43
Cemento El cemento es un conglomerante formado a partir de una mezcla de caliza y arcilla calcinadas y posteriormente molidas, que tiene la propiedad de endurecerse al contacto con el agua. Hasta este punto la molienda entre estas rocas es llamada clinker, esta se convierte en cemento cuando se le agrega yeso, este le da la propiedad a esta mezcla para que pueda fraguar y endurecerse. Mezclado con agregados pétreos (grava y arena ) y agua, crea una mezcla uniforme, maleable y plástica que fragua y se endurece, adquiriendo consistencia pétrea, denominada hormigón (en España, parte de Suramérica y el Caribe hispano) o concreto (en México, Centroamerica y parte de Suramérica). Su uso está muy generalizado en construcción e ingeniería civil . Índice [ocultar ] 1 Historia 2 Tipos de cemento o 2.1 El cemento portland 2.1.1 Cementos portland especiales 2.1.1.1 Portland férrico 2.1.1.2 Cementos blancos o 2.2 Cementos de mezclas 2.2.1 Cemento puzolánico 2.2.2 Cemento siderúrgico o 2.3 Cemento de fraguado rápido o 2.4 Cemento aluminoso 2.4.1 Reacciones de hidratación o 2.5 Propiedades generales del cemento o 2.6 Propiedades físicas del cemento de aluminato de calcio o 2.7 Aplicaciones o 2.8 Usos comunes del cemento de aluminato de calcio 3 Proceso de fabricación 4 Producción de cemento en España 5 Véase también 6 Referencias 7 Enlaces externos

materiales definiciones

Embed Size (px)

DESCRIPTION

materiales definiciones

Citation preview

Page 1: materiales definiciones

CementoEl cemento es un conglomerante formado a partir de una mezcla de caliza y arcilla calcinadas y posteriormente molidas, que tiene la propiedad de endurecerse al contacto con el agua. Hasta este punto la molienda entre estas rocas es llamada clinker, esta se convierte en cemento cuando se le agrega yeso, este le da la propiedad a esta mezcla para que pueda fraguar y endurecerse. Mezclado con agregados pétreos (grava y arena) y agua, crea una mezcla uniforme, maleable y plástica que fragua y se endurece, adquiriendo consistencia pétrea, denominada hormigón (en España, parte de Suramérica y el Caribe hispano) o concreto (en México, Centroamerica y parte de Suramérica). Su uso está muy generalizado en construcción e ingeniería civil.

Índice  [ocultar] 

1 Historia

2 Tipos de cemento

o 2.1 El cemento portland

2.1.1 Cementos portland especiales

2.1.1.1 Portland férrico

2.1.1.2 Cementos blancos

o 2.2 Cementos de mezclas

2.2.1 Cemento puzolánico

2.2.2 Cemento siderúrgico

o 2.3 Cemento de fraguado rápido

o 2.4 Cemento aluminoso

2.4.1 Reacciones de hidratación

o 2.5 Propiedades generales del cemento

o 2.6 Propiedades físicas del cemento de aluminato de calcio

o 2.7 Aplicaciones

o 2.8 Usos comunes del cemento de aluminato de calcio

3 Proceso de fabricación

4 Producción de cemento en España

5 Véase también

6 Referencias

7 Enlaces externos

Historia[editar]

Desde la antigüedad se emplearon pastas y morteros elaborados con arcilla o greda, yeso y cal para unir mampuestos en las edificaciones. El cemento se empezó a utilizar en la Antigua Grecia utilizando tobas volcánicas extraídas de la isla de Santorini, los primeros cementos naturales. En el siglo I a. C. se empezó a utilizar en la Antigua Roma, un cemento natural, que ha resistido la inmersión en agua marina por

Page 2: materiales definiciones

milenios, los cementos Portland no duran más de los 60 años en esas condiciones; formaban parte de su composición cenizas volcánicas obtenidas en Pozzuoli, cerca del Vesubio. La bóveda del Panteón es un ejemplo de ello. En el siglo XVIII John Smeaton construye la cimentaciónde un faro en el acantilado de Eddystone, en la costa Cornwall, empleando un mortero de cal calcinada. El siglo XIX, Joseph Aspdin y James Parker patentaron en 1824 elPortland Cement, denominado así por su color gris verdoso oscuro similar a la piedra de Portland. Isaac Johnson, en 1845, obtiene el prototipo del cemento moderno, con una mezcla de caliza y arcilla calcinada a alta temperatura. En el siglo XX surge el auge de la industria del cemento, debido a los experimentos de los químicos franceses Vicat y Le Chatelier y el alemán Michaélis, que logran cemento de calidad homogénea; la invención del horno rotatorio para calcinación y el molino tubular y los métodos de transportar hormigón fresco ideados por Juergen Heinrich Magens que patenta entre 1903 y 1907.

Véase también: Historia del hormigón

Tipos de cemento[editar]

Se pueden establecer dos tipos básicos de cementos:

1. de origen arcilloso: obtenidos a partir de arcilla y piedra caliza en proporción 1

a 4 aproximadamente;

2. de origen puzolánico: la puzolana del cemento puede ser de origen orgánico o

volcánico

elemento, diferentes por su composición, por sus propiedades de resistencia y durabilidad, y por lo tanto por sus destinos y usos.

Desde el punto de vista químico se trata en general de una mezcla de silicatos y aluminatos de calcio, obtenidos a través del cocido de calcáreo, arcilla y arena. El material obtenido, molido muy finamente, una vez que se mezcla con agua se hidrata y solidifica progresivamente. Puesto que la composición química de los cementos es compleja, se utilizan terminologías específicas para definir las composiciones.

El cemento portland[editar]Artículo principal: Cemento Portland

El poso de cemento más utilizado como aglomerante para la preparación del hormigón es el cemento portland, producto que se obtiene por la pulverización del clinker portlandcon la adición de una o más formas de yeso (sulfato de calcio). Se admite la adición de otros productos siempre que su inclusión no afecte las propiedades del cemento resultante. Todos los productos adicionales deben ser pulverizados conjuntamente con el clinker. Cuando el cemento portland es mezclado con el agua, se obtiene un producto de características plásticas con propiedades adherentes que solidifica en algunas horas y endurece progresivamente durante un

Page 3: materiales definiciones

período de varias semanas hasta adquirir suresistencia característica. El proceso de solidificación se debe a un proceso químico llamado hidratación mineral.

Con el agregado de materiales particulares al cemento (calcáreo o cal) se obtiene el cemento plástico, que fragua más rápidamente y es más fácilmente trabajable. Este material es usado en particular para el revestimiento externo de edificios.

NormativaLa calidad del cemento portland deberá estar de acuerdo con la norma ASTM C 150. En Europa debe estar de acuerdo con la norma EN 197-1. En España los cementos vienen regulados por la Instrucción para recepción de cementos RC-08, aprobada por el Real Decreto 956/2008 de 6 de junio.

Cementos portland especiales[editar]Los cementos portland especiales son los cementos que se obtienen de la misma forma que el portland, pero que tienen características diferentes a causa de variaciones en el porcentaje de los componentes que lo forman.

Portland férrico[editar]

Imagen al microscopio del cemento portland férrico.

El portland férrico está caracterizado por un módulo de fundentes de 0,64. Esto significa que este cemento es muy rico en hierro. En efecto se obtiene introduciendo cenizas de pirita o minerales de hierro en polvo. Este tipo de composición comporta por lo tanto, además de una mayor presencia de Fe2O3(oxido ferroso), una menor presencia de 3CaOAl2O3 cuya hidratación es la que desarrolla más calor. Por este motivo estos cementos son particularmente apropiados para ser utilizados en climas cálidos. Los mejores cementos férricos son los que tienen un módulo calcáreo bajo, en efecto estos contienen una menor cantidad de 3CaOSiO2, cuya hidratación produce la mayor cantidad de cal libre (Ca(OH)2). Puesto que la cal libre es el componente mayormente atacable por las aguas agresivas, estos cementos, conteniendo una menor cantidad, son más resistentes a las aguas agresivas que el plástico.

Cementos blancos[editar]Contrariamente a los cementos férricos, los cementos blancos tienen un módulo de fundentes muy alto, aproximadamente 10. Estos contienen por lo tanto un porcentaje bajísimo de Fe2O3. EI color blanco es debido a la falta del hierro que le da una tonalidad grisácea al Portland normal y un gris más oscuro al cemento ferrico. La reducción del Fe2O3 es compensada con el agregado de fluorita (CaF2) y decriolita (Na3AlF6), necesarios en la fase de fabricación en el horno.para bajar la calidad del tipo de cemento que hoy en día hay 4: que son tipo I 52,5, tipo II 52,5, tipo II 42,5 y tipo II 32,5; También llamado pavi) se le suele añadir una cantidad extra de caliza que se le llama clinkerita para rebajar el tipo, ya que normalmente el clinker molido con yeso sería tipo I

Cementos de mezclas[editar]

Page 4: materiales definiciones

Los cementos de mezclas se obtienen agregando al cemento Portland normal otros componentes como la puzolana. El agregado de estos componentes le da a estos cementos nuevas características que lo diferencian del Portland normal.

Cemento puzolánico[editar]Se denomina puzolana a una fina ceniza volcánica que se extiende principalmente en la región del Lazio y la Campania, su nombre deriva de la localidad de Pozzuoli, en las proximidades de Nápoles, en las faldas del Vesubio. Posteriormente se ha generalizado a las cenizas volcánicas en otros lugares. Ya Vitruvio describía cuatro tipos de puzolana: negra, blanca, gris y roja.

Mezclada con cal (en la relación de 2 a 1) se comporta como el cemento puzolánico, y permite la preparación de una buena mezcla en grado de fraguar incluso bajo agua.

Esta propiedad permite el empleo innovador del hormigón, como ya habían entendido los romanos: El antiguo puerto de Cosa (puerto) fue construido con puzolana mezclada con cal apenas antes de su uso y colada bajo agua, probablemente utilizando un tubo, para depositarla en el fondo sin que se diluya en el agua de mar. Los tres muelles son visibles todavía, con la parte sumergida en buenas condiciones después de 2100 años.

La puzolana es una piedra de naturaleza ácida, muy reactiva, al ser muy porosa y puede obtenerse a bajo precio. Un cemento puzolánico contiene aproximadamente:

55-70 % de clinker Portland

30-45 % de puzolana

2-4 % de yeso

Puesto que la puzolana se combina con la cal (Ca(OH)2), se tendrá una menor cantidad de esta última. Pero justamente porque la cal es el componente que es atacado por lasaguas agresivas, el cemento puzolánico será más resistente al ataque de éstas. Por otro lado, como el 3CaOAl2O3 está presente solamente en el componente constituido por el clinker Portland, la colada de cemento puzolánico desarrollará un menor calor de reacción durante el fraguado. Este cemento es por lo tanto adecuado para ser usado en climas particularmente calurosos o para coladas de grandes dimensiones.

Se usa principalmente en elementos en las que se necesita alta impermeabilidad y durabilidad.

Cemento siderúrgico[editar]La puzolana ha sido sustituida en muchos casos por la ceniza de carbón proveniente de las centrales termoeléctricas, escoria de fundiciones o residuos obtenidos calentando elcuarzo. Estos componentes son introducidos entre el 35 hasta el 80 %. El porcentaje de estos materiales puede ser particularmente elevado, siendo que se origina a partir de silicatos, es un material potencialmente hidráulico. Ésta debe sin embargo ser activada en un ambiente alcalino, es decir en presencia de iones OH-. Es por este motivo que debe estar presente por lo menos un 20 % de cemento Portland normal. Por los mismos motivos que el cemento puzolánico, el cemento siderúrgico tiene mala resistencia a las aguas agresivas y desarrolla más calor durante el fraguado. Otra característica de estos cementos es su elevada alcalinidad natural, que lo rinde particularmente resistente a la corrosión atmosférica causada por los sulfatos.

Tiene alta resistencia química, de ácidos y sulfatos, y una alta temperatura al fraguar.

Cemento de fraguado rápido[editar]El cemento de fraguado rápido, también conocido como "cemento romano ó prompt natural", se caracteriza por iniciar el fraguado a los pocos minutos de su preparación

Page 5: materiales definiciones

con agua. Se produce en forma similar al cemento Portland, pero con el horno a una temperatura menor (1.000 a 1.200 °C).1 Es apropiado para trabajos menores, de fijaciones y reparaciones, no es apropiado para grandes obras porque no se dispondría del tiempo para efectuar una buena aplicación. Aunque se puede iniciar el fraguado controlado mediante retardantes naturales (E-330) como el ácido cítrico, pero aun así si inicia el fraguado aproximadamente a los 15 minutos (a 20 °C). La ventaja es que al pasar aproximadamente 180 minutos de iniciado del fraguado, se consigue una resistencia muy alta a la compresión (entre 8 a 10 MPa), por lo que se obtiene gran prestación para trabajos de intervención rápida y definitivos. Hay cementos rápidos que pasados 10 años, obtienen una resistencia a la compresión superior a la de algunos hormigones armados (mayor a 60 MPa).

Cemento aluminoso[editar]Artículos principales: Cemento aluminoso y Aluminosis.

El cemento aluminoso se produce principalmente a partir de la bauxita con impurezas de óxido de hierro (Fe2O3), óxido de titanio (TiO2) y óxido de silicio (SiO2). Adicionalmente se agrega óxido de calcio o bien carbonato de calcio. El cemento aluminoso también recibe el nombre de «cemento fundido», pues la temperatura del horno alcanza hasta los 1.600 °C, con lo que se alcanza la fusión de los componentes. El cemento fundido es colado en moldes para formar lingotes que serán enfriados y finalmente molidos para obtener el producto final.

El cemento aluminoso tiene la siguiente composición de óxidos:

35-40 % óxido de calcio

40-50 % óxido de aluminio

5 % óxido de silicio

5-10 % óxido de hierro

1 % óxido de titanio

Su composición completa es:

60-70 % CaOAl2O3

10-15 % 2CaOSiO2

4CaOAl2O3Fe2O3

2CaOAl2O3SiO2

Por lo que se refiere al óxido de silicio, su presencia como impureza tiene que ser menor al 6 %, porque el componente al que da origen, es decir el (2CaOAl2O3SiO2) tiene pocas propiedades hidrófilas (poca absorción de agua).

Reacciones de hidratación[editar]CaOAl2O3+10H2O → CaOAl2O310H2O (cristales hexagonales)2(CaOAl2O3)+11H2O → 2CaOAl2O38H2O + Al(OH)3 (cristales + gel)2(2CaOSiO2)+ (x+1)H2O → 3CaO2SiO2xH2O + Ca(0H)2 (cristales + gel)

Mientras el cemento Portland es un cemento de naturaleza básica, gracias a la presencia de cal Ca(OH)2, el cemento aluminoso es de naturaleza sustancialmente neutra. La presencia del hidróxido de aluminio Al(OH)3, que en este caso se comporta como ácido, provocando la neutralización de los dos componentes y dando como resultado un cemento neutro.

El cemento aluminoso debe utilizarse en climas fríos, con temperaturas inferiores a los 30 °C. En efecto, si la temperatura fuera superior, la segunda reacción de hidratación

Page 6: materiales definiciones

cambiaría y se tendría la formación de 3CaOAl2O36H2O (cristales cúbicos) y una mayor producción de Al(OH)3, lo que llevaría a un aumento del volumen y podría causar fisuras.

Propiedades generales del cemento[editar]

Buena resistencia al ataque químico.

Resistencia a temperaturas elevadas. Refractario.

Resistencia inicial elevada que disminuye con el tiempo.

Se ha de evitar el uso de armaduras. Con el tiempo aumenta la porosidad.

Uso apropiado para bajas temperaturas por ser muy exotérmico.

Está prohibido el uso de cemento aluminoso en hormigón pretensado. La vida útil de las estructuras de hormigón armado es más corta.

El fenómeno de conversión (aumento de la porosidad y caída de la resistencia) puede tardar en aparecer en condiciones de temperatura y humedad baja.

El proyectista debe considerar como valor de cálculo, no la resistencia máxima sino, el valor residual, después de la conversión, y no será mayor de 40 N/mm2.

Se recomienda relaciones A/C ≤ 0,4, alta cantidad de cemento y aumentar los recubrimientos (debido al pH más bajo).

Propiedades físicas del cemento de aluminato de calcio[editar]

Fraguado: Normal 2-3 horas.

Endurecimiento: muy rápido. En 6-7 horas tiene el 80 % de la resistencia.

Estabilidad de volumen: No expansivo.

Calor de hidratación: muy exotérmico.

Aplicaciones[editar]El cemento de aluminato de calcio resulta muy adecuado para:

Hormigón refractario.

Reparaciones rápidas de urgencia.

Basamentos y bancadas de carácter temporal.

Cuando su uso sea justificable, se puede utilizar en:

Obras y elementos prefabricados, de hormigón en masa o hormigón no estructural.

Determinados casos de cimentaciones de hormigón en masa.

Hormigón proyectado.

No resulta nada indicado para:

Hormigón armado estructural.

Hormigón en masa o armado de grandes volúmenes.(muy exotérmico)

Es prohibido para:

Page 7: materiales definiciones

Hormigón pretensado en todos los casos.

Usos comunes del cemento de aluminato de calcio[editar]

Alcantarillados.

Zonas de vertidos industriales.

Depuradoras.

Terrenos sulfatados.

Ambientes marinos.

Como mortero de unión en construcciones refractarias.

Carreteras.

Proceso de fabricación[editar]

El proceso de fabricación del cemento comprende cuatro etapas principales:

1. Extracción y molienda de la materia prima

2. Homogeneización de la materia prima

3. Producción del Clinker

4. Molienda de cemento

La materia prima para la elaboración del cemento (caliza, arcilla, arena, mineral de hierro y yeso) se extrae de canteras o minas y, dependiendo de la dureza y ubicación del material, se aplican ciertos sistemas de explotación y equipos. Una vez extraída la materia prima es reducida a tamaños que puedan ser procesados por los molinos de crudo.

La etapa de homogeneización puede ser por vía húmeda o por vía seca, dependiendo de si se usan corrientes de aire o agua para mezclar los materiales. En el proceso húmedo la mezcla de materia prima es bombeada a balsas de homogeneización y de allí hasta los hornos en donde se produce el clínker a temperaturas superiores a los 1500°C. En el proceso seco, la materia prima es homogeneizada en patios de materia prima con el uso de maquinarias especiales. En este proceso el control químico es más eficiente y el consumo de energía es menor, ya que al no tener que eliminar el agua añadida con el objeto de mezclar los materiales, los hornos son más cortos y el clínker requiere menos tiempo sometido a las altas temperaturas.

El clínker obtenido, independientemente del proceso utilizado en la etapa de homogeneización, es luego molido con pequeñas cantidades de yeso para finalmente obtener cemento.

Reacción de las partículas de cemento con el agua

1. Periodo inicial: las partículas con el agua se encuentran en estado de

disolución, existiendo una intensa reacción exotérmica inicial. Dura

aproximadamente diez minutos.

2. Periodo durmiente: en las partículas se produce una película gelatinosa, la

cual inhibe la hidratación del material durante una hora aproximadamente.

Page 8: materiales definiciones

3. Inicio de rigidez: al continuar la hidratación de las partículas de cemento, la

película gelatinosa comienza a crecer, generando puntos de contacto entre las

partículas, las cuales en conjunto inmovilizan la masa de cemento. También

se le llama fraguado. Por lo tanto, el fraguado sería el aumento de la

viscosidad de una mezcla de cemento con agua.

4. Ganancia de resistencia: al continuar la hidratación de las partículas de

cemento, y en presencia de cristales de CaOH2, la película gelatinosa (la cual

está saturada en este punto) desarrolla unos filamentos tubulares llamados

«agujas fusiformes», que al aumentar en número generan una trama que

aumenta la resistencia mecánica entre los granos de cemento ya hidratados.

5. Fraguado y endurecimiento: el principio de fraguado es el tiempo de una pasta

de cemento de difícil moldeado y de alta viscosidad. Luego la pasta se

endurece y se transforma en un sólido resistente que no puede ser

deformado. El tiempo en el que alcanza este estado se llama «final de

fraguado».AlmacenamientoSi es cemento en sacos, deberá almacenarse sobre parrillas de madera o piso de tablas; no se apilará en hileras superpuestas de más de 14 sacos de altura para almacenamiento de 30 días, ni de más de 7 sacos de altura para almacenamientos hasta de 2 meses. Para evitar que el cemento envejezca indebidamente, después de llegar al área de las obras, el contratista deberá utilizarlo en la misma secuencia cronológica de su llegada. No se utilizará bolsa alguna de cemento que tenga más de dos meses de almacenamiento en el área de las obras, salvo que nuevos ensayos demuestren que está en condiciones satisfactorias

El hormigón o concreto es un material compuesto empleado en construcción, formado esencialmente por un aglomerante al que se añade partículas o fragmentos de un agregado, agua y aditivos específicos.

El aglomerante es en la mayoría de las ocasiones cemento (generalmente cemento Portland) mezclado con una proporción adecuada de agua para que se produzca una reacción de hidratación. Las partículas de agregados, dependiendo fundamentalmente de su diámetro medio, son los áridos (que se clasifican en grava, gravilla y arena).1 La sola mezcla de cemento con arena y agua (sin la participación de un agregado) se denomina mortero. Existen hormigones que se producen con otros conglomerantes que no son cemento, como elhormigón asfáltico que utiliza betún para realizar la mezcla.

El cemento es un material pulverulento que por sí mismo no es aglomerante, y que mezclado con agua, al hidratarse se convierte en una pasta moldeable con propiedades adherentes, que en pocas horas fragua y se endurece tornándose en un material de consistencia pétrea. El cemento consiste esencialmente en silicato cálcico hidratado (S-C-H), este compuesto es el principal responsable de sus características adhesivas. Se denomina cemento hidráulico cuando el cemento, resultante de su hidratación, es estable en condiciones de entorno acuosas. Además, para poder modificar algunas de sus

Page 9: materiales definiciones

características o comportamiento, se pueden añadir aditivos yadiciones (en cantidades inferiores al 1 % de la masa total del hormigón), existiendo una gran variedad de ellos: colorantes, aceleradores, retardadores de fraguado, fluidificantes, impermeabilizantes, fibras, etc.

El concreto convencional, normalmente usado en pavimentos, edificios y otras estructuras, tiene un peso específico (densidad, peso volumétrico, masa unitaria) que varía de 2200 hasta 2400 kg/m³ (137 hasta 150 libras/piés3). La densidad del concreto varía dependiendo de la cantidad y la densidad del agregado, la cantidad de aire atrapado (ocluido) o intencionalmente incluido y las cantidades de agua y cemento. Por otro lado, el tamaño máximo del agegado influye en las cantidades de agua y cemento. Al reducirse la cantidad de pasta (aumentándose la cantidad de agregado), se aumenta la densidad. Algunos valores de densidad para el concreto fresco se presentan en la Tabla 1-1. En el diseño del concreto armado (reforzado), el peso unitario de la combinación del concreto con la armadura normalmente se considera 2400 kg/m³ (150 lb/ft³).

Dependiendo de las proporciones de cada uno de sus constituyentes existe una tipología de hormigones. Se considera hormigón pesadoaquel que posee una densidad de más de 3200 kg/m³ debido al empleo de agregados densos (empleado protección contra las radiaciones), el hormigón normal empleado en estructuras que posee una densidad de 2200 kg/m³ y el hormigón ligero con densidades de 1800 kg/m³

La principal característica estructural del hormigón es que resiste muy bien los esfuerzos de compresión, pero no tiene buen comportamiento frente a otros tipos de esfuerzos (tracción, flexión, cortante, etc.), por este motivo es habitual usarlo asociado a ciertasarmaduras de acero, recibiendo en este caso la denominación de hormigón armado, o concreto pre-reforzado en algunos lugares; comportándose el conjunto muy favorablemente ante las diversas solicitaciones. Cuando se proyecta una estructura de hormigón armado se establecen las dimensiones de los elementos, el tipo de hormigón, los aditivos y el acero que hay que colocar en función de los esfuerzos que deberá soportar y de las condiciones ambientales a que estará expuesto.

A finales del siglo XX, es el material más empleado en la industria de la construcción. Se le da forma mediante el empleo de moldes rígidos denominados: encofrados. Su empleo es habitual en obras de arquitectura e ingeniería, tales como edificios, puentes, diques, puertos, canales, túneles, etc. Incluso en aquellas edificaciones cuya estructura principal se realiza en acero, su utilización es imprescindible para conformar la cimentación. La variedad de hormigones que han ido apareciendo a finales del siglo XX, ha permitido que existan: hormigones reforzados con fibras de vidrio (GRC), hormigones celulares que se aligeran con aire, aligerados con fibras naturales, autocompactantes.

Índice  [ocultar] 

1 Etimología

Page 10: materiales definiciones

2 Historia del hormigón

o 2.1 Hormigones de cementos naturales

o 2.2 El siglo XIX: cemento Portland y hormigón armado

o 2.3 El siglo XX: auge de la industria del hormigón

o 2.4 El siglo XXI: la cultura medioambiental

3 Características y comportamiento del hormigón

o 3.1 Características mecánicas

o 3.2 Fraguado y endurecimiento

o 3.3 Resistencia

o 3.4 Consistencia del hormigón fresco

o 3.5 Durabilidad

4 Tipos de hormigón

5 Características de los componentes del hormigón

o 5.1 Cemento

5.1.1 Cemento Portland

5.1.2 Otros cementos

o 5.2 Áridos

o 5.3 Agua

o 5.4 Otros componentes minoritarios

6 Diseño, fabricación y puesta en obra

o 6.1 Normativa

o 6.2 Cálculo y proyecto

o 6.3 Fabricación

o 6.4 Puesta en obra

7 Producción mundial de hormigón

o 7.1 Producción mundial de cemento

8 Véase también

o 8.1 Componentes

o 8.2 Normativa

o 8.3 Ensayos

o 8.4 Varios

9 Referencias

10 Bibliografía

o 10.1 Referencias digitales

11 Enlaces externos

Page 11: materiales definiciones

Etimología[editar]

«Hormigón» procede del término formicō (o formáceo), palabra latina que alude a la cualidad de «moldeable» o «dar forma». El término concreto, definido en el diccionario de la RAE como americanismo, también es originario del latín: procede de la palabra concretus, que significa «crecer unidos», o «unir». Concretus es una palabra compuesta en la su prefijo es com- (unión) y el participio pasado del verbo crĕscere (crecer). Su uso en idioma español se transmite por vía de la cultura anglosajona,2 como anglicismo (o calco semántico), siendo la voz inglesa original concrete. Etimológicamente concreto es sinónimo de concrecionado y concreción que es la unión de diversas partículas para formar una masa.

Historia del hormigón[editar]

Véase también: Historia del hormigón

Trabajadores del Antiguo Egipto.

Pintura en la tumba de Rejmira.

La historia del hormigón constituye un capítulo fundamental de la historia de la construcción. Cuando se optó por levantar edificaciones utilizando materiales arcillosos o pétreos, surgió la necesidad de obtener pastas o morteros que permitieran unir dichos mampuestospara poder conformar estructuras estables. Inicialmente se emplearon pastas elaboradas con arcilla, yeso o cal, pero se deterioraban rápidamente ante las inclemencias atmosféricas. Se idearon diversas soluciones, mezclando agua con rocas y minerales triturados, para conseguir pastas que no se degradasen fácilmente. Así, en el Antiguo Egipto se utilizaron diversas pastas obtenidas con mezclas deyesos y calizas disueltas en agua, para poder unir sólidamente los sillares de piedra; como las que aún perduran entre los bloques calizos del revestimiento de la Gran Pirámide de Guiza.

Hormigones de cementos naturales[editar]PANTEÓN (SIGLO II)

Page 12: materiales definiciones

La cúpula semiesférica de 43,44 m dediámetro ha resistido diecinueve siglos sin reformas o refuerzos. El grueso anillo

murario es de opera latericia (hormigón con ladrillo) y la cúpula se aligeró utilizandopiedra pómez como árido.

En la Antigua Grecia, hacia el 500 a. C., se mezclaban compuestos de caliza calcinada con agua y arena, añadiendo piedras trituradas,tejas rotas o ladrillos, dando origen al primer hormigón de la historia, usando tobas volcánicas extraídas de la isla de Santorini. Losantiguos romanos emplearon tierras o cenizas volcánicas, conocidas también como puzolana, que contienen sílice y alúmina, que al combinarse químicamente con la cal daban como resultado el denominado cemento puzolánico (obtenido en Pozzuoli, cerca delVesubio). Añadiendo en su masa jarras cerámicas o materiales de baja densidad (piedra pómez) obtuvieron el primer hormigón aligerado.3 Con este material se construyeron desde tuberías a instalaciones portuarias, cuyos restos aún perduran. Destacan construcciones como los diversos arcos del Coliseo romano, los nervios de la bóveda de la Basílica de Majencio, con luces de más de 25 metros,4 las bóvedas de las Termas de Caracalla, y la cúpula del Panteón de Agripa, de unos 43 metros de diámetro, la de mayor luz durante siglos.5

Tras la caída del Imperio romano el hormigón fue poco utilizado, posiblemente debido a la falta de medios técnicos y humanos, la mala calidad de la cocción de la cal, y la carencia o lejanía de tobas volcánicas; no se encuentran muestras de su uso en grandes obras hasta el siglo XIII, en que se vuelve a utilizar en los cimientos de la Catedral de Salisbury, o en la célebre Torre de Londres, en Inglaterra. Durante el renacimiento su empleo fue escaso y muy poco significativo.

Page 13: materiales definiciones

En algunas ciudades y grandes estructuras, construidas por Mayas y Aztecas en México o las de Machu Pichu en el Perú, se utilizaron materiales cementantes.3

En el siglo XVIII se reaviva el afán por la investigación. John Smeaton, un ingeniero de Leeds fue comisionado para construir por tercera vez un faro en el acantilado de Edystone, en la costa de Cornwall, empleando piedras unidas con un mortero de cal calcinada para conformar una construcción monolítica que soportara la constante acción de las olas y los húmedos vientos; fue concluido en 1759 y lacimentación aún perdura.

El siglo XIX: cemento Portland y hormigón armado[editar]

Joseph Aspdin y James Parker patentaron en 1824 el Portland Cement, obtenido de caliza arcillosa y carbón calcinados a alta temperatura –denominado así por su color gris verdoso oscuro, muy similar a la piedra de la isla de Pórtland. Isaac Johnson obtiene en 1845 el prototipo del cemento moderno elaborado de una mezcla de caliza y arcilla calcinada a alta temperatura, hasta la formación delclinker; el proceso de industrialización y la introducción de hornos rotatorios propiciaron su uso para gran variedad de aplicaciones, hacia finales del siglo XIX.6

El hormigón, por sus características pétreas, soporta bien esfuerzos de compresión, pero se fisura con otros tipos de solicitaciones (flexión, tracción, torsión, cortante); la inclusión de varillas metálicas que soportaran dichos esfuerzos propició optimizar sus características y su empleo generalizado en múltiples obras de ingeniería y arquitectura.

La invención del hormigón armado se suele atribuir al constructor William Wilkinson, quien solicitó en 1854 la patente de un sistema que incluía armaduras de hierro para «la mejora de la construcción de viviendas, almacenes y otros edificios resistentes al fuego». El francés Joseph Monier patentó varios métodos en la década de 1860, pero fueFrançois Hennebique quien ideó un sistema convincente de hormigón armado, patentado en 1892, que utilizó en la construcción de una fábrica de hilados en Tourcoing, Lille, en 1895.7 Hennebique y sus contemporáneos basaban el diseño de sus patentes en resultados experimentales, mediante pruebas de carga; los primeros aportes teóricos los realizan prestigiosos investigadores alemanes, tales como Wilhelm Ritter, quien desarrolla en 1899 la teoría del «Reticulado de Ritter-Mörsch». Los estudios teóricos fundamentales se gestarán en el siglo XX.

El siglo XX: auge de la industria del hormigón[editar]

Page 14: materiales definiciones

Puente de hormigón sobre el río Ulla, en Vedra, Galicia, España. El arco principal presenta la

ventaja de ser unarco catenario.

Ópera de Sídney, edificio diseñado por el arquitecto danés Jørn Utzon en 1957 e inaugurado en el

año 1973, enSídney, Australia.

A principios del siglo XX surge el rápido crecimiento de la industria del cemento, debido a varios factores: los experimentos de los químicos franceses Louis Vicat y Le Chatelier y el alemán Michaélis, que logran producir cemento de calidad homogénea; la invención delhorno rotatorio para calcinación y el molino tubular; y los métodos de transportar hormigón fresco ideados por Juergen Hinrich Magens que patenta entre 1903 y 1907. Con estos adelantos pudo elaborarse cemento Portland en grandes cantidades y utilizarse ventajosamente en la industria de la construcción.3

Robert Maillart proyecta en 1901 un puente en arco de 38 metros de luz sobre el río Inn, en Suiza, construido con vigas cajón de hormigón armado; entre 1904 y 1906 diseña el puente de Tavanasa, sobre el río Rin, con 51 metros de luz, el mayor de Suiza. Claude A.P. Turner realiza en 1906 el edificio Bovex de Mineápolis (Estados Unidos), con los primeros pilares fungiformes (de amplios capiteles).

Le Corbusier, en los años 1920, reclama en Vers une Architecture una producción lógica, funcional y constructiva, despojada de retóricas del pasado; en su diseño de Casa Domino, de 1914, la estructura está conformada con pilares y forjados de hormigón armado, posibilitando fachadas totalmente diáfanas y la libre distribución de los espacios interiores.8

Los hangares de Orly (París), diseñados por Freyssinet entre 1921 y 1923, con 60 metros de luz, 9 de flecha y 300 de longitud, se construyen con láminas parabólicas de hormigón armado, eliminando la división funcional entre paredes y techo. En 1929 Frank Lloyd Wright construye el primer rascacielos en hormigón.

En la década de 1960 aparece el hormigón reforzado con fibras, incorporadas en el momento del amasado, dando al hormigón isotropíay aumentando sus cualidades frente a la flexión, tracción, impacto, fisuración, etc. En los años 1970, los aditivos permiten obtener hormigones de alta resistencia, de 120 a más de 200 MPa; la incorporación de monómeros genera hormigones casi inatacables por los agentes químicos o indestructibles por los ciclos hielo-deshielo, aportando múltiples mejoras en diversas propiedades del hormigón.

Page 15: materiales definiciones

Los grandes progresos en el estudio científico del comportamiento del hormigón armado y los avances tecnológicos, posibilitaron la construcción de rascacielos más altos, puentes de mayor luz, amplias cubiertas e inmensas presas. Su empleo será insustituible en edificios públicos que deban albergar multitudes: estadios, teatros, cines, etc. Muchas naciones y ciudades competirán por erigir la edificación de mayor dimensión, o más bella, como símbolo de su progreso que, normalmente, estará construida en hormigón armado.

Los edificios más altos del mundo poseen estructuras de hormigón y acero, tales como las Torres Petronas, en Kuala Lumpur, Malasia (452 metros, 1998), el edificio Taipei 101en Taiwán (509 metros, 2004), o el Burj Dubai de la ciudad de Dubái (818 metros, 2009), en el siglo XXI.

El siglo XXI: la cultura medioambiental[editar]

El uso de materiales reciclados como ingredientes del hormigón ha ganando popularidad debido a la cada vez más severa legislación medioambiental, así como la progresiva concienciación de la sociedad. Los ingredientes reciclados más empleados son las cenizas volantes, un subproducto de las centrales termoeléctricas alimentadas por carbón. Elimpacto ambiental de la industria del cemento es significativo, pero mediante el empleo de estos nuevos materiales se posibilita la reducción de canteras y vertederos, ya que actúan como sustitutos del cemento, y reducen la cantidad necesaria para obtener un buen hormigón. Puesto que uno de los efectos nocivos para el medio ambiente es que la producción de cemento genera grandes volúmenes de dióxido de carbono, la tecnología de sustitución del cemento desempeña un importante papel en los esfuerzos por aminorar las emisiones de dióxido de carbono. Se suele incluir en las mezclas ciertos catalizadores que permiten su 'autolavado' como es el caso del dióxido de titanio.

También se utiliza para confinar desechos radiactivos. Entre ellos, el más importante es el del reactor nuclear que colapsó en la central de Chernobil, el cual fue cubierto de hormigón para evitar fugas radiactivas.

Características y comportamiento del hormigón[editar]

El hormigón muestra en una de sus secciones muchas escalas de agregación. Resulta necesario

investigar en las propiedades microscópicas del hormigón si se desea conocer sus propiedades

mecánicas.

Page 16: materiales definiciones

El hormigón es el material resultante de unir áridos con la pasta que se obtiene al añadir agua a un conglomerante.9 El conglomerante puede ser cualquiera, pero cuando nos referimos a hormigón, generalmente es un cemento artificial, y entre estos últimos, el más importante y habitual es el cemento portland.9 Los áridos proceden de la desintegración o trituración, natural o artificial de rocas y, según la naturaleza de las mismas, reciben el nombre de áridos silíceos, calizos, graníticos, etc. El árido cuyo tamaño sea superior a 5 mm se llama árido grueso o grava, mientras que el inferior a 5 mm se llama árido fino o arena.10 El tamaño de la grava influye en las propiedades mecánicas del hormigón.

La pasta formada por cemento y agua es la que confiere al hormigón su fraguado y endurecimiento, mientras que el árido es un material inerte sin participación directa en el fraguado y endurecimiento del hormigón.10 El cemento se hidrata en contacto con el agua, iniciándose diversas reacciones químicas de hidratación que lo convierten en una pasta maleable con buenas propiedades adherentes, que en el transcurso de unas horas, derivan en el fraguado y endurecimiento progresivo de la mezcla, obteniéndose un material de consistencia pétrea.

Una característica importante del hormigón es poder adoptar formas distintas, a voluntad del proyectista. Al colocarse en obra es una masa plástica que permite rellenar un molde, previamente construido con una forma establecida, que recibe el nombre de encofrado.9

Características mecánicas[editar]

La principal característica estructural del hormigón es resistir muy bien los esfuerzos de compresión. Sin embargo, tanto su resistencia a tracción como al esfuerzo cortante son relativamente bajas, por lo cual se debe utilizar en situaciones donde las solicitaciones por tracción o cortante sean muy bajas. Para determinar la resistencia se preparanensayos mecánicos (ensayos de rotura) sobre probetas de hormigón.

Para superar este inconveniente, se "arma" el hormigón introduciendo barras de acero, conocido como hormigón armado, o concreto reforzado, permitiendo soportar los esfuerzos cortantes y de tracción con las barras de acero. Es usual, además, disponer barras de acero reforzando zonas o elementos fundamentalmente comprimidos, como es el caso de los pilares. Los intentos de compensar las deficiencias del hormigón a tracción y cortante originaron el desarrollo de una nueva técnica constructiva a principios del siglo XX, la del hormigón armado. Así, introduciendo antes del fraguado alambres de alta resistencia tensados en el hormigón, este queda comprimido al fraguar, con lo cual las tracciones que surgirían para resistir las acciones externas, se convierten en descompresiones de las partes previamente comprimidas, resultando muy ventajoso en muchos casos. Para el pretensado se utilizan aceros de muy alto límite elástico, dado que el fenómeno denominado fluencia lenta anularía las ventajas del pretensado. Posteriormente se investigó la conveniencia de introducir tensiones en el acero de manera deliberada y previa al fraguado del hormigón de la pieza estructural, desarrollándose las técnicas delhormigón pretensado y el hormigón postensado.

Page 17: materiales definiciones

Los aditivos permiten obtener hormigones de alta resistencia; la inclusión de monómeros y adiciones para hormigón aportan múltiples mejoras en las propiedades del hormigón.

Cuando se proyecta un elemento de hormigón armado se establecen las dimensiones, el tipo de hormigón, la cantidad, calidad, aditivos, adiciones y disposición del acero que hay que aportar en función los esfuerzos que deberá resistir cada elemento. Un diseño racional, la adecuada dosificación, mezcla, colocación, consolidación, acabado y curado, hacen del hormigón un material idóneo para ser utilizado en construcción, por ser resistente, durable, incombustible, casi impermeable, y requerir escaso mantenimiento. Como puede ser moldeado fácilmente en amplia variedad de formas y adquirir variadas texturas y colores, se utiliza en multitud de aplicaciones.

Características físicas del hormigón

Las principales características físicas del hormigón, en valores aproximados, son:

Densidad : en torno a 2350 kg/m³

Resistencia a compresión: de 150 a 500 kg/cm² (15 a 50 MPa) para el hormigón

ordinario. Existen hormigones especiales de alta resistencia que alcanzan hasta

2000 kg/cm² (200 MPa).

Resistencia a tracción: proporcionalmente baja, es del orden de un décimo de la

resistencia a compresión y, generalmente, poco significativa en el cálculo global.

Tiempo de fraguado: dos horas, aproximadamente, variando en función de la

temperatura y la humedad del ambiente exterior.

Tiempo de endurecimiento: progresivo, dependiendo de la temperatura, humedad y

otros parámetros.

De 24 a 48 horas, adquiere la mitad de la resistencia máxima; en una semana 3/4

partes, y en 4 semanas prácticamente la resistencia total de cálculo.

Dado que el hormigón se dilata y contrae en magnitudes semejantes al acero, pues

tienen parecido coeficiente de dilatación térmico, resulta muy útil su uso simultáneo en

obras de construcción; además, el hormigón protege al acero de la oxidación al

recubrirlo.

Fraguado y endurecimiento[editar]

Diagrama indicativo de la resistencia (en %) que adquiere el hormigón a los 14, 28, 42 y 56 días.

Page 18: materiales definiciones

La pasta del hormigón se forma mezclando cemento artificial y agua debiendo embeber totalmente a los áridos. La principal cualidad de esta pasta es que fragua y endurece progresivamente, tanto al aire como bajo el agua.11

El proceso de fraguado y endurecimiento es el resultado de reacciones químicas de hidratación entre los componentes del cemento. La fase inicial de hidratación se llama fraguado y se caracteriza por el paso de la pasta del estado fluido al estado sólido. Esto se observa de forma sencilla por simple presión con un dedo sobre la superficie del hormigón. Posteriormente continúan las reacciones de hidratación alcanzando a todos los constituyentes del cemento que provocan el endurecimiento de la masa y que se caracteriza por un progresivo desarrollo de resistencias mecánicas.11

El fraguado y endurecimiento no son más que dos estados separados convencionalmente; en realidad solo hay un único proceso de hidratación continuo.11

En el cemento portland, el más frecuente empleado en los hormigones, el primer componente en reaccionar es el aluminato tricálcico con una duración rápida y corta (hasta 7-28 días). Después el silicato tricálcico, con una aportación inicial importante y continua durante bastante tiempo. A continuación el silicato bicálcico con una aportación inicial débil y muy importante a partir de los 28 días.11

El fenómeno físico de endurecimiento no tiene fases definidas. El cemento está en polvo y sus partículas o granos se hidratan progresivamente, inicialmente por contacto del agua con la superficie de los granos, formándose algunos compuestos cristalinos y una gran parte de compuestos microcristalinos asimilables a coloides que forman una película en la superficie del grano. A partir de entonces el endurecimiento continua dominado por estas estructuras coloidales que envuelven los granos del cemento y a través de las cuales progresa la hidratación hasta el núcleo del grano.11

El hecho de que pueda regularse la velocidad con que el cemento amasado pierde su fluidez y se endurece, lo hace un producto muy útil en construcción. Una reacción rápida de hidratación y endurecimiento dificultaría su transporte y una cómoda puesta en obra rellenando todos los huecos en los encofrados. Una reacción lenta aplazaría de forma importante el desarrollo de resistencias mecánicas. En las fábricas de cemento se consigue controlando la cantidad de yeso que se añade al clinker de cemento. En la planta de hormigón, donde se mezcla la pasta de cemento y agua con los áridos, también se pueden añadir productos que regulan el tiempo de fraguado.11

En condiciones normales un hormigón portland normal comienza a fraguar entre 30 y 45 minutos después de que ha quedado en reposo en los moldes y termina el fraguado trascurridas sobre 10 ó 12 horas. Después comienza el endurecimiento que lleva un ritmo rápido en los primeros días hasta llegar al primer mes, para después aumentar más lentamente hasta llegar al año donde prácticamente se estabiliza.12 En el cuadro siguiente se observa la evolución de la resistencia a compresión de un hormigón tomando como unidad la resistencia a 28 días, siendo cifras orientativas:13

Page 19: materiales definiciones

Evolución de la Resistencia a compresión de un Hormigón Portland normalEdad del hormigón en días 3 7 28 90 360Resistencia a compresión 0,40 0,65 1,00 1,20 1,35

Resistencia[editar]

Para comprobar que el hormigón colocado en obra tiene la resistencia requerida, se rellenan con el

mismo hormigón unos moldes cilíndricos normalizados y se calcula su resistencia en un laboratorio

realizando ensayos de rotura por compresión.

En el proyecto previo de los elementos, la resistencia característica (fck) del hormigón es aquella que se adopta en todos los cálculos como resistencia a compresión del mismo, y dando por hecho que el hormigón que se ejecutará resistirá ese valor, se dimensionan las medidas de todos los elementos estructurales.14

La resistencia característica de proyecto (fck) establece por tanto el límite inferior, debiendo cumplirse que cada amasada de hormigón colocada tenga esa resistencia como mínimo. En la práctica, en la obra se realizan ensayos estadísticos de resistencias de los hormigones que se colocan y el 95 % de los mismos debe ser superior a fck, considerándose que con el nivel actual de la tecnología del hormigón, una fracción defectuosa del 5 % es perfectamente aceptable.

La resistencia del hormigón a compresión se obtiene en ensayos de rotura por compresión de probetas cilíndricas normalizadas realizados a los 28 días de edad y fabricadas con las mismas amasadas puestas en obra.14 La Instrucción española (EHE) recomienda utilizar la siguiente serie de resistencias características a compresión a 28 días (medidas en Newton/mm²): 20; 25; 30, 35; 40; 45 y 50.14 Por ello, las plantas de fabricación de hormigón suministran habitualmente hormigones que garantizan estas resistencias.

Ensayo de consistencia en hormigón fresco mediante el Cono de Abrams que mide el asiento que

se produce en una forma troncocónica normalizada cuando se desmolda.

Consistencia del hormigón fresco[editar]

Page 20: materiales definiciones

La consistencia es la mayor o menor facilidad que tiene el hormigón fresco para deformarse y consiguientemente para ocupar todos los huecos del molde o encofrado. Influyen en ella distintos factores, especialmente la cantidad de agua de amasado, pero también el tamaño máximo del árido, la forma de los áridos y su granulometría.15

La consistencia se fija antes de la puesta en obra, analizando cual es la más adecuada para la colocación según los medios que se dispone de compactación. Se trata de un parámetro fundamental en el hormigón fresco.

Entre los ensayos que existen para determinar la consistencia, el más empleado es el cono de Abrams. Consiste en llenar con hormigón fresco un molde troncocónico de 30 cm de altura. La pérdida de altura que se produce cuando se retira el molde, es la medida que define la consistencia.15

Los hormigones se clasifican por su consistencia en secos, plásticos, blandos y fluidos tal como se indica en la tabla siguiente:16

Consistencia de los hormigones frescosConsistencia Asiento en cono de Abrams (cm) Compactación

Seca 0-2 VibradoPlástica 3-5 VibradoBlanda 6-9 Picado con barraFluida 10-15 Picado con barra

Líquida 16-20 Picado con barra

Durabilidad[editar]

Las presas de hormigón son una tipología habitual en la construcción de embalses. En las imágenes la presa de

Hoover construida en Estados Unidos en 1936 y la de Atazar en España de 1972. Ambas diseñadas con forma parabólica

para optimizar la capacidad de soportar esfuerzos a compresión del hormigón.

Se define en la Instrucción española EHE, la durabilidad del hormigón como la capacidad para comportarse satisfactoriamente frente a las acciones físicas y químicas agresivas a lo largo de la vida útil de la estructura protegiendo también las armaduras y elementos metálicos embebidos en su interior.17

Page 21: materiales definiciones

Bloques de hormigón de la antigua constructora Forte, cerca de Albacete

Por tanto no solo hay que considerar los efectos provocados por las cargas y solicitaciones, sino también las condiciones físicas y químicas a las que se expone. Por ello se considera el tipo de ambiente en que se va a encontrar la estructura y que puede afectar a la corrosión de las armaduras, ambientes químicos agresivos, zonas afectadas por ciclos de hielo-deshielo, etc.17

Para garantizar la durabilidad del hormigón y la protección de las armaduras frente a la corrosión es importante realizar un hormigón con una permeabilidad reducida, realizando una mezcla con una relación agua/cemento baja, una compactación idónea, un peso en cemento adecuado y la hidratación suficiente de éste añadiendo agua de curado para completarlo. De esta forma se consigue que haya los menos poros posibles y una red capilar interna poco comunicada y así se reducen los ataques al hormigón.17

En los casos de existencia de sulfatos en el terreno o de agua de mar se deben emplear cementos especiales. Para prevenir la corrosión de armaduras hay que cuidar el recubrimiento mínimo de las mismas.17

Tipos de hormigón[editar]

En la Instrucción española (EHE), publicada en 1998, los hormigones están tipificados según el siguiente formato siendo obligatorio referirse de esta forma en los planos y demás documentos de proyecto, así como en la fabricación y puesta en obra:18

Hormigón T – R / C / TM / A

T: se denominará HM cuando sea hormigón en masa, HA cuando sea hormigón armado y HP cuando sea hormigón pretensado.R: resistencia característica del hormigón expresada en N/mm².C: letra inicial del tipo de consistencia: S Seca, P plástica, B Blanda, F Fluida y L Líquida.TM: tamaño máximo del árido expresado en milímetros.A: designación del ambiente a que estará expuesto el hormigón.

Tipos de HormigónHormigón ordinario

También se suele referir a él denominándolo simplemente hormigón. Es el material obtenido al mezclar cemento portland, agua y áridos de varios tamaños, superiores e inferiores a 5 mm, es decir, con grava y arena.19

Hormigón en masa

Es el hormigón que no contiene en su interior armaduras de acero. Este hormigón solo es apto para resistir esfuerzos de compresión.19

Page 22: materiales definiciones

Hormigón armado

Es el hormigón que en su interior tiene armaduras de acero, debidamente calculadas y situadas. Este hormigón es apto para resistir esfuerzos de compresión y tracción. Los esfuerzos de tracción los resisten las armaduras de acero. Es el hormigón más habitual.19

Hormigón pretensado

Es el hormigón que tiene en su interior una armadura de acero especial sometida a tracción.19 Puede ser pre-tensado si la armadura se ha tensado antes de colocar el hormigón fresco o post-tensado si la armadura se tensa cuando el hormigón ha adquirido su resistencia.

Mortero Es una mezcla de cemento, agua y arena (árido fino), es decir, un hormigón normal sin árido grueso.9

Hormigón ciclópeo

Es el hormigón que tiene embebidos en su interior grandes piedras de dimensión no inferior a 30 cm.19

Hormigón sin finos

Es aquel que solo tiene árido grueso, es decir, no tiene arena (árido menor de 5 mm).19

Hormigón aireado o celular

Se obtiene incorporando a la mezcla aire u otros gases derivados de reacciones químicas, resultando un hormigón baja densidad.19

Hormigón de alta densidad

Fabricados con áridos de densidades superiores a los habituales (normalmente barita, magnetita, hematita…) El hormigón pesado se utiliza para blindar estructuras y proteger frente a la radiación.

Características de los componentes del hormigón[editar]

Cemento[editar]

Los cementos son productos que amasados con agua fraguan y endurecen formándose nuevos compuestos resultantes de reacciones de hidratación que son estables tanto al aire como sumergidos en agua.20

Hay varios tipos de cementos. Las propiedades de cada uno de ellos están íntimamente asociadas a la composición química de sus componentes iniciales, que se expresa en forma de sus óxidos, y que según cuales sean formaran compuestos resultantes distintos en las reacciones de hidratación.20

Cada tipo de cemento está indicado para unos usos determinados; también las condiciones ambientales determinan el tipo y clase del cemento afectando a la durabilidad de los hormigones. Los tipos y denominaciones de los cementos y sus componentes están normalizados y sujetos a estrictas condiciones. La norma española establece los siguientes tipos: cementos comunes, los resistentes a los sulfatos, los resistentes al agua de mar, los de bajo calor de hidratación, los cementos blancos, los de usos especiales y los de aluminato de calcio. Los cementos comunes son el grupo más importante y dentro de ellos el portland es el habitual. En España solo pueden utilizarse los cementos legalmente comercializados en la Unión Europea y están sujetos a lo previsto en leyes específicas.21

Además del tipo de cemento, el segundo factor que determina la calidad del cemento, es su clase o resistencia a compresión a 28 días. Esta se determina en un mortero normalizado y expresa la resistencia mínima, la cual debe ser siempre superada en la fabricación del cemento. No es lo mismo, ni debe confundirse la resistencia del cemento con la del hormigón, pues la del cemento corresponde a componentes normalizados y la del hormigón dependerá de todos y cada uno de sus componentes. Pero si el hormigón está bien dosificado a mayor resistencia del cemento corresponde

Page 23: materiales definiciones

mayor resistencia del hormigón.20 La norma española establece las siguientes clases de resistencias:21

Especificaciones de las diversas clases de cementosClase de

resistencia Resistencia (N/mm²) Fraguado Expansión (mm)

a 2 días a 7 días a 28 días Inicio (minutos)

Final (horas)

32,5N >16,0 32,5—52,5 >75,0 <12,0 <10,0

32,5R >10,0 32,5—52,5 >75,0 <12,0 <10,0

42,5N >10,0 42,5—62,5 >60,0 <12,0 <10,0

42,5R >20,0 42,5—62,5 >60,0 <12,0 <10,0

52,5N >20,0 >52,5 >45,0 <12,0 <10,052,5R >30,0 >52,5 >45,0 <12,0 <10,0

N = Resistencia inicial normal. R = Alta resistencia inicial.

Este cuadro es aplicable a los cementos comunes, es decir, al portland,

a los portland con adiciones, a los siderúrgicos, a los puzolánicos y a los compuestos.

El cemento se encuentra en polvo y la finura de su molido es determinante en sus propiedades conglomerantes, influyendo decisivamente en la velocidad de las reacciones químicas de su fraguado y primer endurecimiento. Al mezclarse con el agua los granos de cemento se hidratan solo en una profundidad de 0,01 mm, por lo que si los granos fuesen muy gruesos el rendimiento de la hidratación sería pequeño al quedar en el interior un núcleo inerte. Sin embargo una finura excesiva provoca una retracción y calor de hidratación elevados. Además dado que las resistencias aumentan con la finura hay que llegar a una solución de compromiso, el cemento debe estar finamente molido pero no en exceso.20

El almacenamiento de los cementos a granel se realiza en silos estancos que no permitan la contaminación del cemento y deben estar protegidos de la humedad. En los cementos suministrados en sacos, el almacenamiento debe realizarse en locales cubiertos, ventilados, protegidos de la lluvia y del sol.21 Un almacenamiento prolongado puede provocar la hidratación de las partículas más finas por meteorización perdiendo su valor hidráulico y que supone un retraso del fraguado y disminución de resistencias.22

Cemento Portland[editar]

El cemento Portland se obtiene al calcinar a unos 1500 °C mezclas preparadas artificialmente de calizas y arcillas. El producto resultante, llamado clinker, se muele añadiendo una cantidad adecuada de regulador de fraguado, que suele ser piedra de yeso natural.23

Page 24: materiales definiciones

Esquema de un horno rotativo donde se mezcla y calcina la caliza y la arcilla para formar el

clinker de cemento.

Clinker de cemento antes de su molienda.

La composición química media de un portland, según Calleja, está formada por un 62,5 % de CaO (cal combinada), un 21 % de SiO2(sílice), un 6,5 % de Al2O3 (alúmina), un 2,5 % de Fe2O3 (hierro) y otros minoritarios. Estos cuatro componentes son los principales del cemento, de carácter básico la cal y de carácter ácido los otros tres. Estos componentes no se encuentran libres en el cemento, sino combinados formando silicatos, aluminatos y ferritos cálcicos, que son los componentes hidráulicos del mismo o componentes potenciales. Un clinker de cemento portland de tipo medio contiene:23

Silicato tricálcico  (3CaO·SiO2).................................. 40 % a 50 %

Silicato bicálcico  (2CaO·SiO2).................................. 20 % a 30 %

Aluminato tricálcico  (3CaO·Al2O3)............................ 10 % a 15 %

Aluminatoferrito tetracálcico  (4CaO·Al2O3·Fe2O3)....... 5 % a 10 %

Las dos principales reacciones de hidratación, que originan el proceso de fraguado y endurecimiento son:

2(3CaO·SiO2) + (x+3)H2O → 3CaO·2SiO2 x H2O + 3Ca(OH)2 

2(2CaO·SiO2) + (x+1)H2O → 3CaO·2SiO2 x H2O + Ca(OH)2

El silicato tricálcico es el compuesto activo por excelencia del cemento pues desarrolla una resistencia inicial elevada y un calor de hidratación también elevado. Fragua lentamente y tiene un endurecimiento bastante rápido. En los cemento de endurecimiento rápido y en los de alta resistencia aparece en una proporción superior a la habitual.23

Page 25: materiales definiciones

El silicato bicálcico es el que desarrolla en el cemento la resistencia a largo plazo, es lento en su fraguado y en su endurecimiento. Su estabilidad química es mayor que la del silicato tricálcico, por ello los cementos resistentes a los sulfatos llevan un alto contenido de silicato bicálcico.23

El aluminato tricálcico es el compuesto que gobierna el fraguado y las resistencias a corto. Su estabilidad química es buena frente al agua de mar pero muy débil a los sulfatos. Al objeto de frenar la rápida reacción del aluminato tricálcico con el agua y regular el tiempo de fraguado del cemento se añade al clinker piedra de yeso.23

El aluminatoferrito tetracálcico no participa en las resistencia mecánicas, su presencia es necesaria por el aporte de fundentes de hierro en la fabricación del clinker.23

Otros cementos[editar]

En España existen los llamados «cementos portland con adiciones activas» que además de los componente principales de clinker y piedra de yeso, contienen uno de estos componentes adicionales hasta un 35 % del peso del cemento: escoria siderúrgica, humo de sílice, puzolana natural, puzolana natural calcinada, ceniza volante silícea, ceniza volante calcárea, esquistos calcinados o caliza.21

Los cementos de alta resistencia inicial, los resistentes a los sulfatos, los de bajo calor de hidratación o los blancos suelen ser portland especiales y para ellos e limitan o potencian alguno de los cuatro componentes básicos del clinker.24

El cemento siderúrgico se obtiene por molturación conjunta de clinker de portland y regulador de fraguado en proporción de 5-64 % con escoria siderúrgica en proporción de 36-95 %.21 Constituye la familia de los cementos fríos. La escoria se obtiene enfriando bruscamente en agua la ganga fundida procedente de procesos siderúrgicos; en este enfriamiento la escoria se vitrifica y se vuelve activa hidraúlicamente por su contenido en cal combinada. La escoria por si sola fragua y endurece lentamente, por lo que para acelerarlo se añade el clinker de portland.24

El cemento puzolánico es una mezcla de clinker de portland y regulador de fraguado en proporción de 45-89 % con puzolana en proporción del 11-55 %.21 La puzolana natural tiene origen volcánico y aunque no posee propiedades conglomerantes contiene sílice y alúmina capaces de fijar la cal en presencia de agua formando compuestos con propiedades hidráulicas. La puzolana artificial tiene propiedades análogas y se encuentran en las cenizas volantes, la tierra de diatomeas o las arcillas activas.24

Page 26: materiales definiciones

El cemento aluminoso se obtiene por fusión de caliza y bauxita. El constituyente principal de este cemento es el aluminato monocálcico.24

Áridos[editar]Véanse también: Grava y Arena (hormigón).

Acopio de áridos de tamaño

6-10 mm para la fabricación de hormigón.

Los áridos deben poseer por lo menos la misma resistencia y durabilidad que se exija al hormigón. No se deben emplear calizas blandas, feldespatos, yesos, piritas o rocas friables o porosas. Para la durabilidad en medios agresivos serán mejores los áridos silíceos, los procedentes de la trituración de rocas volcánicas o los de calizas sanas y densas.25

El árido que tiene mayor responsabilidad en el conjunto es la arena. Según Jiménez Montoya no es posible hacer un buen hormigón sin una buena arena. Las mejores arenas son las de río, que normalmente son cuarzo puro, por lo que aseguran su resistencia y durabilidad.25

Con áridos naturales rodados, los hormigones son más trabajables y requieren menos agua de amasado que los áridos de machaqueo, teniéndose además la garantía de que son piedras duras y limpias. Los áridos machacados procedentes de trituración, al tener más caras de fractura cuesta más ponerlos en obra, pero se traban mejor y se refleja en una mayor resistencia.25

Si los áridos rodados están contaminados o mezclados con arcilla, es imprescindible lavarlos para eliminar la camisa que envuelve los granos y que disminuiría su adherencia a la pasta de hormigón. De igual manera los áridos de machaqueo suelen estar rodeados de polvo de machaqueo que supone un incremento de finos al hormigón, precisa más agua de amasado y darán menores resistencias por lo que suelen lavarse.25

Los áridos que se emplean en hormigones se obtienen mezclando tres o cuatro grupos de distintos tamaños para alcanzar una granulometría óptima. Tres factores intervienen en una granulometría adecuada: el tamaño máximo del árido, la compacidad y el contenido de granos finos. Cuando mayor sea el tamaño máximo del árido, menores serán las necesidades de cemento y de

Page 27: materiales definiciones

agua, pero el tamaño máximo viene limitado por las dimensiones mínimas del elemento a construir o por la separación entre armaduras, ya que esos huecos deben quedar rellenos por el hormigón y, por tanto, por los áridos de mayor tamaño. En una mezcla de áridos una compacidad elevada es aquella que deja pocos huecos; se consigue con mezclas pobres en arenas y gran proporción de áridos gruesos, precisando poca agua de amasado; su gran dificultad es conseguir compactar el hormigón, pero si se dispone de medios suficientes para ello el resultado son hormigones muy resistentes. En cuanto al contenido de granos finos, estos hacen la mezcla más trabajable pero precisan más agua de amasado y de cemento. En cada caso hay que encontrar una fórmula de compromiso teniendo en cuenta los distintos factores. Las parábolas de Fuller y de Bolomey dan dos familias de curvas granulométricas muy utilizadas para obtener adecuadas dosificaciones de áridos.25

Agua[editar]Artículo principal: Agua (hormigón)

El agua de amasado interviene en las reacciones de hidratación del cemento. La cantidad de la misma debe ser la estricta necesaria, pues la sobrante que no interviene en la hidratación del cemento se evaporará y creará huecos en el hormigón disminuyendo la resistencia del mismo. Puede estimarse que cada litro de agua de amasado de exceso supone anular dos kilos de cemento en la mezcla. Sin embargo una reducción excesiva de agua originaría una mezcla seca, poco manejable y muy difícil de colocar en obra. Por ello es un dato muy importante fijar adecuadamente la cantidad de agua.26

Durante el fraguado y primer endurecimiento del hormigón se añade el agua de curado para evitar la desecación y mejorar la hidratación del cemento.26

Ambas, el agua destinada al amasado, como la destinada al curado deben ser aptas para cumplir su función. El agua de curado es muy importante que sea apta pues puede afectar más negativamente a las reacciones químicas cuando se está endureciendo el hormigón. Normalmente el agua apta suele coincidir con la potable y están normalizados una serie de parámetros que debe cumplir. Así en la normativa está limitado el pH, el contenido en sulfatos, en ion cloro y los hidratos de carbono.26

Cuando una masa es excesivamente fluida o muy seca hay peligro de que se produzca el fenómeno de la segregación (separación del hormigón en sus componentes: áridos, cemento y agua). Suele presentarse cuando se hormigona con caídas de material superiores a los 2 metros.16

Otros componentes minoritarios[editar]Artículos principales: adiciones para hormigón y aditivos para hormigón

Page 28: materiales definiciones

Los componentes básicos del hormigón son cemento, agua y áridos; otros componentes minoritarios que se pueden incorporar son: adiciones, aditivos, fibras, cargas y pigmentos.

Pueden utilizarse como componentes del hormigón los aditivos y adiciones, siempre que mediante los oportunos ensayos, se justifique que la sustancia agregada en las proporciones y condiciones previstas produce el efecto deseado sin perturbar excesivamente las restantes características del hormigón ni representar peligro para la durabilidad del hormigón ni para la corrosión de las armaduras.27

Las adiciones son materiales inorgánicos, puzolánicos o con hidraulicidad latente que, finamente molidos, pueden ser añadidos al hormigón en el momento de su fabricación, con el fin de mejorar alguna de sus propiedades o conferirle propiedades especiales. La EHE recoge únicamente la utilización de las cenizas volantes y el humo de sílice, determinando sus limitaciones. esta compuesto de piedra caliza triturada en pedazos muy pequeños como el polvo, y de otro materiales como químicos HQR (herqiros) entre otros

Los aditivos son sustancias o productos que se incorporan al hormigón, antes o durante el amasado, produciendo la modificación de alguna de sus características, de sus propiedades habituales o de su comportamiento. La EHE establece una proporción no superior al 5 % del peso del cemento y otros condicionantes.

Diseño, fabricación y puesta en obra[editar]

Normativa[editar]Introducción

En el siglo XVIII, la resistencia de los elementos estructurales de hormigón armado era calculada experimentalmente. Navier, a principios del siglo XIX, planteó la necesidad de conocer y establecer los límites hasta donde las estructuras se comportaban elásticamente, sin deformaciones permanentes, para poder obtener modelos físico-matemáticos fiables y fórmulas coherentes. Posteriormente, dada la complejidad del comportamiento del hormigón, se requirió utilizar métodos basados en el cálculo de probabilidades para lograr resultados más realistas. En la primera mitad del siglo XX, se calculaban los elementos estructurales por el método de las tensiones admisibles.

Seguridad estructural

Page 29: materiales definiciones

Las estructuras de los edificios, cuya función es resistir las acciones a que

están sometidos, suelen ser de hormigón armado.

En los años 1960, se inició el desarrolló la teoría de la seguridad estructural respecto de los Estados límites, estableciéndose valores máximos en las flechas y en la fisuración de los elementos estructurales, acotando los riesgos.

Estados límites

El concepto de Estado límite tuvo su auge en los años 1970, como conjunto de requerimientos que debía satisfacer un elemento estructural para ser considerado apto. Los reglamentos se centraron en dos tipos: los Estados límites de servicio y los Estados límites de solicitación.

Coeficientes de seguridad

Los reglamentos de los años 1970, para poder simplificar los complejos cálculos de probabilidades, establecieron los Coeficientes de seguridad, en función de la calidad de los materiales, el control de la ejecución de la obra y la dificultad del proyecto. Se introdujeron losCoeficientes de mayoración de cargas o acciones, y los Coeficientes de minoración de resistencia de los componentes materiales.28

Reglamentos

A mediados del siglo XX los reglamentos tenían decenas de páginas, en el siglo XXI poseen cientos. La introducción de programas informáticos posibilita cálculos muy complejos, rápidos y soluciones más precisas. Los reglamentos hacen especial hincapié en estados últimos de servicio (fisuración, deformaciones) comportamiento (detalles constructivos) y durabilidad (recubrimientos, calidades), limitando la resolución experimental con múltiples condicionantes. Así, el Eurocódigo 1 establece situaciones usuales y accidentales (como sismos), que implican Coeficientes de seguridad parciales para las más variadas solicitaciones y resistencias. Algunas normativas específicas por ámbitos geográficos son EHE (España), Eurocódigo 2 (Europa), ASCE/SEI (Estados Unidos).

Page 30: materiales definiciones

Cálculo y proyecto[editar]

La construcción de puentes se realiza mayoritariamente en hormigón. En las imágenes,

el Salginatobel construido en Suiza en 1930, el Esplanade en Singapur de 1997 y el tercero es un

puente ferroviario de 1947 en el Río Paraguay que une Brasil y Bolivia.

Antes de construir cualquier elemento de hormigón deben calcularse las cargas a que estará sometido y, en función de las mismas, se determinarán las dimensiones de los elementos y calidad de hormigón, la disposición y cantidad de las armaduras en los mismos.

El cálculo de una estructura de hormigón consta de varias etapas. Primero se realizan una serie de simplificaciones en la estructura real transformándola en una estructura ideal de cálculo. Después se determinan las cargas que va a soportar la estructura, considerando en cada punto la combinación de cargas que produzca el efecto más desfavorable. Por último se dimensiona cada una de las secciones para que pueda soportar las solicitaciones más desfavorables.

Una vez calculada la estructura se redacta el proyecto, que es el conjunto de documentos que sirve para la realización de la obra y que detalla los

Page 31: materiales definiciones

elementos a construir. En el proyecto están incluidos los cálculos realizados. También incluye los planos donde figuran las dimensiones de los elementos a ejecutar, la tipificación de los hormigones previstos y las características resistentes de los aceros a emplear.

Fabricación[editar]

Es muy importante conseguir la mezcla óptima en las proporciones precisas de áridos de distintos tamaños, cemento y agua. No hay una mezcla óptima que sirva para todos los casos.29 Para establecer la dosificación adecuada en cada caso se debe tener en cuenta la resistencia mecánica, factores asociados a la fabricación y puesta en obra, así como el tipo de ambiente a que estará sometido.30

Hay muchos métodos para dosificar previamente el hormigón, pero son solo orientativos. Las proporciones definitivas de cada uno de los componentes se suelen establecer mediante ensayos de laboratorio, realizando correcciones a lo obtenido en los métodos teóricos.31

Se señalan brevemente los aspectos básicos que hay que determinar:

La resistencia característica (fck) se fija en el proyecto.31

La selección del tipo de cemento se establece en función de las

aplicaciones del hormigonado (en masa, armado, pretensado,

prefabricado, de alta resistencia, desencofrado rápido, hormigonados

en tiempo frío o caluroso, etc.) y del tipo de ambiente a que estará

expuesto.32

El tamaño máximo del árido interesa que sea el mayor posible, pues a

mayor tamaño menos agua necesitará ya que la superficie total de los

granos de áridos a rodear será más pequeña. Pero el tamaño máximo

estará limitado por los espacios que tiene que ocupar el hormigón

fresco entre dos armaduras cercanas o entre una armadura y el

encofrado.31

La consistencia del hormigón se establece en función del tamaño de

los huecos que hay que rellenar en el encofrado y de los medios de

compactación previstos.31

La cantidad de agua por metro cúbico de hormigón. Conocida la

consistencia, el tamaño máximo del árido y si la piedra es canto

rodado o de machaqueo es inmediato establecer la cantidad de agua

que se necesita.31

Page 32: materiales definiciones

La relación agua/cemento depende fundamentalmente de la

resistencia del hormigón, influyendo también el tipo de cemento y los

áridos empleados.

Conocida la cantidad de agua y la relación agua /cemento,

determinamos la cantidad de cemento.31

Conocida la cantidad de agua y de cemento, el resto serán áridos.

Determinar la composición granulométrica del árido, que consiste en

determinar los porcentajes óptimos de los diferentes tamaños de

áridos disponibles. Hay varios métodos, unos son de granulometría

continua, lo que significa que interviene todos los tamaños de áridos,

otros son de granulometría discontinua donde falta algún tamaño

intermedio de árido.31

Determinada la dosificación más adecuada, en la planta de hormigón hay que medir los componentes, el agua en volumen, mientras que el cemento y áridos se miden en peso.33

Los materiales se amasan en hormigonera o amasadora para conseguir una mezcla homogénea de todos los componentes. El árido debe quedar bien envuelto por la pasta de cemento. Para conseguir esta homogeneidad, primero se vierte la mitad de agua, después el cemento y la arena simultáneamente, luego el árido grueso y por último el resto de agua.33

Para el transporte al lugar de empleo se deben emplear procedimientos que no varíen la calidad del material, normalmente camiones hormigonera. El tiempo transcurrido no debe ser superior a hora y media desde su amasado.34 Si al llegar donde se debe colocar el hormigón, este ha empezado a fraguar debe desecharse.33

Puesta en obra[editar]

En el hormigón armado se emplea habitualmente acero de alta resistencia de

adherencia mejorada o barras corrugadas. El corrugado está normalizado por

la forma del resalto en el perímetro de la barra, su altura, anchura y

separación.

Colocación de armaduras

Page 33: materiales definiciones

Las armaduras deben estar limpias y sujetarse al encofrado y entre sí de forma que mantengan la posición prevista sin moverse en el vertido y compactación del hormigón. Para ello se colocan calzos o distanciadores en número suficiente que permitan mantener la rigidez del conjunto.35

Las distancias entre las diversas barras de armaduras deben mantener una separación mínima que está normalizada para permitir una correcta colocación del hormigón entre las barras de forma que no queden huecos o coqueras durante la compactación del hormigón.35

De igual manera el espacio libre entre las barras de acero y el encofrado, llamado recubrimiento, debe mantener una separación mínima, también normalizada, que permita el relleno de este espacio por el hormigón. Este espacio se controla por medio de separadores que se colocan entre la armadura y el encofrado.35

Encofrado

El encofrado debe contener y soportar el hormigón fresco durante su endurecimiento manteniendo la forma deseada sin que se deforme. Suelen ser de madera o metálicos y se exige que sean rígidos, resistentes, estancos y limpios. En su montaje deben quedar bien sujetos de forma que durante la consolidación posterior del hormigón no se produzcan movimientos.36

Antes de reutilizar un encofrado debe limpiarse bien con cepillos de alambre eliminando los restos de mortero que se hayan podido adherir a la superficie. Para facilitar el desencofrado se suelen aplicar al encofrado productos desencofrantes; estos deben estar exentos de sustancias perjudiciales para el hormigón.36

La construcción de puentes se realizaba con encofrados fijos. Tranebergsbron,Estocolmo, 1933.

Page 34: materiales definiciones

Weidatalbrücke en Freivorbau, construido en 2005 mediante encofrados deslizantes.

Colocación y compactación

El vertido del hormigón fresco en el interior del encofrado debe efectuarse evitando que se produzca la segregación de la mezcla. Para ello se debe evitar verterlo desde gran altura, hasta un máximo de dos metros de caída libre y no se debe desplazar horizontalmente la masa.37

Se coloca por capas o tongadas horizontales de espesor reducido para permitir una buena compactación (hasta 40 cm en hormigón en masa y 60 cm en hormigón armado). Las distintas capas o tongadas se consolidan sucesivamente, trabando cada capa con la anterior con el medio de compactación que se emplee y sin que haya comenzado a fraguar la capa anterior.37

Para conseguir un hormigón compacto, eliminando sus huecos y para que se obtenga un completo cerrado de la masa, hay varios sistemas de consolidación. El picado con barra, que se realiza introduciéndola sucesivamente, precisa hormigones de consistencias blandas y fluidas y se realiza en obras de poca importancia resistente. La compactación por golpeo repetido de un pisón se emplea en capas de 15 o 20 cm de espesor y mucha superficie horizontal. La compactación por vibrado es la habitual en hormigones resistentes y es apropiada en consistencias secas.37

El vibrador más utilizado es el de aguja, un cilindro metálico de 35 a 125 mm de diámetro cuya frecuencia varía entre 3.000 y 12.000 ciclos por minuto. La aguja se dispone verticalmente en la masa de hormigón fresco, introduciéndose en cada tongada hasta que la punta penetre en la capa anterior y cuidando de no tocar las armaduras pues la vibración podría separar la masa de hormigón de la armadura. Mediante el vibrado se reduce el aire contenido en el hormigón sin compactar que se estima del orden del 15 al 20 % hasta un 2-3 % después del vibrado.37

Curado

Page 35: materiales definiciones

El curado es una de las operaciones más importantes en el proceso de puesta en obra por la influencia decisiva que tiene en la resistencia del elemento final. Durante el fraguado y primer endurecimiento se producen pérdidas de agua por evaporación, formándose huecos capilares en el hormigón que disminuyen su resistencia. En particular el calor, la sequedad y el viento provocan una evaporación rápida del agua incluso una vez compactado. Es preciso compensar estas pérdidas curando el hormigón añadiendo abundante agua que permita que se desarrollen nuevos procesos de hidratación con aumento de la resistencia.36

Hay varios procedimientos habituales para curar el hormigón. Desde los que protegen del sol y del viento mediante tejadillos móviles, plásticos; mediante riegos de agua en la superficie; la inmersión en agua empleada en prefabricación; los productos de curado aplicados por pulverización; los pulverizados a base de resinas forman una película que impide la evaporación del agua, se trata de uno de los sistemas más eficaces y más costosos.36

Desencofrado y acabados

La retirada de los encofrados se realiza cuando el hormigón ha alcanzado el suficiente endurecimiento. En los portland normales suele ser un periodo que oscila entre 3 y 7 días.36

Una vez desencofrado hay que reparar los pequeños defectos superficiales normalmente huecos o coqueras superficiales. Si estos defectos son de grandes dimensiones o están en zonas críticas resistentes puede resultar necesario la demolición parcial o total del elemento construido.36

Es muy difícil que queden bien ejecutadas las aristas vivas de hormigón, por ello es habitual biselarlas antes de su ejecución. Esto se hace incorporando en las esquinas de los encofrados unos biseles de madera llamados berenjenos.36