes S não pode ser descrita globalmente usando apenas uma única parametrização. E às vezes também aquelaque temos não satisfaz as condições (não é globalmente lisa). Podemos então procurar dividir S em pedaços, que satisfazem ashipóteses. Para calcular a área total basta calcular a área de cada parte de S e no final soma-las. Ou seja , se S = S1 U S2U ... U

Sn, com cada Sk superfície lisa parametrizada então

Área (S) = Área(S1) + Área(S2) + ... + Área(Sn).

2010.

Page 84: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Exemplos de Calculo de Area de Superfícies

1/3www.ime.usp.br/mat/mat2455/4-intsuper/4-2-1-intsuper-area-ex.html

Exemplos de Cálculo de Área de uma Superfície Parametrizada

Exemplo 1. Se a superfície é o gráfico de uma função f(x,y) para (x,y) em D, região do R2, então uma parametrização natural é x = x, y =

y e z = f(x,y) (não precisamos trocar o nome das variáveis). Portanto a área da superfície é

Aplicando num caso particular, vamos calcular a área de parte do parabolóide z = x2 + y2 que está abaixo do plano z = 9. O plano

intercepta o parabolóide no circunferência x2 + y2=9; z = 9. Portanto a superfície que queremos é o conjunto dos pontos

onde

usando coordenadas polares

ATENÇÃO: Não confunda paramentrização de superfície com mudança de variáveis!!!

Exemplo 2. O TORO é uma superfície obtida pela rotação da circunferência no plano xz com centro (b,0,0) e raio a < b em torno do eixo

z. Determine uma representação paramétrica dessa superfície e calcule sua área.

Ao rodar uma circunferência podemos ver dois parâmetros: o ângulo u que a circunferência forma com o eixo x e o ângulo que um ponto

da circunferência forma com o segmento que liga o seu centro a origem. Veja o desenho abaixo:

Portanto, podemos descrever um ponto do toro projentand0-o nos exixos, usando esses ângulos. Teremos

x = x(u,v) = (b + a cos v) cos u , y = (b + a cos v) sen u , z = a sen v

Page 85: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Exemplos de Calculo de Area de Superfícies

2/3www.ime.usp.br/mat/mat2455/4-intsuper/4-2-1-intsuper-area-ex.html

Note que para obter todo o toro devemos varia u e v de 0 a 2π. Para o cálculo da área da superfície vamos calcular

Então

Exemplo 3. (questão de prova) Calcule a área da parte da superfície z = 4 - x2 - y2 limitada por .

Atenção: um erro comum é não ler com cuidado o enunciado e tomar outra superfície. Aqui queremos a PARTE DO PARABOLÓIDE z =

4 - x2 - y2 e as outras equações são para limitar a superfície.

Page 86: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Exemplos de Calculo de Area de Superfícies

3/3www.ime.usp.br/mat/mat2455/4-intsuper/4-2-1-intsuper-area-ex.html

Uma parametrização é dada por

Então a área da superfície é

Cristina Cerri - 2010

Page 87: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Integrais de Superfícies de Campo Escalar

1/3www.ime.usp.br/mat/mat2455/4-intsuper/4-3-intsuper-escalar.html

Integrais de Superfície de Campos Escalar

Desejamos calcular a massa de uma placa fina cujo formato é dado por uma superfície parametrizada S e cuja densidade pontual de

massa é dada por uma função f(x,y,z) contínua definida em S.

Fazemos uma aproximação: dividindo S em pequenos pedaços Si a massa total é a soma das massas de cada pedaço. Mas a massa de

Si é aproximadamente f(xi ,yi ,zi )Area(Si) , onde (xi ,yi ,zi ) é um ponto qualquer de Si . Assim,

Note que acima temos uma soma de Riemann. Fazendo o limite temos uma integral dupla. Como a função é contínua, a integral existe.

Portanto temos a seguinte definição geral.

Definição. Seja S um superfície parametrizada lisa com domínio D. Seja f(x,y,z) uma função real contínua, definida em S. A

integral de superfície de f em S é a integral dupla

que é denotada por

Para definir a integral acima usamos uma parametrização de S, porém seu valor não depende da particular parametrização.

Existe um modo prático de calcular . Um cálculo simples mostra que

conhecido como “elemento de área” de S. De fato quando f(x,y,z) = 1 a área de S é dada pela integral dupla da função

.

Exemplo 1. Calcule onde a superfície S que é a fronteira da região limitada pelo cilindro x2 + z2 = 1 e pelos planos y = 0 e x

+ y = 2, sendo f(x,y,z) = xy.

A superfície S é a união de 3 superfícies: o cilindro e as duas “tampas”, que chamaremos de S2 , S1 e S3 respectivamente (veja o

desenho). Então a massa procurada é

Calcularemos cada integral separadamente

S1 : x = u , y = 0 , z = v para (u,v) no disco de raio 1 e centro 0 D1 .

Page 88: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Integrais de Superfícies de Campo Escalar

2/3www.ime.usp.br/mat/mat2455/4-intsuper/4-3-intsuper-escalar.html

S3 : x = u cos v , y = 2-u cosv , z = u senv para (u,v) em [0,1]x[0,2π].

S2 : x = cosu , y = v , z = senu para (u,v) para u em [0,2π] e v em [0, 2-cosu].

Portanto

Exemplo 2. Calcule onde S é a parte de z = (x2 + y2)1/2 limitada por x2 + y2 = 2y. (exercício da lista 4).

Solução: Vamos desenhar a superfície

Vamos mostrar duas maneiras de parametrizar a superfície.

1ª maneira: temos o gráfico de uma função e então podemos parametrizar da forma x = u , y = v e z = (u2 + v2)1/2 onde (u,v) pertencem

a região D (disco de centro (0,1) e raio 1). Como vimos antes nesta situação

Page 89: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Integrais de Superfícies de Campo Escalar

3/3www.ime.usp.br/mat/mat2455/4-intsuper/4-3-intsuper-escalar.html

Portanto

O mais indicado agora é fazer uma mudança de coordenadas: u = rcosθ , v = 1 + rsenθ para r em [0,1] e θ em [0,2π].

2ª maneira: podemos parametrizar S da forma x = ucosv , y = usenv e z = u , onde v varia em [0,π] e u varia em [0,2senv] (pois x2 + y2

= 2y se, e só se, u2 = 2usenv). Então neste caso

e daí

Cristina Cerri - 2010

Page 90: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Superfícies Orientáveis

1/3www.ime.usp.br/mat/mat2455/4-intsuper/4-4-super-orientavel.html

Superfícies Orientáveis

A integral de linha de um campo vetorial sobre uma curva orientada γ e é dada por

que pode significar o trabalho de um campo de forças ao longo da curva γ.

Um outro problema físico motiva a definição de integral de superfífice de um campo vetorial.

Considere um fluido com densidade ρ(x,y,z)e cujo campo dos vetores velocidade é

através de S. Pense numa superfície que não impede a passagem do fluxo do fluido tipo uma rede de pesca.

O problema é como calcular o volume (massa) de fluido que atravessa S. O primeiro problema que aparece

é o de definir qual a direção e o sentido que nos interessa. Afinal “atravessar” significa passar de um lado

para outro de S. Assim a nossa superfície deve ter dois lados apenas.

Pode parecer estranho mas algumas superfícies não tem "dois lados". A faixa de Möbius é um exemplo

deste tipo de superfície (ela é assim chamada em homenagem ao geômetra alemão August Möbius (1790-

1868)). Veja a figura abaixo. Pegue uma tira de papel torça e cole. Você terá uma faixa que não tem lado de

fora ou lado de dentro.

Esta é uma superfície dita não orientável. Queremos só considerar superfícies orientáveis, isto é,

superfícies que "tem dois lados". Vamos formalizar matematicamentente este conceito.

Considere uma superfície S que em cada ponto tem um plano tangente. Logo em cada ponto tem-se

Page 91: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Superfícies Orientáveis

2/3www.ime.usp.br/mat/mat2455/4-intsuper/4-4-super-orientavel.html

dois vetores normais unitários: e . Se for possível definir um campo de vetores

normais que varia continuamente sobre S, então S é chamada de superfície orientável. Para uma superfície

deste tipo só temos duas orientações possíveis.

As superfícies mais comuns, que usamos neste curso, são orientáveis. Mais detalhes sobre este assunto veja

em [BCHS].

Exemplo 1. Encontrar um campo de vetores normais a superfície z = x2 + y2. e assim mostrar que esta é

uma superfície orientável.

Solução. Uma parametrização de S : x = rcosθ , y = rsenθ , z = r2 .

Dada a parametrização acima em cada ponto o vetor

é normal a superfície. Podemos também escolher

Assim temos duas orientações para S. Escolhemos conforme o caso.

Atenção: em geral nos exercícios a orientação de S é fixada (é dada no enunciado) e daí você

depois de parametrizar S deve escolher qual das duas possíveis é para ser usada. Não se

Page 92: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Superfícies Orientáveis

3/3www.ime.usp.br/mat/mat2455/4-intsuper/4-4-super-orientavel.html

desoriente: nos próximos textos você verá isto com mais detalhes.

Cristina Cerri- 2010

Page 93: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Integrais de Superfície de Campos Vetoriais

1/3www.ime.usp.br/mat/mat2455/4-intsuper/4-5-intsuper-campo.html

Integrais de Superfície de Campos Vetoriais

Seja S uma superfície (parametrizada e lisa) orientável e fixe uma orientação para S.

Considere um fluido com densidade ρ(x,y,z)e cujo campo dos vetores velocidade é através de S. Pense numa

superfície que não impede a passagem do fluxo do fluido tipo uma rede de pesca. O problema é como calcular o volume (massa) de

fluido que atravessa S.

Dividindo S em pequenos pedaços Si quase planos podemos dizer que neste pedaço a massa de fluido que atravessa Si na

direção do vetor normal por unidade de tempo é aproximadamente

onde ρ , e são calculados em algum ponto de Si. Somando tudo e diminuindo a partição de S aparece uma integral.

Definição. Se é um campo de vetores contínuo sobre uma superfície paramtrizada, lisa por partes e orientável S

com vetores normais a integral de sobre S é

Compare esta definição com a da integral de linha de um campo: fazemos o produto escalar do campo com o vetor tangente a

curva, que nos dá a orientação da curva, ou seja, em que sentido a estamos percorrendo. Agora o sentido de percurso é dado pelo

vetor normal.

Da definição de integral sobre um campo escalar temos que se X(u,v) = (x(u,v),y(u,v),z(u,v)) é uma parametrização de S, então

e daí

sendo que se é + ou – vai depender da orientação de S .

Exemplo. Calcule (ou o fluxo de através de S ) sendo e S é o parabolóide

y = x2 + z2 , para y em [0,1] união o disco x2 + z2 = 1, y = 1 (união de duas superfícies lisas), orientada com a normal exterior a S.

Solução

A superfície S é a união de duas superfícies S1 , o parabolóide, e S2 , o disco. A superfície S é lisa por parte. Uma parametrização

para S1 é x = u cos v , y = u2 , z = u sen v com u variando de 0 a 1 e v de 0 a 2π .

Page 94: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Integrais de Superfície de Campos Vetoriais

2/3www.ime.usp.br/mat/mat2455/4-intsuper/4-5-intsuper-campo.html

Só que este vetor não é exterior. Note que a componente na direção do versor j é sempre negativa. Assim

Uma parametrização para S2 é x = u cos v, y = 1 e z = u sen v com u em [0,1] e v em [0,2π].

Novamente este vetor aponta para dentro da região. Assim

Portanto

Algumas notações úteis : Perceba que

Uma notação usual para cada determinante deste é

uma notação para a integral de superfície de uma campo

é

onde

Page 95: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Integrais de Superfície de Campos Vetoriais

3/3www.ime.usp.br/mat/mat2455/4-intsuper/4-5-intsuper-campo.html

Exemplo. Calcule sendo S a parte do plano z = 5 - y, limitada pelo cilindro x2 + y2 = 4, orientada com o

campo tal que .

Solução.

Considere a seguinte parametrização de S: x = u cos v ; y = u sen v ; z = 5-u sen v para u em [0,2] e v em [0,2π]. A componentek do vetor é

que é positiva. Então

Vale a pena lembrar novamente: cuidado com a orientação da superfície. Faça uma parametrização e depois verifique se ela fornecea orientação pedida. Se você não observar isto a integral pode ficar com o sinal trocado!

Complemente seus estudos com a leitura de [S] ou [BCHS] e veja os exercícios resolvidos dos livros. Faça os exercícios da lista

e discuta-os com os monitores. É necessário fazer muitos exercicios para dominar esta matéria. Dica: use o Winplot para visualizaras superfícies e compreender melhor as parametrizações.

Cristina Cerri - 2010

Page 96: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Teorema de Gauss

1/2www.ime.usp.br/mat/mat2455/4-intsuper/4-6-gauss.html

O Teorema de Gauss

O Teorema de Green nos fornece uma relação entre integral dupla de uma região fechada plana com a integral de linha do bordodessa região. O Teorema de Gauss é uma generalização no sentido que nos dá uma relação entre integral tripla de uma região fechada doespaço com a integral de superfície do seu bordo. Mas a principal motivação do resultado vem da Física e o resultado é um modelomatemático para alguns fenômenos físicos, como o cálculo do fluxo de um fluido através de S.

Teorema de Gauss. Seja A um aberto conexo de R3 e seja a um

campo de classe C1 em A. Seja R é uma região fechada simples contida em A e cujo bordo (ou fronteira) S =δR é composta

de um número finito de superfícies lisas por partes. Se é a normal de S exterior a R (aponando para fora de R) então

Pensando em um fluido em movimento com velocidade em cada ponto (x,y,z) o Teorema de Gauss nos diz que a taxa

de variação do volume de fluido que ocupa o sólido R é igual ao volume de fluido que atravessa seu bordo, a superfície S.

Exemplo 1. Encontre o fluxo de sobre a esfera unitária x2 + y2 + z2 = 1, orientada com a normal

exterior.

Solução. Queremos calcular onde S é a esfera. Podemos calcular diretamente, mas aplicando o Teorema de Gauss

passamos para uma integral tripla na esfera cheia R (um sólido) de 1, pois o divergente do campo é 1. Então

Exemplo 2. Calcule onde e S esfera de raio 1 orientada com a normal exterior.

Solução. Pelo Teorema de Gauss se R é o interior da esfera de raio 1

Exemplo 3. Calcule onde é a superfície do

cilindro x2 + y2 = 1 entre os planos z=0 e z=x+2 (incluindo as tampas) , orientada com a normal exterior.

Solução. É complicado calcular diretamente esta integral (tente!). Vamos aplicar o teorema de Gauss. Pars tal temos que ter uma região

fechada do espaço. Tome R o cilindro x2 + y2 = 1 entre os planos z = 0 e z = x+2 com as duas tampas e orientado com a normalexterior. Então

Page 97: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Teorema de Gauss

2/2www.ime.usp.br/mat/mat2455/4-intsuper/4-6-gauss.html

Para ver mais exercícios resolvidos clique aqui

Cristina Cerri - 2010

Page 98: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Teorema de Gauss - exercícios

1/4www.ime.usp.br/mat/mat2455/4-intsuper/4-6-1-gauss-exercicios.html

O Teorema de Gauss - Exercícios Resolvidos

Exercício 1 . (exercício de prova) Calcule onde e S é a parte da

superfície z2 = x2 + 2y2 entre z = 0 e z = y + 3.

Solução

.

É complicado calcular a integral diretamente pela definição (tente!). Vamos usar Teorema de Gauss pois

O Teorema nos diz que

onde R é uma região fechada do R3 e a normal aponta para fora de R. Atenção: S é uma parte do cone. Considerando Ra região (sólida) interior ao cone com z positivo limitada pelo plano z = y + 3 temos que o bordo de R é a união de duassuperfícies : S e S1 , sendo que S1 é a parte do plano z = y + 3 limitada pelo cone.

Então aplicando o Teorema de Gauss temos

ou seja

Page 99: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Teorema de Gauss - exercícios

2/4www.ime.usp.br/mat/mat2455/4-intsuper/4-6-1-gauss-exercicios.html

onde a orientação de S é tal que (aponta para baixo) e a orientação de S1 é tal que (aponta para cima).

Obs: note que não há vetor normal no ponto (0,0,0) do cone, mas isso não vai atrapalhar.

Vamos parametrizar S1 . Primeiramente vamos estudar a variação de x e y. Como z2 = x2 + 2y2 e z = y + 3 temos que

(y+3)2 = x2 + 2y2 e daí x2 + (y - 3)2 = 18. Vamos parametrizar S1 de duas maneiras

1ª maneira : x = u, y = v , z = v + 3 com (u,v) em Duv = (u,v) : u2 + (v-3)2 = 18 . Neste caso Xu^Xv = (0,-1,1)

apontando para cima, que concorda com a orientação do teorema. Então

Fizemos a mudança de variável u = r cosθ , v = 3 + rsenθ (Jacobiano é r).

2ª maneira : x = u cosv , y = u senv + 3 , z = u senv+6 onde e . Neste caso Xu^Xv = (0, -u,

u). Então

Portanto

Exercício 2. (um exercício de prova) Calcule onde e

sendo o campo de vetores unitários

normais a S tal que

Solução. Fica complicado tentar palcular diretamente. Vamos aplicar o Teorema d Gauss. Primeramente note que

onde e

Page 100: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Teorema de Gauss - exercícios

3/4www.ime.usp.br/mat/mat2455/4-intsuper/4-6-1-gauss-exercicios.html

O campo é de classe C1 em Ω1 = R3 -(0,0,0) e seu divergente é 0 em Ω1 . Temos que escolher um sólido R que

tem S como parte do bordo. Não podemos simplesmente usar o Teorema de Gauss para o sólido interior a S

fechando com parte do plano z = 0 (tampa), pois o campo não está definido em (0,0,0). Veja como deve ser feito.

Vamos tomar a uma semi-esfera centrada na origem de raio convenientemente pequeno para ficar dentro do elipsóide.

E vamos aplicar o Teorema de Gauss para o sólido limitado pelo semi-elipsoide, a semi-esfera e o plano z = 0.

Assim considere

pelo Teorema de Gauss obtemos

Onde

e ; mas

de modo que

O campo , é de classe C1 em Ω2 = R3 com em Ω2. Aplicando o Teorema de Gauss ao

conjunto

obtemos

Page 101: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Teorema de Gauss - exercícios

4/4www.ime.usp.br/mat/mat2455/4-intsuper/4-6-1-gauss-exercicios.html

de modo que

concluímos de (1) e (2) que

Exercício: Obtenha o Teorema de Green a partir do Teorema de Gauss.

Veja mais sobre a teoria e exercícios resolvidos nos livros texto. E não deixe de fazer os exercícios da lista 3.

Cristina Cerri - 2010

Page 102: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 O Teorema de Stokes

1/5www.ime.usp.br/mat/mat2455/4-intsuper/4-7-stokes.html

O Teorema de Stokes

Seja S uma superfície orientável. Vamos enunciar o Teorema de Stokes, que generaliza o Teorema de Green.

O Teorema de Green estabelece uma relação entre a integral de linha de um campo F sobre as curvas da fronteira de D e a

integral dupla sobre a região D da componente z do rotacional deste campo. Agora pense que a região plana D foi deformada e

virou uma superfície. Logo a integral dupla virou uma integral de superfície. Lembre também que a orientação das curvas que

compoem a fronteira de D é aquela que deixa a região D à esquerda. Como orientar agora o bordo da superfície?

Vamos também caminhar sobre o bordo de S de modo que a região deve ficar sempre à esquerda. Porém nossa posição na

superfície será definida pelo vetor normal. Junte-se ao vetor normal da superfície e caminhe sobre a curva. O sentido de

percurso do bordo induzido pela normal é aquele que deixa S a esquerda.

Teorema de Stokes. Seja S uma superfície lisa por partes, orientada pelo campo , cujo bordo δ ε S é a

união de curvas lisas por parte, simples e fechadas, com a orientação induzida de S. Dado um campo de vetores

de classe C1 cujo domínio contém S, então

Como

então podemos escrever

Note que se é um campo e S uma região plana no Oxy podemos ver S no espaço

sendo o vetor normal unitário o versor k . Aplicando o Teorema de Stokes teremos o teorema de Green.

Leia sobre orientação induzida no bordo de uma superfície orientável clicando aqui.

Exemplo 1. Calcule para e γ a curva dada pela intersecção do plano

y + z = 2 e o cilindro x2 + y2 = 1, orientada de forma que sua projeção no plano xy fique orientada no sentido anti-horário.

Page 103: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 O Teorema de Stokes

2/5www.ime.usp.br/mat/mat2455/4-intsuper/4-7-stokes.html

Solução. Claro que esta integral pode ser calculada diretamente pela definição de integral de linha. Mas vamos usar o Teorema

de Stokes. Temos que escolher uma superfície S que tenha como bordo a curva γ.

Tome S = (x,y,z) : y + z = 2 , x2 + y2 = 1. Vamos escolher uma orientação conveniente para S. Para que a orientação de γ

seja a induzida pela orientação de S, devemos ter o vetor normal de S apontando “para cima”. Parametrizando S da

forma X(u,v) = (u,v,2-v) com (u,v) em D, disco de raio 1, temos que

que de fato aponta para cima. Portanto

Exemplo 2. Calcule para

e γ a curva dada pela intersecção do plano x + y + z = 4 e o cilindro x2 + y2 = 1, orientada de forma que sua projeção no

plano xy fique orientada no sentido horário.

Solução. Quando tentamos resolver diretamente caímos numa integral complicada. Mas o rotacional do campo é zero!

(confira!). Então vamos usar o Teorema de Stokes. O aluno afobado vai pegar a superfície que é a parte do plano que tem a

curva como bordo e concluir que então a integral de linha é zero. Errado! Essa superfície escolhida não está contida no

domínio de . Note que o domínio de é R3-(0,0,z), ou seja R3 menos o eixo z . Temos que pegar outra

superfície! Seja S a parte do cilindro entre os planos z = 0 e z = 4-x-y. Agora a curva faz parte do bordo de S e o campo

está definido em S. Mas agora o bordo de S é formado pelas curvas γ e α.

Page 104: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 O Teorema de Stokes

3/5www.ime.usp.br/mat/mat2455/4-intsuper/4-7-stokes.html

Vamos orientar S convenientemente. Se tomamos a normal apontando para fora do cilindro temos que γ está orientada como

queremos e α está orientada no sentido anti-horário. Usando o Teorema de Stokes

Como α(t) = (cost,sent,0) temos que

Exemplo 3. (questão de prova) Seja a curva de intersecção do prisma (superfície) de faces x = 2, x = -2, y = 4, y = -4,

com o plano z = -x +5, orientada de modo que sua projeção no plano xy seja percorrida no sentido anti-horário. Calcule

Solução. O campo é

Note que seu domínio é R3 -(0,2,z) ; z real, isto é, o espaço menos a reta paralela ao eixo z que passa por (0,2). Se

tentarmos calcular a integral de linha diretamente pela definição ficaremos com integrais muito complicadas. Vamos usar o

teorema de Stokes. Precisamos de uma superfície que tenha a curva como parte do bordo.

Page 105: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 O Teorema de Stokes

4/5www.ime.usp.br/mat/mat2455/4-intsuper/4-7-stokes.html

Consideremos

O bordo de S é composto de Γ e da curva α, intersecção de S com z = 0 (base do prisma) que é um retângulo.Se orientarmos

S de forma que a normal aponte para fora então temos que

onde α está orientada no sentido anti-horário. Calculando

Como a normal aos planos y = 4 e y = -4 está na direção de , e , só devemos calcular as integrais nos

planos x = -2 e x = 2.

Parametrizamos a face da forma X(u,v) = (2,u,v) e assim

que está no sentido correto. Então

Parametrizamos a face da forma X(u,v) = (-2,u,v) .

Assim que não está no sentido correto. Então

Portanto

Resta calcular . Novamente calcular diretamente envolve muitas contas e integrais complicadas. Como α está

contida no plano z = 0, e

podemos usar o Teorema de |Green (que é apenas uma caso particular do Teorema de Stokes). Tome β é uma circunferência

de centro (0,2,0) e raio 1, percorrida no sentido anti-horário. Calculando temos que e então

pois α está orientada no sentido anti-horário. Sendo β(t) = (cost,2+sent,0) para t em [0,2π] temos que

Finalmente,

O Teorema de Stokes é chamado assim por causa do físico-matemático irlandês Sir George Stokes (1819-1903). Stokes

foi professor da Universidade de Cambridge e ocupou a mesma posição de Newton, Lucasian Professor of

Mathematics. O que hoje chamamos de Teorema de Stokes foi na verdade descoberto pelo físico escocês Sir William

Thomson (1824-1907). Stokes teve conhecimento deste resultado através de uma carta de Thomson em 1850 e pediu

que estudantes o provasse num exame da Universidade de Cambridge em 1854. Não se sabe se algum daqueles

estudantes conseguiu fazê-lo!

Page 106: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 O Teorema de Stokes

5/5www.ime.usp.br/mat/mat2455/4-intsuper/4-7-stokes.html

Veja mais sobre o Teorema de Stokes e suas aplicações em 17.8 de [S] (de onde extraímos a nota histórica) e VIII.2 de

[BCHS]. Veja também o livro de W. Kaplan, Cálculo Avançado – volume 1, Ed. Edgar Blücher Ltda. E não deixe de fazer os

exercícios da Lista.

Cristina Cerri - 2010

Page 107: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Orientação do Bordo

1/2www.ime.usp.br/mat/mat2455/4-intsuper/4-7-bordo.html

Orientação do Bordo

Seja S uma superfície parametrizada, lisa por partes.

Se X é uma parametrização de S, com domínio D, o bordo de S é, informalmente, a imagem das curvas

do bordo de D que são percorridas apenas uma vez. O bordo de S é composto por curvas lisas por parte,

fechadas e simples. Por exemplo, o bordo do cilindro é composto por duas curvas: duas circunferências. Já

o bordo de uma semi-esfera é apenas uma curva e a esfera não tem bordo.

Supondo que S é orientável, fixe uma orientação para S. As curvas do bordo de S terão uma

orientação (sentido de percurso) induzida pela orientação do bordo. Informalmente, ao caminhar sobre a

superfície com a cabeça no sentido do vetor normal, o sentido de percurso da curva deve ser tal que a

superfície fica sempre a esquerda. Essa é a chamada orienação induzida. Por exemplo:

Uma superfície é dita fechada se não tem bordo, isto é, o bordo é um conjunto vazio. Numa superficie

fechada orientável há duas orientações possíveis: com a normal exterior ou interior.

Superfícies orientáveis não fechadas podem ser fechadas "colando-se" superfícies. Escolhendo a

Page 108: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Orientação do Bordo

2/2www.ime.usp.br/mat/mat2455/4-intsuper/4-7-bordo.html

orientação certa o resultado será uma superfície fechada orientada. Veja as figuras abaixo.

A figura a esquerda representa uma superfície orientável aberta z = x2 + y2 , com z entre 1 e 2.

Colando-se as duas tampas que são círculos e orientando convenientemente teremos um asuperfície fechada

orientável com a normal apontando para fora.

É importante saber se orientar para não se perder no teorema de Stokes!

Cristina Cerri-2010

Page 109: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Exercicios resolvidos

1/4www.ime.usp.br/mat/mat2455/4-intsuper/4-8-exercicios.html

Exercicios Resolvidos - Questões de Prova

3a Prova de 1995. Calcule a massa da superfície

cuja densidade superficial é dada por

Solução.

Parametrizando a superfície temos

Domínio de integração .

3a Prova de 1996. Calcule onde S é a porção do elipsóide com

Page 110: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Exercicios resolvidos

2/4www.ime.usp.br/mat/mat2455/4-intsuper/4-8-exercicios.html

e e é a normal

exterior ao elipsóide.

Solução

Seja a porção do plano interior ao elipsóide e V o sólido limitado por .Pelo teorema de Gausss,

temos

onde esta orientada com a normal satisfazendo . Como , temos

A intersecção do plano com o elipsóide é dada pela solução de

Eliminando . Parametrizando a '' tampa''

A normal a é dada por . Portanto

Page 111: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Exercicios resolvidos

3/4www.ime.usp.br/mat/mat2455/4-intsuper/4-8-exercicios.html

QUESTÃO 2. Calcule onde a porção do

parabolóide abaixo do plano z = 2x + 4y + 3 e é a normal exterior ao parabolóide comm

Solução Seja a porção do plano z = 2x + 4y + 3 limitada pelo parabolóide e V o sólido limitado por

.

Do teorema de Gausss, temos

A normal (unitária) ao plano e exterior a V é dada por . Como temos

A intersecção do plano com o parabolóide é:

Eliminando .

O sólido V é dado em coordenadas cilíndricas por

3a prova de 1996. Calcule onde e γ é a intersecção do

cilindro x2 + y2 = 4 com a superfície z = cos(y2) + 5 orientada de modo que sua projeção no plano xy tenha

sentido anti-horário.

Solução

Page 112: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

20/04/12 Exercicios resolvidos

4/4www.ime.usp.br/mat/mat2455/4-intsuper/4-8-exercicios.html

Seja γ∗ a intersecção do cilindro com o plano Oxy com orientação anti-horária e S a porção do cilindro limitada

pelas curvas γ e γ∗, orientada com normal "exterior''. Pelo teorema de Stokes

temos . Portanto

Paramentrizando γ∗ : x = 2 cosθ , y = 2 senθ , z = 0 onde

Page 113: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

MAT 2455 - Calculo Diferencial e Integral para Engenharia III

Trabalho 1 - 1o semestre de 2010

Este e o primeiro trabalho escrito valendo nota para compor a media de trabalhos T.

As resolucoes dos exercıcios abaixo devem ser redigidas e entregues ate dia 15 de marco

ao monitor no seu horario de plantao (das 11hs as 13hs) na sala de Monitoria do Bienio. Nao

serao aceitos trabalhos entregues atrasados.

Os Trabalhos sao individuais. Quando houver suspeita de copia os envolvidos serao chama-

dos para esclarecimentos.

——————————————————————————–

Questao 1. (1,5 ponto) Calcule o volume do solido

S = (x, y, z) | 0 ≤ x ≤ 2, 3

x

2≤ y ≤ 1, 0 ≤ z ≤ sen(y4).

Questao 2. (1,5 ponto) O volume do solido limitado pelo paraboloide z = 4 − 2x2 − y2 e

pelo plano z = 3 − y (acima do plano e abaixo do paraboloide)

V (S) =

∫ ∫

D

f(x, y) dx dy

(a) (0,5) Descreva e esboce a regiao D.

(b) (1,0) Obtenha f(x, y) e calcule o volume de S.

Page 114: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

!"#$#%#& '( )*#(+,#$ * ( ."#*#/"#$ * '* 012)345677 8 9,: %:& ;$<(=(! $*: ( !#(>=*: ?*=* .!>(!@*=$*4=*A*:@& B 8 B&C 1(+("#=( '( 5DBDE%("#F& BC !"# $%&'%( )*+ -+. % /%+-0. 1% 23+41%S = (x, y, z) | 0 ≤ x ≤ 2, 3

x

2≤ y ≤ 1, 0 ≤ z ≤ 2.& (y4)1&:%GF&H 5 /%+-0. 1% 23+41% S $%1. 2.6 *+ -+*1% $.+* 2.7-4&'. 4&'.76*+8

V =

∫ ∫

D

f(x, y)dxdy2.&1% f(x, y) = 2.& (y4) . D = (x, y) | 0 ≤ x ≤ 2, 3

x

2≤ y ≤ 19:%1.;2." .&'<%" 6..2 6./.6 * 6.74<% D 1. =%60* >-. * 4&'.76*+ 2.?* 6.2%+/41* 1. =%60* '64/4*+8

D = (x, y) | 0 ≤ x ≤ 2y3, 0 ≤ y ≤ 1

V =

∫ ∫

D

2.& (y4)dxdy =

1

0

2y3

0

2.& (y4)dxdy =

=1

2

1

0

4y3 2.& (y4)dy =− cos(y4)

2

1

0

=1 − cos 1

2

!

Page 115: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

!"#$%& '( !"# $%&'%( ) *%+,-. /% 01+2/% +2-2'3/% $.+% $3435%+12/. z = 4− 2x2 − y2 . $.+% $+3&%z = 3 − y $%/. 0.4 3+ ,+3/% $%4

V (S) =

∫ ∫

D

f(x, y)dxdy 3( 7"#( 8.0 4.*3 . .05% . 3 4.92:% 8; 5( !"7( )5'.&<3 f(x, y) . 3+ ,+. % *%+,-. /. S;)&*!+%&, 3( = 4.92:% D > /3/3 $.+3 2&'.40. ?:% /% $3435%+12/. %- % $+3&%; @.&/% 3002-" $%/.A0. 29,3+3430 /,30 .B,3?C.0 $343 .& %&'434 3 ,4*3 B,. /.D&. DE4 − 2x2 − y2 = 3 − y ⇔ y2 + 2x2 − y = 1 ⇔

(

y − 1

2

)2

+ 2x2 =5

4

D = (x, y) |(

y − 1

2

)2

+ 2x2 ≤ 5

4

5( = F,&?:% 3 0.4 2&'.943/3 &3/3 -320 > /% B,. 3 G3+',43H /% 01+2/% .- B,.0':%; @.&/% 3002-" 3F,&?:% f(x, y) 0.4I /3/3 $%4Ef(x, y) = zparabolide − zplano = (4 − 2x2 − y2) − (3 − y) = 1 − 2x2 − y2 + y

J

Page 116: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

! "#$%&'!( )*+% ,%' -! "(/%#$% !( 0(!+! -!1%#+* 0/! /0+!#2! +% 3!'"43%",5V =

∫ ∫

D

1 − 2x2 − y2 + y dxdy

x = 1√

2ρ cos θ

(

y − 1

2

)

= ρ ,%# θ

Jacobiano =1√2ρ*#+% 0 ≤ ρ ≤

5

2% 0 ≤ θ ≤ 2π67*/ %,,! /0+!#2!8 ! "#$%&'!( 9 ! :!,$!#$% ,"/)(%,5

V =

0

5

2

0

(

1 − ρ2 cos2 θ −(

ρ ,%# θ +1

2

)2

+ ρ ,%# θ +1

2

)

ρ√2

dρdθ

=

0

5

2

0

(

5

4− ρ2

)

ρ√

2

2dρdθ

= 2π

(

5√

2

8ρ2 −

√2

2ρ4

)

√5

8

0

=25π

√2

64.

;

Page 117: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

MAT 2455 - Calculo Diferencial e Integral para Engenharia III

Trabalho 2 - 1o semestre de 2010

Este trabalho vale nota para compor a media de trabalhos T. As resolucoes dos exercıcios

abaixo devem ser redigidas e entregues ate dia 26 de marco ao monitor no seu horario de

plantao (das 11hs as 13hs) na sala de Monitoria do Bienio. Podem ser entregues antes. Nao

serao aceitos trabalhos entregues atrasados.

Os Trabalhos sao individuais. Quando houver suspeita de copia os envolvidos serao chama-

dos para esclarecimentos.

Coloque seu nome e numero USP em todas as folhas entregues.

——————————————————————————–

Questao 1. Seja B regiao que esta abaixo de z = x + 2y, acima do plano 0xy e e limitada

pelas superfıcies y = x2, y = 0 e x = 1.

(a) (0,5) Descreva B na forma de subconjunto do R3 de duas maneiras diferentes (queremos

na forma B = (x, y, z) | ......).

(b) (1,0) Calcule

∫ ∫ ∫B

ydxdydz

Questao 2. O volume da regiao E que satisfaz x2 + y2 ≤ 2y e x2 + y2 + z2 ≤ 4 pode ser

calculado assim ∫ ∫D

∫ g2(x,y)

g1(x,y)

1dz dxdy.

(a) (0,5) Determine D e as funcoes g1(x, y) e g2(x, y).

(b) (1,0) Calcule o volume de E usando a formula acima.

Page 118: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

Instituto de Matemática e Estatística da USP

MAT2455 - Cálculo Diferencial e Integral III para Engenharia

Trabalho 2 - 1o. Semestre de 2010

Questão 1. (1,5 ponto) Seja B região que está abaixo de z = x+ 2y, acima do plano 0xy e é limitada pelassuperfícies y = x2, y = 0 e x = 1.

(a) (0,5) Descreva B na forma de subconjunto do R3 de duas maneiras diferentes (queremos B = (x, y, z)|...)

(b) (1,0) Calcule

∫ ∫ ∫

B

ydxdydz

Solução:

(a) Temos a seguinte região B:

Dessa maneira, região B mostrada no gráfico pode ser descrita das seguintes formas:

B = (x, y, z)|0 ≤ z ≤ x + 2y, 0 ≤ y ≤ x2, 0 ≤ x ≤ 1 (0, 25)

ou

B = (x, y, z)|0 ≤ z ≤ x + 2y, 0 ≤ y ≤ 1,√

y ≤ x ≤ 1 (0, 25)

1

Page 119: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

(b) Resolvendo a integral pedida, temos:

∫ ∫ ∫

B

ydxdydz =

∫ 1

0

∫ x2

0

∫ x+2y

0ydydx (0, 5)

=

∫ 1

0

∫ x2

0xy + 2y2dy

=

∫ 1

0

x5

2+

2x6

3dx

=x6

12+

2x7

21

1

0

=1

12+

2

21=

5

28(0, 5)

Questão 2. (1,5 ponto) O volume da região E que satisfaz x2+y2 ≤ 2y e x2+y2+z2 ≤ 4 pode ser calculadoassim

∫ ∫

D

∫ g2(x,y)

g1(x,y)1dxdydz

(a) (0,5) Determine D e as funções g1(x, y) e g2(x, y).

(b) (1,0) Calcule o volume de E usando a fórmula acima.

Solução:

(a) A região D é a projeção no plano 0xy do sólido. A intersecção do cilindro x2 + y2 = 2y com a esferax2 + y2 + z2 = 4 é uma curva que projetada no plano 0xy e nos dá o bordo de D. A intersecção é umacircunferência descrita por:

x2 + y2 ≤ 2y ⇔ x2 + y2 − 2y ≤ 0 ⇔ (y − 1)2 + x2 ≤ 1 (0, 25)

Abaixo a região E:

2

Page 120: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

Como D já foi achado, as funções g1(x, y) e g2(x, y) variam do hemisfério inferior da esfera até ohemisfério superior. Logo, −

4 − x2 − y2 ≤ z ≤√

4 − x2 − y2.

Assim, tem-se:g1(x, y) = −

4 − x2 − y2

g2(x, y) =√

4 − x2 − y2 = (0, 25)

(b) O volume de E, que pode ser calculado com a formula já vista, de posse de g1(x, y) ,g2(x, y) e D, fica:

∫ ∫

D

∫ g2(x,y)

g1(x,y)1dzdxdy

Para tornar a integração mais fácil, pode-se fazer a seguinte mudança de coordenadas cilíndricas:

x = r cos θ

y = r sen θ

z = z

|J | = r

Como x2 + y2 ≤ 2y então 0 ≤ r ≤ 2 sen θ Portanto a variação de r, θ e z são

0 ≤ r ≤ 2 sen θ

0 ≤ θ ≤ π

−√

4 − r2 ≤ z ≤√

4 − r2 (0, 25)

V =

∫ π

0

∫ 2 sen θ

0

4−r2

4−r2

rdzdrdθ (0, 25)

Com essa mudança, tem-se:

V =

∫ π

0

∫ 2 sen θ

0

4−r2

4−r2

rdzdrdθ

=

∫ π

0

∫ 2 sen θ

02r

4 − r2drdθ

Fazendo-se a mudança de variáveis,

4 − r2 = u

−2rdr = du

a integral indefinida∫

2r√

4 − r2dr

pode ser simplificada da seguinte maneira:

2r√

4 − r2dr =

−u1

2 du = −u3

2 · 2

3= −2

3·(

4 − r2)

4 − r2

3

Page 121: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

Retornando à integral dupla, tem-se:

∫ π

0

∫ 2 sen θ

02r

4 − r2drdθ =

∫ π

0

(

−2

3·(

4 − r2)

4 − r2∣

2 sen θ

0

)

=

∫ π

0

[

16

3− 2

3

(

(

4 − 4( sen θ)2)√

4 − 4( sen θ)2)

]

=16π

3− 16

3

∫ π

0

[

(

1 − ( sen θ)2)

1 − ( sen θ)2]

=16π

3− 16

3

∫ π

0

[(

1 − ( sen θ)2)

| cos θ|]

Note que cos(θ) é negativo para π2 ≤ θ ≤ π. Como cos θ = − cos(π − θ) (translação) para π

2 ≤ θ ≤ π

então

∫ π

0

[(

1 − ( sen θ)2)

| cos θ|]

dθ = 2.

∫ π

2

0

[(

1 − ( sen θ)2)

cos θ]

Faz-se a seguinte mudança de variáveis:

sen θ = u

cos θdθ = du

θ = 0 → u = 0θ = π

2 → u = 1

Por fim, a integral fica dada por:

2.

∫ π

2

0

[(

1 − ( sen θ)2)

cos θ]

dθ = 2.

∫ 1

01 − u2 du =

(

u − u3

3

)

1

0=

4

3

Com a integral calculada, o volume final é:

V =16π

3− 16

3.4

3=

16

9.(3π − 4) (0, 5)

4

Page 122: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

MAT 2455 - Calculo Diferencial e Integral para Engenharia III

Trabalho 3 - 1o semestre de 2010

Este trabalho vale nota para compor a media de trabalhos T. As resolucoes dos exercıcios

abaixo devem ser redigidas e entregues ate dia 05 de abril ao monitor no seu horario de

plantao (das 11hs as 13hs) na sala de Monitoria do Bienio ou das 16hs as 17h30min na sala

109A (1o andar do Bloco A) do IME. Nao serao aceitos trabalhos entregues atrasados.

Os Trabalhos sao individuais. Quando houver suspeita de copia os envolvidos serao chama-

dos para esclarecimentos.

Coloque seu nome e numero USP em todas as folhas entregues.

——————————————————————————–

Questao 1. (2 pontos) Calcule a massa da regiao R que esta limitada por x2 + y2 = 1 + z2

e 4z2 = x2 + y2 e com densidade δ(x, y, z) = |z|.

Questao 2. (2 pontos) Calcule a massa do solido dado por

S = (u, v, w) | u2 + v2 + w2 ≥ 1, u2 + v2 + w2 ≤ 2u

sendo a densidade δ(u, v, w) = u.

Page 123: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

!"#$#%#& '( )*#(+,#$ * ( ."#*#/"#$ * '* 012)345677 8 9,: %:& ;$<(=(! $*: ( !#(>=*: ?*=* .!>(!@*=$*4=*A*:@& B 8 C&D 1(+("#=( '( 5ECEF%("#G& CD ! "#$%#&' ()* ,*- ) .)&&) /) 0-123# 4,- -&%5 *2.2%)/) "#0 x2 + y2 = 1 + z2 -4z2 = x2 + y2 - #. /-$&2/)/- δ(x, y, z) = |z|61&:%HG&I7 0-123# -&%5 #."0--$/2/) -$%0- # 2$%-02#0 /# 82"-09#*:2/- x2 + y2 = 1 + z2' - # -;%-02#0 /# #$- 4z2 = x2 + y2'< #.# .#&%0)/# $) =1,0) )9)2;#>

7 .)&&) /) 0-123# "#/- &-0 )* ,*)/) "#0>Massa =

∫ ∫ ∫

R

δ(x, y, z) dx dy dz?)@A&- ) .,/)$B) ")0) ##0/-$)/)& 2*C$/02 )&

x = r · cos θ

y = r · sen θ

z = z

|Jac(r, θ, z)| = rD )& 0-12E-& = ). /-& 02%)& "#0>

F2.2%)B3# /# G2"-09#*:2/- : r2 ≤ 1 + z2 ⇔ r ≤√

1 + z2F2.2%)B3# /# (#$- : r2 ≥ 4z2 ⇔ r ≥ 2|z|H)02)B3# /- z : 1 + z2 = 4z2 ⇔ z2 = 1

3⇔ z = ± 1√

3I /#.C$2# /- 2$%-10)B3# -. ##0/-$)/)& 2*C$/02 )& = )>Dr,θ,z =

0 ≤ θ ≤ 2π , − 1√3≤ z ≤ 1√

3- 2|z| ≤ r ≤

1 + z2

J<K'F#1#>

Page 124: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

Massa =

∫ ∫ ∫

R

δ(x, y, z) dx dy dz =

∫ ∫ ∫

Dr,θ,z

δ(r, θ, z) · |Jac(r, θ, z)| dr dθ dz

=

1√

3∫

− 1√

3

√1+z2∫

2|z|

2π∫

0

|z| · r dθ dr dz =

1√

3∫

− 1√

3

√1+z2∫

2|z|

2π · |z| · r dr dz

= 2π

1√

3∫

− 1√

3

( |z|2

· r2

)

r=√

1+z2

r=2|z|dz = 2π

1√

3∫

− 1√

3

|z|2

·(

1 + z2 − 4z2)

dz

= π

1√

3∫

− 1√

3

|z| ·(

1 − 3z2)

dz !"#$%&'& |z| ( (1 − 3z2) )*& +,-./() 012() (-3*& |z| · (1 − 3z2) 31'45' 5 ,'1 +,-.*& 0126 7))8' 18-3(921: 0&;( )(2 1: ,:1;1 ;1 )(9,8-3( +&2'1" :('421-;& =,( |z| = z )( & 8-3(2>1:& ;( 8-3(921.*& +&20&)838>&?1√

3∫

− 1√

3

|z| ·(

1 − 3z2)

dz = 2

1√

3∫

0

|z| ·(

1 − 3z2)

dz = 2

1√

3∫

0

z ·(

1 − 3z2)

dz !"#$@&:31-;& 1& A: ,:& ;1 '1))1" 3('&)?Massa = 2π

1√

3∫

0

z ·(

1 − 3z2)

dz = 2π

1√

3∫

0

z − 3z3 dz

= 2π

(

1

2· z2 − 3

4· z4

)

1√

3

0

= 2π

(

1

2· 1

3− 3

4· 1

32

)

6 !"#$

Page 125: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

!"#$%& '( ! "#$%#&' ()* ,*- ) .)&&) /# &0*1/# /)/# "#2B = (u, v, w) | u2 + v2 + w2 ≥ 1, u2 + v2 + w2 ≤ 2u&-$/# ) /-$&1/)/- δ(u, v, w) = u3)&*!+%&,4 &0*1/# -&%5 #."2--$/1/# -$%2- # -6%-21#2 /# -&7-2) E1 u2 + v2 + w2 = 1' - # 1$%-21#2 /) -&7-2)

E2 8,- -&%5 /-&*# )/) -. , u2 + v2 + w2 = 2u'39/#%)$/# u = z: v = y - w = x: %-.#& # &0*1/# 2-"2-&-$%)/# $) ;<,2) )=)16# >

9 .)&&) /# &0*1/# "#/- &-2 )* ,*)/) "#2>Massa =

∫ ∫ ∫

Du,v,w

δ(u, v, w) du dv dw?)@A&- ) .,/)$B) ")2) ##2/-$)/)& -&7C21 )& - )& 2-<1D-& ; ). /-& 21%)& "#2>

u = z = ρ · cos φ

v = y = ρ · senφ · sen θ

w = x = ρ · sen φ · cos θ

|Jac(ρ, θ, φ)| = ρ2 · senφ

=⇒

E6%-21#2 ) EF : ρ2 ≥ 1 ⇒ ρ ≤ 1G$%-21#2 ) E! : ρ2 ≤ 2ρ cos φ ⇒ ρ ≤ 2 cos φEF ∩ E! ⇒ 2u = 1 ⇒ u = 1

2⇒ cos φmax = 1

2⇒ φmax = π

39&&1. # /#.H$1# /- 1$%-<2)BI# -. ##2/-$)/)& -&7C21 )& ; )>Dρ,θ,φ =

0 ≤ θ ≤ 2π , 1 ≤ ρ ≤ 2 cos φ - 0 ≤ φ ≤ π

3

J:KL'

Page 126: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

!"!#Massa =

∫ ∫ ∫

Du,v,w

δ(u, v, w) du dv dw =

∫ ∫ ∫

Dρ,θ,φ

δ(ρ, θ, φ) · |Jac(ρ, θ, φ)| dρ dθ dφ

=

π3

0

2 cos φ∫

1

2π∫

0

ρ · cos φ · ρ2 · senφdθ dρ dφ =

π3

0

2 cos φ∫

1

2π · ρ3 · cos φ · sen φdρ dφ

= 2π

π3

0

cos φ · sen φ

(

1

4· ρ4

)

ρ=2 cos φ

ρ=1

dφ =2π

4

π3

0

cos φ. sen φ(

24 · cos4 φ − 1)

2

π3

0

(

16 · cos5 φ − cos φ)

· sen φdφ $%&'()*+,-./! + 0-"12.3- 41/+.5+ /- 6+7286-20#

cos φ = t

− senφ · dφ = dt=⇒

φ = 0 ⇒ t = 1φ = π

3⇒ t = 1

29 0+:-./! ;1- b∫

a

f(s)ds = −a

b

f(s)ds& 3-4!0 ;1- + 2.3-"7+< = +#π3

0

(

16 · cos5 φ − cos φ)

· senφdφ =

1

2∫

1

(

16 · t5 − t)

· (−1) dt =

1∫

1

2

(

16 · t5 − t)

dt?!<3+./! +! 8< 1<! /+ 4+00+& 3-4!0#Massa =

π

2

1∫

1

2

(

16 · t5 − t)

dt =π

2

(

16

6· t6 − 1

2· t2

)

t=1

t= 1

2

2

[

8

3·(

1 − 1

26

)

− 1

2·(

1 − 1

22

)]

2

[

8

3·(

64 − 1

64

)

− 1

2·(

4 − 1

4

)]

2

(

8

3· 63

64− 1

2· 3

4

)

2

(

21

8− 3

8

)

2· 18

8=

8 $%&()

Page 127: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

MAT 2455 - Calculo Diferencial e Integral para Engenharia III

Trabalho 4 - 1o semestre de 2010

Este trabalho vale nota para compor a media de trabalhos T. As resolucoes dos exercıcios

abaixo devem ser redigidas e entregues ate dia 22 de abril ao monitor no seu horario de

plantao (das 11hs as 13hs) na sala de Monitoria do Bienio ou das 16hs as 17h30min na sala

109A (1o andar do Bloco A) do IME. Nao serao aceitos trabalhos entregues atrasados.

Os Trabalhos sao individuais. Quando houver suspeita de copia os envolvidos serao chama-

dos para esclarecimentos.

Coloque seu nome e numero USP em todas as folhas entregues.

——————————————————————————–

Questao 1. (1 ponto) Calcule a massa de um arame cujo formato e da helice γ(t) =

(3t, 2 cos(t), 2sen(t)), para 0 ≤ t ≤ π com densidade δ(x, y, z) = z2.

Questao 2. (1,5 pontos) Calcule a

∫γ

~F .d~r onde ~F (x, y, z) = (x2 − z2)~i + 2y~k e γ e a

interseccao das superfıcies x2 + y2 − z2 = 3 e y = 2z, orientada de forma que sua projecao no

plano 0xy seja percorrida no sentido anti-horario.

Page 128: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

!"#$#%#& '( )*#(+,#$ * ( ."#*#/"#$ * '* 012)345677 8 9,: %:& ;$<(=(! $*: ( !#(>=*: ?*=* .!>(!@*=$*4=*A*:@& 6 8 B&C 1(+("#=( '( 5DBDE%("#F& BC !"# $%&'%( )*+ -+. * /*00* 1. -/ *2*/. -3% 4%2/*'% 5 1* 65+7 . γ(t) = (3t, 2 cos(t), 2 0.& (t))"$*2* 0 ≤ t ≤ π %/ 1.&071*1. δ(x, y, z) = z281&:%GF&H9 *2*/. $%1. 0.2 .0:%;*1%<

= /*00* 1% *2*/. 5 1*1* $%2M =

π

0

δ(γ(t))|γ(t)′ | dt9:'./%0 % >.'%2 '*&?.&'. γ′(t) * $*2'72 1. γ(t) 1*1%" 6.?*&1% *<γ′(t) = (3,−2 0.& (t), 2 cos(t))=007/ './%0 @-.<

|γ′(t)| =√

3.3 + (−2 0.& (t)).(−2 0.& (t)) + 2 cos(t).2 cos(t)

=√

9 + 4

=√

13 (0, 25)A%+'*&1% B 7&'.?2*+<M =

π

0

δ(γ(t))|γ(t)′| dt =

π

0

(2 0.& (t))2.√

13 dt =

π

0

4√

13. 0.& 2(t) dt (0, 5)

= 4.√

13

(

t

2− 0.& (t)

4

)

π

0

= 4.√

13(π

2

)

= 2π√

13 (0, 25)!

Page 129: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

!"#$%& ' !"# $%&'%() *+, .,/ ∫

γ

~F d~r %&0/ ~F (x, y, z) = (x2−z2)~i+2y~k / γ 1 + 2&'/3(/ 45% 0+( (.$/367 2/( x2 +y2−

z2 = 3 / y = 2z" %32/&'+0+ 0/ 6%38+ 9./ (.+ $3%:/45% &% $,+&% 0xy (/:+ $/3 %3320+ &% (/&'20% +&'2;<%3=32%>(&)!*%&?+3+ +, .,+3 + 2&'/@3+, 0/ ,2&<+ $/020+ 0/A/;(/" $328/23+8/&'/" 0/B&23 9.+, 1 + .3A+ γ> ?+3+ 2((%"0/A/;(/ /& %&'3+3 + $3%:/45% 0+ 2&'/3(/ 45% /&'3/ +( (.$/3B 2/(".8 <2$/3C%,D20/ 0/ .8+ 6%,<+ / .8 $,+&%E

x2 + y2 − z2 = 3y = 2z

Hiperboloide ∩ Plano → x2 + y2 − z2

4= 3 → x

2

3+ y

2

4= 1 (0, 5)FG;(/ 9./ + $3%:/45% 0+ 2&'/3(/ 45% 0+( (.$/367 2/( 3/(.,'+ /8 .8+ /,2$(/" 3/$3/(/&'+0+ +C+2H%" $/3 %3;320+ &% (/&'20% +&'2;<%3=32%E

I .3A+ γ B + $+3+8/'32J+0+ 0+ (/@.2&'/ 6%38+Eγ(t) = (

√3 cos t, 2 (/& t, !" t)# !$ %!&'( &)"*!"&!+

γ′(t) = (−√

3 !" t, 2 cos t, cos t) (0, 5)

,

Page 130: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

!" #$$!% & #'()*+&, -) ,#'.& $)+/ &, 1,&-& &2&#3!4∫

γ

~F d~r =

0

~F (γ(t)).γ′(t) dt

=

0

(3 cos2 t − $)' 2t, 0, 4 $)' t).(−√

3 $)' t, 2 cos t, cos t) dt

=

0

−3√

3 cos2 t $)' t +√

3 $)' 3t + 4 $)' t cos t dt

=

[(

3√

3.cos3 t

3

)

+√

3

(

cos3 t

3− cos t

)

+

(

−cos 2t

2

)]

0

= 0 (0, 5)

5

Page 131: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

MAT 2455 - Calculo Diferencial e Integral para Engenharia III

Trabalho 5 - 1o semestre de 2010

Este trabalho vale nota para compor a media de trabalhos T. As resolucoes dos exercıcios

abaixo devem ser redigidas e entregues ate dia 7 de maio ao monitor no seu horario de plantao

(das 11hs as 13hs) na sala de Monitoria do Bienio (atencao: apenas nesses horario e local).

Nao serao aceitos trabalhos entregues atrasados.

Os Trabalhos sao individuais. Quando houver suspeita de copia os envolvidos serao chama-

dos para esclarecimentos.

Coloque seu nome e numero USP em todas as folhas entregues.

——————————————————————————–

Questao 1. (1,5 ponto) Calcule

∫γ

(xy2 − y + x3)dx + xdy

x2 + y2

onde γ e a curva (x − 1)2 + 2(y − 2)2 = 13 orientada no sentido horario.

Questao 2. (2 pontos) Calcule ∫γ

~F .d~r

onde ~F (x, y) = arctg(x5 +3x+1)~i+(y ln(y2 +3)+x2 − 1)~j e γ(t) = (cos t, t) para −π

2≤ t ≤ π

2.

Page 132: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

!"#$#%#& '( )*#(+,#$ * ( ."#*#/"#$ * '* 012)345677 8 9,: %:& ;$<(=(! $*: ( !#(>=*: ?*=* .!>(!@*=$*4=*A*:@& 7 8 B&C 1(+("#=( '( 5DBDE%("#F& BC !"# $%&'%( )*+ -+. ∫

γ

(xy2 − y + x3)dx + xdy

x2 + y2%&/. γ 0 * -12* (x − 1)2 + 2(y − 2)2 = 13 %13.&'*/* &% 4.&'3/% 5%1613%71&:%GF&H 8.9%4 % *9$% −→F /*/% $%1:

−→F (x, y) =

(xy2 − y + x3

x2 + y2,

x

x2 + y2

))*+ -+*&/% % 1%'* 3%&*+ /. −→F :

∂Q

∂x−

∂P

∂y=

(x2 + y2) − 2x2

(x2 + y2)2−

(2xy − 1)(x2 + y2) − (xy2 − y + x3)(2y)

(x2 + y2)2

=y2 − x2

(x2 + y2)2−

y2 − x2

(x2 + y2)2= 0;%<% Rot(~F ) =

(∂Q

∂x−

∂P

∂y

)~k = ~0=*1* >-. % 8.%1.9* /. ?1..& $%44* 4.1 -'3+3@*/%" 0 $1. 34% 34%+*1 * %13<.9" $%34 % *9$% −→

F &A% .4'6/.B&3/% &* 9.49*7 C4%+*&/% * %13<.9 %9 -9* 31 -&D.1E& 3* α(t) /. 1*3% r $.>-.&% 4-B 3.&'. $*1* .4'*1 %&'3/* &% 3&'.13%1 /. γ" '.1.9%4 * 4.<-3&'. 43'-*FA%:α(t) = r(cos(t), 4.& (t)), −π ≤ t ≤ π

α′(t) = r(− 4.& (t), cos(t))

)%9 1.+*FA% * R" 2.9%4 >-. α . γ .4'A% %13.&'*/*4 &.<*'32*9.&'.7G*H.&/% >-. % *9$% −→F .4'6 /.B&3/% .9 '%/%4 %4 $%&'%4 /* 1.<3A% R" $.+% 8.%1.9* /. ?1..&" '.1.9%4:

∫ ∫

R

Rot(−→F ) · ~kdA = −

α

−→F ·

−→dr −

γ

−→F ·

−→dr

γ

−→F ·

−→dr = −

∫ ∫

R

0dA −

α

−→F ·

−→dr = −

α

−→F ·

−→dr!

Page 133: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

! " #$%&'(") *& )#$+" *& α $, "./, −→F /,*& 0&( 1" #).&$%& ") 2)"*"3

α

−→F ·

−→dr =

∫ π

−π

−→F (α(t)) · α′(t) dt

=

∫ π

−π

(r3 cos(t) 0&$ 2(t) − r 0&$ (t) + r3 cos3(t)

r2,r cos(t)

r2

)· r(− 0&$ (t), cos(t)) dt

=

∫ π

−π

(−r2 cos(t) 0&$ 3(t) + 0&$ 2(t) − r2 0&$ (t) cos3(t) + cos2(t)

)dt

=

∫ π

−π

(−r2 cos(t) 0&$ 3(t) − r2 0&$ (t) cos3(t) + 1

)dt4&.5("$*, 62& $, #$%&(7"), 0#.8%(# , "0 #$%&'("#0 *& 12$9:&0 ;./"(&0 0<, $2)"0= " #$%&'(") *& )#$+" *& α0&(!3 ∫

α

−→F ·

−→dr =

∫ π

−π

1dt = 2π> ,., 7#0%,= ,. , ?&,(&." *& @(&&$3 ∫

γ

−→F ·

−→dr = −2π !"#$%& '( AB /,$%,0C D") 2)& ∫

γ

−→F ·

−→dr,$*& −→

F (x, y) = arctan(x5 + 3x + 1)i + (y ln(y2 + 3) + x2 − 1)j & γ(t) = (cos(t), t) /"(" −π2 ≤ t ≤ π

2 E)&*!+%&, F"(" 2%#)#G"( , ?&,(&." *& @(&&$= *&7&H0& %&( 2." (&'#<, R 1& +"*"= 2I" 1(,$%&#(" ,$%&$+" γ(t)EJ&$*, "00#.= (#"H0& 2." 2(7" α(t) ,. , #$%2#%, *& 0& ,5%&( 2." (&'#<, 1& +"*"= %") 62&

α(t) = (0,−t)), −π2 ≤ t ≤ π

2α′(t) = (0,−1)

B

Page 134: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

!"# $%#& '(()*& "#*!( "!+'( '( ,)-."#(#( +! /#!0#*' +# 10##2 ('")(3#)"'(& # ! "#!0#*' -!+# (#0 %")4)5'+!6

7 ⊂ Int(γ ∪ α)γ # α "8* !0)#2"'9:! -!()");'<!*=−→F ) ⊂ R ∫ ∫

R

Rot(−→F ) · ~k dA =

α

−→F ·

−→dr +

γ

−→F ·

−→dr>'4 %4'2+! ' )2"#@0'4 +%-4' +! 0!"' )!2'4 #* RA

∫ ∫

R

Rot(−→F ) · ~k dA =

∫ ∫

R

2x dxdy

=

∫ π

2

−π

2

∫ cos(y)

02x dxdy

=

∫ π

2

−π

2

cos2(y) dy

=

(y

2+(#2 (2y)

4

2

−π

2

2BC ' )2"#@0'4 +# 4)2,' +' %0;' α (#0C +'+' -!0A∫

α

−→F ·

−→dr =

∫ π

2

−π

2

−→F (α(t)) · α′(t) dt

=

∫ π

2

−π

2

(P (α(t)),−t ln(t2 + 3) + 1

)· (0,−1) dt

=

∫ π

2

−π

2

t ln(t2 + 3) dt −

∫ π

2

−π

2

1 dt !"# $%# ' )2"#@0'4 +' 3%29:! D*-'0 2! )2"#0;'4! ()*E"0) ! (# '2%4'& # F '*!( !*A∫

α

−→F ·

−→dr = −

∫ π

2

−π

2

1dt = −πG!0 F*& %")4)5'2+! ' )@%'4+'+# +! /#!0#*' +# 10##2 !H")+' '2"#0)!0*#2"#A∫

γ

−→F ·

−→dr =

∫ ∫

R

Rot(−→F )dA −

α

−→F ·

−→dr

γ

−→F ·

−→dr =

π

2− π = −

π

2

I

Page 135: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

MAT 2455 - Calculo Diferencial e Integral para Engenharia III

Trabalho 6 - 1o semestre de 2010

Este trabalho vale nota para compor a media de trabalhos T. As resolucoes dos exercıcios

abaixo devem ser redigidas e entregues ate dia 20 de maio ao monitor no seu horario de

plantao (das 11hs as 13hs) na sala de Monitoria do Bienio (atencao: apenas nesses horario e

local). Nao serao aceitos trabalhos entregues atrasados.

Os Trabalhos sao individuais. Quando houver suspeita de copia os envolvidos serao chama-

dos para esclarecimentos.

Coloque seu nome e numero USP em todas as folhas entregues.

Observe que a data de entrega e posterior a P2 de Calculo III. Porem sugiro que os exercıcios

desse Trabalho sejam elaborados antes da P2. Bons estudos!

Profa. Cristina

——————————————————————————–

Questao 1. (1,5 ponto) Em cada caso abaixo, determine se o campo ~F e ou nao conservativo

no domınio indicado. Em caso afirmativo, determine um potencial.

a) (0,5) ~F (x, y) =

(

x

x2 + y2,

y

x2 + y2

)

em R2 − (0, 0).

b) (0,5) ~F (x, y, z) = (y2z cos x + 1)~i + (2yz senx + z2)~j + (y2 senx + 2yz)~k em R3.

c) (0,5) ~F (x, y) = (4x ln(x2 + 1) , 2y) em R2.

Questao 2. (1 ponto) Calcule

a) (0,5) Mostre que o campo ~F (x, y, z) = (2xy3 , 3x2y2 + ey senz , ey cos z) e conservativo e

de um potencial.

b) (0,5) Calcule∫

γ

2xy3 dx + (3x2y2 + ey senz) dy + ey cos z dz

onde γ(t) = (t cos t, t sent, t) para 0 ≤ t ≤ π

2. (Use o item a) )

Questao 3. (1 ponto) O campo

~F (x, y, z) =

(

−y

x2 + 2y2,

x

x2 + 2y2, z

)

em R3 − (0, 0, z), z ∈ R e conservativo? Justifique sua resposta (leia atentamente a teoria

antes de responder).

Page 136: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

!" #$%% & '()*+), -./0102*.3) 0 4250613) 7313 82602931.3 444

"13:3)9, ; & <, =0>0=510 ?0 #@<@

A+0=5B, <C !"# $%&'%( )* +,-, +,.% ,/,01%" -2'23*0&2 .2 % +,*$%

~F 4 %5 &6% +%&.237

8,'08% &% -%*9&0% 0&-0+,-%: )* +,.% ,;3*,'08%" -2'23*0&2 5* $%'2&+0,<:

,( ="#(

~F (x, y) =

(

x

x2 + y2,

y

x2 + y2

)

2* R2 − (0, 0):

/( ="#(

~F (x, y, z) = (y2z cos x + 1)~i + (2yz .2&x + z2)~j + (y2.2&x + 2yz)~k 2* R

3:

+( ="#(

~F (x, y) = (4x ln(x2 + 1) , 2y) 2* R2:

D,)+EB,F

>,/27.2 ?52" .2 % +,*$% 82'%30,< ,$32.2&', 5*, @5&A6% $%'2&+0,<" 2<2 4 +%&.238,'08%:

B,*/4* '2*%. 5* B2%32*, ?52 -0C ?52 .2 % +,*$% 4 +%&.238,'08% )DBEF % G%',+0%&,< 4

&5<%: H..0* .2 % +,*$% '0823 3%',+0%&,< &6% &5<% 2<2 &6% 4 +%&.238,'08%: I,+0<*2&'2 .2 +,<+5<,

% G%',+0%&,< -2 +,-, +,*$% -%. 0'2&. -, ?52.'6% 2 .2 8230;+, ?52 2* +,-, +,.% % G%',+0%&,<

&6% 4 &5<%: J%34* 0..% &6% K,3,&'2 ?52 % +,*$% 4 +%&.238,'08%:

>2&-% ,..0*" $%-27.2 /5.+,3 -032',*2&'2 5* $%'2&+0,< $,3, +,-, +,*$%" 2 +,.% 2.'2 .2L,

2&+%&'3,-%" % +,*$% 4 +%&.238,'08% &% -%*9&0% 2M

∇φ =

(

∂φ

∂x,

∂φ

∂y

)

= ~F

%5

∇φ =

(

∂φ

∂x,

∂φ

∂y,

∂φ

∂z

)

= ~F

,( N5.+,&-% $%3 5*, @5&A6% $%'2&+0,< -2

~F M

∂φ

∂x=

x

x2 + y2

∂φ

∂y=

y

x2 + y2

O&'2K3,&-% , $30*203, 2?5,A6% +%* 32<,A6% , x 2 -2308,&-%7, +%* 32<,A6% , yM

φ(x, y) =1

2ln(x2 + y2) + g(y)

∂φ

∂y=

y

x2 + y2+ g′(y)

P%*$,3,&-% +%* , .2K5&-, 2?5,A6% +Q2K,7.2 , .2K50&'2 +%&+<5.6%

g′(y) = 0 ⇒ g(y) = K

>2&-% ,..0*" '2*%. , @5&A6% $%'2&+0,< φ" 2 % +,*$%

~F 4 +%&.238,'08%M

φ(x, y) =1

2ln(x2 + y2) + K

Page 137: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

!" #$%&'($)*& +&, & ,$%,& -&.,/0& *& 10$, /"2

∂φ

∂x= y2z cos x + 1

∂φ

∂y= 2yz %$)x + z2

∂φ

∂z= y2

%$)x + 2yz

φ(x, y, z) = y2z %$)(x) + x + g(y, z)

∂φ

∂y= 2yz %$)(x) +

∂g(y, z)

∂y

∂g(y, z)

∂y= z2

g(y, z) = yz2 + h(z)

φ(x, y, z) = y2z %$)(x) + x + yz2 + h(z)

∂φ

∂z= y2

%$)(x) + 2yz + h′(z)

h′(z) = 0 ⇒ h(z) = K

3&.0/)0&4

φ(x, y, z) = y2z %$)(x) + x + yz2 + K

+" 5&(/,$)0$4 .$%&'($)*& +&, & ,$%,& -&.,/0& *& 10$, /"2

∂φ

∂x= 4x ln(x2 + 1)

∂φ

∂y= 2y

φ(x, y) = 2(x2 + 1)(

ln(x2 + 1) − 1)

+ g(y)

∂φ

∂y= g′(y)

g′(y) = 2y ⇒ g(y) = y2 + K

φ(x, y) = 2(x2 + 1)(

ln(x2 + 1) − 1)

+ y2 + K

Page 138: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

!"#$%& '( ! "#$%#& '()*+),

(& -./& 0#1%2, 3+, # *(4"#

~F (x, y, z) = (2xy3 , 3x2y2 + ey1,$z , ey cos z) 5 *#$1,26(%76#

, 89 +4 "#%,$*7():

;& -./& '()*+),

γ

2xy3 dx + (3x2y2 + ey1,$z) dy + ey cos z dz

#$8, γ(t) = (t cos t, t 1,$t, t) "(2( 0 ≤ t ≤ π

2: <1, # 7%,4 (& &

)&*!+%&,

(& =( 4,14( >#24( 3+, $( 3+,1%?# ($%,27#2. 1, # *(4"#

~F ("2,1,$%(2 +4( >+$@?# "#%,$*7().

,), 5 *#$1,26(%76#: A$%?# "2#*+2(4#1 φ(x, y, z) %() 3+,

∇φ =

(

∂φ

∂x,

∂φ

∂y,

∂φ

∂z

)

= ~F

B,$8# (1174

∂φ

∂x= 2xy3

∂φ

∂y= 3x2y2 + ey

1,$z

∂φ

∂z= ey cos z

C$%,D2($8# ( "274,72( ,3+(@?# *#4 2,)(@?# ( x , 8,276($8#E( *#4 2,)(@?# ( yF

φ(x, y, z) = x2y3 + g(y, z)

∂φ

∂y= 3x2y2 +

∂g(y, z)

∂y

'#4"(2($8# *#4 ( 1,D+$8( ,3+(@?#

∂g(y, z)

∂y= ey

1,$z ⇒ g(y, z) = ey1,$z + h(z)

=,1%( >#24(. G*(E1, *#4 ( 1,D+7$%, >+$@?# φ. 3+, "#8, 1,2 8,276(8( *#4 2,)(@?# ( zF

φ(x, y, z) = x2y3 + ey1,$z + h(z)

∂φ

∂z= ey cos z + h′(z)

A *#4"(2($8# *#4 ( %,2*,72( ,3+(@?#

h′(z) = 0 ⇒ h(z) = K

H >+$@?# "#%,$*7() "(2( # *(4"#

~F G*( 1,$8#F

φ(x, y, z) = x2y3 + ey1,$z + K

I#2%($%#

~F 5 +4 *(4"# 6,%#27() *#$1,26(%76#:

Page 139: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

!" #$%&' ' ()*+'

~F ('%,$-.)/0.'1 ) 0%/$2-)3 &$ 30%4) 0%&$+$%&$ &' ()*0%4' γ 56$ 302) ',

+'%/', $7/-$*',1 $ +'&$ ,$- ()3(63)&) ('*'8

γ

~F · ~dr = φ (γ(b)) − φ (γ(a))

9$:) 56$ ' .)3'- %) 0%/$2-)3 &$+$%&$ $7(36,0.)*$%/$ &', +'%/', ;%)3 $ 0%0(0)3< =1 &'

$%6%(0)&'1 /$*',8

a = 0

b = π

2

γ(0) = (0 , 0 , 0)

γ(π

2) = (0 , π

2, π

2)

φ (γ(0)) = 0 + K

φ(

γ(π

2))

= eπ

2 + K

#$%&' 56$ ) 0%/$2-)3 &$ 30%4) ;() ,$%&'8

γ

~F · ~dr =(

2 + K)

− (0 + K) = eπ

2

Page 140: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

!"#$%& '( ! "#$%#& ' ()*"#

~F (x, y, z) =

( −y

x2 + 2y2,

x

x2 + 2y2, z

)

+* R3 − (0, 0, z), z ∈ R , (#$-+./)%0/#1 23-%0453+ -3) .+-"#-%) 6+0) )%+$%)*+$%+ ) %+#.0)

)$%+- 7+ .+-"#$7+.&8

)&*!+%&,

9):+;-+ 53+ # .#%)(0#$)6 7# ()*"#

~F , $36#8 <#.,* 0--# $=# >).)$%+ 53+ # ()*"#

, (#$-+./)%0/#8 ?) %+#.0) -):+*#- 53+ -+ # 7#*@$0# 7+

~F A#. -0*"6+-*+$%+ (#$+B# + -+ #

C#%)(0#$)6 A#. $36# DEFG' # ()*"# , (#$-+./)%0/#8 E#%+ 53+ -+ # 7#*@$0# 7+

~F $=# A#.

-0*"6+-*+$%+ (#$+B# $)7) -+ "#7+ )4.*).8 H+I) # 0%+* )& 7) J3+-%=# ! )(0*)8

' 7#*@$0# 7+

~F 7) 53+-%=# K , # R3*+$#- ) .+%) (0, 0, z) 53+ $=# , -0*"6+-*+$%+ (#$+B#8

L"+-). 7# .#%)(0#$)6 -+. $36# ()6(36+& $=# "#7+*#- )4.*). 53+ # ()*"# , #3 $=# (#$-+./)%0/#8

H)*#- ()6(36).

γ

~F · ~dr ").) 3*) (3./) γ (#* (0, 0, 0) ∈ Int(γ)M "#. +B+*"6#8 9+

γ

~F · ~dr 6=0M # ()*"# $=# , (#$-+./)%0/#8 D-(#6N+$7# γ (#*# 3*) +60"-+ $# "6)$# z = 0M (+$%.)7) $)

#.0>+*M #:%+*#-O

γ(t) =(√

2 cos t , -+$t , 0)

, −π 6 t 6 π

γ′(t) =(

−√

2 -+$t , cos t , 0)

DM ()6(36)$7# ) 0$%+>.)6 7+ 60$N)

γ

~F · ~dr =

π

π

~F (γ(t)) · γ′(t) dt

=

π

π

(

− -+$t

2,

√2 cos t

2, 0

)

·(

−√

2 -+$t, cos t, 0)

dt

=

π

π

(√2

2-+$

2t +

√2

2cos2 t

)

dt

=

π

π

√2

2dt

=√

D (#*# ) 0$%+>.)6 7+ 60$N) $=# , $36)M "#7+;-+ 70P+. 53+ # ()*"# $=# , (#$-+./)%0/#8

Page 141: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

MAT 2455 - Calculo Diferencial e Integral para Engenharia III

Trabalho 7 - 1o semestre de 2010

Este trabalho vale nota para compor a media de trabalhos T. As resolucoes dos exercıcios

abaixo devem ser redigidas e entregues ate dia 10 de junho ao monitor no seu horario de

plantao (das 11hs as 13hs) na sala de Monitoria do Bienio (atencao: apenas nesses horario e

local). Nao serao aceitos trabalhos entregues atrasados.

Os Trabalhos sao individuais. Quando houver suspeita de copia os envolvidos serao chama-

dos para esclarecimentos.

Coloque seu nome e numero USP em todas as folhas entregues.

Leia a teoria, veja os exercıcios resolvidos e faca os exercıcios da Lista 3. Bons estudos!

Profa. Cristina

——————————————————————————–

Questao 1. (1,5 ponto) Calcule a massa de parte do hiperboloide x2 + y2 − z2 = 1 com

1 ≤ z ≤ 3 e densidade δ(x, y, z) = z.

Questao 2. (1,5 ponto) Calcule

∫ ∫S

~F . ~NdS onde ~F (x, y, z) = (y, x2, y2) e S e parte do

paraboloide z = 1−x2−y2 limitado pelo cilindro x2 +y2 = 2y, orientada de forma que o campo

de vetores normais ~N satisfaz ~N.~k < 0

Page 142: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

Instituto de Matematica e Estatıstica da USP

MAT2455 - Calculo Diferencial e Integral III para Engenharia

Trabalho 7 - 1o. Semestre de 2010

Questao 1. (1.5 pontos) Calcule a massa de parte do hiperboloide x2 + y2 − z2 = 1 com1 ≤ z ≤ 3 e densidade δ(x, y, z) = z .

Solucao:

A massa da superfıcie em questao e dada por:

M =

∫ ∫

δ dS

Para o calculo da massa, deve-se encontrar uma parametrizacao da superfıcie cuja massasera calculada.

A projecao de x2 + y2 = z2 + 1 para 1 ≤ z ≤ 3 no plano xy e um anel, pois 2 ≤ x2 + y2 ≤ 4.E conveniente utilizar a seguinte parametrizacao:

x =√

1 + v2 cos u

y =√

1 + v2sen u

z = v

onde 0 ≤ u ≤ 2π e 1 ≤ v ≤ 3.Assim:

X(u, v) = (√

1 + v2 cos u,√

1 + v2sen u, v)

Xu = (−√

1 + v2sen u,√

1 + v2 cos u, 0)

Xv = (v√

1 + v2cos u,

v√1 + v2

sen u, v)

||Xu × Xv|| =√

1 + 2v2

O domınio de integracao fica:

D = (u, v)|0 ≤ u ≤ 2π; 1 ≤ v ≤ 3

Dessa forma o calculo da massa fica dado por:

1

Page 143: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

M =

0

3

1

δ(X(u, v)) · ||Xu × Xv|| dv du

=

0

3

1

v.√

1 + 2v2 dv du

= 2π

3

1

v.√

1 + 2v2

Faz-se a mudanca de variavel w = 1 + 2v2, dt = 4vdv e 3 ≤ w ≤ 19. O calculo da integral fica

M =π

2

19

3

w1

2 dw

3w

3

2

19

3

3.(19

√19 − 3

√3)

Questao 2. (1.5 pontos) Calcule

∫ ∫

~F . ~N dS onde ~F (x, y, z) = (y, x2, y2) e S e parte do

paraboloide z = 1−x2−y2 limitado pelo cilindro x2 +y2 = 2y, orientada de forma que o campode vetores normais ~N satisfaz ~N.~k < 0.

Solucao:

Parametrizando a superfıcie:

x = u

y = v

z = 1 − u2 − v2

X(u, v) = (u, v, 1 − u2 − v2)

Xu = (1, 0,−2u)

Xv = (0, 1,−2v)

Xu × Xv = (2u, 2v, 1)

2

Page 144: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

O calculo da integral e dado por:∫ ∫

~F . ~N dS =

∫ ∫

Duv

(v, u2, v2) · (2u, 2v, 1) du dv

=

∫ ∫

Duv

2uv + 2u2v + v2 du dv

Faz-se a seguinte mudanca de coordenadas:

x = r. cos θ

y = r.sen θ + 1J = r

E o domınio de integracao fica dado por:

D = (r, θ)|0 ≤ r ≤ 1; 0 ≤ θ ≤ 2πSubstituindo na integral de superficie, vem:

∫ ∫

Duv

2uv + 2u2v + v2 du dv

=

0

1

0

2r3 cos θ.sen θ+2.r2. cos θ+2.r4. cos2 θsen θ+2.r3. cos2 θ+r3.sen 2θ+2r2sen θ+r dr dθ

=

0

sen 2θ

4+

2 cos θ

3+

1 cos2 θsen θ

5+

cos2 θ

2+

sen 2θ

4+

2.sen θ

3+

1

2dθ

2+

π

4+ π =

4Deve-se ainda verificar o sentido do vetor normal utilizado. Como Xu × Xv = (2u, 2v, 1), e

possıvel notar que (Xu × Xv).~k > 0, que e contraria a orientacao dada no exercıcio. Com isso:∫ ∫

~F . ~N dS =−7π

4

3

Page 145: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

MAT 2455 - Calculo Diferencial e Integral para Engenharia III

Trabalho 8 - 1o semestre de 2010

Este trabalho vale nota para compor a media de trabalhos T. As resolucoes dos exercıcios

abaixo devem ser redigidas e entregues ate dia 21 de junho ao monitor no seu horario de

plantao (das 11hs as 13hs) na sala de Monitoria do Bienio ou na sala 109A do IME das 15hs

as 17hs. Nao serao aceitos trabalhos entregues atrasados.

Os Trabalhos sao individuais. Quando houver suspeita de copia os envolvidos serao chama-

dos para esclarecimentos.

A resolucao das questoes do Trabalho 8 deverao ser feitas nas folhas com as

questoes. Tire uma copia e resolva as questoes nas proprias folhas. Coloque seu

nome e numero USP em todas as folhas entregues.

Antes de iniciar o Trabalho 8, leia atentamente a teoria, veja os exercıcios resolvidos (do

material e de provas antigas) e faca os exercıcios da Lista 3. Bons estudos!

Profa. Cristina

Page 146: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

MAT 2455 - Calculo Diferencial e Integral para Engenharia III

Trabalho 8 - 1o semestre de 2010

Nome: No USP:

Justifique todos os calculos

Questao 1. (2 pontos) Calcule

∫ ∫

S

~F . ~NdS onde

~F (x, y, z) = (x + arctan(z2) , ex + sen(z) , cos(x2 + y2))

e S e parte do paraboloide z = x2 + y2− 1 limitado pelo plano z = 1. (preste atencao no

enunciado: a superfıcie nao e fechada)

Page 147: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

Nome: No USP:

Questao 2. (2 pontos) Calcule

γ

~F .d~r onde

~F (x, y, z) =

(

−y

x2 + y2,

x

x2 + y2,

z6

2 + z2

)

+ (ln(1 + x4) , ey6

, y)

e a curva γ e a interseccao do cilindro x2 + y2 = 4 e a superfıcie z = y2 + 1 orientada de modo

que a projecao no plano 0xy e percorrida no sentido anti-horario.

Page 148: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

!"#$%% & '()*+), -./0102*.3) 0 4250613) 7313 82602931.3 444

"13:3)9, ; & <,= >0?0@510 A0 #B<B

C+0@5D, <= ! "#$%#&' ()*+,*-

∫ ∫

S

~F . ~NdS #$.-

~F (x, y, z) = (x + arctan(z2) , ex + sen (z) , cos (x2 + y2))

- / 0 ) ")1%- .# ")1)2#*34.- z = x2 + y2 − 1 *454%).# "-*# "*)$# z = 16 78/9 :.#%)$.#

~N.~k < 0 +#5#

#14-$%);<# .- /6

>,)+ED,F

: &,"-1=>+4- $<# 0 =-+?).) - -$%<# $<# 0 2#1.# .- ,5 &3*4.#6 @&+#*?-5#& ,5) &,"-1=>+4- S1A B,- 0

# .4&+# $# "*)$# z = 1 *454%).# "-*# ")1)2#*34.- z = x2 + y2 − 16 /-C) R ) 1-D4<# 4$%-1$) ) S - S16

E-5#& B,- S1 "#.- &-1 .-&+14%) "#19

σ1(x, y, z) = (x , y , 1), (x, y) ∈ D #$.- D =

(x, y) ∈ R2 / x2 + y2 ≤ 2

: $#15)* .-&%) &,"-1=>+4- 0 # F-%#1

~k9 ~N1 = (0, 0, 1)6G-*# %-#1-5) .- H),&&A +#5 $#15)* -I%-1$)A %-5#&

∫ ∫

S

~F . ~N dS +

∫ ∫

S1

~F . ~N dS1 =

∫ ∫ ∫

R

div ~F (x, y, z) dx dy dz.

J' (K*+,*# .-

∫ ∫

S1

~F . ~N dS1 9

E-5#& B,-9

~F (σ1) = (x + arctan(1) , ex + sen 1 , cos (x2 + y2))~N = (0, 0, 1)

=⇒ ~F (σ1). ~N = cos(x2 + y2)

:&&459

∫ ∫

S1

~F . ~N dS1 =

∫ ∫

D

~F (σ1). ~N dx dy =

∫ ∫

D

cos(x2 + y2) dx dy

L)MN&- ) 5,.)$;) ")1) +##1.-$).)& "#*)1-&9

x = ρ · cos θy = ρ · sen θ|Jac(ρ, θ)| = ρ

@ # .#5>$4# .- 4$%-D1);<# -5 +##1.-$).)& "#*)1-& O+)9

Dρ,θ,z =

0 ≤ θ ≤ 2π - 0 ≤ ρ ≤√

2

∫ ∫

S1

~F . ~N dS1 =

2∫

0

2π∫

0

cos(ρ2) · ρ dθ dρ = 2π

2∫

0

cos(ρ2) · ρ dρ

Page 149: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

!"#$%& ! '(%!$)! %# *!+,-*#,./

ρ2 = uρ · dρ = 1

2· du

=⇒

ρ = 0 ⇒ u = 0

ρ =√

2 ⇒ u = 2

∫ ∫

S1

~F . ~N dS1 = 2π

2

0

(

1

2· cos u

)

du = π (sen u)

u=2

u=0

= π · sen (2)

01 2-34(3& %#

∫ ∫ ∫

R

div ~F (x, y, z) dx dy dz /

5!6#'&. 7(# div ~F = 18 #$9:&/

∫ ∫ ∫

R

div ~F (x, y, z) dx dy dz

∫ ∫ ∫

R

1 dx dy dz

!";.# ! '(%!$)! <!+! 4&&+%#$!%!. 4,3=$%+,4!./

x = ρ · cos θy = ρ · sen θz = z|Jac(ρ, θ, z)| = ρ

> & %&'=$,& %# ,$9#?+!):& #' 4&&+%#$!%!. 4,3=$%+,4!. @4!/

Rρ,θ,z =

0 ≤ θ ≤ 2π , −1 ≤ z ≤ 1 # 0 ≤ ρ ≤√

z + 1

∫ ∫ ∫

R

div ~F (x, y, z) dx dy dz =

1∫

−1

z+1∫

0

2π∫

0

1 · ρ dθ dρ dz

=

1∫

−1

z+1∫

0

2π · ρ dρ dz = 2π

1∫

−1

(

1

2· ρ2

)

ρ=√

z+1

ρ=0

dz

= π

1∫

−1

(z + 1) dz = π

(

1

2· z2 + z

)

z=1

z=−1

= π

(

1

2+ 1 − 1

2− (−1)

)

= 2π

A&?& 9#'&. 7(#/

∫ ∫

S

~F . ~N dS =

∫ ∫ ∫

R

div ~F (x, y, z) dx dy dz −∫ ∫

S1

~F . ~N dS1 = π(2 − sen 2)

Page 150: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

!"#$%& '( ! "#$%#&' ()*+,*-

γ

~F .d~r #$.-

~F (x, y, z) =

( −y

x2 + y2,

x

x2 + y2,

z6

2 + z2

)

+ (ln(1 + x4) , ey6

, y)

- ) +,/0) γ 1 ) 2$%-/&-+34# .# +2*2$./# x2 + y2 = 4 - ) &,"-/56+2- z = y2 + 1 #/2-$%).) .- 7#.# 8,- )

"/#9-34# $# "*)$# 0xy 1 "-/+#//2.) $# &-$%2.# )$%2:;#/</2#=

)&*!+%&, -&>#3#'

?)7#& -&%,.)/ &-")/).)7-$%- #& +)7"#&

~F1(x, y, z) =

( −y

x2 + y2,

x

x2 + y2,

z6

2 + z2

)

~F2(x, y, z) = (ln(1 + x4) , ey6

, y)

@)/) +)*+,*)/ ) 2$%-A/)* ,&):&- # %-#/-7) .- B%#C-&=

D#7- S ) &,"-/56+2- .# +2*2$./# x2 + y2 = 1 +#7 0 ≤ z ≤ y2 + 1= E&%) &,"-/56+2- -&%< +#$%2.) $#

.#76$2# .-&&- +)7"# 8,- 1 R3 −(0, 0, z)= F >#/.# .- S 1 +#7"#&%# "#/ .,)& +,/0)&G γ - αH #$.- α1 ) +2/+,$5-/I$+2) x2 + y2 = 4 $# "*)$# z = 0H #/2-$%).) $# &-$%2.# )$%2:;#/</2#=

@)/) # +)7"#

~F1 %-7#&

α

~F1.d~r +

−γ

~F1.d~r =

∫∫

S

Rot( ~F1). ~NdS

#$.- ) $#/7)* )"#$%) ")/) 5#/) .# +2*2$./#=

D-/-7#&

γ

~F1.d~r =

α

~F1.d~r = 2π

.-0-:&- +)*+,*)/ ) J*%27) 2$%-A/)*'

K# +)&# .# +)7"#

~F2 "#.-:&- -&+#*;-/ ) &,"-/56+2- S1 8,- 1 ")/%- .) z = y2 + 1 *272%).) "-*#

+2*2$./# x2 + y2 = 4H "#2& -*) -&%< +#$%2.) .# .#76$2# .# +)7"# 8,- 1 # R3= E$%4#

γ

~F2.d~r =

∫∫

S1

Rot( ~F2). ~NdS

#$.- ) $#/7)* )"#$%) ")/) L+27)M=

N7) ")/)7-%/2O)34# .- S1 1 x = u, y = v, z = v2 + 1 #$.- (u, v) ∈ D = (u, v) : u2 + v2 ≤ 4= P)6

∫∫

S1

Rot( ~F2). ~NdS =

∫∫

D

(1, 0, 0).(0,−2v, 1)dudv = 0

@#/%)$%#

γ

~F .d~r =

γ

~F1.d~r = 2π

Page 151: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

MAT 2455 - Calculo Diferencial e Integral para Engenharia III

Trabalho 9 - 1o semestre de 2010

Este trabalho vale nota para compor a media de trabalhos T e vale 4,5 pontos. Veja no

Forum de Notıcias como a media T sera calculada.

As resolucoes dos exercıcios abaixo devem ser redigidas e entregues ate dia 30 de junho

ao monitor no seu horario de plantao (das 11hs as 13hs) na sala de Monitoria do Bienio. Nao

serao aceitos trabalhos entregues atrasados.

A resolucao das questoes do Trabalho 9 deverao ser feitas nas folhas com as

questoes. Tire uma copia e resolva as questoes nas proprias folhas. Coloque seu

nome e numero USP em todas as folhas entregues.

Os Trabalhos sao individuais. Quando houver suspeita de copia os envolvidos serao chama-

dos para esclarecimentos.

Profa. Cristina

Page 152: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

MAT 2455 - Calculo Diferencial e Integral para Engenharia III

Trabalho 9 - 1o semestre de 2010

Nome: No USP:

Justifique todos os calculos

Questao 1. (2,5 pontos) Calcule

∫ ∫S

x dy∧dz+z2 ln(z8 +1) dz∧dx+z dx∧dy onde S e parte

da superfıcie z = 1 − y2 limitada pelos planos x = 3, x = 0 e z = 0, orientada com ~N.~k ≥ 0.

(preste atencao no enunciado: a superfıcie nao e fechada)

Page 153: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

Nome: No USP:

Questao 2. (2 pontos) Calcule

∫γ

1dx + xdy + ez3

dz

x2 + y2sendo γ a interseccao de z = x2 + 4y2

e z = 4 − 4x2 − y2, orientada de modo que a projecao no plano 0xy e percorrida no sentido

anti-horario.

Page 154: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

!"#$%

&

' #())

* )+(+,,-%

!"

# $

%"& $ $ $ '$ ($ )$* $

$ +

,

$ + $

- $ $

, $ $

* +

, +

./0

0

.

.

/&0 123 . 4"5/ . 1+2

)

(

,36"789&:;1"&$<;"0 2"

* =$ "780 >"

* $ "78&

* ?$ "78"4"

*;"78 ;

63/"2">5

&

& 1+122

2929

29

2929 $<$

2

222

) (

' $

' /%4*@< /&0 A0"234" < ;5@</B05"70@ < @?$

* 1+/%4 5C@5C5@

5 5C5@

55@

5@

5 5@

5$

)

55

(5 5

'5@5@5

55

$5@@5@

5 @5 @@

D" 82"E"41C"F5 *G3"*"# D53"H5"4,>5&56 <H<B5<<*I"<*IJIJ

Page 155: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

Table of Derivatives

Throughout this table, a and b are constants, independent of x.

F (x) F ′(x) = dFdx

af(x) + bg(x) af ′(x) + bg′(x)

f(x) + g(x) f ′(x) + g′(x)

f(x) − g(x) f ′(x) − g′(x)

af(x) af ′(x)

f(x)g(x) f ′(x)g(x) + f(x)g′(x)

f(x)g(x)h(x) f ′(x)g(x)h(x) + f(x)g′(x)h(x) + f(x)g(x)h′(x)f(x)g(x)

f ′(x)g(x)−f(x)g′(x)g(x)2

1g(x)

− g′(x)g(x)2

f(

g(x))

f ′(

g(x))

g′(x)

1 0

a 0

xa axa−1

g(x)a ag(x)a−1g′(x)

sin x cos x

sin g(x) g′(x) cos g(x)

cos x − sin x

cos g(x) −g′(x) sin g(x)

tanx sec2 x

csc x − csc x cotx

sec x sec x tanx

cotx − csc2 x

ex ex

eg(x) g′(x)eg(x)

ax (lna) ax

lnx 1x

ln g(x) g′(x)g(x)

loga x 1x ln a

arcsin x 1√1−x2

arcsin g(x) g′(x)√1−g(x)2

arccos x − 1√1−x2

arctanx 11+x2

arctan g(x) g′(x)1+g(x)2

arccsc x − 1x√

1−x2

arcsec x 1x√

1−x2

arccot x − 11+x2

Page 156: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

Table of Indefinite Integrals

Throughout this table, a and b are given constants, independent of x

and C is an arbitrary constant.

f(x) F (x) =∫

f(x) dx

af(x) + bg(x) a∫

f(x) dx + b∫

g(x) dx + C

f(x) + g(x)∫

f(x) dx +∫

g(x) dx + C

f(x) − g(x)∫

f(x) dx −∫

g(x) dx + C

af(x) a∫

f(x) dx + C

u(x)v′(x) u(x)v(x) −∫

u′(x)v(x) dx + C

f(

y(x))

y′(x) F(

y(x))

where F (y) =∫

f(y) dy

1 x + C

a ax + C

xa xa+1

a+1 + C if a 6= −11x

ln |x| + C

g(x)ag′(x) g(x)a+1

a+1 + C if a 6= −1

sin x − cos x + C

g′(x) sin g(x) − cos g(x) + C

cos x sin x + C

tanx ln | sec x| + C

csc x ln | csc x − cot x| + C

sec x ln | sec x + tanx| + C

cot x ln | sinx| + C

sec2 x tanx + C

csc2 x − cotx + C

sec x tanx sec x + C

csc x cotx − csc x + C

ex ex + C

eg(x)g′(x) eg(x) + C

eax 1a

eax + C

ax 1ln a

ax + C

lnx x lnx − x + C

1√1−x2

arcsin x + C

g′(x)√1−g(x)2

arcsin g(x) + C

1√a2−x2

arcsin xa

+ C

11+x2 arctan x + C

g′(x)1+g(x)2 arctan g(x) + C

1a2+x2

1a

arctan xa

+ C1

x√

1−x2arcsec x + C

Page 157: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

Properties of Exponentials

In the following, x and y are arbitrary real numbers, a and b are arbitrary constants that are

strictly bigger than zero and e is 2.7182818284, to ten decimal places.

1) e0 = 1, a0 = 1

2) ex+y = exey, ax+y = axay

3) e−x = 1ex

, a−x = 1ax

4)(

ex)y

= exy ,(

ax)y

= axy

5) ddx

ex = ex, ddx

eg(x) = g′(x)eg(x), ddx

ax = (lna) ax

6)∫

ex dx = ex + C,∫

eax dx = 1aeax + C if a 6= 0

7) limx→∞

ex = ∞, limx→−∞

ex = 0

limx→∞

ax = ∞, limx→−∞

ax = 0 if a > 1

limx→∞

ax = 0, limx→−∞

ax = ∞ if 0 < a < 1

8) The graph of 2x is given below. The graph of ax, for any a > 1, is similar.

x

y

1 2 3−1−2−3

1

2

4

6

y = 2x

Page 158: MAT2455 - Apostila Extra-Oficial - Apostila Da Prof. Cristina Cerri

Properties of Logarithms

In the following, x and y are arbitrary real numbers that are strictly bigger than 0, a is

an arbitrary constant that is strictly bigger than one and e is 2.7182818284, to ten decimal

places.

1) eln x = x, aloga

x = x, loge x = lnx, loga x = ln xln a

2) loga

(

ax)

= x, ln(

ex)

= x

ln 1 = 0, loga 1 = 0

ln e = 1, loga a = 1

3) ln(xy) = lnx + ln y, loga(xy) = loga x + loga y

4) ln(

xy

)

= lnx − ln y, loga

(

xy

)

= loga x − loga y

ln(

1y

)

= − ln y, loga

(

1y

)

= − loga y,

5) ln(xy) = y lnx, loga(xy) = y loga x

6) ddx

lnx = 1x, d

dxln(g(x)) = g′(x)

g(x) , ddx

loga x = 1x ln a

7)∫

1xdx = ln |x| + C,

lnx dx = x lnx − x + C

8) limx→∞

lnx = ∞, limx→0

lnx = −∞lim

x→∞loga x = ∞, lim

x→0loga x = −∞

9) The graph of lnx is given below. The graph of loga x, for any a > 1, is similar.

x

y

1 2 3 4

0.5

1.0

1.5

−0.5

−1.0

−1.5

y = lnx